
Information and Computation 163, 203�243 (2000)

Verification by Augmented Finitary Abstraction1

Yonit Kesten2

Department of Communication Systems Engineering, Ben Gurion University, Beer-Sheva, Israel
E-mail: ykesten�bgumail.bgu.ac.il

and

Amir Pnueli

Department of Applied Mathematics and Computer Science, Weizmann Institute of Science,
Rehovot, Israel

E-mail: amir�wisdom.weizmann.ac.il

The paper deals with the proof method of verification by finitary
abstraction (VFA), which presents a feasible approach to the verification
of the temporal properties of (potentially infinite-state) reactive systems.
The method consists of a two-step process by which, in a first step, the
system and its temporal specification are jointly abstracted into a finite-
state system and a finite-state specification. The second step uses model
checking to establish the validity of the abstracted property over the
abstracted system. The VFA method can be considered a viable alternative
to verification by temporal deduction which, up to now, has been the
main method generally applicable for verification of infinite-state systems.
The paper presents a general recipe for the joint abstraction, which is
shown to be sound, where soundness means that validity over the
abstract system implies validity over the concrete (original) system. To
make the method applicable for the verification of liveness properties,
pure abstraction is sometimes no longer adequate. We show that by
augmenting the system by an appropriate (and standardly constructible)
progress monitor, we obtain an augmented system, whose computations
are essentially the same as the original system, and which may now be
abstracted while preserving the desired liveness properties. We refer to the
extended method as verification by augmented abstraction (VAA). We
then proceed to show that the VAA method is sound and complete for
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proving all properties expressible by temporal logic (including both safety
and liveness). Completeness establishes that whenever the property is
valid, there exists a finitary abstraction which abstracts the system,
augmented by an appropriate progress monitor, into a finite-state system
which validated the abstracted property. ] 2000 Academic Press

1. INTRODUCTION

When verifying temporal properties of reactive systems, the common wisdom is
if it is finite-state, model check it, otherwise one must use temporal deduction,
supported by theorem provers such as SteP, PVS, etc.

The study of abstraction as an aid to verification demonstrated that, in some
interesting cases, one can abstract an infinite-state system into a finite-state one.
This suggests an alternative approach to the temporal verification of infinite-state
systems: abstract first and model check later.

In this work, we present a general framework based on linear temporal logic for
a joint abstraction of a reactive system D and its specification expressed as a linear
temporal logic (LTL) formula �. The unique features of this abstraction method is
that it takes full account of all the fairness assumptions (including strong fairness)
associated with the system D and can, therefore, establish liveness properties, in
contrast to most other abstraction approaches that can only support verification of
safety properties.

We first provide a sound recipe for the application of the method of verification
by finitary abstraction (VFA). That is, given an arbitrary state mapping : which
maps concrete to abstract states, we show how to define the abstract versions S:

and �: such that S : <�: implies S<�, establishing that � is S-valid. In the case
that : maps all concrete variables into abstract variables ranging over finite
domains, S: will be a finite-state system, and S :<�: can be verified by model
checking. An earlier version of this part of the presentation appeared in [KP98b].

Applying the method of finitary abstraction for the proofs of liveness properties,
we find that, sometimes, pure abstraction is no longer adequate. For these cases, it
is possible to construct an additional module M, which we refer to as a progress
monitor, such that the augmented systems D _ M (the synchronous parallel com-
position of D and M) has essentially the same set of computations as the original
D and can be abstracted in a way which preserves the desired liveness property. We
refer to this extended proof method as the method of verification by augmented
abstraction (VAA).

In Section 7 we show that the VAA method is sound. That is, for every abstrac-
tion mapping :, if the abstracted property �: is valid over the abstracted augmen-
ted system D _ M, and the monitor M does not constrain the computations of D

(effective sufficient conditions for this are provided), then we can safely infer D<�.
Sections 8 and 9 are dedicated to the proof of completeness of the VAA method.

We show that if � is valid over D, then there exist a monitor M which does not
constrain the computations of D and a finitary abstraction mapping :, such that
(D _ M): <�:.
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As will be shown in the next subsection, the idea of using abstraction for sim-
plifying the task of verification is certainly not new with us. Even the observation
that, in many interesting cases, infinite-state systems can be abstracted into
finite-state systems which can be model checked has been made before. The main
contributions of the paper can be summarized as

v reformulation of the main principles underlying abstraction for the simpler
cases of a linear (LTL) framework and a functional abstraction mapping (instead of
the more general abstraction relation, leading to the full Galois connection theory);

v consideration of the powerful computational model of fair discrete systems
(FDS) which incorporates full fairness (including weak and strong fairness) and
showing how to perform a joint abstraction of a system and its specification, which
can be an arbitrary LTL formula;

v observing that for some verification tasks involving liveness, pure
abstraction is inadequate, and devising the method of verification by augmented
abstraction;

v establishing completeness of the VAA method.

1.1. Related Work

There has been an extensive study of the use of data abstraction techniques,
mostly based on the notions of abstract interpretation [CC77, CH78]. Most of the
previous work was done in a branching context which complicates the problem if
one wishes to preserve both existential and universal properties. On the other hand,
if we restrict ourselves to a universal fragment of the logic, e.g., ACTL*, then the
conclusions reached are similar to our main result for the restricted case that the
property � contains negations only within assertions.

The paper [CGL94] obtains a similar result for the fragment ACTL*. However,
instead of starting with a concrete property � and abstracting it into an appropriate
�:, they start with an abstract ACTL* formula 9 evaluated over the abstract
system D: and show how to translate (concretize) it into a concrete formula
�=C(9). The concretization is such that :&(�)=9.

The survey in [CGL96] considers an even simpler case in which the abstraction
does not concern the variables on which the property � depends. Consequently, this
is the case in which �:=�.

A more elaborate study in [DGG97] considers a more complex specification
language, L+ , which is a positive version of the +-calculus.

None of these three articles considers explicitly the question of fairness
requirements and how they are affected by the abstraction process.

Approaches based on simulation and studies of the properties they preserve are
considered in [LGS+95].

A linear-time application of abstract interpretation is proposed in [BBM95],
applying the abstractions directly to the computational model of fair transition
systems (FTS) which is very close to the FDS model considered here. However, the
method is only applied for the verification of safety properties. Liveness, and
therefore fairness, are not considered.
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In [MP91a], a deductive methodology for proving temporal properties over an
infinite-state system is presented. This methodology is based on a set of proof rules,
each devised for a class of temporal formulas. In each of these rules, the proof of
the temporal property is reduced to the proof of a (finite set of) first-order premises.
This methodology is proved to be complete, relative to the underlying assertion
language.

Both proof rules and their completeness are based on the FTS computation
model [MP91b]. The translation of both rules and completeness proof to the FDS
model used in this paper is presented in [KP98a].

Verification diagrams, presented in [MP94], provide a graphical representation
of the deductive proof rules, summarizing the necessary verification conditions. A
verification diagram (VD) is a finite graph, which can be viewed as a finite
abstraction of the verified system, with respect to the verified property.

In [BMS95, MBSU98], the notion of a verification diagram is generalized,
allowing a uniform verification of arbitrary temporal formulas. The GVD
(generalized verification diagram) can be viewed as an abstraction of the verified
system which is justified deductively and verified by model checking. The GVD
method is also shown to be sound and complete. The abstraction constructed by
this method is based on the FTS computation model, and can be viewed as an
|-automaton with either the Street [BMS95] or the Muller [MBSU98]
acceptance condition.

A dual method to VD and GVD is the deductive model checking (DMC) presented
in [SUM99]. Similar to VD and GVD, this method tries to verify a temporal
property . over an infinite-state system, using a finite graph representation. The
procedure starts with the temporal tableau for the negated property (c.), which
is repeatedly refined until either a counter example is found or it is proved that a
counter-example cannot exist. The paper presents a constructive method which, for
infinite-state systems, is not guaranteed to terminate. The method is shown to be
complete, relative to the underlying assertion language, for proving general
temporal properties.

An (LTL-based) general approach, similar to our VFA method, has been inde-
pendently developed in [Uri99]. The claim of completeness there relies on the
(relative) completeness established within [SUM99].

An important development in the theory and implementation of verification by
finitary (and other types of) abstraction is reported in [BLO98a]. The paper
describes the support system INVEST [BLO98b], which employs various
heuristics for the automatic generation of finitary abstractions for a given system,
attempting to be precise (a concept introduced in Section 6) with respect to the
atomic formulas appearing in the system as well as in the specification. For
example, INVEST has managed to compute automatically most of the abstractions
presented in our examples such as Fig. 8 and Fig. 11.

2. A COMPUTATIONAL MODEL: FAIR DISCRETE SYSTEMS

As a computational model for reactive systems, we take the model of a fair
discrete system, which is a slight variation on the model of fair transition system
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[MP95]. The FDS model was first introduced in [KPR98] under the name ``Fair
Kripke Structure.'' The main difference between the FDS and FTS models is in the
representation of fairness constraints. The advantage of the new representation is
that it enables a unified representation of fairness constraints arising from both the
system being verified and the temporal property.

An FDS D : (V, 3, \, J, C) consists of the following components.

v V=[u1 , ..., un]: A finite set of typed system variables, containing data and
control variables. The set of states (interpretation) over V is denoted by 7. Note
that 7 can be both finite or infinite, depending on the domains of V.

v 3: The initial condition��an assertion (first-order state formula) charac-
terizing the initial states.

v \: A transition relation��an assertion \(V, V$), relating the values V of the
variables in state s # 7 to the values V$ in a D-successor state s$ # 7.

v J=[J1 , ..., Jk]: A set of justice requirements (also called weak fairness
requirements). The justice requirement J # J is an assertion, intended to guarantee
that every computation contains infinitely many J-states (states satisfying J ).

v C=[( p1 , q1) , ...( pn , qn)]: A set of compassion requirements (also called
strong fairness requirements). The compassion requirement ( p, q # C) is a pair of
assertions, intended to guarantee that every computation containing infinitely many
p-states also contains infinitely many q-states.

We require that state s # 7 has at least one D-successor. This is often ensured by
including in \ the idling disjunct V=V$ (also called the stuttering step). In such
cases, every state s is its own D-successor.

Let D be an FDS for which the above components have been identified. We
define a computation of D to be an infinite sequence of states _: s0 , s1 , s2 , ...,
satisfying the following requirements:

v Initiality: s0 is initial, i.e., s0 <3.

v Consecution: For each j=0, 1, ..., the state sj+1 is a D-successor of the state sj .

v Justice: For each J # J, _ contains infinitely many J-positions.

v Compassion: For each ( p, q) # C, if _ contains infinitely many p-positions,
it must also contain infinitely many q-positions.

For an FDS D, we denote by Comp(D) the set of all computations of D. An FDS
D is called feasible if Comp(D){<, namely, if D has at least one computation. The
feasibility of a finite-state FDS can be checked algorithmically, using symbolic
model checking methods, as presented in [KPR98]. A state s is called D-accessible
if it appears in some computation of D.

A finite- or infinite-state sequence _ is called a run of D if it satisfies the
requirements of initiality and consecution but not, necessarily, any of the fairness
requirements. System D is said to be viable if every finite run can be extended into
a computation. One of the differences between the model of fair transition systems
and the FDS model is that every FTS is viable by construction, while it is easy to
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define an FDS which is not viable, e.g., by having the justice set include the asser-
tion false. On the other hand, every FDS which is derived from a program is viable.

Let U�V be a set of variables. Let _ be an infinite sequence of states. We say
the _$ is a U-variant of _, if _$ agrees with _ on the interpretation of all variables
in V&U, and disagrees with _ only on the interpretation of variables in U.
Similarly, we denote by _ -U the projection of _ onto the subset U. That is, _ -U is
the sequence of U-states obtained by removing from the states of _ the valuation
of the variables which belong to V&U. For the set of computations Comp(D) of
and FDS D, we denote by Comp(D) -U the set of computations projected onto the
set of variables U. Let D and D$ be two FDSs. We denote by Comp(D) -D$ the set
of computations of D projected onto VD$ , the set of variables of D$.

All our concrete examples are given in SPL (Simple Programming Language),
which is used to represent concurrent programs (e.g., [MP95, MAB+94]). Every
SPL program can be compiled into an FDS in a straightforward manner (see
[KPR98]). In particular, every statement in an SPL program contributes a
disjunct to the transition relation. For example, the assignment statement

l0 : y :=x+1; l1 :

can be executed when control is at location l0 . When executed, it assigns x+1 to
y while control moves from l0 to l1 . This statement contributes to \ the disjunct

\l0
: at&l0 7 at& l$1 7 y$=x+1 7 x$=x.

The predicates at& l0 and at&l$1 stand, respectively, for the assertions ?i=0 and
?$i=1, where ?i is the control variable denoting the current location within the
process to which the statement belongs.

2.1. Synchronous Parallel Composition

Let D1=(V1 , 31 , \1 , J1 , C1) and D2 : (V2 , 32 , \2 , J2 , C2) be two fair discrete
systems. We define the synchronous parallel composition of D1 and D2 , denoted by
D1 _ D2 , to be the system D=(V, 3, \, J, C) , where,

V=V1 _ V2 , 3=31 7 32

J=J1 _ J2 , C=C1 _ C2

\=\1 7 \2 .

As implied by the definition, each of the basic actions of system D consists of the
joint execution of an action of D1 and an action of D2 . Thus, we can view the execu-
tion of D as the joint execution of D1 and D2 .

The main, well-established, use of the synchronous parallel composition is for
coupling a system with a tester which tests for the satisfaction of a temporal for-
mula, and then checking the feasibility of the combined system, as will be shown
in the following sections. In this work, synchronous composition is also used for
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coupling the system with a monitor, used to ensure completeness of the data
abstraction methodology presented in the following sections. We remind the reader
that the concurrent composition of several SPL processes is an asynchronous
composition based on interleaving.

2.2. From JDS to BDS

An FDS with not compassion requirements is called a just discrete system (JDS).
A JDS with a single justice requirement is called a Bu� chi discrete system (BDS).

Let D : (V, 3, \, J, C: <) be a JDS such that J=[J1 , ..., Jk] and k>1. Let B

be a BDS and U=VD & VB . We say that D is U-equivalent to the BDS B, denoted
Dt UB, iff Comp(D) -U=Comp(B) -U .

We define a BDS B : (VB , 3B , \B , JB : [J], CB : <) which is U-equivalent to
D as follows:

v VB =V _ [u], where u is a new variable not in V, interpreted over the
domain [0 . .k].

v 3B : u=0 7 3.

case

u=0 : 1 ;

v \B : \(V, V$) 7 �
k

i=0

(u=i) 7 u$=_ u>0 7 Ji : (u+1) mod(k+1);&true : u ;

esac

v JB =[J], where J is the single justice requirement J : (u=0).

The transformation of a JDS to a BDS follows the transformation of generalized
Bu� chi automata to Bu� chi automata [Cho74].

3. REQUIREMENT SPECIFICATION LANGUAGE: TEMPORAL LOGIC

As a requirement specification language for reactive systems we take linear
temporal logic [MP91b]. For simplicity, we consider only the future fragment of
the logic. Extending the approach to the full logic is straightforward.

We assume an underlying assertion language L which contains the predicate
calculus augmented with fixpoint operators.3 We assume that L contains
interpreted symbols for expressing the standard operations and relations over some
concrete domains, such as the integers.

A temporal formula is constructed out of state formulas (assertions) to which we
apply the Boolean operators c and 6 (the other Boolean operators can be
defined from these), and the basic temporal operators m (next) and U (until ).

209VERIFICATION BY AUGMENTED FINITARY

3 As is well known [LPS81], a first-order language is not adequate to express the assertions necessary
for (relative) completeness of a proof system for proving validity of temporal properties of reactive
programs. The use of minimal and maximal fixpoints for relative completeness of the proof rules for live-
ness properties is discussed in [MP91a], based on [SdRG89]. However, the fixpoints are not needed
in the assertion language used to specify the components of an FDS (3, \, J, and C) or the set of its
reachable states (see Section 5).



A model for a temporal formula p is an infinite sequence of states _: s0 , s1 , ...,
where each state sj provides an interpretation for the variables mentioned in p.

Given a model _, we present an inductive definition for the notion of a temporal
formula p holding at a position j�0 in _, denoted by (_, j)< p.

v For a state formula p, (_, j)< p � sj < p.
That is, we evaluate p locally, using the interpretation given by sj .

v (s, j)<cp � (_, j)<% p

v (s, j)< p 6 q � (_, j)<p or (_, j)<q

v (s, j)<mp � (_, j+1)< p

v (s, j)< pUq � for some k� j, (_, k)<q,
and for every i such that j�i<k, (_, i)< p.

Additional temporal operators can be defined by hp=trueUp (eventually) and
gp=chcp (henceforth).

For a temporal formula p and a position j�0 such that (_, j)< p, we say that
j is a p-position (in _). If (_, 0)< p, we say that p holds on _, and denote it by
_< p. A formula p is called satisfiable if it holds on some model. A formula p is
called valid, denoted by < p, if it holds on all models. Two formulas p and q are
defined to be equivalent, denoted ptq, if p W q is valid, i.e., _< p iff _<q, for all
models _. We say that p and q are congruent, denoted prq, if g( p W q) is valid,
i.e., (_, j)< p iff (_, j)<q for all models _ and j�0.

Note that a state formula p is valid iff it holds at position 0 of all models. Our
treatment here differs from [MP91b] in that we do not require the separate con-
cept of state validity.

Given an FDS D and a temporal formula p, we say that p is D&valid, denoted
by D< p, if p holds on all models which are computations of D. In case the for-
mula p contains auxiliary variables U which are not among the system variables of
D, we apply this definition to the extended system DU obtained by adding U to the
system variables of D. Note that the values of these variables in a computation of
DU are completely unconstrained since neither 3U nor \U refer to them.

Let p be a temporal formula. We define the vocabulary of p as the set of all free
variables in maximal state subformulas of p. We say that p is finitary if the
vocabulary V of p is finite and, for each variable v # V, v ranges over a finite
domain.

A temporal formula . is called relevant for an FDS D, if the only free variables
appearing in . are system variables of D. Obviously, a formula purpoting to
describe a property of D can only refer (freely) to the system variables of D.

4. TESTERS FOR TEMPORAL FORMULAS

In this section, we present the construction of a tester for an LTL formula .,
which is a BDS T. characterizing all the sequences which satisfy .. The construc-
tion of a temporal tester proceeds in two steps. In Sub-section 4.1, we present a
construction of a pre-tester 6. which is a JDS whose computations are all the
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sequences satisfying the formula .. Then, in Sub-section 4.3, we complete the
construction by applying the transformation described in Sub-section 2.2 which
transforms the JDS 6. to a BDS T. which is the tester for the formula ..

The notion of a temporal tester was first introduced in [KPR98], which was
strongly inspired by [CGH94]. However, the construction in [KPR98] stopped at
the level that we describe here as a pre-tester, and did not proceed to bring the
system into a BDS form.

4.1. Pre-Testers

For a formula �, we write � # . to denote that � is a sub-formula of (possibly
equal to) .. Formula � is called principally temporal if its main operator is a
temporal operator.

The JDS 6. is given by

6. : (V. , 3. , \. , J. , C. , : <) ,

where the components are specified as follows:

System Variables. The system variables of 6. consist of the vocabulary of .
plus a set of auxiliary Boolean variables

X. : [xp | p # . a principal temporal sub-formula of .],

which includes an auxiliary variable xp for every p, a principally temporal
sub-formula of .. The auxiliary variable xp is intended to be true in a state of a
computation iff the temporal formula p holds at that state.

We define a mapping / which maps every sub-formula of . into an assertion over V. :

/(�)={
�
c/( p)
/( p) 6 /(q)
x�

for � a state formula
for �=cp
for �=p 6 q
for � a principally temporal formula.

The mapping / distributes over all Boolean operators. When applied to a state
formula it yields the formula itself. When applied to a principally temporal
sub-formula p it yields the variable xp .

Initial Condition. The initial condition of 6. is given by

3. : /(.)

Thus, the initial condition requires that all initial states satisfy /(.).

Transition Relation. The transition relation of 6. is given by

\. : \ �
mp # .

(xmp W /$( p)) 7 �
pUq # .

(xpUq W (/(q) 6 (/( p) 7 x$pUq)))+ .
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Note that we use the form x� when we know that � is principally temporal and
the form /(�) in all other cases. The expression /$(�) denotes the primed version
of /(�). The conjunct of the transition relation corresponding to the Until operator
is based on the following expansion formula:

pUq � q 6 ( p 7 m( pUq)).

Fairness Requirements. The justice set of 6. is given by

J. : [/(q) 6 cxpUq | pUq # .].

Thus, we include in J. the disjunction /(q) 6 cxpUq for every until formula pUq
which is a sub-formula of .. The justice requirement for the formula pUq ensures
that the sequence contains infinitely many states at which /(q) is true, or infinitely
many states at which xpUq is false.

The compassion set of 6. is always empty.

4.2. Correctness of the Construction

For a set of variables U, we say that sequence _~ is a U-variant of sequence _ if
_ and _~ agree on the interpretation of all variables, except possibly the variables
in U.

The following claim states that the construction of the tester 6. correctly
captures the set of sequences satisfying the formula ..

Claim 1. A state sequence _ satisfies the temporal formula . iff _ is an
X. -variant of a computation of 6. .

Proof (Sketch). Obviously, a tester is nothing more than a symbolic version of
the construction of a temporal tableau (e.g., see [MW84, LP85, MP95]). There-
fore, most of the necessary justification of Claim 1 can be taken from these papers.

Here, we would only like to elaborate on the salient point of the symbolic
representation of the tester as consisting of several Boolean variables, each
representing one of the principally temporal sub-formulas. The general proof
proceeds by induction on the size of the sub-formula, and we consider the crucial
step of handling sub-formulas of the form pUq, where, for simplicity, we assume
that p and q are state formulas.

For such a formula, the pre-tester 6. contains a variable xpUq , the transition
relation contains a conjunct xpUq � q 6 ( p 7 x$pUq), and the justice set contains a
justice requirement q 6cxpUq . We would like to show that, for every _ a computation
of 6. and every position j�0,

(_, j)<xpUq � (_, j)< pUq. (1)

Consider first the case that (_, j)<pUq. By definition of the until operator, there
exists a k� j such that q holds at k, and p holds at all intermediate positions
i, j�i<k. By the transition relation for xpUq , we can work down from k and
establish that xpUq holds at all positions i=k, k&1, ..., j.
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In the other direction, assume that (_, j)<xpUq . Applying the transition relation
to positions j, j+1, ..., will result in one of two possibilities. Either q holds at some
positions k� j and p holds at all intermediate positions i, j�i<k, or xpUq , p and
cq hold at all positions i� j. The first possibility yields (_, j)< pUq, while the
second possibility is ruled out by the justice requirement q6 cxpUq which is
required to hold at infinitely many positions, including at least one beyond j. K

4.3. The Final Step: Transforming into a BDS

In the second step of the tester construction, we transform the JDS 6. into a
BDS T. , using the JDS � BDS transformation presented in Sub-section 2.2.

4.4. Additional Temporal Operators and an Example

The construction of pre-testers, as presented in the previous sub-section,
considered U and m as the only temporal operators. In most applications, we
encounter formulas with the additional temporal operators g and h. Obviously,
these operators can be defined in terms of U. However, it is very convenient to add
to the construction a direct treatment of sub-formulas of the form gp and hp.

This can be done as follows:
For every hp, a sub-formula of ., add to X. the variable xhp , and add to \.

the conjunct

xhp � /( p) 6 x$hp .

Also add to J. the justice requirement

/( p) 6cxhp .

For every gp, a sub-formula of ., add to X. the variable xgp , and add to \. the
conjunct

xgp � /( p) 6 x$gp .

Also add to J. the justice requirement

c/( p) 6 xgp .

An Example. We conclude this section by an example of a tester constructed for
the temporal formula

. : hg(x<0) 7 ch(at&l3),

where x and l3 refer to an example program which we will consider in the following
sections.
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Following the recipe presented in this section, the temporal tester T. is given by

V : ?, x : natural, f1 , g2 , f3 : boolean, u : [0 . .3]

3. : f1 7c f3

\. :

f1 W g2 6 f $1 7

}

g2 W x<0 7 g$2 7

f3 W at�l3 6 f $3 7

case
u=0 : 1;
u=17 ( g2 6 c f1) : 2;

u$=_ u=27 (x�0 6 g2) : 3;&u=37 (at�l3 6c f3) : 0;
true : u;

esac

J. : u=0

For easier reference, we have renamed the variables of X. , letting f1 , g2 , and f3

stand, respectively, for xhg(x<0) , (xg(x<0) , and xhat&l3
. Note that the system

variables for this tester includes ? the program counter of the program for which
the property hg(x<0) 7 ch(at&l3) is claimed, and the natural variable x,
which is also one of the program variables. The predicate at& l3 stands for the state
formula ?=3.

4.5. The Testers T. , Tc. , and T .
true

It is a known fact that the temporal tableaux of T. and Tc. have identical struc-
ture and fairness requirements and only differ in their initial states and conditions.
This is also true of testers. The testers T. and Tc. have identical system variables,
identical transition relations and identical justice requirements. They only differ in
their initial conditions which are 3.=/(.) 7 (u=0) for T. and 3c.=
/(c.) 7 (u=0) for Tc. .

We can thus view Tc. as obtained from T. by replacing the initial condition 3
by /(c.) 7 (u=0). Another variant of T. is T .

true=(V. , (u=0), \. , J. , C. : <) ,
which can be obtained from T. by replacing 3 by (true 7 u=0).

In an analogy to Claim 1, we can make the following statement, characterizing
the sequences accepted by T .

true .

Every state sequence _ is an X.-variant of a computation of T .
true

This claim states that, modulo renaming of the internal variables, every sequence is
accepted by (is a computation of) T .

true .
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5. VERIFYING INFEASIBILITY OF BU� CHI DISCRETE SYSTEMS

In the following, we present a general proof method for establishing that a BDS
is infeasible.

A well-founded domain (W, O) consists of a set W and a total ordering relation
O over W such that there does not exist an infinitely descending sequence, i.e., a
sequence of the form

a0 oa1 oa2 o } } } .

A ranking function for an FDS D is a function $ mapping the states of D into a
well-founded domain.

The standard approach to prove infeasibility of a BDS B : (V, 3, \, J : [J],
C : <) is to define a ranking function $ which maps the reachable states of B into
a well-founded domain. The ranking function is required to satisfy the conditions
that every transition of B does not increase the rank and every transition into a
state satisfying J, the single justice requirement of B, decreases the rank. The
(possibly infinite) set of reachable states of B can be characterized (over-
approximated) by an inductive assertion .. The infeasibility of B can then be
derived from the rule WELL, presented in Fig. 1.

Rule WELL is both sound and (relatively) complete. Soundness of the rule
means that, given a BDS B, if we can find a ranking function $ and an assertion
., such that . and $ satisfy the three premises W1�W3, then B is indeed infeasible.
To see this, assume, to the contrary, that B is feasible. Then B has an infinite com-
putation _: s0 , s1 , ..., such that si <J for infinitely many states si in _. Then, from
premises W2 and W3, there exists an infinite sequence of states over which the
ranking function $ decreases infinitely many times, and never increases. Since $ is
defined over a well-founded domain, this is clearly impossible, contradicting our
assumption.

FIG. 1. Rule well.
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The completeness of rule WELL is stated by the following claim:

Claim 2. Let B : (V, 3, \, J : [J], C: <) be a BDS. If B is infeasible, then
there exist an assertion ., a well founded domain (W, O), and a ranking function
$ : 7V [ W satisfying the premises of rule WELL.

Proof (Sketch). To prove the claim, we have to find both an assertion . and a
ranking function $ which satisfy the premises W1�W3 of rule WELL.

The proof of existence of an assertion . characterizing the set of all reachable
states of a BDS is presented in [MP91a] and discussed in more detail in [MP91b]
(Section 2.5). The assertion (using predicate calculus) is constructed as an encoding
of the finite path to a reachable state, using the initial condition 3 and the
transition relation \ of B to constrain the path.

The existence of a well-founded domain (W, O) and ranking function $ satisfying
the premises W1�W3 is shown in [Var91], based on [LPS81]. The syntactic
representation of a well-founded ranking using an assertion language based on the
predicate calculus augmented with minimal and maximal fixpoint operators is
discussed in [MP91a] based on [SdRG89].

6. VERIFICATION BY FINITARY ABSTRACTION

In this section, we present a general methodology for data abstraction, strongly
inspired by the notion of abstract interpretation [CC77]. Let D=(V, 3, \, J, C)
be an FDS, and 7 denote the set of states of D, the concrete states. Let :: 7 [ 7A

be a mapping of concrete states into abstract states. We say that : is a finitary
abstraction mapping, if 7A is a finite set. The strategy of verification by finitary
abstraction can be summarized as follows:

v Define a finitary abstraction mapping : to abstract the (possibly infinite)
concrete FDS D into a finite, abstract FDS D:.

v Abstract the concrete temporal property � into a finitary abstract temporal
property �:.

v Verify D:<�:.

v Infer D<�.

An implementation of this general strategy which specifies a recipe for defining
the abstractions D: and �: for a given : is called an abstraction method.

An abstraction method is said to be safe (equivalently, sound ) if, for every FDS
D, temporal formula �, and a state abstraction mapping : (not necessarily finitary),
<�: implies <�, and D:<�: implies D<�.

6.1. Safe Abstraction of Temporal Formulas

To provide a syntactic representation of the abstraction mapping, we assume a
set of abstract variables VA and a set of expressions E:, such that the equality
VA=E:(V ) syntactically represents the semantic mapping :.

216 KESTEN AND PNUELI



Let p(V ) be an assertion. We wish to define the abstraction p:(VA) such that
<p:(VA) implies <p(V ). We introduce the operator :&, defined by

:&( p(V )) : \V(VA=E:(V ) � p(V )) 7 map(VA),

where map(VA) : _V(VA=E:(V )). Note that the free variables of :&( p(V )) are the
abstract variables VA . The assertion :&( p) holds over an abstract state S # 7A iff
S is mappable (is the :-image of some concrete state) and the assertion p holds over
all concrete states s # 7 such that s # :&1(S). Alternatively, :&( p) is the largest set
of mappable states X�7A such that :&1(X )�&p&, where &p& represents the set of
states which satisfy the assertion p. If :&( p) is valid, then &:&( p)&=7A , implying
:&1(&:&( p)&)=7 which, by the above inclusion, leads to &p&=7, establishing the
validity of p.

For complex formulas, we have to consider assertions which are nested within an
odd number of negations. To abstract an assertion under such a context, we define
the operator :+ as

:+( p(V )) : _V(VA=E:(V ) 7 p(V )).

The assertion :+( p) holds over an abstract state S # 7A iff the assertion p holds
over some concrete state s # 7 such that s # :&1(S), i.e., some state s such that
S=:(s). Alternatively, :+( p) is the smallest set X�7A such that &p&�:&1(X ).

Note the duality relations holding between :+ and :&, which can be expressed
by the equivalences

c:+( p)tmap(VA) � :&(cp) (2)

c:&( p)tmap(VA) � :+(cp) (3)

or, equivalently, by

:+(cp)tc:&( p) 7 map(VA) (4)

:&(cp)tc:+( p) 7 map(VA). (5)

An abstraction : is said to be precise with respect to an assertion p if
:+( p)t:&( p). For such cases, we will sometimes write :+( p) simply as :( p). As
will be shown in Claim 9, a sufficient condition for : to be precise w.r.t. p is that
the abstract variables include a Boolean variable Bp with the :-definition Bp= p.

Having defined the abstractions :& and :+ which operate on assertions, we lift
them to the abstractions :&

{ and :+
{ which can be applied to temporal formulas.

For a temporal formula . and an occurrence p of a state sub-formula within .,
we say that p is a maximal state sub-formula (MSS) if it is not properly contained
within another state sub-formula of ..
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The universal (or contracting) abstraction :&
{ (.) is obtained by replacing

v each MSS p occurring under a positive polarity (under an even number of
negations) by :&( p), and

v each MSS p occurring under a negative polarity (under an odd number of
negations) by :+( p).

Similarly, the existential (or expanding) abstraction :+
{ (.) is obtained by replacing

v each MSS p occurring under a positive polarity (under an even number of
negations) by :+( p), and

v each MSS p occurring under a negative polarity (under an odd number of
negations) by :&( p).

These definitions are equivalent to the following inductive definition:
For a state formula p,

:&
{ ( p)=:&( p), :+

{ ( p)=:+( p).

For a formula . # [cp, p 6 q, mp, pUq], which is not a state formula,

:&
{ (cp)=c:+

{ ( p), :+
{ (cp)=:&

{ ( p)

:&
{ ( p 6 q)=:&

{ ( p) 6 :&
{ (q), :+

{ ( p 6 q)=:+
{ ( p) 6 :+

{ (q)

:&
{ (mp)=m:&

{ ( p), :+
{ (mp)=m:+

{ ( p)

:&
{ ( pUq)=(:&

{ ( p)) U(:&
{ (q)), :+

{ ( pUq)=(:+
{ ( p)) U(:+

{ (q)).

Note that these definitions strongly depend on the syntactic representation of the
temporal formula .. In general, equivalent temporal formulas may have different
abstractions. For example, the contracting abstractions of the equivalent formulas

p 6 (q 6 hr) and ( p 6 q) 6 hr,

where p, q, and r are assertions (state formulas) are respectively given by the
formulas

:&( p) 6 :&(q) 6 h:&(r) and :&( p 6 q) 6 h:&(r),

which may be inequivalent. Similarly, the respective abstractions of

p 7 (q 7 gT ) and p 7 q

are

:+( p) 7 :+(q) and :+( p 7 q).
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A similar problem exists with formulas containing negation. For example, for the
equivalent formulas .1 : cp and .2 : c( p 7 mT ), we obtain

:&
{ (.1)=:&

{ (cp)=:&(cp)

:&
{ (.2)=:&

{ (c( p 7 mT ))=c(:+( p) 7 m:+(T ))tc(:+( p)).

Due to equivalence (2), these two abstractions are not in general equivalent.

Claim 3. Let � be a temporal formula and : be an abstraction mapping. Then

<:&
{ (�) implies <�.

Proof. The proof is by induction on the structure of the formula. The induction
hypotheses are given by the following:

For every state sequence _: s0 , s1 , ... and position j�0,

(:(_), j)<:&
{ (�) implies (_, j)<�, (6)

and

(_, j)<� implies (:(_), j)<:+
{ (�), (7)

where :(_)=:(s0), :(s1), ... .
The base case is for � being a state formula. Let s j be the state at position j�0

of _. Denote by U j=s j[V] and U j
A=S j[VA] the values of the system variables V

and VA in the states s j and Sj=:(sj), respectively.
First, assume that Sj <:&

{ (�), implying that (\V } U j
A=E:(V ) � �(V ))

evaluates to true over Sj . By substituting U j for V and using the equality
U j

A=E:(U j), we conclude that �(U j) evaluates to true. That is, (_, j)<�.
Next, assume that (_, j)<�, namely �(U j) evaluates to true. Since U j

A=E:(U j),
then _V } U j

A=E:(V ) 7 �(V ), implying that (:(_), j)<:+
{ (�).

We proceed by considering the inductive step. Let p and q to be two temporal
formulas satisfying the induction hypothesis. We have to show that each of the
formulas p 7 q, cp, mp, pUq satisfies the hypothesis. We show the proof for
�: p 6 q and �: cp. The proof for the other two formulas is similar.

Consider the formula �: p 6 q. Assume first that (:(_), j)<:&
{ ( p 6 q). From the

definition of :&
{ , we get (:(_), j)<:&

{ ( p) 6 :&
{ (q). By the definition of satisfiability

of temporal formulas, (:(_), j)<:&
{ ( p) 6 :&

{ (q) implies (:(_), j)<:&
{ ( p) or

(:(_), j)<:&
{ (q) which, by the inductive hypothesis (6), implies (_, j)<p or

(_, j)<q. Finally, from the definition of satisfiability of temporal formulas,
(_, j)< p or (_, j)<q implies (_, j)< ( p 6 q).

Next, assume that (_, j)< ( p 6 q). Then, from the definition of temporal
satisfiability, we conclude that (_, j)< p or (_, j)<q. By the induction
hypothesis (7), this implies (:(_), j)<:+

{ ( p) or (:(_), j)<:+
{ (q), which, by the

definition of temporal satisfiability, implies (:(_), j)<:+
{ ( p) 6 :+

{ (q). Finally, from
the definition of :+

{ , we get (:(_), j)<:+
{ ( p 6 q).
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Finally, we consider the formula �: cp, where p is not a state formula. Assume
first that (:(_), j)<:&

{ (�)=:&
{ (cp). According to the definition, :&

{ (cp)=
c:+

{ ( p). According to the definition of satisfiability of temporal formulas, (:(_), j)
<c:+

{ ( p) implies (:(_), j)<% :+
{ ( p). By the counter-positive of the induction

hypothesis (7), (:(_), j)<% :+
{ ( p) implies (_, j)<% p, leading to (_, j)<cp. This

establishes the induction hypothesis (6) for �=cp.
For Hypothesis (7), assume that (_, j)<�, i.e., (_, j)<cp. By the definition of

temporal satisfiability, this implies (_, j)<% p. By the counter-positive of
Hypothesis (6) applied to p, we can conclude (:(_), j)<% :&

{ ( p), leading to (:(_), j)
<c:&

{ ( p) which, by the definition of :+
{ ( p), leads to (:(_), j)<:+

{ (cp). This
establish the second clause of the induction hypothesis for cp=�.

To conclude the proof, we show that the inductive hypothesis implies the claim.
Let _: s0 , s1 , ... be a (concrete) state sequence. We have to show that _<�. Let
:(_)=:(s0), :(s1)... . Since :(_)<:&

{ (�) (left-hand side of the claim), which is a
shorthand for :(_, 0)<:&

{ (�), it follows by Eq. (6) that (_, 0)<�, which can be
rewritten as _<�. K

In the following sections, we denote by �: the contracting abstraction :&
{ (�) of

the temporal formula �.

6.2. Safe Abstraction of FDSs

In the various sub-section, we established that the abstraction of the temporal
formula � into �:=:&

{ (�) is safe (equivalently sound ) in the sense that if �: is
valid, then so is �.

Here we will establish sufficient conditions for the joint abstraction of the FDS
D and the temporal formula � to be safe (sound) in the sense that D:<�: implies
D<�. To do so, we reduce the problem of the safe joint abstraction of an FDS and
a temporal property into the problem of safe abstraction of a single temporal
property, a problem that has been solved in the preceding sub-section.

Given an FDS D=(V, 3, \, J, C) , there exists a temporal formula Sem(D),
called the temporal semantics of D [Pnu81], such that, for every infinite-state
sequence _, _<Sem(D) iff _ # Comp(D). The temporal semantics of an FDS D is
given by

Sem(D) : 3(V ) 7 g\(V, mV ) 7 �
J # J

ghJ(V )

7 �
( p, q) # C

(ghp(V ) � ghq(V )),

where we use the temporal expression mV to denote the next values of the system
variables V. Given a verification problem D<? �, we construct the temporal
formula

Ver(D, �) : Sem(D) � �.

It is not difficult to establish that D<� iff Ver(D, �) is valid.
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Applying a safe :-abstraction to Ver(D, �), we obtain

:&
{ (Ver(D, �))

=\:+(3) 7 g:++( \)(VA , mVA) 7\
�

J # J

gh:+(J ) 7

++�
( p, q) # C

(gh:&( p) � gh:+(q))

� :&
{ (�),

where

:++(\)(VA , V$A) : _V, V$(VA=E:(V ) 7 V$A=E:(V$) 7 \(V, V$)).

Based on the way :&
{ (Ver(D, �)) abstract the different components of D, we define

the :-abstracted version of D to be the FDS D:=(VA , 3:, \:, J:, C:) , where

3:=:+(3), \:=:++(\)

J:=[:+(J ) | J # J], C:=[(:&( p), :+(q)) | ( p, q) # C].

The following claim defines our VFA recipe and states its soundness (safety).

Claim 4 (Soundness). The abstraction method which, for a given :, abstracts �
into :&

{ (�) and abstracts D into D:=(VA , 3:, \:, J:, C:) is safe. That is,

D:<�: implies D<�.

Proof. Assume that D:<�:, and show that D<�. Let _ : s0 , s1 , ... be a
computation of D. We will show that _<�.

Consider the abstracted state sequence _A : S0 , S1 , ..., where S j=:(s j) for every
j�0. We will show that _A is a computation of D:. Since s0 <3, we conclude by
Eq. (7) that :(s0)<:+(3), implying S0 <3:. In a similar way, we conclude that
(sj , sj+1) <\ implies (Sj , Sj+1) <:++(\), leading to (S j , Sj+1) <\:.

Next, consider the fulfillment of the justice requirements. For every J # J, we
have that _ contains infinitely many positions j�0 such that sj <J. By Eq. (7),
each of these positions satisfies Sj <:+(J ), leading to the fact that _A fulfills each
of the justice requirements in J:.

Moving on to compassion, consider the compassion requirement ( p, q) # C.
Assume that _A contains infinitely many positions j�0 such that Sj <:&( p). By
Eq. (6), each of these positions satisfies sj < p. Since _ is a computation of D,
satisfying all of its compassion requirements, _ must contain infinitely many posi-
tions k�0 satisfying sk <q. By Eq. (7), each of these positions satisfies Sk <:+(q).
Consequently, _A fulfills the compassion requirement (:&( p), :+(q)). We conclude
that _A is a computation of D:.

Having assumed D:<�:, it follows that _A <:&
{ (�) which, by Eq. (6), implies

D<�. K
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FIG. 2. Program bakery-2: The Bakery algorithm for two processes.

As an example, consider program bakery-2, presented in Fig. 2.

Program bakery-2 is obviously an infinite-state system, since the variables y1

and y2 can assume arbitrarily large values.
The temporal properties we wish to establish are given by

�exc : gc(at&l4 7 at&m4)

�exc : g(at&l2 � hat& l4).

The safety property �exc requires mutual exclusion, guaranteeing that the two
processes never co-reside in their respective critical section at the same time. The
liveness property �acc requires accessibility for process P1 , guaranteeing that,
whenever P1 reaches location l2 , it will eventually reach location l4 .

Following [BBM95], we define abstract Boolean variable Bp1
, Bp2

, ..., Bpk
, one

for each atomic data formula, where the atomic data formulas for bakery-2 are
y1=0, y2=0, and y1< y2 . Note that the formula y2� y1 is equivalent to the
negation of y1< y2 and needs not be included as an independent atomic formula.

The abstract system variables consist of the concrete control variables, which are
left unchanged, and a set of abstract Boolean variables Bp1

, Bp2
, ..., Bpk

. The
abstraction mapping : is defined by

: : [Bp1
= p1 , Bp2

= p2 , ..., Bpk
= pk].

That is, the Boolean variable Bpi
has the value true in the abstract state iff the

assertion pi holds at the corresponding concrete state.
It is straightforward to compute the :-induced abstractions of the initial con-

dition 3: and the transition relation \:. In Fig. 3, we present program Bakery-2
(with a capital B), the :-induced abstraction of program bakery-2.

Since the properties we wish to verify refer only to the control variables (through
the at& l and at&m expressions), they are not affected by the abstraction. Program
Bakery-2 is a finite-state program, and we can apply model checking to verify that
it satisfies the two properties of mutual exclusion and accessibility. By Claim 4, we
can infer that the original program bakery-2 also satisfies these two temporal
properties.
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FIG. 3. Program Bakery-2: The Bakery algorithm for two processes.

6.3. Properties of :+ and :++

It is straightforward to show that the assertion abstraction :+ distributes over
disjunction. That is, for every assertion p and q,

:+( p 6 q)t:+( p) 6 :+(q).

To see this, we recall the definition of :+ and observe the following chain of
equivalences:

:+( p 6 q)t_V : VA=E:(V ) 7 ( p(V ) 6 q(V ))

t_V : (VA=E:(V ) 7 p(V )) 6 (VA=E:(V ) 7 q(V ))

t(_V : VA=E:(V ) 7 p(V )) 7 (_V : VA=E:(V ) 7 q(V ))

t:+( p) 6 :+(q).

On the other hand, :+ does not distribute over conjunctions. For the general case,
we can only claim that

:+( p 7 q) implies :+( p) 7 :+(q).

For the special case that : is precise with respect to q (i.e., :+(q)t:&(q)), we do
have the equivalence

:+( p 7 q)t:+( p) 7 :+(q). (8)

To see this, it is only necessary to establish that :+( p) 7 :+(q) implies :+( p 7 q).
This is established by the following chain of equivalences�implications:

:+( p) 7 :+(q)t:+( p) 7 :&(q)

t_V : (VA=E:(V ) 7 p(V )) 7 \V : (VA=E:(V ) � q(V )) implies

_V : VA=E:(V ) 7 ( p(V ) 7 q(V ))t:+( p 7 q).
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By symmetry, :+( p 7 q)t(:+( p) 7 :+(q)) also for the case that : is precise with
respect to p. Similarly, we can establish that always :&( p 7 q) is equivalent to
:&( p) 7 :&(q) and, under the assumption that : is precise with respect to q, also
:&( p 7 q) is equivalent to :&( p) 7 :&(q).

As a result of these observations, we can claim closure of the notion of
preciseness under the Boolean operations.

Lemma 5. If : is precise with respect to the assertions p1 , ..., pn , then : is precise
with respect to any Boolean combination of these assertions.

Proof. We have to show that if : is precise w.r.t.4 p and q, then it is also precise
w.r.t. cp and p 7 q. For the case of negation we have

:+(cp)tc:&( p) 7 map(VA)tc:+( p) 7 map(VA)t:&(cp).

For the case of conjunction, preciseness is established by

:+( p 7 q)t(:+( p) 7 :+(q))t(:&( p) 7 :&(q))t:&( p 7 q). K

The notion of precision can be extended to temporal formulas, provided : is
precise w.r.t. all of their atomic sub-formulas.

Lemma 6. Let � be a temporal formula and : an abstraction mapping such that
: is precise w.r.t. all the atomic sub-formulas of �, and : maps each concrete variable
x} # X� into the abstract variable x:{(}) . Then

:+
{ (.)r:&

{ (.) (9)

/(:+
{ (.))t:+

{ (/(.)), (10)

for every ., a sub-formula of �.

Proof. The formula :+
{ (.) is obtained from . by replacing the positive-polarity

MSSs p within . by :+( p) and the negative-polarity MSSs q by :&(q). In :&
{ (.),

all the positive-polarity MSSs p are replaced by :&( p) and the negative-polarity
MSSs q by :+(q). Since : is precise w.r.t all the atomic formulas of ., it follows
by Lemma 5 that it is also precise w.r.t all the MSSs of .. Therefore, :+

{ (.) is con-
gruent to :&

{ (.). In such cases. we often write :{(.) to represent :+
{ (.) (which is

congruent to :&
{ (.)).

To establish Eq. (10), we observe that every ., a sub-formula of �, is a Boolean
combination of atomic formulas and principally temporal formulas. Therefore,
:{(.) can be obtained by replacing each atomic p by :( p) and each principally
temporal } by :{(}). Applying / to :{(.) further replaces each :{(}) by x:{(}) .
Therefore, the overall effect of computing /(:+

{ (.)) amounts to the replacement of
each atomic p by :( p) and each principally temporal } by x:{(}) . In comparison, the
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computation of :+
{ (/(.)) first performs the replacement of every } by x} and only

later replaces each atomic p by :( p) and each x} by x:{(}) . However, the overall
effect of these two processes results in the same final formula. K

The notion of precision of the transformer :+ can be generalized to the double
abstraction :++. We say that : is doubly precise w.r.t the assertion p= p(V, V$) if
:++( p)t:&&( p), where

:&&( p) : \V, V$(VA=E:(V ) 7 V$A=E:(V$) � p(V, V$)) 7 map(VA) 7 map(V$A).

The following lemma states of the properties of this notions.

Lemma 7. 1. If : is precise with respect to q=q(V ), then it is doubly precise
w.r.t q and q$.

2. If : is doubly precise with respect to the assertion p1 , ..., pn , then : is doubly
precise with respect to any Boolean combination of these assertions.

3. If : is doubly precise w.r.t the assertions p(V, V$) and q(V, V$) and is
(singly) precise w.r.t r(V ), then

:++( p 7 q)t:++( p) 7 :++(q) (11)

:++( p 7 r)t:++( p) 7 :+(r) (12)

:++( p 7 r$)t:++( p) 7 :+(r)$. (13)

It also follows from the definitions that if p= p(V ), then both :++( p)t:+( p)
and :++( p$)t:+( p)$ hold without any precision assumptions about p.

We observe that if an implication is valid, we can apply the abstractions :+ and
:++ to both sides of the implication.

Lemma 8.

<:+( p) � :+(q)

< p � q implies \ and +.

<:++( p) � :++(q)

Finally, we show that given an assertion p(V ), any abstraction mapping : can be
augmented to be precise with respect to p(V ).

Claim 9 (Existence of Precise Abstractions). Let : be a mapping from concrete
states over V into abstract states over VA . Let VA=UA _ [Bp], where Bp is a
Boolean variable defined by Bp= p(V ). Then : is precise with respect to p(V ).

Proof. The first direction :&( p) � :+( p) is valid for any assertion p and map-
ping :, with no precision requirement. To prove this direction, we first expand the
definitions

\V : VA=E:(V ) � p(V ) 7 \V : VA=E:(V ) � \V : VA=E:(V ) 7 p(V ).
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Skolemizing map(VA) into VA=E:(v) and instantiating the remaining quantifica-
tions into V=v, we get

(VA=E:(v) � p(v)) 7 (VA=E:(v)) � (VA=E:(v) 7 p(v)),

which is obviously valid.
Next, we prove the second direction :+( p) � :&( p). Expanding the definitions,

we get

_V : VA=E:(V ) 7 p(V ) � \V : VA=E:(V ) � p(V ) 7 _V : VA=E:(V )

Since _V : VA=E:(V ) 7 p(V ) implies _V : VA=E:(V ), we only have to show

_V : VA=E:(V ) 7 p(V ) � \V : VA=E:(V ) � p(V ).

We split VA into UA _ [Bp], expanding VA=E:(V ) to UA=E:
U (V ) 7 Bp= p.

Substituting the expansion, and Skolemizing both sides of the implication, we get

UA=E:
U (v1) 7 Bp= p(v1) 7 p(v1) � [(UA=E:

U (v2) 7 Bp= p(v2)) � p(v2)],

which is equivalent to

UA=E:
U (v1) 7 Bp= p(v1) 7 p(v1) 7 UA=E:

U (v2) 7 Bp= p(v2) � p(v2),

which is obviously valid, due to the chain of equalities p(v1)=T, Bp= p(v1), and
Bp= p(v2). K

7. AUGMENTATION BY RANKING AND PROGRESS MONITORS

In the previous sections, we presented an example of successful finitary abstrac-
tion. However, there are cases when abstraction alone is inadequate for transform-
ing an infinite-state system satisfying a property into a finite-state abstraction which
maintains the property.

Before treating the general case, we will illustrate the problem and the proposed
solution by two examples.

In Fig. 4, we present a simple looping program. The property we wish to verify
is that program LOOP always terminates, independently of the initial value of the
natural variable y.

FIG. 4. Program loop.
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FIG. 5. Program loop-abs-1 abstracting program loop.

A natural abstraction for the variable y is into the two-valued domain
[zero, pos]. However, applying this abstraction yields the abstract program
LOOP-ABS-1, presented in Fig. 5, where the abstract function sub1 is defined by

sub1(Y)=if Y= pos then [zero, pos] else zero.

Unfortunately, program LOOP-ABS-1 need not terminate, because the function
sub1 can always choose to yield pos as a result.

To obtain a working abstraction, we first compose program LOOP with an addi-
tional module, to which we refer as the ranking monitor for variable y, as shown in
Fig. 6.

The construct always do appearing in MONITOR means that the assignment
which is the body of this construct is executed at every step. The comparison
function diff ( y, y$) is defined by

diff ( y, y$)=sign( y$& y)=if y< y$ then 1 else if y= y$ then 0 else &1.

Note that the expressions on the right-hand side of the assignments in the monitor
allow references to the new values of y as computed in the same step by the
monitored program.

The presentation of the monitor module My in Fig. 6 is only for illustration
purposes. The precise definition of this module is given by the following FDS:

My : �V=
\ :

[ y : natural; inc : [&1, 0, 1]],
inc$=diff ( y, y$),

3 : true,
J : <, C : [(inc<0, inc>0)]� .

FIG. 6. Program loop composed with a ranking monitor.
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FIG. 7. A sequential equivalent of the monitored program.

Thus, at every step of the computation, module My compares the new value of
y( y$) with the current value, and sets variable inc to &1, 0, or 1, according to
whether the value of y has decreased, stayed the same, or increased, respectively.
This FDS has no justice requirements but has the single compassion requirement
(inc<0, inc>0) stating that y cannot decrease infinitely many times without also
increasing infinitely many times. This requirement is a direct consequence of the fact
that y ranges over the well-founded domain of the natural numbers, which does not
allow an infinitely decreasing sequence.

It is possible to represent the composition of program LOOP with the ranking
monitor My as (almost) equivalent to the sequential program presented in Fig. 7,
where we have conjoined the repeated assignment of module My with every assign-
ment of process LOOP. The ``almost'' qualification admits that we did not conjoin
this assignment with the transition associated with location l0 which tests the value
of y and decides when to terminate. In a fully formal treatment of this example, the
assignment will also be conjoined to this testing transition.

The abstraction of the program of Fig. 7 will abstract y into a variable Y ranging
over [zero, pos]. The variable inc, ranging over the finite domain [&1, 0, 1], is not
abstracted. The resulting abstraction is presented in Fig. 8. The explicit values of
&1 and 0, assigned to variable inc in statements l1 and l2 , respectively, are
obtained automatically as part of the computation of the abstraction :++(\).

Program LOOP-ABS-2 (Fig. 8) differs from program LOOP-ABS-1 (Fig. 5) by
the additional compassion requirement (inc<0, inc>0). However, it is this addi-
tional requirement which forces program LOOP-ABS-2 to terminate. This is
because a run in which sub1 always yields pos as a result is a run in which inc is

FIG. 8. Abstracted version of the monitored program�Program loop-abs-2.
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FIG. 9. Program sub-add with a less trivial progress measure.

negative infinitely many times (on every visit to l2) and is never positive beyond the
first state. The fact that LOOP-ABS-2 always terminates can now be successfully
model checked.

7.1. More Complicated Cases

Next, we consider a more complicated case in which the ranking measuring the
distance to termination is not a simple program variable but some function of the
program variables.

In Fig. 9, we consider another always terminating program. To prove termination
of this program we cannot take the value of y to be a never-increasing progress
measure. The assignment at statement l2 non-deterministically assigns to y the
values y+1 or y. Termination of such programs can always be established by iden-
tification of a progress measure that never increases and sometimes is guaranteed to
decrease. For the simple case of program LOOP, y served as an adequate progress
measure.

For program SUB-ADD, we must use a more complex progress measure. For
example, we can use the progress measure $ : y+at& l2 which never increases and
always decreases on the execution of statement l1 . Consequently, we can use the
monitor presented in Fig. 10. Note that the only difference between ranking
monitors is in the definition of the progress measure $. The added compassion
requirement is always the same, and is given by (inc<0, inc>0).

We can now abstract program SUB-ADD composed with its ranking monitor
(Fig. 10), using the abstraction

Y= if y=0 then zero else if y=1 then one else large.

FIG. 10. A ranking monitor for program sub-add.
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FIG. 11. The abstracted version of the monitored program sub-add.

The resulting abstracted version is presented in Fig. 11, where the abstract functions
sub2 and add1 are defined by

sub2(Y)= if Y # [zero, one] then zero else [zero, one, large]

add1(Y)= if Y=zero then one else large.

It is not difficult to see that model checking this program with the added compas-
sion requirement will prove that the program always terminates.

The extension to the case that the progress measure ranges not over the naturals
but over lexicographic tuples of naturals is straightforward.

7.2. The General Structure of a Ranking Monitor

Encouraged by these examples, we proceed to define the general structure of a
ranking monitor and show that its augmentation to a verified system is safe, in the
sense that all relevant temporal properties are preserved.

Let (W, O) be a well-founded domain and $ be a ranking function, mapping the
states of D into the well-founded domain.

A ranking monitor or a ranking function $ is an FDS M$ of the form

M$=�V :
\ :

VD , inc : [&1, 0, 1]],
inc$=diff ($(VD ), $(V$D )),

3 : true,
J: <, C : [(inc<0, inc>0)]� .

7.3. When Is It Safe to Augment?

There are cases in which even the more general ranking monitor is not sufficient,
and we may have to augment the system by additional types of monitors. A most
important requirement is that any such augmentation be safe.

Here, we identify general sufficient conditions which a monitor M should satisfy
in order that its augmentation to a system D be safe. Let M be an FDS with system
variables VM , and let A�VM be a subset of M's variables. We say that M is accom-
modating for VM&A (A� -accommodating for short) if, for every state sequence _,
there exists an A-variant of _ which is a computation of M. Thus, an accommodat-
ing FDS can, by merely reinterpreting the variables of A, transform any arbitrary
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state sequence _ into a computation of M. For example, the two ranking monitors
we have considered above, i.e., My , and the monitor presented in Fig. 10, are both
accommodating for VM&[inc].

An FDS M is said to be accommodating for an FDS D if M is accommodating
for VM&A, where A�VM , and VD & A=<. The following claim states that if M
is accommodating for D, then the augmentation of D by M is safe, i.e., it preserves
all the temporal properties of D.

Claim 10. Let M and D be two FDS 's such that M is accommodating for D.
Then, for every formula � relevant for D, � is valid over D iff � is valid over D _ M,
the augmentation of D by M.

Proof. In general, when we compare the set of computations of a system D with
computations of a parallel composition of D with an arbitrary system M, we can
only claim the one-side inclusion

Comp(D _ M) -D �Comp(D).

That is, every computation of the composition D _ M is also a computation of D

when projected onto the variables of D. However, in the case of an accommodating
monitor M which satisfies the premises of the claim, there is also an inclusion in the
other direction. Namely, every computation of D can be extended to a computation
of D _ M. To see this, consider _: s0 , s1 , ..., a computation of D, in which we
extended the states to assign arbitrary values to the variables in VM&VD $A.
Since M is accommodating for VM&A, we can reassign new values to the A-variables
and obtain a new sequence _~ : s~ 0 , s~ 1 , ..., such that _~ -M is a computation of M, while
_~ -D is still a computation of D. It follows that s~ is a computation of D _ M.

We can therefore conclude that

Comp(D _ M) -D =Comp(D).

Since the validity of a D-relevant � only depends on the interpretation given to the
system variables of D, the claim follows. K

We have argued above that a general ranking monitor M$ is accommodating for
VM&[inc]. At the end of Section 4, we made a claim that can now be interpreted
as saying that the tester T .

true is accommodating for VT&(X. _ [u]), where VT

represent the system variables of T .
true . We therefore conclude that augmentation of

a system D with either a ranking monitor or a tester of the form T .
true is safe, i.e.,

preserves all temporal properties of D.
In the most general case, we form a parallel combination of a tester of the form

T .
true and a ranking monitor M$ . We refer to such a composition M=T .

true _ M$

as a progress monitor.

7.4. Verification by Augmented Finitary Abstraction

We can now formulate the method of verification by augmented finitary
abstraction (VAA) as follows:
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Verification by Augmented Finitary Abstraction. To verify that � is D-valid:

1. Optionally, choose a progress monitor FDS M which is accommodating
for D and let A=D _ M. In case this step is skipped, we let A=D.

2. Choose a finitary state abstraction mapping : and calculate A: and �:

according to the recipes of Section 6.

3. Model check A:<�a.

4. Infer D<�.

Corollary 11 (Soundness of the VAA Method). The VAA method is sound.

Proof. Assume that the VAA method has been applied successfully to system D

and formula �. By Claim 4 and the success of step 3 we can conclude that A<�.
By Claim 10 we obtain D<�. K

8. COMPLETENESS OF THE VAA METHOD

In the following sections, we prove the completeness of the VAA method. Let
D=(V, 3, \, J, C) be a (possibly infinite-state) FDS, and � be an LTL property
such that D<�. Let : be a finitary abstraction mapping, and M be an FDS which
is accommodating for D. We say that (M, :) is an adequate augmented abstraction
for (D, �), if (D _ M):<�:. To establish the completeness of the VAA method we
show that, for every FDS D and LTL property � such that D<�, there exists an
adequate augmented abstraction.

8.1. The Structure of the Completeness Proof

The proof proceeds along the following steps:

1. The Verification Problem. We are given a system D and a formula �,
such that D<�.

2. Shifting Fairness from the System to the Property. We remove the fairness
(both justice and compassion) requirements from the system and add them as an
antecedent to the property �. Thus, we consider the modified FDS D&, obtained
by emptying the justice and compassion sets, and the modified LTL formula
9: fair(D) � �, where

fair(D): �
J # J

ghJ 7 �
( p, q) # C

(ghp � ghq)

is the temporal encoding of the fairness requirements for the original FDS D.
We then claim that D<� iff D&<9 and proceed with the proof with 9

and D&.
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3. Constructing the Tester Tc9 . Using the methods of Section 4, we con-
struct the temporal tester Tc9 , which is a BDS characterizing all the sequences
violating the formula 9.

Assume that the tester is given by Tc9=(VT , 3T , \T , [JT], <) , where
(without loss of generality), VT=VD _ X9 _ [u].

4. Compose System with Tester. We form the synchronous parallel composi-
tion of D& with Tc9 to obtain a BDS B(D&, c9)=D& _ Tc9 whose computations
(Comp(B(D&, c9))) are the counter-examples to the D&-validity of 9, i.e., sequences
violating 9 which are also computations of D&. Since D&<9, the BDS B(D&, c9)

has no computations and is, therefore, infeasible [VW94].

5. Obtaining 8 and 2. Based on Claim 2, we identify an assertion and a
ranking function, which satisfy the three premises of rule WELL (Section 5) for the
BDS B(D&, c9) . We denote these assertion and ranking function by 8 and 2,
respectively. Note that 8 and 2 may depend on the values of the variables in both
D& and Tc9.

6. Constructing the Progress Monitor. Based on the tester Tc9 and the
ranking function 2 obtained in the previous steps (3 and 5), we define the progress
monitor

MT, 2 : T 9
true _ M2 .

The monitor MT, 2 is an FDS resulting from the synchronous parallel composi-
tion of T c9

true , the temporal tester for c9 with its initial condition reset to (u=0),
and the ranking monitor for M2 .

The progress monitor MT, 2 is given by

V : VT _ [inc : [&1, 0, 1]]

MT, 2=�3 : u=0, \ : \T 7 inc$=diff (2, 2$)� . (14)

J : [u=0] C : [(inc<0, inc>0)]

7. Augment, Abstract, and Conclude. As the magic abstraction mapping, we
can take any finitary mapping : which is precise with respect to the assertion 8
obtained in step 5 and all the atomic sub-formulas appearing in 9. In addition, :
should map each x} # Xc9 into x:{(}) , and should not abstract the variables u and
inc, introduced in steps 3 and 6.

As prescribed by the general VAA method, we form the augmented system
D _ MT, 2 and compute the abstractions (D _ MT, 2): and �:. We conclude the
proof in Section 9, by showing that (D _ MT, 2):<�:.

The diagram in Fig. 12 provides a graphical representation of the sequence of
steps comprising the completeness proof.
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FIG. 12. Scheme of the completeness proof.

8.2. A Characteristic Example

The whole construction will be illustrated on a single example. Consider program
CONDTERM, presented in Fig. 13.

Statement l1 of this program non-deterministically assigns to variable x one of
the values &1, 1. Program COND-TERM does not always terminate. In particular,
it will not terminate if statement l1 always assigns to x the value 1. Consequently,
the best we can claim for this program is the property of conditional termination
which can be specified by

� : hg(x<0) � hat�l4 .

This property states that if, from a certain point on, x remains negative, then the
program will terminate. It is not difficult to see that this property is valid for
program COND-TERM.

Since program COND-TERM is a sequential program, it is associated with no
fairness requirement. Therefore, step 2 which sifts the fairness requirements from the
system to the property is vacuous, and we have that D&=D and 9=�.

Step 3 of the proof scheme constructs a temporal tester Tc9 , which characterizes
all the sequences violating �.

FIG. 13. Program cond-term.
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Following the construction described in Section 4, we obtain the BDS Tc� , given
by

V : ?, x : natural, f1 , g2 , f3 : Boolean, u : [0 . .3]

3c� : u=0 7 f1 7 cf3

\. :

f1 W g2 6 f $1 7

}

g2 W x<0 7 g$2 7

f3 W at�l4 6 f $3 7

case
u=0 : 1;
u=1 7 ( g2 6 c f1) : 2;

u$=_ u=2 7 (x�0 6 g2) : 3;&u=3 7 (at�l4 6 c f3) : 0;
true : u;

esac

J : u=0

Step 4 of the construction forms the parallel composition of D=D& and Tc9 to
obtain the combined BDS B(D, c9 )=D _ Tc9 . We claim that the system B(D, c9 )

has no computations. Assume to the contrary that _ is a computation of B(D, c9 ) .
To be a computation, _ must contain infinitely many states in which u=0.
According to the initial condition, f1 is initially true, while f3 is initially false. By the
transition relation for f1 and the condition for getting out of u=1, there must exist
a position j�0 such that g2=1 at j. By the transition relation for g2 , it follows that
x<0 for all positions k� j. This means that, from j on, all executions of statement
l2 cause y to decrease. Since a natural number cannot decrease infinitely many
times, the while loop of the program must terminate, and the execution must reach
location l4 , which by f3=0 is impossible.

According to step 5, we should be able to identify an assertion 8 which is an
invariant of B(D&, c9 ) , and a progress measure 2. Indeed, for our example, an
appropriate invariant assertion is

8 : ( f1 6 g2) 7 cf3 7 (u>1 � g2) 7 (? # [1, 2] � y>0)

while a progress measure can be given by

2 : _
case

g2 : (0, 4y+2at�l0+at�l1+3at�l3)
1 : (1, 0)

esac

;
;& .

It is not difficult to see that any transition that leads form a 8-state to a state in
which u=0 causes 2 to decrease, while it never increases.
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FIG. 14. Program abs-cond-term, the augmented abstracted version of program cond-term.

In step 6, we use the tester T c9
true and the progress measure 2 to construct the

progress monitor MT, 2 given by

VM : [?, x : natural, f1 , g2 , f3 : Boolean, u : [0..3], inc : [&1, 0, 1]]

MT, 2 : �3M : u=0 \M : \c� 7 inc$=diff (2, 2$) �J : u=0 C : [(inc<0, inc>0)]

Next, we form the composition D _ MT, 2 , and then compute the abstraction
mapping :. To obtain a finitary mapping, we introduce a fresh Boolean variable
By>0 with the definition By>0=( y>0). Applying the abstraction : to D _ MT, 2 ,
we obtain an abstracted finite-state system equivalent to the program presented in
Fig. 14.

Clearly, system ABS-COND-TERM is a finite state system and satisfies the
property

� : hg(x>0) � hat�l4 .

To see that ABS-COND-TERM satisfies the property �, assume, to the contrary,
that there exists a computation _ of ABS-COND-TERM which satisfies hg(x<0)
but never reaches location l4 . In this case, the initial values of f1 and f3 must be 1
and 0, respectively. The justice requirement with respect to u cannot be satisfied in
such a case, unless g2 eventually assumes the value 1. Once this happens, x stays
negative from this point on. Assuming that the left process must keep moving, this
implies that inc equals 1 infinitely many times and is non-negative on all other
states. This violates the compassion requirement with respect to inc. It follows that
_ cannot be a computation.
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9. THE ABSTRACTED SYSTEM SATISFIES THE ABSTRACTED PROPERTY

In the following we prove the completeness of the VAA method.

9.1. The Completeness Statement

Following is the completeness claim:

Claim 12 (Completeness of VAA). Let D : (VD , 3D , \D , JD , CD ) be an FDS
and � be a temporal formula such that D<�. Then, there exists an adequate
augmented abstraction (M, :) such that (D & M):<�:.

As progress monitor of our adequate augmented abstraction, we take MT, 2 , as
defined in Eq. (14). Recall that MT, 2=T 9

true _ M2 . As argued in Sub-section 7.3,
the tester T 9

true is accommodating for D and M2 is accommodating for D _ T 9
true .

It follows that MT, 2=T 9
true _ M2 is accommodating for D.

Let us denote by A be augmented system D _ MT, 2=D _ M2 | | | T 9
true . The

components of this system are given by

VA : VD _ X9 _ [u, inc]

3A : 3D 7 u=0

\A : \D 7 \T 7 \2

JA : JD _ [u=0]

CA : CD _ [(inc<0, inc>0)],

where \T is the transition relation of T 9
true , which is equal to the transition relation

of Tc9 , and \2 : inc$=diff (2, 2$).
Let : be a finitary abstraction which is precise with respect to 8 and all the

atomic sub-formulas of 9, maps each x} # Xc9 into x:{(}) , and does not abstract
any of the auxiliary variables [u, inc]. In the following, we show that A: <�:; that
is, the abstracted formula �: is valid over all computations of the abstracted
augmented system A:.

Note that the requirement that : maps each x} # Xc9 into x:{(}) implies that :
is precise with respect to the Boolean variables in Xc9 , when viewed as proposi-
tional formulas.

9.2. Abstracting the premises of Rule WELL

The proof is based on the abstraction of premise W1�W3 of rule WELL, applied
to the BDS B(D&, c9 ) (Section 5).

Let us reconsider premises W1�W3 of rule WELL, which are known to be valid
for our choice of 8 and 2. The initial condition 3B and transition relation \B of
B(D&, c9 ) are given by

3B : 3D 7 u=0 7 c/(9 )

\B : \D 7 \T .
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Recall that, since 9=(�J # JghJ7 �( p, q) # C(ghp � ghq)) � �, it follows that

c/(9 )= �
J # J

xghJ 7 �
( p, q) # C

(xghp � xghq) 7 c/(�).

/( fair(D))

From the implication

inc$=diff (2, 2$) � \2$P2 � inc$�0 7

2$O2 � inc$<0 +
and premises W1�W3 applied to B(D&, c9 ) , we can obtain the following three valid
implications:

U1. 3A 7 c/(9 ) � 8

U2. \A 7 8 � 8$ 7 inc$�0

U3. \A 7 87 (u$=0) � 8$ 7 inc$<0.

Based on Lemma 8, we can apply :+ to both sides of U1 and apply :++ to both
sides of U2 and U3. We then simplify the right-hand sides, using the fact that
:++( p$)t:+( p)$, and that : does not abstract inc. Next, we use the fact that : is
precise w.r.t. 8, the variables in X9 , and the atomic sub-formulas of 9, and that
: does not abstract the variables in [u, inc], in order to distribute the abstraction
over the conjunctions on the left-hand sides of the implications, based on Eq. (8)
and Lemma 7. These transformations and simplifications lead to the following three
valid abstract implications:

V1. :+(3A ) 7 :(/( fair(D))) 7 c/(�:) � :(8)

V2. :++(\A ) 7 :(8) � :(8)$ 7 inc$�0

V3. :++(\A ) 7 :(8) 7 (u$=0) � :(8)$ 7 inc$<0.

The simplification of the abstraction (c/(9 )): into :(/( fair(D))) 7 c/(�:) can be
done in two steps. In the first step we rewrite c/(9 ) as /( fair(D)) 7 c/(�). Then
we simplify the abstraction, based on Eq. (8) and the fact that : is precise with
respect to the atomic formulas withing 9 and the Boolean variables in X9 .

9.3. No Computation of A: Can Violate �:

We will show that no computation of A: can violate �:. Assume, to the
contrary, that there exists an A:-computation _ which violates �:.

The proof proceeds in several steps.
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9.3.1. The Sequence _ Is a Computation of (T 9
true):

We will now show that the sequence _A , assumed to be a computation of A: is
also a computation of (T 9

true):.
Computing, we find out that A: and (T 9

true)
: are given by

A: : (V A
A , :+(3D ) 7 u=0, :++(\D 7 \2 7 \T), J:

A , C:
A )

(T 9
true): : (V A

A , u=0, :++(\T), u=0, <) ,

where V A
A is the set of abstract variables for A: and J:

A , C: are the abstracted
versions of the fairness sets. Without loss of generality, we extended the set of
systems variables of (T 9

true): to include all of V A
A .

Since :+(3D ) 7 u=0 implies u=0, :++(\D 7 \2 7 \T) implies :++(\T), and
u=0 is one of the justice requirements included in J:

A , it follows that every com-
putation of A: is also a computation of (T 9

true)
:.

9.3.2. The Sequence _ Is Also a Computation of T 9:

true

In the preceding discussion, we showed that _ is a computation of (T 9
true):. Here

we show that, in fact, it is also a computation of T 9 :

true . Note that the difference
between the two systems is that, while forming (T 9

true):, we first constructed the
tester for 9 and then abstracted the resulting system. To generate T 9 :

true , we first
compute 9 :=:&

{ (9 ) the abstracted temporal formula, following the recipe of Sub-
section 6.1, and only then construct a tester for the formula 9 :, following the recipe
prescribed in Section 4.

The claim follows from the stronger statement

(T 9
true):

tT 9:

true ,

which states that the two systems are actually equivalent, despite the different
orders in which we applied the processes of abstraction and tester construction.

Obviously, (T 9
true)

: and T 9:

true agree on the set of their variables, their initial
condition which is u=0, the justice set which consists of the single requirement
u=0, and the compassion set which is empty for both.

It only remains to compare the transition relations of the two systems, which we
denote by \after for (T 9

true)
: and \before for T 9:

true . Recall that the transition relation
for T 9

true is given by a conjunction of clauses, containing one clause C} for each
principally temporal sub-formula } # 9 and one big clause Cu for the variable u. It
can be shown that the transition relation for (T 9

true): is given by

\after=:++\Cu 7 �
} # 9

C}+ .
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Since Cu and each of the C} are formed as a Boolean combination of X9 _ [u] and
their primed versions, and atomic formulas which appear in 9, the mapping : is
doubly precise w.r.t Cu and all C} 's. We can use Lemma 7 to rewrite \after as

\after=:++(Cu) 7 �
} # 9

:++(C}).

In comparison, the transition relation for T 9 :

true is given by a similar conjunction

\before=C� u 7 �
} # 9

C� } ,

where, due to precision, :++(C}) is equivalent to C� } for every } # 9, and :++(Cu)
is equivalent to C� u .

To illustrate this point, consider the case that }= pUq. For this case, :++(C})
is given by x:{( pUq)=:(/(q)) 6 (:(/( p)) 7 x$:{( pUq)) while C� } is given by x:{( pUq)=
/(:(q)) 6 (/(:( p)) 7 x$:{( pUq)). Since : is precise with respect to all atomic sub-
formulas of 9 and their Boolean combinations, in particular w.r.t. p and q, it is
clear (see Eq. (10)) that C� } is equivalent to :++(C}).

We conclude that \after t\before and, therefore, (T 9
true)

: is equivalent to T 9 :

true .

9.3.3. The Sequence _ Is a Computation of Tc9:

Since _ is a computation of T 9:

true , it must be either a computation of T9 : or a
computation of Tc9 : , depending on the initial value of /(9 :).

Assume for the moment that _ is a computation of T9 : . Then _ must satisfy the
formula 9 := fair(D): � �:, where

fair(D):= �
J # JD

gh(:(J)) 7 �
( p, q) # CD

(gh(:(q) � gh(:(q)))).

Note that since : is precise with respect to all J's, p's and q's (being precise w.r.t.
all the state sub-formulas of 9) we do not have to distinguish between :+ and :&.
As _ is also a computation of (D _ M2):, it must satisfy the fairness requirement
fair(D):, leading to the fact that _ satisfies �: in contradiction to our initial con-
trary assumption that _ violates �:.

We therefore conclude that _: s0 , s1 , ... is a computation of Tc9 : . In particular,
s0 satisfies :(/( fair(D))) 7 c/(�:).

9.3.4. The Sequence _ Cannot Be a Computation of A:

We proceed to show that _ cannot be a computation of A:. We use the implica-
tions V1�V3 to show that the assertion :(8) is an invariant of _.

Since we established that the first state of _ satisfies :(/( fair(D))) 7 c/(�:) and,
being a computation of A: it certainly satisfies :+(3A ), we conclude by V1 that
the first state of _ satisfies :(8). Proceeding from each state s j of _ to its successor

240 KESTEN AND PNUELI



sj+1 , which must be an :++(\A )-successor of sj , we see that :(8) keeps propagat-
ing. It follows that :(8) is an invariant of _; i.e., every state si in _ satisfies :(8).

Since _ is a computation of Tc9 : , it must contain infinitely many states which
satisfy :(JT): u=0. According to implications V2 and V3, the variable inc is never
positive, and is negative infinitely many times. Such a behavior contradicts the
compassion requirement (inc<0, inc>0) associated with A:. Thus, _ cannot be a
computation of A:.

We conclude that all computations of A: must satisfy �:.

10. CONCLUSIONS

We have presented a method or verification by augmented finitary abstraction by
which, in order to verify that a (potentially infinite-state) system satisfies a temporal
property, one first augments the system with a non-constraining progress monitor
and then abstracts the augmented system and the temporal specification into a
finite-state verification problem, which can be resolved by model checking. The
method has been shown to be sound and complete.

In principle, the established completeness promotes the VAA method to the
status of a viable alternative to the verification of infinite-state reactive systems by
temporal deduction. Some potential users of formal verification may find the
activity of devising good abstraction mappings more tractable (and similar to
programming) that the design of auxiliary invariants. However, on a deeper level
it is possible to argue that this is only a formal shift and that the same amount of
ingenuity and deep understanding of the analyzed system is still required for
effective verification as in the practice of temporal deduction methods.

The development of the VAA theory calls for additional research in the
implementation of these methods. In particular, there is a strong need for devising
heuristics for the automatic generation of effective abstraction mappings and
corresponding augmenting monitors.
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