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We introduce a covering notion depending on two cardinals, which we call O-[μ,λ]-
compactness, and which encompasses both pseudocompactness and many other known
generalizations of pseudocompactness. For Tychonoff spaces, pseudocompactness turns out
to be equivalent to O-[ω,ω]-compactness.
We provide several characterizations of O-[μ,λ]-compactness, and we discuss its connec-
tion with D-pseudocompactness, for D an ultrafilter. The connection turns out to be rather
strict when the above notions are considered with respect to products. In passing, we pro-
vide some conditions equivalent to D-pseudocompactness.
Finally, we show that our methods provide a unified treatment both for O-[μ,λ]-
compactness and for [μ,λ]-compactness.
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1. Introduction

As well known, there are many equivalent reformulations of pseudocompactness. See, e.g. [20]. Various generalizations
and extensions of pseudocompactness have been introduced by many authors; see, among others, [1,4,6,8,9,11,15,17,18,
20,21]. We introduce here some more pseudocompactness-like properties, focusing mainly on notions related to covering
properties and ultrafilter convergence.

The most general form of our notion depends on two cardinals μ and λ; we call it O-[μ,λ]-compactness. It is in-
troduced in Section 2. It generalizes and unifies several pseudocompactness-like notions appeared before. For Tychonoff
spaces, O-[ω,ω]-compactness turns out to be equivalent to pseudocompactness. More generally, the case μ = ω, λ arbi-
trary, corresponds to a notion which has been studied under different names, the most common name being weak initial
λ-compactness. See Remark 3 for further information. Many of our results appear to be new even in this particular case. In
a sense, O-[μ,λ]-compactness is to pseudocompactness what [μ,λ]-compactness is to countable compactness, as we shall
explain in Remark 2.

In Section 2 we also list many conditions equivalent to O-[μ,λ]-compactness. In Section 3 we present a further and
deeper characterization, which uses ultrafilters (Theorem 10), and which will play an important role in the rest of the
paper. Then we provide a connection between O-[μ,λ]-compactness and D-pseudocompactness, for D a (μ,λ)-regular
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ultrafilter. The notion of a (μ,λ)-regular ultrafilter arose in a model-theoretical setting, and has proved useful also in areas
of set-theory and topology. See, e.g., [12,14] for references.

More sophisticated results are involved when we deal with products, since D-pseudocompactness is productive, but
O-[μ,λ]-compactness is not necessarily productive. At the end of Section 3 we show that if D is a (μ,λ)-regular ultrafilter,
then every D-pseudocompact topological space X is O-[μ,λ]-compact, hence all (Tychonoff) powers of X are O-[μ,λ]-
compact, too (Corollary 15). The situation is in part parallel to the relationship between the more classical notions of
D-compactness and [μ,λ]-compactness. In the latter case, an equivalence holds: all powers of a topological space X are
[μ,λ]-compact if and only if there is some (μ,λ)-regular ultrafilter D such that X is D-compact. In Section 4 we show that
an analogous result holds for D-pseudocompactness, but we have to deal with a notion slightly stronger than O-[μ,λ]-
compactness. See Definition 18 and Theorem 23. In particular, we provide a characterization of those spaces which are
D-pseudocompact, for some (μ,λ)-regular ultrafilter D .

As a quite unrelated result, but with independent interest, in Proposition 17 we give some characterizations of those
spaces which are D-pseudocompact, for some given ultrafilter D . The (possibly new) parallel characterizations for D-com-
pactness are stated in Corollary 34.

In the final section of this note we mention that our results generalize to the abstract framework presented in [15]. That
is, our proofs work essentially unchanged both for pseudocompactness-like notions and for the corresponding compactness
notions. In [15] each compactness property is defined relative to a family F of subsets of some topological space X . The
pseudocompactness case is obtained when F = O, the family of all nonempty open sets of X . When F is the family of all
singletons of X , we obtain results related to [μ,λ]-compactness.

Some of the methods introduced in this paper have been used in order to solve a conjecture by T. Retta from [17].
See [16].

Our notation is fairly standard. Unless explicitly mentioned, we assume no separation axiom. However, the reader is
warned that there are many conditions equivalent to pseudocompactness, but the equivalence holds only assuming some
separation axiom (they are all equivalent for Tychonoff spaces). For Tychonoff spaces, the particular case μ = λ = ω of
our definition of O-[μ,λ]-compactness (Definition 1) turns out to be equivalent to pseudocompactness, but this is not
necessarily the case for spaces with lower separation properties. See Remark 3.

2. A cardinal generalization of pseudocompactness

In this section we introduce our main notion, we compare it with previously introduced notions and we describe some
simple equivalent formulations. A slightly stronger notion shall be introduced in Definition 18.

The following definition originally appeared in [15] in a more general framework. The letter O is intended to denote
the family of all the nonempty open sets of some topological space X . In this sense, the definition of O-[μ,λ]-compactness
below is the particular case F = O of the definition of F -[μ,λ]-compactness in [15, Definition 4.2]. See Section 5 for more
details.

Definition 1. We say that a topological space X is O-[μ,λ]-compact if and only if the following holds.
For every sequence (Cα)α∈λ of closed sets of X , if, for every Z ⊆ λ with |Z | < μ, there exists a nonempty open set O Z

of X such that
⋂

α∈Z Cα ⊇ O Z , then
⋂

α∈λ Cα �= ∅.
Clearly, in the above definition, we can equivalently let O Z vary among the (nonempty) elements of some base of X ,

rather than among all nonempty open sets. Also, by considering complements, we have that O-[μ,λ]-compactness is equiv-
alent to the following statement.

For every λ-indexed open cover (Q α)α∈λ of X , there exists Z ⊆ λ, with |Z | < μ, such that
⋃

α∈Z Q α is dense in X .

Remark 2. The notion of O-[μ,λ]-compactness should be compared with the more classical notion of [μ,λ]-compactness.
A topological space X is [μ,λ]-compact if and only if, for every sequence (Cα)α∈λ of closed sets of X , if

⋂
α∈Z Cα �= ∅,

for every Z ⊆ λ with |Z | < μ, then
⋂

α∈λ Cα �= ∅.
Thus, in the definition of [μ,λ]-compactness, we require only the weaker assumption that

⋂
α∈Z Cα is nonempty, for

every Z ⊆ λ with |Z | < μ, rather than requiring that
⋂

α∈Z Cα contains some nonempty open set. In particular, every
[μ,λ]-compact space is O-[μ,λ]-compact.

Thus, [ω,ω]-compactness is the same as countable compactness, which is the analogue of pseudocompactness for
O-[μ,λ]-compactness. Many of the results presented here are versions for O-[μ,λ]-compactness of known results about
[μ,λ]-compactness. Indeed, a simultaneous method of proof is available for both cases, and shall be mentioned in Sec-
tion 5.

Notice that [μ,λ]-compactness is a notion which encompasses both Lindelöfness (more generally, κ-final compactness)
and countable compactness (more generally, κ-initial compactness). See, e.g., [3,7,12,13,22] and references there for further
information about [μ,λ]-compactness.

Remark 3. For Tychonoff spaces, O-[ω,ω]-compactness is equivalent to pseudocompactness. Without assuming X to be Ty-
chonoff, O-[ω,ω]-compactness turns out to be equivalent to a condition which is usually called feeble compactness. See [15,
Theorem 4.4 and Remark 4.5] and [20].
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More generally, the particular case μ = ω of Definition 1, that is, O-[ω,λ]-compactness, has been introduced and studied
in [6], where it is called almost λ-compactness. The notion of O-[ω,λ]-compactness has also been studied, under different
names, in [18], as weak-λ-ℵ0-compactness, and in [17,21] as weak initial λ-compactness.

Moreover, [6] introduced also a notion which corresponds to O-[μ,λ]-compactness for all cardinals λ, calling it almost
μ-Lindelöfness. A notion equivalent to O-[μ,λ]-compactness has been considered in [5].

Assuming that κ is a regular cardinal, a property which turns out to be equivalent to O-[κ,κ]-compactness has been
introduced in [4] under the name pseudo-(κ,κ)-compactness. See Theorem 7 (a) ⇔ (d).

Definition 1 generalizes all the above-mentioned notions. Notice that many of our results appear to be new even in the
above particular cases.

See [1,4,6,8,9,11,15,17,18,20,21] for the study of these and further related notions.

Remark 4. Notice that, for μ > ω, it is not necessarily the case that O-[μ,λ]-compactness implies pseudocompactness.
Indeed, ω, with the discrete topology, is not pseudocompact, but it is [ω1, λ]-compact, for every λ, hence O-[ω1, λ]-compact,
for every λ. See, however, Remark 16.

Remark 5. Another possible name for O-[μ,λ]-compactness could have been [μ,λ]-pseudocompactness.
However, we wanted to reserve the name [μ,λ]-pseudocompactness for those Tychonoff spaces X which satisfy the

following condition. For every sequence (Cα)α∈λ of zero sets of X , if
⋂

α∈Z Cα �= ∅, for every Z ⊆ λ with |Z | < μ, then⋂
α∈λ Cα �= ∅.
In a sense, [μ,λ]-pseudocompactness, as defined above, is “[μ,λ]-compactness relative to zero sets”. The motivation for

the above terminology is to be consistent with the notion of λ-pseudocompactness, introduced in [11], and which turns out
to be equivalent, for Tychonoff spaces, to [ω,λ]-pseudocompactness, as defined above.

The notions of O-[μ,λ]-compactness and of [μ,λ]-pseudocompactness are distinct, in general. Retta [17] proved, under
different terminology, that every Tychonoff O-[ω,λ]-compact space is [ω,λ]-pseudocompact [17, Theorem 2(c)], and that,
for every λ � 2ω , there is an [ω,λ]-pseudocompact Tychonoff topological space which is not O-[ω,λ]-compact [17, Exam-
ple 2 on p. 388]. However, for Tychonoff spaces, O-[ω,ω]-compactness and [ω,ω]-pseudocompactness are equivalent (and
equivalent to pseudocompactness).

For λ, μ infinite cardinals, Sμ(λ) denotes the set of all subsets of λ of cardinality < μ. We put λ<μ = supμ′<μ λμ′
. Thus,

λ<μ is the cardinality of Sμ(λ).
In the next proposition we present some useful conditions equivalent to O-[μ,λ]-compactness. A further important

characterization will be presented in Theorem 10.

Proposition 6. For every topological space X and infinite cardinals λ and μ, the following are equivalent.

(1) X is O-[μ,λ]-compact.
(2) For every sequence (Pα)α∈λ of subsets of X , if, for every Z ⊆ λ with |Z | < μ, there exists a nonempty open set O Z of X such that⋂

α∈Z Pα ⊇ O Z , then
⋂

α∈λ Pα �= ∅.
(3) For every sequence (Q α)α∈λ of open sets of X , if, for every Z ⊆ λ with |Z | < μ, there exists a nonempty open set O Z of X such

that
⋂

α∈Z Q α ⊇ O Z , then
⋂

α∈λ Q α �= ∅.

(4) For every sequence {O Z | Z ∈ Sμ(λ)} of nonempty open sets of X , it happens that
⋂

α∈λ

⋃{O Z | Z ∈ Sμ(λ), α ∈ Z} �= ∅.
(5) For every sequence {O Z | Z ∈ Sμ(λ)} of nonempty open sets of X , the following holds. If, for every finite subset W of λ, we put

Q W = ⋃{O Z | Z ∈ Sμ(λ) and Z ⊇ W }, then
⋂{Q W | W is a finite subset of λ} �= ∅.

(6) For every sequence {C Z | Z ∈ Sμ(λ)} of closed sets of X , such that each C Z is properly contained in X, if we let, for α ∈ λ, Pα be
the interior of

⋂{C Z | Z ∈ Sμ(λ), α ∈ Z}, then we have that (Pα)α∈λ is not a cover of X .

Proof. (1) ⇒ (2) Just take Cα = Pα , for α ∈ λ.
(2) ⇒ (3) is trivial.
(3) ⇒ (5) The sequence {Q W | W is a finite subset of λ} is a sequence of λ open sets of X , since there are λ finite

subsets of λ.
For every ν < μ, if (Wβ)β∈ν is a sequence of finite subsets of λ, then Z = ⋃

β∈ν Wβ has cardinality � ν , and thus
belongs to Sμ(λ). Moreover, for each β ∈ ν , we have that Z ⊇ Wβ , hence Q Wβ ⊇ O Z . This implies that

⋂
β∈ν Q Wβ ⊇ O Z .

We have proved that the sequence {Q W | W a finite subset of λ} is a sequence of λ open sets of X such that the inter-
section of < μ members of the sequence contains some nonempty open set of X . By applying (3) to this sequence, we have
that

⋂{Q W | W is a finite subset of λ} �= ∅.
(5) ⇒ (4) is trivial.
(4) ⇒ (1) Suppose that (Cα)α∈λ and O Z , for Z ⊆ λ with |Z | < μ, are as in the premise of the definition of O-[μ,λ]-

compactness.
For α ∈ λ, let C ′

α = ⋃{O Z | Z ∈ Sμ(λ), α ∈ Z}. Since Cα is closed, and Cα ⊇ O Z whenever α ∈ Z , we have that Cα ⊇ C ′
α .

By (4),
⋂

α∈λ C ′
α �= ∅, hence also

⋂
α∈λ Cα �= ∅. Thus we have proved (1).
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We shall also give a direct proof of (3) ⇒ (4), since it is very simple. Given the sequence {O Z | Z ∈ Sμ(λ)} then, for
every α ∈ λ, put Q α = ⋃{O Z | Z ∈ Sμ(λ), α ∈ Z}. For every Z ∈ Sμ(λ), and every α ∈ Z , we have that Q α ⊇ O Z . Hence, for
every Z ∈ Sμ(λ), we get

⋂
α∈Z Q α ⊇ O Z , so that we can apply (3).

(4) ⇔ (6) is immediate by taking complements. �
In the particular case when μ = λ is regular, there are many more conditions equivalent to O-[λ,λ]-compactness.

Theorem 7. Suppose that X is a topological space, and λ is a regular cardinal. Then the following conditions are equivalent.

(a) X is O-[λ,λ]-compact.
(b) Suppose that (Cα)α∈λ is a sequence of closed sets of X such that Cα ⊇ Cβ , whenever α � β < λ. If, for every α ∈ λ, there exists a

nonempty open set O of X such that Cα ⊇ O , then
⋂

α∈λ Cα �= ∅.
(c) Suppose that (Cα)α∈λ is a sequence of closed sets of X such that Cα ⊇ Cβ , whenever α � β < λ. Suppose further that, for every

α ∈ λ, Cα is the closure of some open set of X . If, for every α ∈ λ, there exists a nonempty open set O of X such that Cα ⊇ O , then⋂
α∈λ Cα �= ∅.

(d) For every sequence (Oα)α∈λ of nonempty open sets of X , there exists x ∈ X such that |{α ∈ λ | U ∩ Oα �= ∅}| = λ, for every
neighborhood U of x in X.

(e) For every sequence (Oα)α∈λ of nonempty open sets of X , there exists some ultrafilter D uniform over λ such that (Oα)α∈λ has a
D-limit point (see Definition 9).

(f) For every λ-indexed open cover (Oα)α∈λ of X , such that Oα ⊆ O β whenever α � β < λ, there exists α ∈ λ such that Oα is dense
in X.

In all the above statements we can equivalently require that the elements of the sequence (Cα)α∈λ , respectively, (Oα)α∈λ , are all
distinct.

Proof. The equivalence of (a)–(f) follows from [15, Theorem 4.4], by taking F there to be the family O of all the nonempty
open sets of X .

The last statement is trivial in case (a) and, since λ is regular, it is trivial also as far as Conditions (b), (c) and (f) are
concerned. It follows from [15, Proposition 3.3(a)] in case (d). Then apply [15, Proposition 4.1] in order to get (e). �
Remark 8. At this point, we should mention a significant difference between O-[μ,λ]-compactness and [μ,λ]-compactness.

It is true that a topological space is [μ,λ]-compact if and only if it is [κ,κ]-compact, for every κ such that μ � κ � λ.
Though simple, the above equivalence has proved very useful in many circumstances. See, e.g., [13].

It is trivial that every O-[μ,λ]-compact space is O-[μ′, λ′]-compact, whenever μ � μ′ � λ′ � λ. In particular, every
O-[μ,λ]-compact space is O-[κ,κ]-compact, for every κ such that μ � κ � λ.

On the contrary, the condition of being O-[κ,κ]-compact, for every κ such that μ � κ � λ, is not always a sufficient
condition in order to get O-[μ,λ]-compactness. See Remark 30. This fact limits the usefulness of Theorem 7 in the present
context.

3. A characterization by means of ultrafilters

The first theorem in this section, Theorem 10, furnishes a characterization of O-[μ,λ]-compactness by means of the
existence of D-limit points of ultrafilters. This characterization is the key for the study of the connections between O-[μ,λ]-
compactness and D-pseudocompactness, for D a (μ,λ)-regular ultrafilter and shall also be used in the next section in
connection with properties of products. By the way, in Proposition 17 we give a characterization of D-pseudocompactness
which may be of independent interest.

Definition 9. Suppose that D is an ultrafilter over some set I , and X is a topological space. If (Yi)i∈I is a sequence of subsets
of X , then x ∈ X is called a D-limit point of (Yi)i∈I if and only if {i ∈ I | Yi ∩ U �= ∅} ∈ D , for every neighborhood U of x
in X . The notion of a D-limit point is due to [9, Definition 4.1] for non-principal ultrafilters over ω, and appears in [8] for
uniform ultrafilters over arbitrary cardinals.

We say that an ultrafilter D over Sμ(λ) covers λ if and only if, for every α ∈ λ, it happens that {Z ∈ Sμ(λ) | α ∈ Z} ∈ D .
This notion is connected with (μ,λ)-regularity, as we shall see in Definition 13.

Theorem 10. For every topological space X and infinite cardinals λ and μ, the following are equivalent.

(1) X is O-[μ,λ]-compact.
(2) For every sequence {O Z | Z ∈ Sμ(λ)} of nonempty open sets of X , there exists an ultrafilter D over Sμ(λ) which covers λ and such

that {O Z | Z ∈ Sμ(λ)} has a D-limit point.



P. Lipparini / Topology and its Applications 158 (2011) 1655–1666 1659
Proof. (1) ⇒ (2) Suppose that {O Z | Z ∈ Sμ(λ)} is a sequence of nonempty open sets of X . For every finite subset W
of λ, let Q W = ⋃{O Z | Z ∈ Sμ(λ) and Z ⊇ W }. By O-[μ,λ]-compactness, and Condition (5) in Proposition 6, we have that⋂{Q W | W a finite subset of λ} �= ∅. Fix x ∈ ⋂{Q W | W a finite subset of λ}.

For every neighborhood U of x in X , let AU = {Z ∈ Sμ(λ) | U ∩ O Z �= ∅}. For every α ∈ λ, let [α) = {Z ∈ Sμ(λ) | α ∈ Z}. We
are going to show that the family A = {[α) | α ∈ λ} ∪ {AU | U a neighborhood of x in X} has the finite intersection property.

Indeed, let U1, . . . , Un be neighborhoods of x, and α1, . . . ,αm be elements of λ. Let U = U1 ∩ · · · ∩ Un , W = {α1, . . . ,αm},
and [W ) = [α1) ∩ · · · ∩ [αm) = {Z ∈ Sμ(λ) | Z ⊇ W }. Since x ∈ Q W , we get that U ∩ Q W �= ∅, that is, U ∩ O Z �= ∅, for
some Z ∈ Sμ(λ) with Z ⊇ W . Hence Z ∈ AU , and also Z ∈ AU1 , . . . , Z ∈ AUn , since U1 ⊇ U , . . . , Un ⊇ U . In conclusion,
Z ∈ AU1 ∩ · · · ∩ AUn ∩ [α1) ∩ · · · ∩ [αm), hence the above intersection is not empty.

We have showed that A has the finite intersection property. Hence A can be extended to some ultrafilter D over Sμ(λ).
By construction, [α) ∈ D , for every α ∈ λ, hence D covers λ. Again by construction, AU ∈ D , for every neighborhood U of x
in X , and this means exactly that x is a D-limit point of {O Z | Z ∈ Sμ(λ)}. Thus, (2) is proved.

In order to prove (2) ⇒ (1), it is sufficient to prove that (2) implies Condition (4) in Proposition 6. Let {O Z | Z ∈ Sμ(λ)}
be a sequence of nonempty open sets of X . Letting Cα = ⋃{O Z | Z ∈ Sμ(λ), α ∈ Z}, for α ∈ λ, we need to show that⋂

α∈λ Cα �= ∅. Let D be an ultrafilter as given by (2), and suppose that x is a D-limit point of {O Z | Z ∈ Sμ(λ)}. We are going
to show that x ∈ ⋂

α∈λ Cα . Suppose by contradiction that, for some α ∈ λ, it happens that x /∈ Cα . Since Cα is closed, U =
X \ Cα is a neighborhood of x. Notice that, if Z ∈ Sμ(λ) and α ∈ Z , then Cα ⊇ O Z . Hence {Z ∈ Sμ(λ) | U ∩ O Z �= ∅}∩ [α) = ∅,
hence {Z ∈ Sμ(λ) | U ∩ O Z �= ∅} /∈ D , since D is an ultrafilter, and [α) ∈ D by assumption, since D is supposed to cover λ. But
{Z ∈ Sμ(λ) | U ∩ O Z �= ∅} /∈ D contradicts the assumption that x is a D-limit point of {O Z | Z ∈ Sμ(λ)}. Hence x ∈ ⋂

α∈λ Cα ,
thus

⋂
α∈λ Cα �= ∅, and the proof is complete. �

Remark 11. Theorem 10 is inspired by results by X. Caicedo from his seminal paper [3]. Caicedo proved results similar to
Theorem 10 for [μ,λ]-compactness. The result analogous to the implication (1) ⇒ (2) in Theorem 10 is Lemma 3.3 (i) in [3].
A common generalization and strengthening of both Theorem 10 and [3, Lemmas 3.1 and 3.3] holds. See Proposition 32
(1) ⇒ (7) below.

Notice that, because of the well-known result about [μ,λ]-compactness mentioned in Remark 8, essentially all appli-
cations of results in [3] can be obtained using only the particular case λ = μ of [3, Lemmas 3.1 and 3.3]. However, such
a reduction is not possible in the case of O-[μ,λ]-compactness, by Remark 30 below. Hence it is necessary to deal with
the more general case in which λ �= μ is allowed. The idea from [2,3] of treating the notions and results in full generality is
thus completely well-justified.

Definition 12. If D is an ultrafilter over I , then a topological space X is said to be D-pseudocompact [9,8] if and only if every
sequence (O i)i∈I of nonempty open subsets of X has some D-limit point in X .

Definition 13. An ultrafilter D over some set I is said to be (μ,λ)-regular if and only if there is a function f : I → Sμ(λ)

such that {i ∈ I | α ∈ f (i)} ∈ D , for every α ∈ λ. See, e.g., [14] for equivalent definitions and for a survey of results on
(μ,λ)-regular ultrafilters.

If D is an ultrafilter over I , and f : I → J is a function, the ultrafilter f (D) over J is defined by the following clause:
Z ∈ f (D) if and only if f −1(Z) ∈ D .

With the above notation, it is trivial to see that D over I is (μ,λ)-regular if and only if there exists some function
f : I → Sμ(λ) such that f (D) covers λ.

In passing, let us mention that the above definitions involve the so-called Rudin–Keisler order. If D and E are two
ultrafilters, respectively over I and J , then E is said to be less than or equal to D in the Rudin–Keisler (pre-)order, E �RK D
for short, if and only if there exists some function f : I → J such that E = f (D). If both E �RK D and D �RK E , then E
and D are said to be (Rudin–Keisler) equivalent.

The next fact is trivial, but very useful.

Fact 14. If D is an ultrafilter over I , X is a D-pseudocompact topological space, and f : I → J is a function, then X is
f (D)-pseudocompact.

Corollary 15. Suppose that D is a (μ,λ)-regular ultrafilter.
If X is a D-pseudocompact topological space, then X is O-[μ,λ]-compact.
More generally, if (X j) j∈ J is a sequence of D-pseudocompact topological spaces, then the Tychonoff product

∏
j∈ J X j is O-[μ,λ]-

compact.

Proof. By (μ,λ)-regularity, there is f : I → Sμ(λ) such that f (D) covers λ. By Fact 14, X is f (D)-pseudocompact, hence
O-[μ,λ]-compactness of X follows from Theorem 10 with f (D) in place of D . Notice that here f (D) works “uniformly” for
every sequence, while, in the statement of Theorem 10 (2), the ultrafilter, in general, depends on the sequence.
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The last statement follows from the known fact [9, Theorem 4.3] that D-pseudocompactness is preserved under taking
products. �

A result analogous to Corollary 15 for [μ,λ]-compactness is proved in [3, Lemma 3.1].

Remark 16. We remarked in Remark 4 that O-[μ,λ]-compactness does not necessarily imply pseudocompactness.
However, suppose that μ � λ are infinite cardinals such that every (μ,λ)-regular ultrafilter is (ω,ω)-regular. For ex-

ample, the above assumption is satisfied either in case there is no measurable cardinal, or μ is less then the smallest
measurable cardinal (see, e.g., [14]).

Under the above assumption on μ and λ, we get, by Remark 3, Fact 14, and Corollary 15, that every Tychonoff topological
space X which is D-pseudocompact, for some (μ,λ)-regular ultrafilter D , is also D ′-pseudocompact, for some (ω,ω)-regular
ultrafilter D ′ , hence X is pseudocompact. Indeed, all powers of X are pseudocompact (compare also [15, Corollary 6.7]).

On the other hand, if μ is a measurable cardinal, then there exists a (μ,μ)-regular not (ω,ω)-regular ultrafilter D .
It is not difficult to see that then ω, with the discrete topology, is D-compact. Thus, ω, though not pseudocompact, is
productively [μ,μ]-compact (see, e.g., [12]), hence also productively O-[μ,μ]-compact.

To find an exact dividing line between the above examples is likely to involve difficult set-theoretical problems.

We now present a list of nice characterizations of D-pseudocompactness.

Proposition 17. Suppose that D is an ultrafilter over some set I , and X is a topological space. Then the following are equivalent.

(1) X is D-pseudocompact.
(2) For every sequence {O i | i ∈ I} of nonempty open sets of X , if, for Z ∈ D, we put C Z = ⋃

i∈Z O i , then we have that
⋂

Z∈D C Z �= ∅.
(3) Whenever (C Z )Z∈D is a sequence of closed sets of X with the property that, for every i ∈ I ,

⋂
i∈Z C Z contains some nonempty

open set of X , then
⋂

Z∈D C Z �= ∅.
(4) For every open cover (Q Z )Z∈D of X , there is some i ∈ I such that

⋃
i∈Z Q Z is dense in X.

(5) For every sequence {Ci | i ∈ I} of closed sets of X , such that each Ci is properly contained in X, if, for Z ∈ D, we let Q Z be the
interior of

⋂
i∈Z Ci , then we have that (Q Z )Z∈D is not a cover of X .

Proof. (1) ⇒ (2) By D-pseudocompactness, the sequence {O i | i ∈ I} has some D-limit point x in X , that is, {i ∈ I | U ∩ O i �=
∅} ∈ D , for every neighborhood U of x in X .

We are going to show that x ∈ ⋂
Z∈D C Z . Indeed, let Z be any set in D . If U is a neighborhood of x, then Z ′ = Z ∩ {i ∈ I |

U ∩ O i �= ∅} is still in D , thus is nonempty. Let i ∈ Z ′ . Then U ∩ O i �= ∅, and C Z ⊇ O i , since i ∈ Z . Hence U ∩ C Z �= ∅. Since
the above argument works for every neighborhood U of x, we have that x ∈ C Z , since C Z is a closed set.

We have showed that x ∈ C Z , for every Z ∈ D , hence x ∈ ⋂
Z∈D C Z .

(2) ⇒ (3) For every i ∈ I , let O i be some nonempty open set of X such that
⋂

i∈Z C Z ⊇ O i . For every Z ∈ D , put

C ′
Z = ⋃

i∈Z O i . By Clause (2), we have that
⋂

Z∈D C ′
Z �= ∅. Since, for every i ∈ Z , C Z ⊇ O i , we have that C Z ⊇ C ′

Z , for every
Z ∈ D . Hence,

⋂
Z∈D C Z ⊇ ⋂

Z∈D C ′
Z �= ∅.

(3) ⇒ (1) Suppose that (O i)i∈I is a sequence of nonempty open sets of X . For Z ∈ D , let C Z = ⋃
i∈Z O i . Hence, for every

i ∈ Z , C Z ⊇ O i , and, for every i ∈ I ,
⋂

i∈Z C Z contains the nonempty open set O i .
By (3), there is some x ∈ X such that x ∈ ⋂

Z∈D C Z . It is enough to show that x is a D-limit point of (O i)i∈I . If not, x has
some neighborhood U such that {i ∈ I | U ∩ O i �= ∅} /∈ D , that is, {i ∈ I | U ∩ O i = ∅} ∈ D . Letting Z = {i ∈ I | U ∩ O i = ∅}, we
have that U ∩ ⋃

i∈Z O i = ∅, but this contradicts x ∈ C Z = ⋃
i∈Z O i .

(3) ⇔ (4) and (2) ⇔ (5) are obtained by considering complements. �
4. Theorems about products

In this section we consider, for a product space
∏

j∈ J X j , a stronger variant of O-[μ,λ]-compactness, a variant which
takes into account all the open sets in the box topology on the set

∏
j∈ J X j . This notion shall be used in order to provide a

characterization of all those spaces X which are D-pseudocompact, for some (μ,λ)-regular ultrafilter D (Theorem 23).
We shall need to consider the set

∏
j∈ J X j endowed both with the Tychonoff topology and with the box topology. A base

for the latter topology is given by all the products
∏

j∈ J O j , each O j being an open set of X j . When we write
∏

j∈ J X j ,
we shall always assume that the product is endowed with the Tychonoff topology, while � j∈ J X j shall denote the product
endowed with the box topology.

As in the case of Definition 1, the next definition can be considered as a particular case of the general framework
introduced of [15] (see Section 5). In this case, we are taking F = O� , where O� is intended to denote all the nonempty
open sets in the box topology on � j∈ J X j .

Definition 18. Suppose that (X j) j∈ J is a sequence of topological spaces. We say that the topological space
∏

j∈ J X j is
O�-[μ,λ]-compact if and only if the following holds.
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For every sequence (Cα)α∈λ of closed sets of
∏

j∈ J X j , if, for every Z ⊆ λ with |Z | < μ, there exists a nonempty open
set O Z of � j∈ J X j such that

⋂
α∈Z Cα ⊇ O Z , then

⋂
α∈λ Cα �= ∅.

Notice that O�-[μ,λ]-compactness is a notion stronger than O-[μ,λ]-compactness, that is, every O�-[μ,λ]-compact
product

∏
j∈ J X j is O-[μ,λ]-compact. The two notions are distinct, in general, as we shall see in Remark 25. Notice also

that every [μ,λ]-compact product is O�-[μ,λ]-compact.

Remark 19. Notice that O�-[μ,λ]-compactness is not an intrinsic property of the topological space Y = ∏
j∈ J X j . That

is, O�-[μ,λ]-compactness does not only depend on the topology on Y , but depends also on the way Y is realized as a
product. There might be two homeomorphic spaces, say, Y = ∏

j∈ J X j and Z = ∏
h∈H Yh such that Y , as a product

∏
j∈ J X j ,

is O�-[μ,λ]-compact, while Z , as a product
∏

h∈H Yh , is not. Just to consider a simple case, if Y = ∏
j∈ J X j , and Z is a

homeomorphic copy of Y , and we consider Z “as itself”, that is, as the product of just a single factor, then Z is O�-[μ,λ]-
compact if and only if it is O-[μ,λ]-compact. On the contrary, as we shall see, O�-[μ,λ]-compactness and O-[μ,λ]-
compactness are distinct notions, in general.

The above remark will cause no problem here, since we will always be dealing with a space Y = ∏
j∈ J X j together with

just one single realization of Y as
∏

j∈ J X j . In other words, we shall never deal with the homeomorphism equivalence class
of Y , but we shall always deal with Y = ∏

j∈ J X j just in this concrete realization.

Of course, O�-[μ,λ]-compactness can be characterized in a way similar to the characterizations of O-[μ,λ]-
compactness given in Proposition 6. Clause (7) in the next proposition is proved as the last statement of Definition 1.

Proposition 20. For every sequence (X j) j∈ J of topological spaces, and λ, μ infinite cardinals, the following are equivalent, where, in
items (2)–(5), closures are computed in

∏
j∈ J X j .

(1)
∏

j∈ J X j is O�-[μ,λ]-compact.
(2) For every sequence (Pα)α∈λ of subsets of

∏
j∈ J X j , if, for every Z ⊆ λ with |Z | < μ, there exists a nonempty open set O Z of

� j∈ J X j such that
⋂

α∈Z Pα ⊇ O Z , then
⋂

α∈λ Pα �= ∅.
(3) For every sequence (Q α)α∈λ of open sets of � j∈ J X j , if, for every Z ⊆ λ with |Z | < μ, there exists a nonempty open set O Z of

� j∈ J X j such that
⋂

α∈Z Q α ⊇ O Z , then
⋂

α∈λ Q α �= ∅.

(4) For every sequence {O Z | Z ∈ Sμ(λ)} of nonempty open sets of � j∈ J X j , it happens that
⋂

α∈λ

⋃{O Z | Z ∈ Sμ(λ), α ∈ Z} �= ∅.
(5) For every sequence {O Z | Z ∈ Sμ(λ)} of nonempty open sets of � j∈ J X j , the following holds: if, for every finite subset W of λ, we

put

Q W =
⋃{

O Z
∣∣ Z ∈ Sμ(λ) and Z ⊇ W

}

then
⋂

{Q W | W is a finite subset of λ} �= ∅.

(6) For every sequence {C Z | Z ∈ Sμ(λ)} of closed sets of � j∈ J X j , such that each C Z is properly contained in
∏

j∈ J X j , if we let, for
α ∈ λ, Pα be the interior (computed in

∏
j∈ J X j) of

⋂{C Z | Z ∈ Sμ(λ), α ∈ Z}, then we have that (Pα)α∈λ is not a cover of∏
j∈ J X j .

(7) For every λ-indexed open cover (Q α)α∈λ of
∏

j∈ J X j , there exists Z ⊆ λ, with |Z | < μ, such that
⋃

α∈Z Q α is a dense subset in� j∈ J X j .

The proof of Theorem 10 carries over essentially unchanged in order to get the following useful proposition.

Proposition 21. For every sequence (X j) j∈ J of topological spaces, and λ, μ infinite cardinals, the following are equivalent.

(1)
∏

j∈ J X j is O�-[μ,λ]-compact.
(2) For every sequence {O Z | Z ∈ Sμ(λ)} of nonempty open sets of � j∈ J X j , there exists an ultrafilter D over Sμ(λ) which covers λ

and such that {O Z | Z ∈ Sμ(λ)} has a D-limit point in
∏

j∈ J X j .

Proposition 21 can be used to improve the last statement in Corollary 15.

Corollary 22. Suppose that D is a (μ,λ)-regular ultrafilter. If (X j) j∈ J is a sequence of D-pseudocompact topological spaces, then∏
j∈ J X j is O�-[μ,λ]-compact.
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We are now going to show that a topological space X is D-pseudocompact for some (μ,λ)-regular ultrafilter D if and
only if all (Tychonoff) powers of X are O�-[μ,λ]-compact. We shall denote by Xδ the Tychonoff product of δ-many copies
of X .

Theorem 23. For every topological space X, and λ, μ infinite cardinals, the following are equivalent.

(1) There exists some ultrafilter D over Sμ(λ) which covers λ, and such that X is D-pseudocompact.
(2) There exists some (μ,λ)-regular ultrafilter D (over any set) such that X is D-pseudocompact.
(3) There exists some (μ,λ)-regular ultrafilter D such that, for every cardinal δ, the space Xδ is D-pseudocompact.
(4) The power Xδ is O�-[μ,λ]-compact, for every cardinal δ.
(5) The power Xδ is O�-[μ,λ]-compact, for δ = min{22κ

, (w(X))κ }, where κ = λ<μ .

Proof. (1) ⇒ (2) is trivial, since if D is over Sμ(λ) and covers λ, then D is (μ,λ)-regular.
(2) ⇒ (3) follows from the mentioned result from [9, Theorem 4.3], asserting that a product of D-pseudocompact spaces

is still D-pseudocompact.
(3) ⇒ (4) follows from Corollary 22.
(4) ⇒ (5) is trivial.
(5) ⇒ (1) We first consider the case δ = (w(X))κ .
Let B be a base of X of cardinality w(X). Thus, there are δ-many Sμ(λ)-indexed sequences of elements of B, since

|Sμ(λ)| = κ . Let us enumerate them as {{Q β,Z | Z ∈ Sμ(λ)} | β < δ}. In Xδ consider the sequence {∏β∈δ Q β,Z | Z ∈ Sμ(λ)}.

For every Z ∈ Sμ(λ), the set
∏

β∈δ Q β,Z is open in the box topology on Xδ . By the O�-[μ,λ]-compactness of Xδ , and by
Proposition 21 (1) ⇒ (2), there exists an ultrafilter D over Sμ(λ) which covers λ and such that {∏β∈δ Q β,Z | Z ∈ Sμ(λ)} has

some D-limit point x in Xδ .
We are going to show that X is D-pseudocompact. So, let {O Z | Z ∈ Sμ(λ)} be a sequence of nonempty open sets of X .

Since B is a base for X , then, for every Z ∈ Sμ(λ), there is a nonempty B Z in B such that O Z ⊇ B Z . Choose one such B Z

for each Z ∈ Sμ(λ). The sequence {B Z | Z ∈ Sμ(λ)} is an Sμ(λ)-indexed sequence of elements of B. Since, by construction,
all such sequences are enumerated by {Q β,Z | Z ∈ Sμ(λ)}, there is some β0 ∈ δ such that B Z = Q β0,Z , for every Z ∈ Sμ(λ).

By what we have proved before, the sequence {∏β∈δ Q β,Z | Z ∈ Sμ(λ)} has some D-limit point x in Xδ , say x = (xβ)β∈δ .
A trivial property of D-limits implies that, for every β ∈ δ, we have that xβ is a D-limit of {Q β,Z | Z ∈ Sμ(λ)}. In particular,
by taking β = β0, we get that xβ0 is a D-limit point of {B Z | Z ∈ Sμ(λ)}.

Since O Z ⊇ B Z , for every Z ∈ Sμ(λ), we get that xβ0 is also a D-limit point of {O Z | Z ∈ Sμ(λ)}. We have proved that
every sequence {O Z | Z ∈ Sμ(λ)} of nonempty open sets of X has some D-limit point in X , that is, X is D-pseudocompact.

Now we consider the case δ = 22κ
. We shall prove that if δ = 22κ

and (1) fails, then (5) fails. If (1) fails, then, for every
ultrafilter D over Sμ(λ) which covers λ, there is a sequence {O Z | Z ∈ Sμ(λ)} of nonempty open sets of X which has no
D-limit point. Since there are δ-many ultrafilters over Sμ(λ), we can enumerate the above sequences as {{O β,Z | Z ∈ Sμ(λ)} |
β < δ}. Now, given any ultrafilter D over Sμ(λ) and covering λ, it is not the case that the sequence {∏β∈δ O β,Z | Z ∈ Sμ(λ)}
has some D-limit point. Indeed, were x = (xβ)β∈δ a D-limit point of {∏β∈δ O β,Z | Z ∈ Sμ(λ)}, then, by a trivial property of
D-limits, for every β ∈ δ, xβ would be a D-limit point of {O β,Z | Z ∈ Sμ(λ)}. This is a contradiction since, by construction,
for every ultrafilter D over Sμ(λ) covering λ, there exists some β ∈ δ such that {O β,Z | Z ∈ Sμ(λ)} has no D-limit point.

We have showed that for no ultrafilter D over Sμ(λ) and covering λ the sequence {∏β∈δ O β,Z | Z ∈ Sμ(λ)} has some

D-limit point. Since, for every Z ∈ Sμ(λ),
∏

β∈δ O β,Z is an open set of the box topology on Xδ , we get that, by Proposition 21

(1) ⇒ (2), Xδ is not O�-[μ,λ]-compact, that is, (5) fails. �
Remark 24. Condition (5) in Theorem 23 can be improved to the effect that we can take κ there to be equal to the cofinality
of the partial order Sμ(λ). A subset H of Sμ(λ) is said to be cofinal in Sμ(λ) if and only if, for every Z ∈ Sμ(λ), there is
Z ′ ∈ H such that Z ⊆ Z ′ . The cofinality cf Sμ(λ) of Sμ(λ) is the minimal cardinality of some subset H cofinal in Sμ(λ).
Notice that if λ is regular, then cf Sλ(λ) = λ, cf Sλ(λ

+) = λ+ , and cf Sλ(λ
++) = λ++ , and so on. Highly non-trivial results

about cf Sμ(λ) are consequences of Shelah’s pcf-theory [19].
For the rest of this remark, let us fix some subset H cofinal in Sμ(λ).
All the definitions and results involving Sμ(λ) can be modified in order to apply to H , too. In particular, in the definitions

of O-[μ,λ]-compactness and of O�-[μ,λ]-compactness, we get an equivalent notion if we consider only those Z ∈ H .
Similarly, in Propositions 6 and 20 we can equivalently consider H-indexed sequences, rather than Sμ(λ)-indexed sequences,
that is, we can replace everywhere Z ∈ Sμ(λ) by Z ∈ H , still obtaining the results.

Moreover, we can say that an ultrafilter D over H covers λ if and only if, for every α ∈ λ, it happens that [α)H = {Z ∈ H |
α ∈ Z} ∈ D . With this definition, we have that Theorem 10 and Proposition 21, too, hold, if Z ∈ Sμ(λ) is everywhere replaced
by Z ∈ H .

Moreover, let f : Sμ(λ) → H be defined in such a way that Z ⊆ f (Z), for every Z ∈ Sμ(λ). If D is over Sμ(λ) and
covers λ, then f (D) is over (a subset of) H , and f (D), too, covers λ. The above observations give us the possibility of
proving Theorem 23 with the improved value κ = cf Sμ(λ) in Condition (5).
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Remark 25. In order to get results like Theorem 23, it is actually necessary to deal with O�-[μ,λ]-compactness, rather
than with O-[μ,λ]-compactness. Indeed, [9, Example 4.4] constructed a Tychonoff space X such that all powers of X are
pseudocompact but for no ultrafilter D uniform over ω, X is D-pseudocompact. By Remark 3, all powers of X are O-[ω,ω]-
compact. The condition that, for no ultrafilter D uniform over ω, X is D-pseudocompact is easily seen to be equivalent to
the property that for no ultrafilter D over Sω(ω) and covering ω, X is D-pseudocompact. The equivalence can be proved
directly; otherwise, notice that, for μ = λ a regular cardinal, Condition (4) in Theorem 23 coincides with Condition (5)
in [15, Corollary 5.5], hence the respective Conditions (1) are equivalent.

Since, for no ultrafilter D over Sω(ω) and covering ω, X is D-pseudocompact, we get, by Theorem 23, that not every
power of X is O�-[ω,ω]-compact, but, as we remarked, every power of X is O-[ω,ω]-compact, thus the two notions are
distinct, in general. Indeed, by Remark 24, we have that Xδ is not O�-[ω,ω]-compact for δ = 22ω

.
In particular, Conditions (4) and (5) in Theorem 23 are in general not equivalent to the other conditions, if we replace

O�-[μ,λ]-compactness with O-[μ,λ]-compactness.

Indeed, as is the case for pseudocompactness, we can show that the O-[μ,λ]-compactness of a product depends only
on the O-[μ,λ]-compactness of all subproducts of some small number of factors. Thus, we have an analogue for O-[μ,λ]-
compactness of the equivalence (4) ⇔ (5) in Theorem 23.

Lemma 26. If X and Y are topological spaces, f : X → Y is a continuous and surjective function, and X is O-[μ,λ]-compact, then
also Y is O-[μ,λ]-compact.

Proposition 27. Suppose that (X j) j∈ J is a sequence of topological spaces. Then the product
∏

j∈ J X j is O-[μ,λ]-compact if and only
if any subproduct of � κ factors is O-[μ,λ]-compact, where κ = λ<μ . Indeed, the result can be improved to κ = cf Sμ(λ).

Proof. The only-if part is immediate from Lemma 26.
To prove the converse, given (Cα)α∈λ as in the definition of O-[μ,λ]-compactness, we might assume, without loss of

generality, that the O Z ’s are members of the canonical base of
∏

j∈ J X j , that is, each O Z has the form
∏

j∈ J Q j , where
each Q j is an open set of X j , and Q j = X j , for all j ∈ J \ J Z , for some finite J Z ⊆ J .

If J ′ = ⋃
Z∈Sμ(λ) J Z , and π :

∏
j∈ J X j → ∏

j∈ J ′ X j is the canonical projection, then, by assumption,
∏

j∈ J ′ X j is O-[μ,λ]-
compact, since | J ′| � κ , hence

⋂
α∈λ π(Cα) �= ∅, and this clearly implies

⋂
α∈λ Cα �= ∅.

By arguments similar to those in Remark 24, we can improve the value of κ to cf Sμ(λ). �
Notice that the product of two O-[μ,λ]-compact spaces is not necessarily O-[μ,λ]-compact. This is easily seen in

the particular case μ = λ = ω, since it is well known that a product of two pseudocompact spaces is not necessarily
pseudocompact. More generally, Stephenson and Vaughan [21, Theorem 4.1] have constructed, for every infinite cardinal λ,
an [ω,λ]-compact Tychonoff topological space P and an O-[ω,λ]-compact Tychonoff space M such that the product P × M
is not O-[ω,λ]-compact.

For sake of simplicity, in the statement of Theorem 23 we have dealt with a single topological space X . However,
a version of the theorem holds for families of topological spaces.

Theorem 28. For every family T of topological spaces, and λ, μ infinite cardinals, the following are equivalent.

(1) There exists some (μ,λ)-regular ultrafilter D (which can be taken over Sμ(λ)) such that, for every X ∈ T , we have that X is
D-pseudocompact.

(2) Every product of any number of members of T (allowing repetitions) is O�-[μ,λ]-compact.
(3) Every product of members of T (allowing repetitions) with at most δ factors is O�-[μ,λ]-compact, where δ = min{22κ

,

sup{|T |, ν}}, for ν = supX∈T (w(X))κ and κ = λ<μ (indeed, this can be improved to κ = cf Sμ(λ)).

Corollary 29. For μ, λ, μ′ and λ′ infinite cardinals, the following are equivalent.

(a) Every (μ,λ)-regular ultrafilter is (μ′, λ′)-regular.
(b) For every family T of topological spaces, if every product of any number of members of T (allowing repetitions) is O�-[μ,λ]-

compact, then every product of any number of members of T (allowing repetitions) is O�-[μ′, λ′]-compact.
(c) For every topological space X, if every power of X is O�-[μ,λ]-compact, then every power of X is O�-[μ′, λ′]-compact.
(d) Same as (c), restricted to Tychonoff spaces.

Proof. (a) ⇒ (b) Suppose that the assumption in (b) holds. By Theorem 28 (2) ⇒ (1), there exists some (μ,λ)-regular ultra-
filter D such that, for every X ∈ T , we have that X is D-pseudocompact. By (a), D is (μ′, λ′)-regular. Hence, by Theorem 28
(1) ⇒ (2), every product of any number of members of T is O�-[μ′, λ′]-compact.

(b) ⇒ (c) and (c) ⇒ (d) are trivial.
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(d) ⇒ (a) Garcia-Ferreira [8] constructs, for every ultrafilter D , say over I , a Tychonoff space PRK(D) such that, for every
ultrafilter E , say over J , the space PRK(D) is E-pseudocompact if and only if E = f (D) for some function f : I → J , that is
if and only if E �RK D in the Rudin–Keisler order.

Let D be a (μ,λ)-regular ultrafilter, say over I . By above, X = PRK(D) is D-pseudocompact, hence, by Theorem 23
(2) ⇒ (4), every power of X is O�-[μ,λ]-compact.

By (d), every power of X is O�-[μ′, λ′]-compact and, by Theorem 23 (2) ⇒ (4), X is E-pseudocompact, for some (μ′, λ′)-
regular ultrafilter E over some set J . By the above-mentioned result from [8], E = f (D), for some function f : I → J . By
a trivial property of the Rudin–Keisler order, D is (μ′, λ′)-regular, thus (a) is proved. �

Many results are known about cardinals for which Condition (a) in Corollary 29 holds. See [14] for a survey. Corollary 29
can be applied in each of these cases.

Remark 30. As we mentioned in Remark 8, [μ,λ]-compactness is equivalent to [κ,κ]-compactness for every κ such that
μ � κ � λ. We now show that the analogous result fails, in general, for O-[μ,λ]-compactness.

Under some set-theoretical assumption, [10] constructed an ultrafilter D uniform over ω1 and an ultrafilter D ′ over ω
such that, for every non-principal ultrafilter E , it happens that E �RK D if and only if E is Rudin–Keisler equivalent either
to D or to D ′ . By the results from [8] mentioned in the proof of Corollary 29, the space PRK(D) is both D-pseudocompact
and D ′-pseudocompact, hence both O-[ω,ω]-compact and O-[ω1,ω1]-compact, since every uniform ultrafilter over some
cardinal λ is (λ,λ)-regular (see, e.g., [14]). Indeed, by Corollary 22, all powers of PRK(D) are even both O�-[ω,ω]-compact
and O�-[ω1,ω1]-compact.

However, [8] proved that PRK(D) is not even ω1-pseudocompact. Since, by [17, Theorem 2(c)], every O-[ω,λ]-compact
Tychonoff space is λ-pseudocompact, we have that PRK(D) is not O-[ω,ω1]-compact. Recall that O-[ω,λ]-compactness is
called weakly initial λ-compactness in [17].

5. The abstract framework

In this final section we mention that our results actually hold in the general framework introduced in [15]. In [15] each
compactness property is defined relative to some family F of subsets of a topological space X . By taking F to be either
the set S of all singletons of X , or the set O of all nonempty open sets of X , this generalized approach provides a unified
treatment of definitions and results about [μ,λ]-compactness and related compactness notions, on the one hand and about
O-[μ,λ]-compactness and related pseudocompactness-like notions, on the other hand.

In the case of [μ,λ]-compactness, as we shall point after each single result, most of the theorems we get are known; in
the case when F = O we usually get back the results obtained in the previous sections.

Definition 31. The definitions of F -[μ,λ]-compactness and of F -D-compactness can be obtained, respectively, from the
definitions of O-[μ,λ]-compactness (Definition 1) and of D-pseudocompactness (Definition 12), by replacing the family O
off all nonempty open sets with another specified family F of subsets of X .

In more detail, let X be a topological space, and let F be any family of subsets of X .
Let λ and μ be infinite cardinals. We say that X is F -[μ,λ]-compact if and only if, for every sequence (Cα)α∈λ of closed

sets of X , if, for every Z ⊆ λ with |Z | < μ, there exists F ∈ F such that
⋂

α∈Z Cα ⊇ F , then
⋂

α∈λ Cα �= ∅.
Let D be an ultrafilter over some set Z . We say that X is F -D-compact if and only if every sequence (F z)z∈Z of members

of F has some D-limit point in X .
When, in the preceding definitions, F = O, the family of all the nonempty open sets of X , we get back Definitions 1

and 12. When F is taken to be the family of all singletons of X , we get back the more familiar notions of, respectively,
[μ,λ]-compactness and of D-compactness. See [15] for more information. In particular, notice that, for μ = λ a regular
cardinal, [15] provides a very refined theory of F -[λ,λ]-compactness. In the particular case μ = λ regular, the results pre-
sented in [15] are usually stronger than the results presented here for F -[μ,λ]-compactness. See, for example, Theorem 7
in the present paper.

Notice also that, by Remark 30, the theory of F -[μ,λ]-compactness, in general, cannot be “reduced” to the theory of
F -[κ,κ]-compactness. On the contrary, it is a very useful fact that [μ,λ]-compactness can be studied in terms of [κ,κ]-
compactness, for μ � κ � λ (Remark 8).

Notice that, for a Tychonoff product
∏

j∈ J X j , the O�-[μ,λ]-compactness of
∏

j∈ J X j , as introduced in Definition 18, is

the same as the F -[μ,λ]-compactness of
∏

j∈ J X j , when we take F to be the family of all open sets in � j∈ J X j , that is,
the open sets in the box topology.

If F is a family of subsets of some topological space, we denote by
∨

F (resp.,
∨

�κ F ), the family of all subsets of X
which can be obtained as the union of the members of some subfamily of F (resp., some subfamily of cardinality � κ ).

Proposition 32. Suppose that X is a topological space, F is a family of subsets of X , and λ and μ are infinite cardinals. Then the
following are equivalent.
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(1) X is F -[μ,λ]-compact.
(2) For every sequence (Pα)α∈λ of subsets of X , if, for every Z ⊆ λ with |Z | < μ, there exists some F Z ∈ F such that

⋂
α∈Z Pα ⊇ F Z ,

then
⋂

α∈λ Pα �= ∅.
(3) For every sequence (Q α)α∈λ of sets in

∨
F (equivalently, in

∨
F�κ , where κ = λ<μ), if, for every Z ⊆ λ with |Z | < μ, there

exists some F Z ∈ F such that
⋂

α∈Z Q α ⊇ F Z , then
⋂

α∈λ Q α �= ∅. The value of κ can be improved to cf Sμ(λ).

(4) For every sequence {F Z | Z ∈ Sμ(λ)} of members of F , it happens that
⋂

α∈λ

⋃{F Z | Z ∈ Sμ(λ), α ∈ Z} �= ∅.
(5) For every sequence {F Z | Z ∈ Sμ(λ)} of members of F , the following holds. If, for every finite subset W of λ, we put Q W = ⋃{F Z |

Z ∈ Sμ(λ) and Z ⊇ W }, then
⋂{Q W | W is a finite subset of λ} �= ∅.

(6) For every λ-indexed open cover (Q α)α∈λ of X , there exists Z ⊆ λ, with |Z | < μ, such that F ∩ ⋃
α∈Z Q α �= ∅, for every F ∈ F .

(7) For every sequence {F Z | Z ∈ Sμ(λ)} of elements of F , there exists an ultrafilter D over Sμ(λ) which covers λ and such that
{F Z | Z ∈ Sμ(λ)} has some D-limit point in X.

Proof. Same as the proofs of Proposition 6, of the last remark in Definition 1 and of Theorem 10. See also Remark 24. �
Proposition 6 and Theorem 10 can be obtained as the particular case of Proposition 32, when F = O is the family of the

nonempty open sets of X .
Propositions 20 and 21 can be obtained as the particular case of Proposition 32, when X is the topological space

∏
j∈ J X j

(with the Tychonoff topology), and F is the family of the nonempty open sets of � j∈ J X j (with the box topology).
Thus, Proposition 32 provides a generalization of all the above results.
As we mentioned in Remark 11, in the particular case when F is the family S of all singletons, the implication (1) ⇒ (7)

in Proposition 32 is proved in [2,3]. Again when F = S , the equivalence of (1) and (2) in Proposition 32 has been proved
in [7], with different notation. See also [22, Lemma 5(b)].

Proposition 33. Suppose that X is a topological space, F is a family of subsets of X , and D is an ultrafilter over some set I . Then the
following are equivalent.

(1) X is F -D-compact.
(2) For every sequence {Fi | i ∈ I} of members of F , if, for Z ∈ D, we put C Z = ⋃

i∈Z Fi , then we have that
⋂

Z∈D C Z �= ∅.
(3) Whenever (C Z )Z∈D is a sequence of closed sets of X with the property that, for every i ∈ I , there exists some F ∈ F such that⋂

i∈Z C Z ⊇ F , then
⋂

Z∈D C Z �= ∅.
(4) For every open cover (O Z )Z∈D of X , there is some i ∈ I such that F ∩ ⋃

i∈Z O Z �= ∅, for every F ∈ F .

Proof. Similar to the proof of Proposition 17. �
Proposition 17 could be obtained as the particular case F = O of Proposition 33. The particular case of Proposition 33

when F is the set of all singletons of X might be new, so we state it explicitly.

Corollary 34. Suppose that X is a topological space, and D is an ultrafilter over some set I . Then the following are equivalent.

(1) X is D-compact.
(2) For every sequence {xi | i ∈ I} of elements of X , if, for Z ∈ D, we put C Z = {xi | i ∈ Z}, then we have that

⋂
Z∈D C Z �= ∅.

(3) Whenever (C Z )Z∈D is a sequence of closed sets of X with the property that, for every i ∈ I ,
⋂

i∈Z C Z �= ∅, then
⋂

Z∈D C Z �= ∅.
(4) For every open cover (O Z )Z∈D of X , there is some i ∈ I such that (O Z )i∈Z is a cover of X .

Theorem 35. Suppose that λ and μ are infinite cardinals, T is a family of topological spaces, and, for every X ∈ T , F X is a family of
subsets of X .

To every product
∏

j∈ J X j , where each X j belongs to T , associate the family F = {∏ j∈ J F j | F j ∈ F X j , for every j ∈ J }.
Then the following are equivalent.

(1) There exists some ultrafilter D over Sμ(λ) which covers λ, and such that, for every X ∈ T , we have that X is F X -D-compact.
(2) There exists some (μ,λ)-regular ultrafilter D (over any set) such that, for every X ∈ T , we have that X is F X -D-compact.
(3) There exists some (μ,λ)-regular ultrafilter D such that, for every set J , every product

∏
j∈ J X j of members of T (allowing repeti-

tions) is F -D-compact.
(4) For every set J , every product

∏
j∈ J X j of members of T (allowing repetitions), is F -[μ,λ]-compact.

(5) Let δ = min{22κ
, sup{|T |, supX∈T |F X |κ }}, where κ = λ<μ (indeed, this can be improved to κ = cf Sμ(λ)). For every set J with

| J | � δ, every product
∏

j∈ J X j of members of T (allowing repetitions) is F -[μ,λ]-compact.

Proof. Same as the proofs of Corollary 15 and of Theorem 23, using [15, Fact 6.1 and Proposition 5.1 (b) with ν = | J+|] and
Proposition 32 (7) ⇔ (1). For (5), see also Remark 24. �
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Theorem 35 is more general than Theorems 23 and 28. In the particular case when F is the family S of all singletons,
Theorem 35 is essentially [3, Theorem 3.4] (in some cases, our evaluation of δ might be slightly sharper). Corollaries 15
and 22 are immediate consequences of Theorem 35 (2) ⇒ (4), by taking, for every j ∈ J , F j to be the family of all
nonempty open sets of X j .

The following easy proposition, generalizing Lemma 26, describes the behavior of F -D-compactness with respect to
quotients.

Proposition 36. Suppose that X and Y are topological spaces, and f : X → Y is a continuous function. Suppose that F is a family of
subsets of X , and suppose that G is a family of subsets of Y , such that for every G ∈ G there is F ∈ F such that F ⊆ f −1(G).

Then the following hold.

(1) If X is F -[μ,λ]-compact then Y is G -[μ,λ]-compact.
(2) If X is F -D-compact then Y is G -D-compact.

We end with a trivial but useful property of F -[μ,λ]-compactness.

Proposition 37. Every F -[cfλ, cfλ]-compact topological space is F -[λ,λ]-compact.
In particular, every O-[cfλ, cfλ]-compact topological space is O-[λ,λ]-compact.
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