Controllability of Second-Order Semilinear Neutral Functional Differential Systems in Banach Spaces

K. Balachandran and S. Marshal Anthoni
Department of Mathematics, Bharathiar University
Coimbatore -641 046, India

(Received March 1999; revised and accepted November 2000)

Abstract

Sufficient conditions for controllability of semilinear second-order neutral functional differential systems in Banach spaces are established using the theory of strongly continuous cosine families. The results are obtained by using the Leray-Schauder alternative. ©c 2001 Elsevier Science Ltd. All rights reserved.

Keywords-Controllability, Semilinear neutral functional differential system, Leray-Schauder alternative.

1. INTRODUCTION

Controllability of linear and nonlinear systems represented by ordinary differential equations in finite-dimensional space has been extensively studied. Several authors have extended the concept to infinite-dimensional systems in Banach Spaces with bounded operators. Chukwu and Lenhart [1] have studied the controllability of nonlinear systems in abstract spaces. Naito [2,3] has studied the controllability for semilinear systems and nonlinear Volterra integrodifferential systems. Quinn and Carmichael [4] have shown that the controllability problem in Banach spaces can be converted into one of a fixed-point problem for a single-valued mapping. Balachandran et al. $[5,6]$ established sufficient conditions for controllability of nonlinear integrodifferential systems in Banach spaces.

In many cases, it is advantageous to treat the second-order abstract differential equations directly rather than to convert them to first-order systems. For example, Fitzgibbon [7] used the second-order abstract differential equations for establishing the boundedness of solutions of the equation governing the transverse motion of an extensible beam. A useful tool for the study of abstract second-order equations is the theory of strongly continuous cosine families. We will make use of some of the basic ideas from cosine family theory [8,9]. Motivation for second-order systems can be found in [7,10]. Park et al. [11] and Balachandran et al. [12] have discussed the controllability of second-order nonlinear systems in Banach spaces with the help of the Schauder fixed-point theorem. The purpose of this paper is to study the controllability of semilinear second-order neutral functional differential systems in Banach spaces by using the Leray-Schauder alternative [13].

[^0]
2. PRELIMINARIES

We consider the semilinear second-order neutral control system

$$
\begin{gather*}
\frac{d}{d t}\left[x^{\prime}(t)-g\left(t, x_{t}\right)\right]=A x(t)+B u(t)+f\left(t, x_{t}, x^{\prime}(t)\right), \quad t \in J=[0, T], \tag{1}\\
x_{0}=\phi, \quad x^{\prime}(0)=y_{0},
\end{gather*}
$$

where the state $x($.$) takes values in the reflexive Banach space X, y_{0} \in X, A$ is the infinitesimal generator of the strongly continuous cosine family $C(t), t \in R$, of bounded linear operators in X, $f: J \times C \times X \rightarrow X$ and $g: J \times C \rightarrow X$ are given functions, B is a bounded linear operator from U to X, and the control function $u($.$) is given in L^{2}(J, U)$, a Banach space of admissible control functions, with U also being a Banach space and $\phi \in C$.
Here $C=C([-r, 0], X)$ is the Banach space of all continuous functions $\phi:[-r, 0] \rightarrow X$ endowed with the sup-norm

$$
\|\phi\|=\sup \{|\phi(\theta)|:-r \leq \theta \leq 0\} .
$$

Also, for $x \in C([-r, T], X)$, we have $x_{t} \in C$ for $t \in J, x_{t}(\theta)=x(t+\theta)$ for $\theta \in[-r, 0]$.
Definition 1. (See [8].) A one-parameter family $C(t), t \in R$, of bounded linear operators in the Banach space X is called a strongly continuous cosine family iff
(i) $C(s+t)+C(s-t)=2 C(s) C(t)$, for all $s, t \in R$;
(ii) $C(0)=I$;
(iii) $C(t) x$ is continuous in t on R for each fixed $x \in X$.

Define the associated sine family $S(t), t \in R$, by

$$
S(t) x=\int_{0}^{t} C(s) x d s, \quad x \in X, \quad t \in R .
$$

Assume the following conditions on A.
$\left(\mathrm{H}_{1}\right) A$ is the infinitesimal generator of a strongly continuous cosine family $C(t), t \in R$, of bounded linear operators from X into itself and the adjoint operator A^{*} is densely defined i.e., $\overline{D\left(A^{*}\right)}=X^{*}($ see $[14])$.

The infinitesimal generator of a strongly continuous cosine family $C(t), t \in R$, is the operator $A: X \rightarrow X$ defined by

$$
A x=\left.\frac{d^{2}}{d t^{2}} C(t) x\right|_{t=0,} \quad x \in D(A)
$$

where $D(A)=\{x \in X: C(t) x$ is twice continuously differentiable in $t\}$. Define $E=$ $\{x \in X: C(t) x$ is once continuously differentiable in $t\}$.
To establish our main theorem, we need the following lemmas.
Lemma 1. (See [8].) Let (H_{1}) hold. Then
(i) there exist constants $M \geq 1$ and $\omega \geq 0$ such that

$$
|C(t)| \leq N e^{\omega|t|} \text { and }\left|S(t)-S\left(t^{*}\right)\right| \leq N\left|\int_{t}^{t^{*}} e^{\omega|s|} d s\right|, \quad \text { for } t, t^{*} \in R
$$

(ii) $S(t) X \subset E$ and $S(t) E \subset D(A)$, for $t \in R$;
(iii) $\frac{d}{d t} C(t) x=A S(t) x$, for $x \in E$ and $t \in R$;
(iv) $\frac{d^{2}}{d t^{2}} C(t) x=A C(t) x$, for $x \in D(A)$ and $t \in R$.

Lemma 2. (See [8].) Let (H_{1}) hold, let $v: R \rightarrow X$ such that v is continuously differentiable, and let $q(t)=\int_{0}^{t} S(t-s) v(s) d s$. Then
q is twice continuously differentiable and for $t \in R, q(t) \in D(A)$,

$$
q^{\prime}(t)=\int_{0}^{t} C(t-s) v(s) d s \quad \text { and } \quad q^{\prime \prime}(t)=A q(t)+v(t)
$$

Lemma 3. Leray-Schauder Alternative. (See [13].) Let S be a convex subset of a normed linear space Y and assume $0 \in S$. Let $F: S \rightarrow S$ be a completely continuous operator, and let

$$
\xi(F)=\{x \in S: x=\lambda F x \text { for some } 0<\lambda<1\} .
$$

Then either $\xi(F)$ is unbounded or F has a fixed point.
We make the following assumptions.
$\left(\mathrm{H}_{2}\right) C(t), t>0$ is compact.
$\left(\mathrm{H}_{3}\right) \mathrm{Bu}(t)$ is continuous in t.
$\left(\mathrm{H}_{4}\right)$ The linear operator $W: L^{2}(J, U) \rightarrow X$ defined by

$$
W u=\int_{0}^{T} S(T-s) B u(s) d s
$$

induces a bounded invertible operator $\tilde{W}: L^{2}(J, U) / \operatorname{ker} W \rightarrow X$. (See Remark for construction of \tilde{W}^{-1}.)
$\left(\mathrm{H}_{5}\right) g: J \times C \rightarrow X$ is completely continuous and for any bounded set K in $C([-r, T], X)$, the set $\left\{t \rightarrow g\left(t, x_{t}\right): x \in K\right\}$ is equicontinuous in $\left.C([0, T]), X\right)$.
$\left(\mathrm{H}_{6}\right)$ There exists constants c_{1} and c_{2} such that

$$
|g(t, \phi)| \leq c_{1}(\|\phi\|)+c_{2}, \quad t \in J, \quad \phi \in C .
$$

(1) $\left(\mathrm{H}_{7}\right)$ " The function $f(t, \ldots): C \rightarrow X$ is continuous for each $t \in J$.
$\left(\mathrm{H}_{8}\right)$ The function $f(., x, y): J \rightarrow X$ is strongly measurable for each $x \in C$ and $y \in X$.
$\left(\mathrm{H}_{9}\right)$ For every positive constant k, there exists $\alpha_{k} \in L^{1}(J)$ such that

$$
\sup _{\|x\|, y \mid \leq k}|f(t, x, y)| \leq \alpha_{k}(t), \quad \text { for a.a. } t \in J
$$

Then the integral equation formulation of (1) can be written as (see [15,16])

$$
\begin{align*}
x(t)= & \phi(t), \quad-r \leq 0 \leq T \\
x(t)= & C(t) \phi(0)+S(t)\left[y_{0}-g(0, \phi)\right]+\int_{0}^{t} C(t-s) g\left(s, x_{s}\right) d s \tag{2}\\
& +\int_{0}^{t} S(t-s) B u(s) d s+\int_{0}^{t} S(t-s) f\left(s, x_{s}, x^{\prime}(s)\right) d s, \quad t \in J .
\end{align*}
$$

Definition 2. System (1) is said to be controllable on J if for every $\phi \in C$ with $\phi(0) \in D(A)$, $y_{0} \in E$, and $x_{1} \in X$, there exists a control $u \in L^{2}(J, U)$ such that the solution $x($.$) of (1) satisfies$ $x(T)=x_{1}$.

3. MAIN RESULT

Theorem. Suppose $\left(H_{1}\right)-\left(H_{9}\right)$ hold and there exists a continuous function $p: J \rightarrow[0, \infty)$ such that

$$
|f(t, x, y)| \leq m(t) \Omega(\|x\|+|y|), \quad t \in J, \quad x \in C, \quad \text { and } \quad y \in X
$$

where $\Omega:(0, \infty) \rightarrow(0, \infty)$ is a continuous nondecreasing function and

$$
\int_{0}^{T} m(s) d s<\int_{c}^{\infty} \frac{d s}{s+\Omega(s)}
$$

where

$$
\begin{gathered}
m(t)=\max \left\{c_{1}\left[M c_{1}+M+M^{*}\right], M\left(c_{1} T+T+1\right) p(t)\right\} \\
M=\sup \{|C(t)|: t \in J\}, \quad M^{*}=\sup \{|A S(t)|: t \in J\} \\
c=\left(M+M^{*}\right)\|\phi\|+(1+T) M\left\{\left|y_{0}\right|+c_{1}\|\phi\|+c_{2}\right\}+\left(M+M^{*}\right) c_{2} T \\
+c_{1}\|\phi\|+c_{2}+\left(T^{2}+T\right) M N \\
N=|B|\left|\tilde{W}^{-1}\right|\left[\left|x_{1}\right|+M\|\phi\|+M T\left\{\left|y_{0}\right|+c_{1}\|\phi\|+2 c_{2}\right\}+M c_{1} \int_{0}^{T}\left\|x_{\tau}\right\| d \tau\right. \\
\\
+M T \int_{0}^{T} p(s) \Omega\left(\left|x_{s} \|+\left|x^{\prime}(s)\right|\right) d s\right]
\end{gathered}
$$

Then system (1) is controllable on J.
Proof. Consider the space $Z=C([-r, T], X) \cap C^{1}(. J, X)$ with norm

$$
\|x\|^{*}=\max \left\{\|x\|_{r},\|x\|_{0}\right\}
$$

where

$$
\|x\|_{r}=\sup \{|x(t)|:-r \leq t \leq T\}, \quad\|x\|_{0}=\sup \left\{\left|x^{\prime}(t)\right|: 0 \leq t \leq T\right\}
$$

Using $\left(\mathrm{H}_{4}\right)$, for an arbitrary function $x($.$) , we define the control$

$$
\begin{aligned}
& u(t)=\tilde{W}^{-1}\left[x_{1}-C(T) \phi(0)-S(T)\left[y_{0}-g(0, \phi)\right]-\int_{0}^{T} C(T-s) g\left(s, x_{s}\right) d s\right. \\
&\left.-\int_{0}^{T} S(T-s) f\left(s, x_{s}, x^{\prime}(s)\right) d s\right](t)
\end{aligned}
$$

Using this control, we will show that the operator $F: Z \rightarrow Z$ defined by

$$
\begin{aligned}
(F x)(t)= & \phi(t), \quad-r \leq t \leq 0 \\
(F x)(t)= & C(t) \phi(0)+S(t)\left[y_{0}-g(0, \phi)\right]+\int_{0}^{t} C(t-s) g\left(s, x_{s}\right) d s \\
& +\int_{0}^{t} S(t-s) B \tilde{W}^{-1}\left[x_{1}-C(T) \phi(0)-S(T)\left[y_{0}-g(0, \phi)\right]\right. \\
& \left.-\int_{0}^{T} C(T-\tau) g\left(\tau, x_{\tau}\right) d \tau-\int_{0}^{T} S(T-\tau) f\left(\tau, x_{\tau}, x^{\prime}(\tau)\right) d \tau\right](s) d s \\
& +\int_{0}^{t} S(t-s) f\left(s, x_{s}, x^{\prime}(s)\right) d s, \quad t \in J
\end{aligned}
$$

has a fixed point. This fixed point is then a solution of equation (2).

Clearly, $(F x)(T)=x_{1}$, which means that the control u steers the system from the initial state x_{0} to x_{1} in time T, provided we obtain a fixed point of the nonlinear operator F.

In order to study the controllability problem for system (1), we apply Lemma 3 to the following system:

$$
\begin{equation*}
\frac{d}{d t}\left[x^{\prime}(t)-\lambda g\left(t, x_{t}\right)\right]=\lambda A x(t)+\lambda B u(t)+\lambda f\left(t, x_{t}, x^{\prime}(t)\right), \quad t \in J, \quad \lambda \in(0,1) \tag{3}
\end{equation*}
$$

Let x be a mild solution of system (3). From

$$
\begin{aligned}
x(t)= & \lambda C(t) \phi(0)+\lambda S(t)\left[y_{0}-g(0, \phi)\right]+\lambda \int_{0}^{t} C(t-s) g\left(s, x_{s}\right) d s \\
& +\lambda \int_{0}^{t} S(t-s) B \tilde{W}^{-1}\left[x_{1}-C(T) \phi(0)-S(T)\left[y_{0}-g(0, \phi)\right]\right. \\
& \left.-\int_{0}^{T} C(T-\tau) g\left(\tau, x_{\tau}\right) d \tau-\int_{0}^{T} S(T-\tau) f\left(\tau, x_{\tau}, x^{\prime}(\tau)\right) d \tau\right](s) d s \\
& +\lambda \int_{0}^{t} S(t-s) f\left(s, x_{s}, x^{\prime}(s)\right) d s, \quad t \in J
\end{aligned}
$$

we have

$$
\begin{aligned}
|x(t)| \leq M\|\phi\|+M T\left\{\left|y_{0}\right|+c_{1}\|\phi\|+2 c_{2}\right\}+ & M c_{1} \int_{0}^{t}\left\|x_{s}\right\| d s+M T^{2} N \\
& +M T \int_{0}^{t} p(s) \Omega\left(\left\|x_{s}\right\|+\left|x^{\prime}(s)\right|\right) d s, \quad t \in J
\end{aligned}
$$

Consider the function μ defined by

$$
\mu(t)=\sup \{|x(s)|:-r \leq s \leq t\}, \quad t \in J
$$

Let $t^{*} \in[-r, t]$ be such that $\mu(t)=\left|x\left(t^{*}\right)\right|$. If $t^{*} \in[0, t]$, by the previous inequality, we have

$$
\begin{aligned}
\mu(t) \leq M\|\phi\|+M T\left\{\left|y_{0}\right|+c_{1}\|\phi\|+2 c_{2}\right\}+M c_{1} & \int_{0}^{t} \mu(s) d s+M T^{2} N \\
& +M T \int_{0}^{t} p(s) \Omega\left(\mu(s)+\left|x^{\prime}(s)\right|\right) d s, \quad t \in J
\end{aligned}
$$

If $t^{*} \in[-r, 0]$, then $\mu(t)=\|\phi\|$ and the previous inequality holds since $M \geq 1$.
Denoting by $v(t)$, the right-hand side of the above inequality, we have

$$
\mu(t) \leq v(t), \quad t \in J, \quad v(0)=M\|\phi\|+M T\left\{\left|y_{0}\right|+c_{1}\|\phi\|+2 c_{2}\right\}+M T^{2} N
$$

and

$$
\begin{aligned}
v^{\prime}(t) & =M c_{1} \mu(t)+M T p(t) \Omega\left(\mu(t)+\left|x^{\prime}(t)\right|\right), & & t \in J \\
& \leq M c_{1} v(t)+M T p(t) \Omega\left(v(t)+\left|x^{\prime}(t)\right|\right), & & t \in J
\end{aligned}
$$

By

$$
\begin{aligned}
x^{\prime}(t)= & \lambda A S(t) \phi(0)+\lambda C(t)\left[y_{0}-g(0, \phi)\right]+\lambda g\left(t, x_{t}\right)+\lambda \int_{0}^{t} A S(t-s) g\left(s, x_{s}\right) d s \\
& +\lambda \int_{0}^{t} C(t-s) B \tilde{W}^{-1}\left[x_{1}-C(T) \phi(0)-S(T)\left[y_{0}-g(0, \phi)\right]\right. \\
& \left.-\int_{0}^{T} C(T-\tau) g\left(\tau, x_{\tau}\right) d \tau-\int_{0}^{T} S(T-\tau) f\left(\tau, x_{\tau}, x^{\prime}(\tau)\right) d \tau\right](s) d s \\
& +\lambda \int_{0}^{t} C(t-s) f\left(s, x_{s}, x^{\prime}(s)\right) d s, \quad t \in J
\end{aligned}
$$

we obtain

$$
\begin{aligned}
\left|x^{\prime}(t)\right| \leq M^{*}\|\phi\|+M\left\{\left|y_{0}\right|+c_{1}\|\phi\|+c_{2}\right\} & +c_{1}\left\|x_{t}\right\|+c_{2}+M^{*}\left\{c_{2} T+c_{1} \int_{0}^{t}\left\|x_{s}\right\| d s\right\} \\
& +M T N+M \int_{0}^{t} p(s) \Omega\left(\left\|x_{s}\right\|+\left|x^{\prime}(s)\right|\right) d s, \quad t \in J
\end{aligned}
$$

Denoting by $r(t)$ the right-hand side of the above inequality, we have

$$
\begin{gathered}
\left|x^{\prime}(t)\right| \leq r(t), \quad t \in J \\
r(0)=M^{*}\|\phi\|+M\left\{\left|y_{0}\right|+c_{1}\|\phi\|+c_{2}\right\}+c_{1}\|\phi\|+c_{2}+M^{*} c_{2} T+M T N
\end{gathered}
$$

and

$$
\begin{aligned}
r^{\prime}(t) & \leq c_{1} v^{\prime}(t)+M^{*} c_{1} v(t)+M p(t) \Omega(v(t)+r(t)), & & t \in J \\
& \leq c_{1}\left\{M c_{1} v(t)+M T p(t) \Omega(v(t)+r(t))\right\}+M^{*} c_{1} v(t)+M p(t) \Omega(v(t)+r(t)), & & t \in J
\end{aligned}
$$

Let

$$
w(t)=v(t)+r(t), \quad t \in J
$$

Then

$$
w(0)=c
$$

and

$$
\begin{aligned}
w^{\prime}(t) & =v^{\prime}(t)+r^{\prime}(t) \\
& \leq c_{1}\left[M c_{1}+M+M^{*}\right] v(t)+M\left(c_{1} T+T+1\right) p(t) \Omega(v(t)+r(t)) \\
& \leq c_{1}\left[M c_{1}+M+M^{*}\right] w(t)+M\left(c_{1} T+T+\right) p(t) \Omega(w(t)), \quad t \in J
\end{aligned}
$$

This implies

$$
\int_{w(0)}^{w(t)} \frac{d s}{s+\Omega(s)} \leq \int_{0}^{T} m(s) d s<\int_{c}^{\infty} \frac{d s}{s+\Omega(s)}, \quad t \in J
$$

This inequality implies that there is a constant K such that

$$
w(t)=v(t)+r(t) \leq K, \quad t \in J
$$

Then

$$
\begin{array}{rlrl}
|x(t)| & \leq v(t) & \leq K, & \\
\mid \in J \\
\left|x^{\prime}(t)\right| & \leq r(t) & \leq K, & \\
t \in J
\end{array}
$$

and hence,

$$
\|x\|^{*}=\max \left\{\|x\|_{r},\left\|x^{\prime}\right\|_{0}\right\} \leq K
$$

where K depends only on T and on the functions m and Ω.
We shall now prove that the operator $F: Z \rightarrow Z$ defined by

$$
\begin{aligned}
(F x)(t)= & \phi(t), \quad-r \leq t \leq 0 \\
(F x)(t)= & C(t) \phi(0)+S(t)\left[y_{0}-g(0, \phi)\right]+\int_{0}^{t} C(t-s) g\left(s, x_{s}\right) d s+\int_{0}^{t} S(t-s) B \tilde{W}^{-1} \\
& \times\left[x_{1}-C(T) \phi(0)-S(T)\left[y_{0}-g(0, \phi)\right]-\int_{0}^{T} C(T-\tau) g\left(\tau, x_{\tau}\right) d \tau\right. \\
& \left.\times-\int_{0}^{T} S(T-\tau) f\left(\tau, x_{\tau}, x^{\prime}(\tau)\right) d \tau\right](s) d s+\int_{0}^{t} S(t-s) f\left(s, x_{s}, x^{\prime}(s)\right) d s, \quad t \in J
\end{aligned}
$$

is a completely continuous operator.

Let $B_{k}=\left\{x \in Z,\|x\|^{*} \leq k\right\}$ for some $k \geq 1$. We first show that F maps B_{k} into an equicontinuous family. Let $x \in B_{k}$ and $t_{1}, t_{2} \in J$. Then if $0<t_{1}<t_{2} \leq T$,

$$
\begin{align*}
& \left|(F x)\left(t_{1}\right)-(F x)\left(t_{2}\right)\right| \\
& \left.\leq\left|\left[C\left(t_{1}\right)-C\left(t_{2}\right)\right] \phi(0)\right|+\left|\left[S\left(t_{1}\right)-S\left(t_{2}\right)\right]\right| y_{0}-g(0, \phi)\right] \mid \\
& +\left|\int_{0}^{t_{1}}\left[C\left(t_{1}-s\right)-C\left(t_{2}-s\right)\right] g\left(s, x_{s}\right) d s\right|+\left|\int_{t_{1}}^{t_{2}} C\left(t_{2}-s\right) g\left(s, x_{s}\right) d s\right| \\
& +\mid \int_{0}^{t_{1}}\left[S\left(t_{1}-s\right)-S\left(t_{2}-s\right)\right] B \tilde{W}^{-1}\left[x_{1}-C(T) \phi(0)-S(T)\left[y_{0}-g(0, \phi)\right]\right. \\
& \left.-\int_{0}^{T} C(T-\tau) g\left(\tau, x_{\tau}\right) d \tau-\int_{0}^{T} S(T-\tau) f\left(\tau, x_{\tau}, x^{\prime}(\tau)\right) d \tau\right](s) d s \\
& +\mid \int_{t_{1}}^{t_{2}} S\left(t_{2}-s\right) B \tilde{W}^{-1}\left[x_{1}-C(T) \phi(0)-S(T)\left[y_{0}-g(0, \phi)\right]\right. \\
& \left.-\int_{0}^{T} S(T-\tau) f\left(\tau, x_{\tau}, x^{\prime}(\tau)\right) d \tau\right](s) d s \\
& +\left|\int_{0}^{t_{1}}\left[S\left(t_{1}-s\right)-S\left(t_{2}-s\right)\right] f\left(s, x_{s}, x^{\prime}(s)\right) d s\right| \\
& +\left|\int_{t_{1}}^{t_{2}} S\left(t_{2}-s\right) f\left(s, x_{s}, x^{\prime}(s)\right) d s\right| \\
& \leq\left|C\left(t_{1}\right)-C\left(t_{2}\right)\right| \| \phi| |+\left|S\left(t_{1}\right)-S\left(t_{2}\right)\right|\left\{\left|y_{0}\right|+c_{1}\|\phi\|+c_{2}\right\} \tag{4}\\
& +\int_{0}^{t_{1}}\left|C\left(t_{1}-s\right)-C\left(t_{2}-s\right)\right|\left\{c_{1}\left\|x_{s}\right\|+c_{2}\right\} d s \\
& +\int_{t_{1}}^{t_{2}}\left|C\left(t_{2}-s\right)\right|\left\{c_{1}\left\|x_{s}\right\|+c_{2}\right\} d s \\
& +\int_{0}^{t_{1}}\left|S\left(t_{1}-s\right)-S\left(t_{2}-s\right)\right||B|\left|\tilde{W}^{-1}\right|\left[\left|x_{1}\right|+M\|\phi\|\right. \\
& \left.+M T\left\{\left|y_{0}\right|+c_{1}\|\phi\|+c_{2}\right\}+M \int_{0}^{T}\left\{c_{1}\left\|x_{\tau}\right\|+c_{2}\right\} d \tau+M T \int_{0}^{T} \alpha_{k}(\tau) d \tau\right] d s \\
& +\int_{t_{1}}^{t_{2}}\left|S\left(t_{2}-s\right)\right||B|\left|\tilde{W}^{-1}\right|\left[\left|x_{1}\right|+M\|\phi\|+M T\left\{\left|y_{0}\right|+c_{1}\|\phi\|+c_{2}\right\}\right. \\
& \left.+M \int_{0}^{T}\left\{c_{1}\left\|x_{\tau}\right\|+c_{2}\right\} d \tau+M T \int_{0}^{T} \alpha_{k}(\tau) d \tau\right] d s \\
& +\int_{0}^{t_{1}}\left|S\left(t_{1}-s\right)-S\left(t_{2}-s\right)\right| \alpha_{k}(s) d s \\
& +\int_{t_{1}}^{t_{2}}\left|S\left(t_{2}-s\right)\right| \alpha_{k}(s) d s,
\end{align*}
$$

and similarly,

$$
\begin{align*}
& \left|(F x)^{\prime}\left(t_{1}\right)-(F x)^{\prime}\left(t_{2}\right)\right| \\
& \left.\quad \leq\left|A\left(S\left(t_{1}\right)-S\left(t_{2}\right)\right) \phi(0)\right|+| | C\left(t_{1}\right)-C\left(t_{2}\right)\right]\left[y_{0}-g(0, \phi)\right] \mid \\
& \quad+\left|g\left(t_{1}, x_{t_{1}}\right)-g\left(t_{2}, x_{t_{2}}\right)\right|+\left|\int_{0}^{t_{1}} A\left(S\left(t_{1}-s\right)-S\left(t_{2}-s\right)\right) g\left(s, x_{s}\right) d s\right| \tag{5}\\
& \quad+\left|\int_{t_{1}}^{t_{2}} A S\left(t_{2}-s\right) g\left(s, x_{s}\right) d s\right|
\end{align*}
$$

$$
\begin{align*}
& +\mid \int_{0}^{t_{1}}\left[C\left(t_{1}-s\right)-C\left(t_{2}-s\right)\right] B \tilde{W}^{-1}\left[x_{1}-C(T) \phi(0)-S(T)\left[y_{0}-g(0, \phi)\right]\right. \\
& \left.+\int_{0}^{T} C(T-\tau) g\left(\tau, x_{\tau}\right) d \tau-\int_{0}^{T} S(T-\tau) f\left(\tau, x_{\tau}, x^{\prime}(\tau)\right) d \tau\right](s) d s \mid \\
& +\mid \int_{t_{1}}^{t_{2}} C\left(t_{2}-s\right) B \tilde{W}^{-1}\left[x_{1}-C(T) \phi(0)-S(T)\left[y_{0}-g(0, \phi)\right]\right. \\
& \left.+\int_{0}^{T} C(T-\tau) g\left(\tau, x_{\tau}\right) d \tau-\int_{0}^{T} S(T-\tau) f\left(\tau, x_{\tau}, x^{\prime}(\tau)\right) d \tau\right](s) d s \mid \\
& +\left|\int_{0}^{t_{1}}\left[C\left(t_{1}-s\right)-C\left(t_{2}-s\right)\right] f\left(s, x_{s}, x^{\prime}(s)\right) d s\right| \\
& +\left|\int_{t_{1}}^{t_{2}} C\left(t_{2}-s\right) f\left(s, x_{s}, x^{\prime}(s)\right) d s\right| \\
& \left.+\left|A\left(S\left(t_{1}\right)-S\left(t_{2}\right)\right)\right|\|\phi\|+| | C\left(t_{1}\right)-C\left(t_{2}\right)\right] \mid\left\{\left|y_{0}\right|+c_{1}\|\phi\|+c_{2}\right\} \\
& +\left|g\left(t_{1}, x_{t_{1}}\right)-g\left(t_{2}, x_{t_{2}}\right)\right|+\int_{0}^{t_{1}}\left|A\left(S\left(t_{1}-s\right)-S\left(t_{2}-s\right)\right)\right|\left\{c_{1}\left\|x_{s}\right\|+c_{2}\right\} d s \tag{5}\\
& +\int_{t_{1}}^{t_{2}}\left|A S\left(t_{2}-s\right)\right|\left\{c_{1}\left\|x_{s}\right\|+c_{2}\right\} d s \\
& +\int_{0}^{t_{1}}\left|C\left(t_{1}-s\right)-C\left(t_{2}-s\right)\right||B|\left|\tilde{W}^{-1}\right|\left[\left|x_{1}\right|+M\|\phi\|\right. \\
& +\int_{0}\left|C\left(t_{1}-s\right)-C\left(t_{2}-s\right)\right| \alpha_{k}(s) d s+\int_{t_{1}}^{t_{2}}\left|C\left(t_{2}-s\right)\right| \alpha_{k}(s) d s \\
& \left.+M T\left\{\left|y_{0}\right|+c_{1}\|\phi\|+c_{2}\right\}+M \int_{0}^{T}\left\{c_{1}\left\|x_{\tau}\right\|+c_{2}\right\} d \tau+M T \int_{0}^{T} \alpha_{k}(\tau) d \tau\right] d s \\
& +\int_{t_{1}}^{t_{2}}\left|C\left(t_{2}-s\right)\right||B|\left|\tilde{W}^{-1}\right|\left[x_{1} \mid+M\|\phi\|+M T\left\{\left\|y_{0}\right\|+c_{1}\|\phi\|+c_{2}\right\}\right. \\
& \left.+M \int_{0}^{T}\left\{c_{1}\left\|x_{\tau}\right\|+c_{2}\right\} d \tau+M T \int_{0}^{T} \alpha_{k}(\tau) d \tau\right] d s \\
& +t_{0} \\
& +
\end{align*}
$$

The right-hand sides of (4) and (5) are independent of $y \in B_{k}$ and tend to zero as $t_{2}-t_{1} \rightarrow 0$, since $C(t), S(t)$ are uniformly continuous for $t \in J$. The compactness of $C(t), S(t)$ for $t>0$ implies the continuity in the uniform operator topology. The compactness of $S(t)$ follows from that of $C(t)$.

Thus, F maps B_{k} into an equicontinuous family of functions. It is easy to see that the family $F B_{k}$ is uniformly bounded.

Next we show $\overline{F B_{k}}$ is compact. Since we have shown $F B_{k}$ is an equicontinuous collection, it suffices by the Arzela-Ascoli theorem to show that F maps B_{k} into a precompact set in X.

Let $0<t \leq T$ be fixed and ϵ a real number satisfying $0<\epsilon<t$. For $x \in B_{k}$, we define

$$
\begin{gathered}
\quad\left(F_{\epsilon} x\right)(t)=C(t) \phi(0)+S(t)\left[y_{0}-g(0, \phi)\right]+\int_{0}^{t-\epsilon} C(t-s) g\left(s, x_{s}\right) d s \\
+\int_{0}^{t-\epsilon} S(t-s) B \tilde{W}^{-1}\left[x_{1}-C(T) \phi(0)-S(T)\left[y_{0}-g(0, \phi)\right]-\int_{0}^{T} C(T-\tau) g\left(s, x_{\tau}\right) d \tau\right. \\
\left.-\int_{0}^{T} S(T-\tau) f\left(\tau, x_{\tau}, x^{\prime}(\tau)\right) d \tau\right](s) d s+\int_{0}^{t-\epsilon} S(t-s) f\left(s, x_{s}, x^{\prime}(s)\right) d s, \quad t \in J
\end{gathered}
$$

An International Journal
computers \& mathematics with appllatatons

To ensure rapld publication,

 we recommend the following:- Manuscripts should be submitted to a cognizant editor,
- Submit a hard copy in every instance;
- Submit an olectronic version whenever it is available (preferably in some TEX dialect);
- Submit original reducible and reproducible illustrations:
- Return galley proofs promptly;
- Refer to our detalied Manuscript Requirements at the back of every issue;
- A list of six possible reviewers should be provided with each submistion.
for each $t \in J$, and since

$$
\left|f\left(t, x_{n t}, x_{n}^{\prime}(t)\right)-f\left(t, x_{t}, x^{\prime}(t)\right)\right| \leq 2 \alpha_{q}(t)
$$

we have by dominated convergence theorem,

$$
\begin{aligned}
\left\|F x_{n}-F x\right\|= & \sup _{t \in J} \mid \int_{0}^{t} C(t-s)\left[g\left(s, x_{n_{s}}\right)-g\left(s, x_{s}\right)\right] d s \\
& -\int_{0}^{t} S(t-s) B \tilde{W}^{-1}\left[\int_{0}^{T} C(T-\tau)\left[g\left(\tau, x_{n_{\tau}}\right)-g\left(\tau, x_{\tau}\right)\right] d \tau\right. \\
& \left.+\int_{0}^{T} S(T-\tau)\left[f\left(\tau, x_{n_{\tau}}, x_{n}{ }^{\prime}(\tau)\right)-f\left(\tau, x_{\tau}, x^{\prime}(\tau)\right)\right] d \tau\right](s) d s \\
& +\int_{0}^{t} S(t-s)\left[f\left(s, x_{n s}, x_{n}^{\prime}(s)\right)-f\left(s, x_{s}, x^{\prime}(s)\right)\right] d s \mid \\
\leq & \int_{0}^{T}\left|C(t-s)\left[g\left(s, x_{n s}\right)-g\left(s, x_{s}\right)\right]\right| d s \\
& -\int_{0}^{T} \mid S(t-s) B \tilde{W}^{-1}\left[\int_{0}^{T} C(T-\tau)\left[g\left(\tau, x_{n \tau}\right)-g\left(\tau, x_{\tau}\right)\right] d \tau\right. \\
& \left.+\int_{0}^{T} S(T-\tau)\left[f\left(\tau, x_{n \tau}, x_{n}^{\prime}(\tau)\right)-f\left(\tau, x_{\tau}, x^{\prime}(\tau)\right)\right] d \tau\right] \mid d s \\
& +\int_{0}^{T}\left|S(t-s)\left[f\left(s, x_{n_{s}, x_{n}}{ }^{\prime}(s)\right)-f\left(s, x_{s}, x^{\prime}(s)\right)\right] d s\right| \rightarrow 0
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|\left(F x_{n}\right)^{\prime}-(F x)^{\prime}\right\|= & \sup _{t \in J} \mid\left[g\left(t, x_{n t}\right)-g\left(t, x_{t}\right)\right]+\int_{0}^{t} A S(t-s)\left[g\left(s, x_{n s}\right)-g\left(s, x_{s}\right)\right] d s \\
& -\int_{0}^{t} C(t-s) B \tilde{W}^{-1}\left[\int_{0}^{T} C(T-\tau)\left[g\left(\tau, x_{n \tau}\right)-g\left(\tau, x_{\tau}\right)\right] d \tau\right. \\
& \left.+\int_{0}^{T} S(T-\tau)\left[f\left(\tau, x_{n_{\tau}}, x_{n}{ }^{\prime}(\tau)\right)-f\left(\tau, x_{\tau}, x^{\prime}(\tau)\right)\right] d \tau\right](s) d s \\
& +\int_{0}^{t} C(t-s)\left[f\left(s, x_{n s}, x_{n}{ }^{\prime}(s)\right)-f\left(s, x_{s}, x^{\prime}(s)\right)\right] d s \mid \\
\leq & \int_{0}^{T}\left|g\left(t, x_{n t}\right)-g\left(t, x_{t}\right)\right| d s+\int_{0}^{t}\left|A S(t-s)\left[g\left(s, x_{n s}\right)-g\left(s, x_{s}\right)\right]\right| d s \\
& -\int_{0}^{T} \mid C(t-s) B \tilde{W}^{-1}\left[\int_{0}^{T} C(T-\tau)\left[g\left(\tau, x_{n \tau}\right)-g\left(\tau, x_{\tau}\right)\right] d \tau\right. \\
& \left.+\int_{0}^{T} S(T-\tau)\left[f\left(\tau, x_{n_{\tau}}, x_{n}{ }^{\prime}(\tau)\right)-f\left(\tau, x_{\tau}, x^{\prime}(\tau)\right)\right] d \tau\right] \mid d s \\
& +\int_{0}^{T}\left|C(t-s)\left[f\left(s, x_{n s}, x_{n}{ }^{\prime}(s)\right)-f\left(s, x_{s}, x^{\prime}(s)\right)\right] d s\right| \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Thus, F is continuous. This completes the proof that F is completely continuous.
Finally, the set $\xi(F)=\{x \in Z: x=\lambda F x, \lambda \in(0,1)\}$ is bounded, as we proved in the first step. Consequently, by Leray-Schauder alternative, the operator F has a fixed point in Z. This means that any fixed point of F is a mild solution of (1) on J satisfying $(F x)(t)=x(t)$. Thus, system (1) is controllable on J.

4. EXAMPLE

Consider the following partial delay differential equation:

$$
\begin{gather*}
\frac{\partial}{\partial t}\left(\frac{\partial z}{\partial t}(y, t)-\eta(t, z(y, t-r))=z_{y y}(y, t)+\sigma\left(t, z(y, t-r), \frac{\partial z}{\partial t}(y, t)\right)+\mu(y, t),\right. \\
z(0, t)=z(\pi, t)=0, \quad \text { for } t>0, \tag{6}\\
z(y, t)=\phi(y, t), \quad \text { for }-r \leq t \leq 0, \\
\frac{\partial z}{\partial t}(y, 0)=z_{0}(y), \quad t \in J=-[0, T], \quad \text { for } 0<y<\pi
\end{gather*}
$$

where ϕ is continuous, $\eta: J \times(0, \pi) \rightarrow(0, \pi)$ is continuous and strongly measurable, $\sigma: J \times$ $(0, \pi) \times(0, \pi) \rightarrow(0, \pi)$ is continuous and strongly measurable, and $\mu:(0, \pi) \times J \rightarrow(0, \pi)$ is continuous in t.
Let $X=L^{2}[0, \pi]$ and let $A: X \rightarrow X$ be defined by

$$
A w=w^{\prime \prime}, \quad w \in D(A),
$$

where $D(A)=\left\{w \in X: w, w^{\prime}\right.$ are absolutely continuous, $\left.w^{\prime \prime} \in X, w(0)=w(\pi)=0\right\}$. Then

$$
A w=\sum_{n=1}^{\infty}-n^{2}\left(w, w_{n}\right) w_{n}, \quad w \in D(A)
$$

where $w_{n}(s)=\sqrt{2 / \pi} \sin n s, n=1,2,3, \ldots$ is the orthogonal set of eigenfunctions of A.
It can be easily shown that A is the infinitesimal generator of a strongly continuous cosine family $C(t), t \in R$, in X and is given by [9]

$$
C(t) w=\sum_{n=1}^{\infty} \cos n t\left(w, w_{n}\right) w_{n}, \quad w \in X .
$$

The associated sine family is given by

$$
S(t) w=\sum_{n=1}^{\infty} \frac{1}{n} \sin n t\left(w, w_{n}\right) w_{n}, \quad w \in X .
$$

Let $g: J \times C \rightarrow X$ be defined by

$$
g(t, \phi)(y)=\eta(t, \phi(y,-r)), \quad \phi \in C, \quad y \in(0, \pi) .
$$

Also there exist positive constants c_{1} and c_{2} such that

$$
\|\eta(t, \phi)\| \leq c_{1}\|\phi\|+c_{2} .
$$

Let $f: J \times C \times X \rightarrow X$ be defined by

$$
f(t, \phi, w)(y)=\sigma(t, \phi(y,-r), w(y)), \quad \phi \in C, \quad w \in X, \quad y \in(0, \pi) .
$$

Further, the function σ satisfies the following condition.
There exists a continuous function $p: J \rightarrow[0, \infty)$ such that

$$
\|\sigma(t, \phi, w)\| \leq p(t) \Omega(\|\phi\|+|w|), \quad t \in J, \quad \phi \in C, \quad w \in X
$$

where $\Omega:[0, \infty) \rightarrow(0, \infty)$ is a continuous nondecreasing function such that

$$
\int_{0}^{T} p(s) d s<\int_{c}^{\infty} \frac{d s}{s+\Omega(s)}
$$

and c is a known constant. Let $B: U \subset J \rightarrow X$ be defined by

$$
(B u)(t)(y)=\mu(y, t), \quad y \in(0, \pi),
$$

such that it satisfies condition $\left(\mathrm{H}_{4}\right)$. Hence, by the above theorem, system (6) is controllable on J.
Remark. Construction of \tilde{W}^{-1}. (See [4].) Let

$$
Y=\frac{L^{2}[J, U]}{\operatorname{ker} W}
$$

Since ker W is closed, Y is a Banach space under the norm

$$
\|[u]\|_{Y}=\inf _{u \in[u]}\|u\|_{\left.L^{2} \mid J, U\right]}=\inf _{W \hat{u}=0}\|u+\hat{u}\|_{\left.L^{2} \mid J, U\right]},
$$

where $[u]$ are the equivalence classes of u.
Define $\tilde{W}: Y \rightarrow X$ by

$$
\tilde{W}[u]=W u, \quad u \in[u] .
$$

Now \tilde{W} is one-to-one and

$$
\|\tilde{W}[u]\|_{X} \leq\|W\|\|[u]\|_{Y}
$$

We claim that $V=$ Range W is a Banach space with the norm

$$
\|v\|_{V}=\left\|\tilde{W}^{-1} v\right\|_{Y}
$$

This norm is equivalent to the graph norm on $D\left(\tilde{W}^{-1}\right)=$ Range W, \tilde{W} is bounded and since $D(\tilde{W})=Y$ is closed, \tilde{W}^{-1} is closed, and so the above norm makes Range $W=V$ a Banach space.
Moreover,

$$
\begin{aligned}
\|W u\|_{V} & =\left\|\tilde{W}^{-1} W u\right\|_{Y}=\left\|\tilde{W}^{-1} \tilde{W}[u]\right\| \\
& =\|[u]\|=\inf _{u \in[u]}\|u\| \leq\|u\|,
\end{aligned}
$$

so

$$
W \in £\left(L^{2}[J, U], V\right)
$$

Since $L^{2}[J, U]$ is reflexive and $\operatorname{ker} W$ is weakly closed, the infimum in the definition of the norm on Y is attained. For any $v \in V$, we can therefore choose a control $u \in L^{2}[J, U]$ such that $u=\tilde{W}^{-1} v$.

REFERENCES

1. E.N. Chukwu and S.M. Lenhart, Controllability questions for nonlinear systems in abstract spaces, Journal of Optimization Theory and Applications 68, 437-462 (1991).
2. K. Naito, Controllability of semilinear control systems dominated by the linear part, SlAM Journal on Control and Optimization 25, 715-722 (1987).
3. K. Naito, On controllability for a nonlinear Volterra equation, Nonlinear Analysis: Theory, Methods and Applications 18, 99-108 (1992).
4. M.D. Quinn and N. Carmichael, An approach to nonlinear control problems using fixed point methods. degree theory, and pseudo-inverses, Numerical Functional Analysis and Optimization 7, 197-219 (1984/1985).
5. K. Balachandran and J.P. Dauer, Controllability of Sobolev-type integrodifferential systems in Banach spaces, Journal of Mathematical Analysis and Applications 217, 335-348 (1998).
6. K. Balachandran, J.P. Dauer and P. Balasubramaniam, Controllability of nonlinear integrodifferential systems in Banach spaces, Journal of Optimization Theory and Applications 84, 83-91 (1995).
7. W.E. Fitzgibbon, Global existence and boundedness of solutions to the extensible beam equation, SIA M Journal of Mathematical Analysis 13, 739-745 (1982).
8. C.C. Travis and G.F. Webb, Cosine families and abstract nonlinear second order differential equations, Acta Mathematica Academiae Scientiarum Hungaricae 32, 75-96 (1978).
9. C.C. Travis and G.F. Webb, Compactness, regularity and uniform continuity properties of strongly continuous cosine families, Houston Journal of Mathematics 3, 555-567 (1977).
10. J. Ball, Initial boundary value problems for an extensible beam, Journal of Mathematical Analysis and Applications 42, 61 90 (1973).
11. J.Y. Park and H.K. Han, Controllability for some second order differential equations, Bulletin of the Korean Mathematical Society 34, 411~419 (1997).
12. K. Balachandran, J.Y. Park and S. Marshal Anthoni, Controllability of second order semilinear Volterra integrodifferential systems in Banach spaces, Bulletin of the Korean Mathematical Socicty 35, 1 -13 (1998).
13. H. Schaefer, Über die Methode der a priori Schranken, Mathematische Annalen 129, 415-416 (1955).
14. J. Bochenek, An abstract nonlinear second order differential equation, Annales Polonici Mathematici 54, 155-166 (1991).
15. E. Hernández and H.R. Henríquez, Existence results for partial neutral functional integrodifferential equations with unbounded delay, Journal of Mathematical Analysis and Applications 221, 452-475 (1998).
16. S.K. Ntouyas, Global existence for neutral functional integrodifferential equations, Nonlinear Analysis: Theory, Methods and Applications 30, 2133-2142 (1997).

[^0]: This work is supported by CSIR, New Delhi, India.

