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We present a K-theoretic approach to the Guillemin—Sternberg conjecture
(V. Guillemin and S. Sternberg, Invent. Math. 67 (1982), 515-538), about the
commutativity of geometric quantization and symplectic reduction, which was
proved by E. Meinrenken (J. Amer. Math. Soc. 9 (1996), 373-389; Adv. Math. 134,
(1998), 240-277) and Tian-. Zhang (Y. Tian and W. Zhang, Invent. Math. 132
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1. INTRODUCTION

This article is devoted to the study of the “quantization commutes with
reduction” principle of Guillemin—Sternberg [17]. The object of this paper
is twofold. The first goal is to give a K-theoretic approach to this problem,
which provides a new proof of results obtained by Meinrenken [29],
Meinrenken—Sjamaar [30], and Tian-Zhang [35]. The second goal is to
define an extension to the non-symplectic case.
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In the Kostant-Souriau framework one considers a prequantum
line bundle L over a compact symplectic manifold (M, w): L carries a
Hermitian connection V* with curvature form equal to —iw. Suppose now
that a compact Lie group G, with Lie algebra g, acts on L - M, living the
data (w, V*) invariant. Then the G-action on (M, w) is Hamiltonian with
moment map fg: M — g* given by the Kostant formula: #/(X)—-V5§, =
1{fs, X, X € g. Here #*(X) is the infinitesimal action of X on the section
of L » M and X, is the vector field on M generated by X € g.

Choose now an invariant almost complex structure J on M that is com-
patible with @, in the sense that w(—, J—) defines a Riemannian metric. It
defines a quantization map

RR*'(M, —): Ko(M) - R(G),

from the equivariant K-theory of complex vector bundles over M to the
character ring of G. The “quantization commutes with reduction” Theorem
tells us how the multiplicities of RR%’(M, L) behave (see Theorem C).

Here our main goal is to compute the multiplicity of the trivial represen-
tation in RR%’(M, L), when the data (L,J) are not associated to a
symplectic form.

We consider a compact manifold M on which a compact Lie group G
acts, and which carries a G-invariant almost complex structure J. Let
L — M be a G-equivariant Hermitian line bundle over M, equipped with a
Hermitian connection V* on L. This defines a map f,: M — g* by the
equation

LHX)-VE, =1{fL, XD, Xeg. (1.1)

(see [10, Sect. 7.1]). The map f; is an abstract moment map in the
sense of Karshon [20], since f; is equivariant, and for any X € g, the
function (f,, X) is locally constant on the submanifold M* :={me M,
X, (m) =0}.

If 0 is a regular value of f;, Z := f;'(0) is a smooth submanifold of M
which carries a locally free action of G. We consider the orbifold reduced
space M,y =% /G and we denote n: ¥ — M,y the projection. In Lemma
6.9 we show that the almost complex structure J induces an orientation 0,4
on M., and a Spin® structure on (Mg, 0req). Let U Mg, —): Koo (Mreq)
— Z be the quantization map defined by the Spin® structure and let
L., - M4 be the orbifold line bundle induced by L.

We obtain the following “quantization commutes with reduction”
theorem.

THEOREM A. Let L - M be a G-equivariant Hermitian line bundle over
M, equipped with a Hermitian connection V* on L. Let f,: M — g* be the
corresponding abstract moment map. If 0 is a regular value of f;, we have
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[RRO(M, L)1 = 2( My, LS, keN—{0}, (1.2

if any of the following hold:
(i) G =T is a torus; or
(i) ke N is large enough , so that the ball {& € g*, |&| <116} is con-

tained in the set of regular values of f;. Here 0 =3, ., o is the sum of the
positive roots of G, and || - || is a G-invariant Euclidean norm on g*.

Here, for V € R(G), we denote [V]°eZ the multiplicity of the trivial
representation.

A similar result was proved by Jeffrey—Kirwan [19] in the Hamiltonian
setting when one relaxes the condition of positivity of J with respect to the
symplectic form. See also [13] for a similar result in the Spin® setting, when
G=S"

As an example, let us apply Theorem A to the counterexemple due to
Vergne which shows that quantization does not always commute with
reduction. Let G = SU(2) and let M be the SU(2)-coadjoint orbit passing
through the unique positive root 6. Thus M is the projective line bundle
CP! with w equal to twice the standard Kihler form. The prequantum line
bundle is L=(2) and RRY(M,L™")=[RR°(M,L")]¢=—1. Since
M,y = & we have [RRO(M, L™)]%# M.y, (L7V),q): the condition (ii)
of Theorem A does not hold since isknot a regular value of the moment

map M <, g*. But if we take (L‘1)® with k> 1 the condition (ii) is
satisfied, and thus [RRS(M, (L)% )]G 0 for k> 1. In fact a direct

computation shows that — RR%(M, (L‘l) ) is the character of the irreduc-
ible SU(2)-representation with highest weight (k—1) 0 for all k> 1.

The result of Theorem A can be rewritten when J defines an almost
complex structure J,,4 on .#,4. It happens when the following decomposi-
tion holds

TM |, =TZ @ J(g4) with 8y :={X,, X eg}. (1.3)

First we note that (1.3) always holds in the Hamiltonian case when J is
compatible with the symplectic form. Condition (1.3) already appears in
the works of Jeffrey—Kirwan [19], and Cannas da Silva—Karshon-Tolman
[13].

In all this paper we fix a G-invariant scalar product on g* which induces
an identification g ~ g*. Thus f; can be considered as a map from M to g,
and we define the endomorphism £ of the bundle ¢x Z by: 2(X) =
—dfs(J(Xy)), for X € g. Condition (1.3) is then equivalent to: det 2(z)
#0 for all ze Z. The endomorphism & defines a complex structure J, on
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Z X gc, so the vector bundle & x g, inherits two irreducible complex
spinor bundles Z x A¢ gc and Z x A\j, g¢ related by

Nig 8c X Z =N\c gc X Z @ 1Ly,

where L, — M,y is a line bundle (see (6.11)). In this case we prove in
Proposition 6.12 that (1.2) has the form

k k
[RR%’(M, L®)]° = + RR"( Mg, L ® L), (1.4)

where + is the sign of det 2, and where RR’rd( 4,4, —) is the Riemann—
Roch character defined by J,,.

In this paper, we start from an abstract moment map fz: M — g*, and
we extend the result of Theorem A to the f;-moment bundles, and the
fe-positive bundles. These notions were introduced in the Hamiltonian
setting by Meinrenken-Sjamaar [30] and Tian-Zhang [35]. Let us recall
the definitions.

Let H be a maximal torus of G with Lie algebra b.

DerFmviTiON 1.1. A G-equivariant line bundle over M is called a
fe-moment bundle if for all components F of the fixed-point set M*¥ the
weight of the H-action on L|; is equal to fg(F).

It is easy to see that the definition is independent of the choice of the
maximal torus. Note that f;(F) e b*= (g*)¥, since f, is equivariant. Any
Hermitian line bundle L is tautologically a moment bundle relative to the
abstract moment map f;.

For any feg, we denote by T, the torus of G generated by
expg(t.B), t € R, and M” the submanifold of points fixed by Ty.

DrerINTION 1.2. A complex G-vector bundle E is called f;-positive if
the following hold: for any m e M* ~ ;' (B), we have

& p>=0

for any weights ¢ of the Ty-action on E,,. A complex G-vector bundle E is
called f;-strictly positive when furthermore the last inequality is strict for
any f§ #0.

For any fg-strictly positive complex vector bundle E, and any S € g such
that M” n f5'(B) # &, we define 5, ; = inf, (&, B>, where ¢ runs over the
set of weights for the Ts-action on the fibers of each complex vector bundle
E|,, % being a connected component of M that intersects fg'(f).

It is not difficult to see that a f;-moment bundle L is f-strictly positive
with #, ;, =||B||>, for any feg such that M/ f5'(B) # & (see Lemma
7.9). The bundle M x C — M is the trivial example of f;-positive complex
vector bundle over M.
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Let b, be the choice of some positive Weyl chamber in ). We prove in
Lemma 6.3 that the set % := {feb,, MP n f5'(B) # &} is finite.

THEOREM B. Let fg: M — g* be an abstract moment map with 0 as
regular value. Let E be a fg-strictly positive G-complex vector bundle over M
(see Def. 1.2). We have

k k
[RRO'(M, E®)]° = (Mg, EZ),  keN—{0}, (1.5)

if any of the following hold:

(i) G =T is a torus; or

(i) k is large enough, so that k.ng ;>3 ..o <o, B>, for any B e %B;
—{0}, here the sum Y., is taken over the positive roots of G.

Moreover if (1.3) holds, (1.5) becomes

k k
[RR%/(M, E®)]° = £ RR'~( My, Ergs ® Lg).

Let us explain why Theorem B applied to a G-hermitian line bundle L
with the abstract moment map f; = f, implies Theorem A. It is sufficient
to prove that condition (ii) of Theorem A implies condition (ii) of
Theorem B. The curvature of (L, V%) is (VY)?= —1w’, where w” is a
differential 2-form on M. From the equivariant Bianchi formula (see
Proposition 7.4 in [10]) we get {df., XD = —w*(X,,, —) for any X eg.
So, for any B e %B;—{0}, and me M? ~ f;'(B), the last equality gives
dfi|m» B> =0, hence f is a critical value of f;. Suppose now that ke N is
large enough so that the ball {€eg* [|€] <z[0]} is included in the set of
regular values of f;. This gives first ||f|| >+[/6] and then e, = IBI> >
<0, B>, for any € %;—{0}.

In the last section of this paper, we restrict ourselves to the Hamiltonian
case. In this situation, the abstract moment map f; and the almost
complex structure J are related by means of a G-invariant symplectic
2-form w :

* fs is the moment map associated to a Hamiltonian action of G over
(M5 C0): d<fGa X> = _w(XM’ _) s for X e 9, and

e the data (w,J) are compatible: (v, w) - w(v, Jw) is a Riemannian
metric on M.

When 0 is a regular value of f;, the compatible data (w,J) induce
compatible data (e, J,eq) OD A.q. We have then a map RR™( M.y, —).
If 0 is not a regular value of f;, we consider elements a in the principal face
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7 of the Weyl chamber (see Sect. 7.4). For generic elements a e 7 N fo(M),
the set ./, := ;' (G-a)/G is a symplectic orbifold and one can consider
the quantization map RR’(.,, —) relative to the choice of compatible
almost complex structure J,.

In this situation, we recover the results of [29, 30, 35].

THEOREM C (Meinrenken, Meinrenken—Sjamaar, Tian—Zhang). Let f;
be the moment map associated to a Hamiltonian action of G over (M, w),
and let J be a w-compatible almost complex structure. Let E — M be a
G-vector bundle.

If0 ¢ f.(M) and E is fs-strictly positive, we have [RR®’(M, E)]°=0.

If 0 e fo(M) then:

(i) If 0 is a regular value, we have [RR®’(M, E)]° = RR"( M,
E..), if E is fs-positive.

(i1) If 0 is not a regular value of f; and E = L is a fz-moment bundle,
we have [RR%'(M, L)]° = RR’«(.,, L,), for every generic value a of © N
fe(M) sufficiently close to 0. Here L, is the orbifold line bundle L| r2'Ga) /G.

We now turn to an introduction of our method. We associate to the
abstract moment map f;: M — g the vector field

H o =fe(m)]y.m,  meM,

and we denote by C’¢ the set where # ¢ vanishes. There are two important
cases. First, when the map f; is constant, equal to an element y in the
center of g, the set C/¢ corresponds to the submanifold M’. Second, when
[ 1s the moment map associated with a Hamiltonian action of G over M.
In this situation, Witten [39] introduces the vector field #¢ to propose, in
the context of equivariant cohomology, a localization on the set of critical
points of the function ||f;||* here #° is the Hamiltonian vector field of
SIfsll? hence #E =0 < d(||f)|*),, = 0. This idea has been developed by
the author in [31, 32].

Using a deformation argument in the context of transversally elliptic
operator introduced by Atiyah [1] and Vergne [38], we prove in Section 4
that the map' RR€ can be localized near C/¢. More precisely, we have the
finite decomposition C/¢ = (J; 4, C§ with C§ = G(M* n f5'(B)), and

RRY(M,E)= Y RR$(M, E). (1.6)

Be%g

!'When the almost complex strcture J is understood, we denote by RR® the quantization
map.
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Each term RRg(M , E) is a generalized character of G that only depends
on the behavior of the data M, E,J, f; near the subset Cg. In fact,
RR,?(M , E) is the index of a transversally elliptic operator defined in an
open neighborhood of C§.

Our proof of Theorems B and C is in two steps. First we compute the
term RR§(M, E) which is the Riemann-Roch character localized near
f5'(0). After, we prove that [RRj(M, E)]°=0 for every f+#0. For
this purpose, the analysis of the localized Riemann-Roch characters
RRg(M, —): K;(M) - R~(G) is divided in three cases? :

Case 1. B=0.
Case 2. B+#0.and G, =G.
Case 3. Gy #G.

We work out Case 1 in Section 6.2. We compute the generalized char-
acter RRS (M, E) when 0 is a regular value of f,;. We prove in particular that
the multiplicity of the trivial representation in RRS (M, E) is 2( My, Eeq).
This last quantity is equal to + RR’4( M, oy, E,.q ® L,) when (1.3) holds.

Case 2 is studied in Section 5 for the particular situation where f;; is
constant, equal to a G-invariant element f € g. Then C/¢ =C§ = M”’, and
(1.6) becomes RR°(M, E)= RRg(M ,E). We prove then a localization
formula (see (1.7)) in the spirit of the Atiyah-Segal-Singer formula in
equivariant K-theory [ 3, 34]. Let us sketch out the result.

The normal bundle A" of M* in M inherits a canonical complex struc-
ture J, on the fibers. We denote by ./ — M? the complex vector bundle
with the opposite complex structure. The torus T is included in the center
of G, so the bundle .#* and the virtual bundle Ap A := AZ™" /-1
A& A carry a G x Ty-action: they can be considered as elements of
Koyr,(M?) = Kg(M") ® R(Tj). Let Ko(M?) & R(T,) be the vector space
formed by the infinite formal sums Y, E, 4 taken over the set of weights
of T,, where E, € Ko(M #) for every a. The Riemann—Roch character RR®
can be extended to a map RR%*"# that satisfies the commutative diagram

Ko(MP) R(G)

J |

Ko(M") & R(T;) 0, R(G) & R(T)).

> G, is the stabilizer of fin G.
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The arrow k: R(G) - R(G) ® R(T,) is the canonical map defined by
k(¢)(g, h) := ¢(gh). We shall notice that [k(¢)]°*" =[¢]°.

In Section 5, we define an inverse, denoted by [Ag A~ 15", of Ay A in
Ks(M?) & R(T;) which is polarized by . It means that [Ag A" 15" =
> . N,h? with N, # 0 only if {a, f> = 0. We can state now our localization
formula as the following equality in R(G) ® R(T,) :

RRY(M, E) = RR""(MP*, Epp ® [N A 15"), (1.7)

for every E € Ky(M).

In Section 6.3 we work out Case 2 for the general situation. The map
RR§(M’, —) is the Riemann-Roch character on the G-manifold M,
localized near M” n f5'(f), and we extend it to a map RR§*™(M*, —):
Ks(M?)® R(T;) > R™(G) ® R(T;). We prove then the following local-
ization formula

RRj(M, E) = RR;""(M”, Epps ® [Ne A 151, (1.8)

as an equality in R™°(G) ® R(Tj). With (1.8) in hand, we see easily that
[RR§(M, E)]° =0 if the vector bundle E is fg-strictly positive.

Section 6.4 is devoted to Case 3. The abstract moment map f;: M — g
for the G-action on M induces abstract moment maps f;: M — g for
every closed subgroup G’ of G. For every f§ € 4, we consider the Riemann—
Roch characters RRj(M, —), RR$(M,—), and RRj (M, —) localized
respectively on G(M” n f5'(B)), M*n f5'(B), and MP~ f7'(B). The
major result of Section 6.4 is the induction formulas proved in Theorem
6.16 and Corollary 6.17, between these three characters. I will explain
briefly this result.

Let W be the Weyl group associated to (G, H). The choice of a Weyl
chamber h* in ) determines a complex structure on the real vector space
g/h. Our induction formulas make a crucial use of the holomorphic induc-
tion map Hol%: R(H) — R(G) (see (9.92) in Appendix B). Recall that
Hol§ (A" is, for any weight A, equal either to zero or to the character of an
irreducible representation of G (times +1). In Theorem 6.16 we prove the
following relation between RR§(M, —) and RR} (M, —)

1
RR$(M, E)=WH01§< Y w.RRE(M, E)>
B weWw

1

= = HOlG(RR} (M, E) A\¢: 8/b), (1.9)
W]
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where W is the stabilizer of f in W. In Corollary 6.17 we get the other
relation:

RR(M, E) = Holg, (RR*(M, E) \¢ 9/9p). (1.10)

Let us compare (1.9), with the Weyl integration formula®: for any
¢ € R(G) we have ¢ =Hol$ w(dw) = Hol¢ (¢|H/\c g/h), where ¢ is the
restriction of ¢ to H, and ¢|H >, m(A) h* is the unique element in
R(H) ® Q such that >, ., w. ¢|J;,—¢|H and m(4) #0 only if Aeh*. In
(1.9), the W-invariant element |Wﬂ| > ew W. RRﬂ (M, E) plays the role of
the restriction to H of the character ¢ = RRﬂ (M, E), and W,l | RR (M, E)
plays the role of ¢ ;.

Since f is a Gg-invariant element, (1.10) reduces the analysis of Case 3
to the one of Case 2. From the result proved in Case 2, we have
[RRG*(M*, E)]% =0 if the vector bundle E is fg-strictly positive. But
this does not implies in general that [RRG(M, E)]°=0. We have to take

the tensor product of E (so that E ® becomes more and more fq, -strictly

positive) to see that [RRG(M E®)]G 0, when 7712 v =k. NEp > 20
o, B

In the Hamiltonian setting considered in Section 7, our strategy is the
same, but at each step we obtain considerable refinements that are the
principal ingredients of the proof of Theorem C.

Case 1. When 0 is a regular value of f,;, we show that the Spin°® struc-
ture on .4, is defined by J,.4, hence 2(M,q, —) = RR*( M4, —). When 0
is not a regular value of f;, we use the “shifting trick” to compute the
G-invariant part of RRS (M, E) (see Sect. 7.4).

Case 2. For any G-invariant element f € #; with f # 0, we prove that
the inverse [Ag A" 1;' is of the form Y, N, 2* with N,#0 only if
{a, B >0 (in general we have only {a, > = 0)

Case 3. For B e %, with G; # G, we consider the open face o of the
Weyl chamber which contains f, and the corresponding symplectic slice %,
which is a G4z-symplectic submanifold of M. The localized Riemann-Roch
characters RR§(M, E) and RR3*(%,, —) are related by the following
induction formula

RR(M, E) = Hol¢, (RR(%,, E|4, ).

3 See Remark 9.2.
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Notation

Throughout the paper G will denote a compact, connected Lie group,
and g its Lie algebra. We let H be a maximal torus in G, and b be its Lie
algebra. The integral lattice 4 <) is defined as the kernel of exp: h —» H,
and the real weight lattice 4* = h* is defined by: 4™ :=hom(4, 2nZ). Every
AeA* defines a 1-dimensional H-representation, denoted C,;, where
h=exp X acts by h*:=e***> We let W be the Weyl group of (G, H), and
we fix the positive Weyl chambers §, = b and 3 = bh*. For any dominant
weight A € A% := A* " h*, we denote by V, the G-irreducible representation
with highest weight A, and x¢ its character. We denote by R(G) (resp.
R(H)) the ring of characters of finite-dimensional G-representations (resp.
H-representations). We denote by R™°(G) (resp. R™*(H)) the set of gen-
eralized characters of G (resp. H). An element y € R™°(G) is of the form
X=2sea* My x5 , where A>m, A% — Z has at most polynomial growth.
In the same way, an element y € R"°(H) is of the form y =3, _ »+ m, h*,
where A+ m;, A* — Z has at most polynomial growth.

Some additional notation will be introduced later :

G,: stabilizer subgroup of y e g

Ty: torus generated by f e g

M?: submanifold of points fixed by ye g

TM: tangent bundle of M

Ty M: set of tangent vectors orthogonal to the G-orbits in M
%~*(G)°: set of generalized functions on G, invariant by conjugation
Indg : €~°(G,)% - ¥ ~*(G)°: induction map

Holgy: R(G,) — R(G): holomorphic induction map

RR§(M, —): Riemann-Roch character localized on G.(M” n f5'(B))
Char(o): characteristic set of the symbol

Thomg(M, J): Thom symbol

ThomZ(M): Thom symbol localized near M”

Thom, ;(M): Thom symbol localized near G.(M* ~ f5'(B)).

2. QUANTIZATION OF COMPACT MANIFOLDS

Let M be a compact manifold provided with an action of a compact
connected Lie group G. A G-invariant almost complex structure J on M
defines a map RR%’(M, —): K;(M) — R(G) from the equivariant K-theory
of complex vector bundles over M to the character ring of G.

Let us recall the definition of this map. The almost complex structure on
M gives the decomposition A T*M ® C =@, ; A* T*M of the bundle of
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differential forms. Using Hermitian structure in the tangent bundle TM of
M, and in the fibers of E, we define a twisted Dirac operator

@E: ﬂﬂ,even(M, E) _)%O,odd(M, E),

where o/ I(M, E) :=T'(M, N\"' T*M ® E) is the space of E-valued forms
of type (i, j). The Riemann-Roch character RR%’(M, E) is defined as the
index of the elliptic operator 2} :

RR%’(M, E) = [Ker 2} ]—[Coker 2} ].

In fact, the virtual character RR%’(M, E) is independent of the choice of
the Hermitian metrics on the vector bundles TM and E.

If M is a compact complex analytic manifold, and E is an holomorphic
complex vector bundle, we have RR®/(M, E)=3Y1=(™" (—=1)! [# UM,
O(E))], where # 1M, O(E)) is the gth cohomology group of the sheaf
O(E) of the holomorphic sections of E over M.

In this paper, we shall use an equivalent definition of the map RR%’.
We associate to an invariant almost complex structure J the symbol
Thomg (M, J) € K;(TM) defined as follows. Consider a Riemannian
structure ¢ on M such that the endomorphism J is orthogonal relatively
to ¢, and let & be the following Hermitian structure on TM: h(v, w) =
q(v, w)—1g9(Jv, w) for v, we TM. Let p: TM — M be the canonical projec-
tion. The symbol Thomg;(M, J): p*(AZ™ TM) — p*(A2 TM) is equal, at
(x, v) e TM, to the Clifford map

Clx(v): p*(/\g'en TM) |(x, v) - p*(/\?Cdd TM) |(x, v)s (21)

where CI (v).w=vAw—c,(v).w for we Ag T,M. Here ¢,(v):Ax T,.M —
A "' T,M denotes the contraction map relatively to 4: for we T,M we
have ¢,(v).w=h(w,v). Here (TM, J) is considered as a complex vector
bundle over M.

The symbol Thomg (M, J) determines the Bott-Thom isomorphism Thom,:
K;(M)— K;(TM) by Thom,(E):=Thomy(M,J)® p*(E), E € Kz(M).
To make the notation clearer, Thom,(E) is the symbol o%: p*(AZT™ TM
® E) -» p*(\ TM ® E) with

of(x,v) :=Cl,(v) ® Id,_, (x,v) e TM, 2.2)

where E, is the fiber of F at x e M.

Consider the index map Index$,: K (T*M) — R(G) where T*M is the
cotangent bundle of M. Using a G-invariant auxiliary metric on TM, we
can identify the vector bundle T*M and TM, and produce an “index” map
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Index$,: K,(TM) —» R(G). We verify easily that this map is independent of
the choice of the metric on TM.

LemMma 2.1.  We have the commutative diagram
Ko(M) 222, K (TM)

~ llndexﬁ; (23)
RR™
R(G).

Proof. If we use the natural identification (A%! T*M, 1) =~ (TM, J) of
complex vector bundles over M, we see that the principal symbol of the
operator 27 is equal to ” (see [14]). ||

We will conclude with the following Lemma. Let J° J' be two

G-invariant almost complex structures on M, and let RR%”’ ° RR%’' be the
respective quantization maps.

LEMMA 2.2. The maps RR%’° and RR®’" are identical in the following
cases:

(i) There exists a G-invariant Section A€ I'(M, End(TM)), homoto-
pic to the identity in I'(M, End(TM))€ such that A4, isinvertible,and 4, .J° =
J.. A, forevery xe M.

(ii)) There exists an homotopy J’,#€[0,1] of G-invariant almost
complex structures between J° and J'.

Proof of (). Take a Riemannian structure ¢! on M such that J! € O(gq")
and define another Riemannian structure ¢° by ¢°(v, w) = g'(A4v, Aw)
so that J°e O(¢g°). The Section 4 defines a bundle unitary map A4:
(TM, J°, h®) - (TM, J', hY), (x, v) = (x, A, .v), where A'(.,.) :=4¢'(.,.)—
1q'(J'.,.),1=0,1. This gives an isomorphism A’: Ao T.M - ApT.M
such that the following diagram is commutative

AV TXMM)/\,O T.M

J«A; JA;

ApnT.M Chds0) ApT .M.

Then 4" induces an isomorphism between the symbols Thomg;(M, J%)
and 4*(Thomg(M, JY)): (x, v) » Thomg(M, J')(x, A, .v). Here A*: K;(TM)
— K;(TM) is the map induced by the isomorphism 4. Thus the complexes
Thom.(M, J®) and 4*(Thom.(M, J')) define the same class in K;(TM).
Since A is homotopic to the identity, we have A* =Identity. We have
proved that Thomg(M, J 0) ThomG(M JY in K;(TM), and by Lemma
2.1 this shows that RR%’’ = RRS7'
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Proof of (ii). We construct 4 as in (i). Take first 4%°:=Id—J'J° and
remark that A%°.J°=J!. 4% Here we consider the homotopy A4.°:=
Id—uJ'J% ue[0,1]. If —J'J° is close to Id, for example |Id+J'J°|
< 1/2, the bundle map A%° will be invertible for every u € [0, 1]. Then we
can conclude with Point (i). In general we use the homotopy J’, € [0, 1].
First, we decompose the interval [0,1] in 0=¢,<t;, < - <t_; <t =1
and we consider the maps A“+" .= Id—J"+'J", with the corresponding
homotopy A#+-" ue[0,1], for [=0,...,k—1. Because —J"*'J"—1Id
when ¢t — ¢, the bundle maps A/+"" are invertible for all ue [0, 1] if
t;.1—t 1s small enough. Then we take the G-equivariant bundle map
A:=1II2) A"++" with the homotopy A, :=ITZ) A" " ue[0,1]. We
have 4.J°=J'.4 and A, is invertible for every ue[0,1], hence we
conclude with the point (i). ||

3. TRANSVERSALLY ELLIPTIC SYMBOLS

We give here a brief review of the material we need in the next sections.
The references are [1, 11, 12, 38].

Let M be a compact manifold provided with a G-action. Like in the pre-
vious section, we identify the tangent bundle TM and the cotangent bundle
T*M via a G-invariant metric (., .),, on TM. For any X € g, we denote by
X, the following vector field: for m e M, X,,(m) := % exp(—tX).m|,_,.

If E° E' are G-equivariant vector bundles over M, a morphism
o€ I'(TM, hom(p*E°, p*E")) of G-equivariant complex vector bundles will
be called a symbol. The subset of all (x, v) e TM where o(x, v): E2 - E! is
not invertible will be called the characteristic set of o, and denoted
Char(o).

We denote by T M the following subset of TM:

TeM = {(x,v) € TM, (v, X;,(m)),, = 0 for all X € g}.

A G-equivariant symbol ¢ will be called elliptic if o is invertible outside a
compact subset of TM (Char(o) is compact), and it will be called transver-
sally elliptic if the restriction of ¢ to T;M is invertible outside a compact
subset of T;M (Char(o) N TgM is compact). An elliptic symbol ¢ defines
an element of K;(TM), and the index of ¢ is a virtual finite dimensional
representation of G [3, 4, 5, 6]. A transversally elliptic symbol ¢ defines an
element of K;(T;M), and the index of ¢ is defined (see [ 1] for the analytic
index and [11, 12] for the cohomological one) and is a trace class virtual
representation of G. Remark that any elliptic symbol of TM is transversally
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elliptic, hence we have a restriction map K;(TM)— K,(T;M), which
makes the following diagram

Ko(TM) —— Ks(TgM)

Indexz IndexIGu (3 1 )
R(G) —— R(G).

commutative.

3.1. Index map on non-compact manifolds. Let U be a non-compact
G-manifold. Lemma 3.6 and Theorem 3.7 of [1] tell us that for any open
G-embedding j: U <, M into a compact manifold we have a pushforward
map jy: K5(TgU) - Kg(Tg M) such that the composition

Index AG,,

Ko(TeU) = Ko(TeM) —— R™(G)
is independent of the choice of j: U ¢, M.

Lemma 3.1. Let U be a G-invariant open subset of a G-manifold . If U
is relatively compact, there exists an open G-embedding j:U < M into a
compact G-manifold.

Proof. Here we follow the proof given by Boutet de Monvel in [9]. Let
1 €6™(Z)° be a function with compact support, such that 0 < y <1 and
x=1 on U. Let ¢ FxR—>R be the function defined by ¢q(m,?)=
x(m)—t* The interval (—oo, 1] is the image of ¢, and the fibers ¢~'(¢) are
compact for every &> 0. According to Sard’s Theorem there exists a
regular value 0 < &, < 1 of ¢g. The set g~'(g,) is then a compact G-invariant
submanifold of xR, and j: U — ¢~ '(g,), m+— (m,/1—¢,) is an open
embedding. ||

COROLLARY 3.2. The index map Index$: K;(T;U) — R~(G) is defined
when U is a G-invariant relatively compact open subset of a G-manifold.

3.2. Excision lemma. Let j:Uc, M be the inclusion map of a
G-invariant open subset on a compact manifold, and let j,: K;(TgzU)
— K;(T;M) be the pushforward map. We have two index maps Index§,
and Index{, such that Index§; o j, = Index{,. Suppose that ¢ is a transver-
sally elliptic symbol on TM with characteristic set contained in TM|;.
Then, the restriction |, of ¢ to TU is a transversally elliptic symbol on
TU, and

J«(@ly)=0 in  Kg(TeM). (3-2)

In particular, it gives Index$,(¢) = Index§ (o |y).
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3.3. Locally free action. Let G and H be compact Lie groups and let M
be a compact G x H manifold.

In a first place, we suppose that G acts freely on M, and we denote by
n: M — M /G the principal fibration. Note that the map =z is H-equivariant.
In this situation we have T, ;M = 7*(T,(M/G)), and thus an isomor-
phism

% Ky(Ty(M/G)) = Koo (T a M). (3.3

We rephrase now Theorem 3.1 of Atiyah in [1].

For each irreducible G-representation V,, we associate the complex
vector bundle V, :=M x, V, on M/G and denote by V' its dual. The
group H acts trivially on V,, this makes V', a H-vector bundle.

THEOREM 3.3 (Atiyah). If 0 € Ky(Ty(M/G)), then we have the follow-
ing equality in R™°(G x H)

Index§*# (n*0) = z* Index} ,c(c ®@V}).V,. 3.9

pedy

In particular the G-invariant part of Index ¥ (n*o) is Index}, 16(0).

A classical example is when M =G, G = G, acts by right multiplications
on G, and G =G, acts by left multiplications on G. Then the zero map
09: GXC — G x {0} defines a G, x G,-transversally elliptic symbol asso-
ciated to the zero differential operator €*(G) — 0. This symbol is equal to
the pullback of C € K, (T, {point}) = R(G,). In this case Indexg *%(a,) is
equal to L*(G), the L*index of the zero operator on ¥*(G). The G,-vector
bundle V', — {point} is just the vector space V' with the canonical action
of G.. Finally, (3.4) is the Peter-Weyl decomposition of L*G) in
R™(G, xG)): LXG) = Duedt Viev,.

We suppose now that G acts locally freely on M. The quotient
Z := M /G is an orbifold, a space with finite-quotient singularities. One
considers on & the H-equivariant proper orbifold vector bundles and the
corresponding R(H)-module K, z(%) [21]. In the same way we consider
the H-equivariant proper elliptic symbols on the orbifold T# and the cor-
responding R(H)-module K, ,(T%). The principal fibration m: M - &
induces isomorphisms K, (%) ~ K, y(M) and K, ;(TZ) ~ K¢,y (Ty M)
that we both denote by n*. The index map

Index}: K,,;, 5(TZ) > R(H) (3.5)

is defined by the following equation: for any o € K,,; 5 (T%), Index¥ (o)
:= [Index$*¥ (n*0)]°.



LOCALIZATION OF THE RIEMANN-ROCH CHARACTER 457

We are particularly interested in the case where the bundle TocM - M
carries a G x H-equivariant almost complex structure J. Taking the
quotient by G, it defines a H-equivariant almost complex structure J,
on the orbifold tangent bundle T# — . Like in the smooth case, we have
the Thom symbol Thom,(%,J,)e€ K,,;, z(TZ) and a Riemann—Roch
character RR”: K, (%) — R(H) related as in Lemma 2.1.

3.4. Induction. Let i: H < G be a closed subgroup with Lie algebra b,
and % be a H-manifold (as in Corollary 3.2). We have two principal
bundles 7;: G x % — % for the G-action, and 7n,: G X ¥ > ¥ := G x5z ¥ for
the diagonal H-action. The map i,: K5 (T,;%) > K(TeZ) is well defined
by the following commutative diagram

*
Ky (Ty%) — Koun(Toxu(Gx %))

\ l(n:)_l (3.6)

Ko(TeX),

since 7} and 7 are isomorphisms.

Let us show how to compute i, (o), for an H-transversally elliptic symbol
o e I'(TY,hom(E®, E")), where E°, E' are H-equivariant vector bundles
over T%. Firstwenote* that T(G x %) =~ G x, (g/h ® T#),and T;(G x5 %)
=G xy (Ty%). So we extend trivially ¢ to g/bh® T#, and we define
ix(0) € I'(G %y (3/h @ T¥), hom(G x4 E°, Gxy E')) by ix(o)([g; &, x, v])
:=0a(x,v) forge G, £ eg/bhand (x,v) e TH.

To express the G-index of i, (o) in terms of the H-index of o, we need the
induction map

ndS: ¢~=(H)" - 4~2(G)S, (3.7)

where ¥~°(H) is the set of generalized functions on H, and the H and G

invariants are taken with the conjugation action. The map Ind¢ is defined

as follows: for ¢ e ¢ *(H)", we have |; Indf(4)(g) f(g)dg=cst |y

d(h) f|y(h) dh, for every f € €*(G)C, where cst = vol(G, dg)/vol(H, dh).
We can now recall Theorem 4.1 of Atiyah in [1].

THEOREM 3.4. Let i: H — G be the inclusion of a closed subgroup, let %
be a H-manifold satisfying the hypothesis of Corollary 3.2, and set ¥ =
G Xy ¥. Then we have the commutative diagram

4 These identities come from the following G x H-equivariant isomorphism of vector
bundles over Gx ¥: T(Gx¥) - Gx (g/h ® T¥), (g, m; Gy _o(g-€™) +0,,) = (g m; prys(X)
+u,,). Here pr,;, : g — g/ is the orthogonal projection.
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Ky(Ty®)—"— Kg(Te%)

l Indexg J Indexg

& =(H)" —— 6(G)°.
Ind
H

3.5. Reduction. Let us recall a multiplicative property of the index for
the product of manifold. Let a compact Lie group G acts on two manifolds
Z and %, and assume that another compact Lie group H acts on %
commuting with the action of G. The external product of complexes on T
and T% induces a multiplication (see [ 1] and [38], Section 2):

Ko(TZ) X Ky g (T¥) > Ky g (T(Z X ¥)) -
(6,,0,)— 0, O o,. 3-8)

Let us recall the definition of this external product. Let E*, F* be G x H-
equivariant Hermitian vector bundles over £ and % respectively, and let
0,:E*—> E~, 0, F* > F~ be G x H-equivariant symbols. We consider the
G x H-equivariant symbol

0,00, EYQF*®@E " ®@F - E ®F"®@E*®F"~

defined by

0,1 —I®a;> 39)

o, 00,= < .
I®o, o07®I1
We see that the set Char(o, © g,) c TZ xT# is equal to Char(a,) X
Char(o,). This exterior product defines the R(G)-module structure on
Ks(TZ), by taking % = point and H = {e}. If we take Z =% and H = {e},
the product on K;(TZ) is defined by

0, © 0, :=s%(0; © 7y), (3.10)

where s4: T —» TZ x TZ is the diagonal map.
In the transversally elliptic case we need to be careful in the definition of
the exterior product, since Tg, y (X X ¥) # TeZ X Ty%.

DEerFINITION 3.5. Let o be a H-transversally elliptic symbol on T#. This
symbol is called H-transversally good if the characteristic set of ¢ intersects
T;% in a compact subset of #.
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Recall Lemma 3.4 and Theorem 3.5 of Atiyah in [1]. Let o, be a
G-transversally elliptic symbol on TZ, and ¢, be a H-transversally elliptic
symbol on T# that is G-equivariant. Suppose furthermore that o, is
H-transversally good, then the product g, ©® g, is G x H-transversally
elliptic. Since every class of K;, ;(T;%) can be represented by an
H-transversally good elliptic symbol, we have a multiplication

Ke(TeZ)X Kyu(Tg¥) = Koy g(Toxa(X XY
(TeZ) x ( ) ( (Z'x%)) G311

(01,0,) >0, Qo0,.

Suppose now that the manifolds & and % satisfy the condition of
Corollary 3.2. So, the index maps Index5, Index5*¥, and Index§:% are

well defined. According to Theorem 3.5 of [ 1], we know that

Index§: 5 (0, © 0,) = Index§(o,) - Index$*#(o,) in R™(Gx H),

for any g, € Ko(TeZ) and 0, € Ky 5 (TH(% x H)). (3.12)

In the rest of this Section we suppose that the subgroup H — G is the
stabilizer of an element yeqg. The manifold G/H carries a G-invariant
complex structure J, defined by the element y: at ee G/H, the map J (e)

equals ad(y).(\/?(y)Z)_1 onT,(G/H) = g/h.

We recall now the definition of the map r] ,: Ko(TeZ) - Ky(TyZ)
introduced by Atiyah in [1]. We consider the manifold Z xG with
two actions of Gx H: for (g,h)eGxH and (x,a)e X xG, we have
(g, h).(x,a):=(g.x,gah™") on X x G, and we have (g, h).(x,a):=(h.x,
gah™") on ' % G.

The map @: & % G— I x G, (x,a)— (a.x, a) is G x H-equivariant, and
induces @* Ky, (T y(Z % G)) = K 5(Tgo q(Z % G)). The G-action is
free on % X G, so the quotient map n: & % G — & induces an isomorphism
7% Ky(TyZ) = Koy iy (Tox g (Z % G)). We denote by a7 € Koy (T5G)
the pullback of the Thom class Thom(G/H, J,) € Ks(T(G/H)), via the
quotient map G — G/H.

Consider the manifold % =G with the action of Gx H defined by
(g, h).a=gah™ for aec G, and (g, h) e Gx H. Since the symbol gl 18
H-transversally good on TG, the product by o7, induces, by (3.11), the
map

Ko(ToZ) = Koy (Tox (% X G))

o0 ©ayy.
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DerFINITION 3.6 (Atiyah). Let H the stabilizer of y e g in G. The map
1l Ke(TeZ) = Kp(TZ) is defined for every g € Ko(T¢Z) by

(@) 1= (7") " 0 O%(a O o).
Theorem 4.2 in [1] tells us that the following diagram is commutative
Ko(TeZ) =22 Ky(TZ)
l Indexg l Indexg (3 13)
€ (G)° ¢ (H)".

Ind g

We show now a more explicit description of the map r? . Consider the
moment map

be: T*% — g*

for the (canonical) Hamiltonian action of G on the symplectic manifold
T*%. If we identify TZ with T*Z via a G-invariant metric, and g with g*
via a G-invariant scalar product, the “moment map” is a map us: TZ — g
defined as follows. If E', ..., E' is an orthonormal basis of g, we have
Ue(x, v) = 3, (EL(x), v), E' for (x, v) € TZ. The moment map admits the
decomposition ug = piy + lig/y, relative to the H-invariant orthogonal
decomposition of the Lie algebra g=h @ h*. It is important to note that
TeZ = p.'(0), T, Z = p,'(0), and TeZ =T N ,u;/IH(O).

The real vector space g/} is endowed with the complex structure defined
by y. Consider over TZ the H-equivariant symbol

06,11 T X NE*8/H - TZ x Ag“g/h

(x, 3 w) = (x, v; W"),

with w' = Cl(ug/5(x, v)).w. Here b+ ~g/b, and CI(X): Ac g/ — Ac /b,
X € g/b, denotes the Clifford action. This symbol has ,u;/IH(O) for charac-
teristic set. For any symbol ¢ over T%, with characteristic set Char(c), the

product ¢ © o¢. u» defined at (3.10), is a symbol over TZ with characteris-
tic set Char(e O 6% ;) = Char(a) N #,,,(0). Then, if ¢ is a G-transversally
elliptic symbol over T#, the product ¢ © o¢ u is a H-transversally elliptic
symbol.

ProposITION 3.7. The map r], ,: Ko(TeZ) > Ky(TyZ) has the follow-
ing equivalent definition: for every o € Ko(To %)

rng(a)=0'(7)0'g’H in Ky(Ty).
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Proof. We have to show that for every oe Ky (Ts%), o0 ® ooy =
(%) 0 0% O 0ayy) in Ky(Ty%). Let pg: TG — G and p,: TZ - X be
the canonical projections. The symbol a;/: p_ *(Gx AN&™"g/bh) - r. *(Gx

%4g/b) is defined by 7,,(a, Z) = CI(Z,;,) for (a, Z) € TG ~ G x g, where
Z,y is the g/h-component of Z € g.

Consider o: p,E, - pyE,, a G-transversally elliptic symbol on TZ,
where E,, E, are G-complex vector bundles over Z. The product ¢ © 7y
acts on the bundles pE. ® ps(G x Aw g/b) at (x, v; a, Z) e T(¥ x G) by

o(x, ) © CU(Zyyy).

The pullback o, :=0*(oc © ,/,) acts on the bundle G x (p7E. ® A¢ 6/h)
(here we identify T(Z x G) with G x (g @ TZ)). At (x,v;a,Z) e T(Z xG)
we have

o,(x,v;a,Z)=0Qa(a.x,v;a,Z"), with

(U,’ Z,) = ([T(x, al)@]*)i1 (Us Z) Here T(x, a)@: T(x, a)(‘%ﬂ X G) - T(a.x, a)(‘%,l X G)
is the tangent map of @ at (x,a), and [T 01" T, ,(Z¥xG)—
T, (% X G) its transpose. A small computation shows that Z’' = Z + u;(v)
and v’ = a.v. Finally, we get

o,(x,v;a,Z)=0(a.x,a.v) © CUZ,;+ t/u(v)).

Hence, the symbol (z*)~! (¢,) acts on the bundle pLE. ® A g/h by
(@)~ (0,)(x, v) = 0(x, ) © Cl(tg;z (v)). 1

For any G-invariant function ¢ € ¢*(G)¢, the Weyl integration formula
can be written’

¢ =Ind%(dx At 8/b) in €72(G)°. (3.14)

where ¢, € €°(H)" is the restriction to H = G,. Equality (3.14) remains
true for any ¢ € ¥~*(G)° that admits a restriction to H.

Lemma 3.8. Let o be a G-transversally elliptic symbol. Suppose furthermore
that o is H-transversally elliptic. This symbol defines two classes o € Ko(T%)
and oy € Ky(TyZ) with the relation® v’ (0) =0y ® /\@ g/b. Hence for
the generalized character Index$ (o) € R‘°°(G) we have a “‘Weyl integration”
Sformula

Index§ (o) = Ind (Index} (a,5) At a/b). (3.15)

°See Remark 9.2.
¢ Here we note o,y ® Ag g/b for the difference g, ® AZ"g/h—0; ® AZa/b.
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Proof. If o is H-transversally elliptic, the symbol (x, v) = a(x, v) ©®
Cl(ug/x(v)) is homotopic to (x, v) — o(x, v) © CI(0) in K4 (T,Z). Hence
o Qg n=0u®A¢ /b in Ky(TyZ). (3.15) follows from the diagram
(3.13). 1

COROLLARY 3.9. Let g be a G-transversally elliptic symbol which
furthermore is H-transversally elliptic, and let ¢ € €=°(G)¢ which admits a
restriction to H. We have

¢ =Index§(0) > @5 = Index(oy).

In fact, if we come back to the definition of the analytic index given
by Atiyah [1], one can show the following stronger result. If ¢ be a
G-transversally elliptic symbol which is also H-transversally elliptic, then
Index§(0) € ¢ °(G)° admits a restriction to H equal to Index} (o) e
¢ (H)".

4. LOCALIZATION—THE GENERAL PROCEDURE

We recall briefly the notations. Let (M, J, G) be a compact G-manifold
provided with a G-invariant almost complex structure. We denote by
RR%7: K (M) - R(G) (or simply RR), the corresponding quantization
map. We choose a G-invariant Riemannian metric (., .),, on M. We define
in this section a general procedure to localize the quantization map through
the use of a G-equivariant vector field A. This idea of localization goes
back, when G is a circle group, to Atiyah [1] (see Lecture 6) and Vergne
[38] (see part II).

We denote by @,: M — g* the map defined by {(®D,(m), X> := (A, Xoslm)as
for X e g. We denote by o(m, v), (m, v) € TM the elliptic symbol associated
to Thomgz(M) ® p*(E) for E € K;(M) (see Section 2).

Let oF be the following G-equivariant elliptic symbol

of(m,v):=0%m,v—2,), (m,v) e TM. 4.1

The symbol ¢¥ is obviously homotopic to g%, so they define the same

class in K;(TM). The characteristic set Char(c®) is M = TM, but we see
easily that Char(c¥) is equal to the graph of the vector field /4, and

Char(a7) N TeM = {(m, 4,,) e TM, me {®, =0}}.
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We will now decompose the elliptic symbol ¢¥ in K;(T;M) near
C), = {¢ 2= O}

If a G-invariant subset C is a union of connected components of C,
there exists a G-invariant open neighborhood % ‘< M of C such that
U C,=C and 0%° n C, = . We associate to the subset C the symbol
0é:=07% |4 € Ko(Tg) which is the restriction of i to T#°. It is well
defined since Char(o7 |4¢) N Te%° = {(m, 4,,) € TM, m e C} is compact.

ProrosiTiON 4.1. Let C¢ a€ A, be a finite collection of disjoint

G-invariant subsets of C,, each of them being a union of connected compo-
nents of C,, and let ct« € K;(T3U®) be the localized symbols. If C, = | ), C*,
we have

of = Z is(aée) in Kg(TeM),

aeA

where i U< M is the inclusion and iy: Ko(TeU?) > Ko(TgM) is the
corresponding direct image.

Proof. This is a consequence of the property of excision (see Sect. 3.2).
We consider disjoint neighborhoods % of C?, and take i: % =, #“ < M.
Let y, € (M) be a test function (i.e., 0 < y, < 1) with compact support
on %¢ such that y,(m)+#0 if me C? Then the function y:=3, x, is a
G-invariant test function with support in % such that y never vanishes
on C,.

Using the G-equivariant symbol of (m, v) :=cE(m, y(m) v—24,), (m, v) €
TM, we prove the following :

(1) the symbol af is G-transversally elliptic and Char(af Y=TM|,,
(i) the symbols o and o7 are equal in K;(TgM), and
(iii) the restrictions o7 |, and o7 |, are equal in K(To%).

With Point (i) we can apply the excision property to of , hence af =
ix(067|y). By (i) and (i), the last equality gives of =i.(a7l,)=

3. ix(oce).

Proof of (i). The point (m,v) belongs to Char(af ) if and only if
x(m)v=4,(x). If m is not included in %, we have y(m)=0 and the
equality (x) becomes 4, =0. But {1=0}cC, =%, thus Char(af)c
TM|,. The point (m,v) belongs to Char(af)mTGM if and only if
x(m) v=4,, and v is orthogonal to the G-orbit in m. This imposes m € C,,
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and finally we see that Char(af) NTeM ~C, is compact because the
function y never vanishes on C,.

Proof of (ii). We consider the symbols ¢, ¢ € [0, 1] defined by
O-tE(ma U) = JE(ma (t+ (1 _t) X(m)) U_Am)

We see as above that g7 is an homotopy of G-transversally elliptic symbols
on TM.

Proof of (iii). Here we use the homotopy 67 |,,2€[0,1]. |1

Because RR%(M, E) = Index$ (c”) € R(G), we obtain from Proposition
4.1 the following decomposition

RRY(M, E)= Y Index%.(c%) in R~(G). @.2)

acd

The rest of this article is devoted to the description, in some particular
cases, of the Riemann—Roch character localized near C*

RRS«(M, —): Ko(M) - R™(G) 4.3)

E — Index§e(a&s).

5. LOCALIZATION ON M*#

Let (M, J,G) be a compact G-manifold provided with a G-invariant
almost complex structure. Let § be an element in the center of the Lie
algebra of G, and consider the G-invariant vector field A := f8,, generated
by the infinitesimal action of f. In this case we have obviously

(5, =0} = (B =0} = M"

In this section, we compute the localization of the quantization map on the
submanifold M?# following the technique explained in Section 4. We first
need to understand the case of a vector space.

The principal results of this section, i.e., Proposition 5.4 and Theorem
5.8, were obtained by Vergne [ 38, Part I1], in the Spin case for an action of
the circle group.

5.1. Action on a vector space. Let (V,q,J) be a real vector space
equipped with a complex structure J and an Euclidean metric ¢ such that
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J € O(q). Suppose that a compact Lie group G acts on (V,q,J) in a
unitary way, and that there exists § in the center of g such that

v’ ={0}.

We denote by T, the torus generated by exp(z.f),t€ R, and t; its Lie
algebra.

The complex Thomg;(V,J) does not define an element in K;(TV)
because its characteristic set is V.

DerINITION 5.1.  Let Thom? (V) € K;(T;V) be the G-transversally” elliptic
complex defined by

ThomZ(V)(x, v) := Thom,;(V)(x, v— B (x)) for (x,v)eTV.

Before computing the index of ThomZ (V') explicitly, we compare it with
the pushforward j(C) € Kz(TV) where j: {0} < ¥ is the inclusion and
C — {0} is the trivial line bundle. Recall that Index(j,(C)) = 1.

We denote by V' the real vector space V' endowed with the complex
structure —J, and Ay V= AZ" V- AV the corresponding element in
R(G).

LeMMA 52. We have N V . Thomi(V) = j,(C) in Kz(TgV), hence
AL 7. Indexé(Thoml () =1 in R™“(G).

Proof. The class j(C) is represented by the symbol a,: TV x A"
V®C)->TVx AWV ® C), (x, v, w) — (x, v, Cl(x+w).w). If we use the
following isomorphism of complex G-vector spaces

VeC-VaeV
x+wr (v—J(x), v+J(x)),
we can write g, =0_ @ o,, where the symbols® ¢, act on TV x AV,

through the Clifford maps o, (x, v) = Cl(v F J(x)). Finally we see that the
following G-transversally elliptic symbols on TV are homotopic

7 One can verify that Char(Thom%(V)) n TV = {(0, 0)}.
8V, =VandV_=V.
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Cl(v+J(x)) © Cl(v—J(x))
Cl(v+J(x)) © Cl(v— By (x))
Cl(0) © Cl(v—By(x)).

The lemma is proved since (x, v) — CI(0) © Cl(v— B, (x)) represents the
class A V. Thomi(V) in K (TsV). |

We compute now the index of ThomZ(V). For ae t;, we define the
G-invariant subspaces’ V(a):={veV, p(exp X)(v) =e“** v, VX e t,},
and (V ® C)(a) :={veV ® C, p(exp X)(v) = > *v, VX e t,}.

An element « € t}, is called a weight for the action of T, on (V, J) (resp.
onV ® C)if V(a) # 0 (resp. (V' ® C)(«) # 0). We denote by A(T,, V) (resp.
A(T4, V ® C)) the set of weights for the action of T, on V' (resp. V' ® C).
We shall note that A(T;, V' ® C) =A(T,, V) u —A(Tg, V).

DerFINITION 5.3.  We denote by ¥ *# the following G-stable subspace of V'

yrii= % V(),

wedy (Tp, V)

where 4, (T;, V) = {a€ A(T;, V), {a, f) > 0}. In the same way, we denote
by (V ® C)*# the following G-stable subspace of V¥ ® C: (V' ® C)™#:=
Zme}jl+('ﬂ'ﬂ,V®C)(V ® C)(O{),WhCrCA+(—|]—B, Ve C) = {“ € A(—I]—ﬁa Ve C)s <a, ﬁ>
> 0}.

For any representation W of G, we denote by det W the representation
AS* W. In the same way, if W - M is a G complex vector bundle we
denote by det W the corresponding line bundle.

ProrPoSITION 5.4. We have the following equality in R™°(G) :

IndexS(Thom’ (V) = (=1)%mV " det V+/ @ Y SH @ C)+F),

keN

where SK(V ® C)*#) is the kth symmetric product over C of (V ® C)*%.

Proposition 5.4 and Lemma 5.2 give the two important properties of the
generalized function y:=Index(ThomZ(V)). First y is an inverse, in
R ™(G), of the function ge G — dety (1—g~') which is the trace of the

®We denote by z-v:=x.v+y.J(v), z=x+1y € C, the action of C on the complex vector
space (V,J),and zw=v® zz',w=v ® z’ € ¥ ® C the canonical action of Con V' ® C.
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(virtual) representation A V. Second, the decomposition of y into irre-
ducible characters of G is of the form y =3, m;x¢ with m; #0 =

<4, B> =0.

DEfINITION 5.5. For any R(G)-module 4, we denote by 4 ® R(T), the
R(G) ® R(T4)-module formed by the infinite formal sums Y, E, 2" taken
over the set of weights of T,, where E, € 4 for every a.

We denote by [A:V ];' the infinite sum (—1)"detV "/ ® Y.y
SK(V ® C)™#), with r=dimg; V"4 It can be considered either as an
element of R™°(G), R(G) ® R(Tp), or R™*(Tp).

Let ¥~ — % be a G-complex vector bundle such that ¥"# = Z. The torus
Ty acts on the fibers of ¥"—> %, so we can polarize the Tj-weights
and define the vector bundles ¥ *# and (¥ ® C)™*. In this case, the
infinite sum [Ag 7 15" := (= 1)dW* det 7/ @Y, . S(¥ ® C)*F)
is an inverse of Ap ¥ in K4(%) ® R(Ty).

The rest of this Section is devoted to the proof of Proposition 5.4. The
case VH# =V or V*#={0} is considered by Atiyah [1] (see Lecture 6)
and Vergne [38] (see Lemma 6, Part II).

Let H be a maximal torus of G containing T,. The symbol Thom/(V) is
also H-transversally elliptic and let ThomZ (V) be the corresponding class
in K, (TgV). Following Corollary 3.9, we can reduce the proof of Propo-
sition 5.4 to the case where the group G is equal to the torus H.

Proof of Proposition 5.4 for a torus action. We first recall the index
theorem proved by Atiyah in Lecture 6 of [1]. Let T, the circle group act
on C with the representation ¢”, m > 0. We have two classes Thomf, (C) €
Ky (Ty (C)) that correspond respectively to = ti1e Lie(S'). Atiyah
denotes these elements 0 *.

LemMma 5.6 (Atiyah). We have, for m> 0, the following equalities in
R™(T,):

Index¢" (Thom? (C)) = [1_1 ]+ =—t" ) (")*

—m
4 keN

Index{"(Thomy (C)) = [%] Y Tk

keN

Here we follow the notation of Atiyah: [; ,,n]’r and [ ,m]‘ are the

Laurent expansions of the meromorphic functlon teC— 1—1r'" around

t =0 and ¢ = oo respectively.
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From this lemma we can compute the index of Thom7 (C) when m <0.
Suppose m <0 and consider the morphism «: T, — T,,,?—"". Using
the induced morphism x*: Ky, Ty, (€) > Ky (T1,(C)), we see that
x*(Thomg, (C)) = Thomy (C). This gives Index{"(Thom7 (C)) =x*Csen
(")) =Yken (2" and Index¢” (Thomy, (C)) = k*(—". 3 n (")) =
—t" Yaen ("

‘We can summarize these different cases as follows.

LemMma 5.7. Let T, the circle group act on C with the representation t — t*
Jor ae Z\{0}. Let f € Lie(T,) ~ R a non-zero element. We have the following
equalities in R™*(T,):

IndexE“(Thomf}a(C))(t)z[ ! ]s ,

-1
l_u u=t

where ¢ is the sign of {a, ).

We decompose now the vector space V' into an orthogonal sum
V=@, C,, where C, is a H-stable subspace of dimension 1 over C
equipped with the representation 1 € H — ¢t* € C. Here the set I parametrizes
the weights for the action of H on ¥, counted with their multiplicities. Con-
sider the circle group T, with the trivial action on @&, ., C,, and with
the canonical action on C,. We consider V' equipped with the action

of HxII, T,. The symbol Thom? (V) is H x IT,T,-equivariant and is either
H-transversally elliptic, H x I, T,-transversally elliptic (we denote by g, the
corresponding class), or I, T,-transversally elliptic (we denote by o, the
corresponding class). We have the following canonical morphisms :

Ky(TyV) « KHka'[I'k (TyV) - KHka'[I'k (THka'[I'k V)
Thom? (V) « o, -0, 651)
KHka‘II'k (THka‘II'kV) « KHka‘II'k (THk'H'k V) - KHka (Tnkwrk V) .

Op <« O3, —0y.

We consider the following characters:
— ¢(t) e R"°(H) the H-index of ThomZ,(V),

— ¢p(t, 1y, ..., 1,) e R"°(H x II, T,) the H x IT, T;-index of g (the same
for o and o).

— ¢ (ty,...,t;) € R~°(II, T,) the II, T-index of 5.
They satisfy the relations
@) ¢ =¢5(1,1,....;1) and ¢5(1, 1, ..., 1;) = (1, ..., 1)

() Pp(tu, u™, ..., ,u™)=¢z(t, t,, ..., 1;), forallue H.
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Point (i) is a consequence of the morphisms (5.1). Point (ii) follows from the

Lt

fact that the elements (v, u™, ..., u™*), u € H act trivially on V.
The symbol ¢, can be expressed through the map

Ky, (T, C, ) x Ky, (T1,C,) X -+ - x K4, (T+,C,,)) = Ky v (T, 1, V)
(0-1, 0’2, ooy 0'1)'_’0-1 QG-Z @ s @O-I.

Here we have o, = ®O}_; Thomy, (C,) in K, (Ty,x,
sign of <oy, . Finally, we get

o) =dp(u, 1, ..., 1) =¢p(1, u™, ..., u™)
=¢ ™, ..., u)= Hk[#]

1—¢7!

V), where ¢, is the

€k

t=u"k

To finish the proof, it suffices to note that the following identification of
H-vector spaces holds: V*/~@®, ., C, and (V ® C)" ~@, C,,,. |

5.1. Localization of the quantization map on MP?. Let B#0 be a
G-invariant element of g. The localization formula that we prove for
the Riemann-Roch character RRY(M, —) will hold in" R(G):=hom,
(R(G), 2).

Let 4 be the normal bundle of M? in M. For me M*, we have the
decomposition T, M =T, M?® .4"|,. The linear action of f on T, M
precises this decomposition. The map £Y(B): T,M — T, M commutes
with the map J and satisfies T, M? =ker(#™(f)). Here we take A, :=
Image(#™(B)). Then the almost complex structure J induces a
G-invariant almost complex structure J; on M #, and a complex structure J -
on the fibers of 4 — MP? We have then a quantization map
RR(M’, —): K4(M?) > R(G). The torus T, acts linearly on the fibers of
the complex vector bundle 4. Thus we associate the polarized complex
G-vector bundles 4 *# and (4" ® C)™# (see Definition 5.5).

__ THEOREM 5.8. For every E € Kg(M), we have the following equality in
R(G):

RRY(M,E)=(-1)* Y RR(M’,E|ys ® det /' +F @ SK(N @ C)*F),
keN

where r . is the locally constant function on M* equal to the complex rank of
NTE,

Before proving this result let us rewrite this localization formula in a more
synthetic way. The G X Tj-Riemann—Roch character RRY™/(M*, —) is

10 An element of R(G) is simply a formal sum ¥, m, x§ with m, € Z for all /.
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extended canonically to a map from K;(M*) & R(Ty) to R(G) ® R(Ty) (see
Definition 5.5). Note that the surjective morphism GxT;— G, (g, 1)
> g.t induces maps R(G)— R(G) ® R(T;), Ks(M)— Kgyv,(M), both
denoted k, with the tautological relation kX(RR°(M, E)) = RR°*"¥(M, k(E)).
To simplify, we will omit the morphism k in our notations.

Let .# be the normal bundle .#° with the opposite complex structure.
With the convention of Definition 5.5 the element A}, .4 € Keur,(M Py~
Ko(M?) ® R(T,;) admits a polarized inverse [Ag A 1;' € KG(M’?) ®
R(Ty). Finally the result of Theorem 5.8 can be written as the following
equality in R(G) ® R(T) :

RRO(M, E) = RRO™(M*, E|,r ® [\ 7 15"). (5.2)

Note that Theorem 5.8 gives a proof of some rigidity properties [7, 30].
Let H be a maximal torus of G. Following Meinrenken and Sjamaar, a
G-equivariant complex vector bundle £ — M is called rigid if the action of
H on E|,mx is trivial. Take f e b such that M# = M*, and apply Theorem
5.8, with g and — 83, to RR¥(M, E), with E rigid.

If we take + S8, Theorem 5.8 shows that A€ H — RR*(M, E)(h) is of the
formhe H - Y, 5 nh* withn, #0 = <a, ) = 0. (see Lemma 9.4). If we
take —p, we find RR¥(M, E)(h) =Y, nh° with n, #0 = —<a, B>
> 0. Comparing the two results, and using the genericity of f, we see that
RR¥(M, E) is a constant function on H, hence RR°(M, E) is then a con-
stant function on G. We can now rewrite the equation of Theorem 5.8,
where we keep on the right hand side the constant terms:

RRYM,E)= Y RR(F,Ely). (5.3)

FeM® ™

Here the summation is taken over all connected components F of M# such
that 4" }# =0 (i.e., we have (¢, B> < 0 for all weights & of the H-action on
the normal bundle A4} of F).

Proof of Theorem 5.8. Let % be a G-invariant tubular neighborhood!! of
M? in M. We know from Section 4 that RR(M, E) = Index§ (Thom4 (M, J)
® E|,) where

Thom?(M, J)(m, w) := Thomgz(M, J)(m, w— B, (m)), (m, w) e T%.

Let ¢: "> % be G-invariant diffeomorphism with a G-invariant neigh-
borhood ¥~ of M” in the normal bundle .#". We denote by ThomZ(¥", J)

' To simplify the notation, we keep the notation M? even if we work in fact on a connected
component of the submanifold M*.
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the symbol ¢*(ThomZ (M, J)). Here we still denote by J the almost
complex structure transported on ¥~ via the diffeomorphism % ~ 7.

Let p: #~ — M?* be the canonical projection. The choice of a G-invariant
connection on 4" induces an isomorphism of G-vector bundles over 4"

TN = p"(TMP & &)

5.4
w Tp(w) @ (w)”
Here w — (w)”, T4 — p*A4" is the projection that associates to a tangent
vector its vertical part (see [10, Sect. 7] or [31, Sect. 4.1]). The map
J:= P*(Jy ® J ) defines an almost complex structure on the manifold .4~
that is constant over the fibers of p. With this new almost complex
structure J we construct the G-transversally elliptic symbol over 4~

Thom?(A")(n, w) = Thomg; (A, J)(n, w—pf - (n)), (n,w)eTH .

We denote by i: ¥~ — 4" the inclusion map, and i,: K;(Tg?") » Kg(TgA)
the induced map.

LEMMA 5.9. We have
iy(ThomZ(¥", J)) = ThomE(A") in Kgi(TAN).

Proof. We proceed as in Lemma 2.2. The complex structure J,,n€ ¥~
and J,ne ./ are equal on M’ and are related by the homotopy
ey :=Jx 10 u€ [0, 1] for n=(x,v) € 7. Then, as in Lemma 2.2, we can
construct an invertible bundle map 4 € I'(¥", End(T¥"))€, which is homo-
topic to the identity and such that 4.J =J.4 on #". We conclude as in
Lemma 2.2 that the symbols Thom% (¥, J) and Thom%(A4")| ¥ are equal
in K;(T7"). Then the Lemma follows from the excision property. ||

Since E ~ p*(E|,#), for any G-complex vector bundle E over .4, the
former lemma tells us that RRS(M, E) = Index§,(ThomZ(A") ® p*(E|u*)).

We consider now the Hermitian vector bundle .#° — M# with the action
of GxTy. First we use the decomposition A" =@, 4" relatively to the
unitary action of T, on the fibers of .4". Let N* be an Hermitian vector
space of dimension equal to the rank of A% equipped with the representa-
tion 7 — ¢* of T,. Let U be the group of T4-equivariant unitary maps of the
vector space N := @, N* and let R be the T ,-equivariant unitary frame of
(A", J,) framed on N. Note that R is provided with a U x G-action and a
trivial action of T,: for xe M # any element of R|, is a T4-equivariant
unitary map from N to A"|,. The manifold 4" is isomorphic to Rxy N,
where G acts on R and T, acts on N.
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We denote by Thom? 5 (#) the Gx T, canonical extension of
Thom’%(4"). It can be considered as a G, G x T4, or Ts-transversally
elliptic symbol. Here we consider Thom? ,(47) as an element of
K1y (Tr,(Rxy N)). Recall that we have two isomorphisms

Ty Keury(Tr,(Rxy N)) 3 Kgoryuv(Try v (RXN)), (5.5
n*: Ke(TM?) 3 K¢, y(Ty R), (5.6)

where 7y: Rx N - Rxy; N~ .4 and n: R— R/U ~ M?* are the quotient
maps relative to the free U-action. Following (3.11), we have a product

Kewv(TyR) X Ky, v (Tr;N) = Kory v (Tr, o (RX N)). (5.7)

The following Thom classes
— Thom, 1, (H) € Kgyr, (Tr,(Rxy N)),
- Thom%ﬂxU(N) € KTﬂxU(TvﬂN), and
— Thomgz(M*) e K;(TM?P)
are related by the following equality in Ko, 1,y (Tr, <o (RX N)):
Ty Thomg”ﬂ (N) = (n* Thomgz(MF)) © Thomq}ﬁxU(N). (5.8)

We will justify (5.8) later. Every E € K;(M), when restrict to M?, admit
the decomposition E|ys=3,.7, E°®C, in Kg, 1, (M)~ Ks(M") ®
R(Tj). Multiplication of (5.8) by E gives

ay(Thomf, v, (A7) ® E|y)

= ZA n*(Thomg(M”) ® E*) © (Thomf , ,(N) ® C,).

aeTy

Following (3.12) and Theorem (3.3), the last equality gives, after taking
the index and the U-invariant,

RR*Ts(M, E)

U
=2 [ Y. RRE(M’, E*® W?})-W;-Index"”*Y(Thomf,, ,(N))-C, ] _

a ieU

(5.9)

Here we used that RR®*™#(M, E) is equal to the U-invariant part of
Index®*"#*Y(y(Thom, 1, (") ® E|y#)), and the index of z*(Thomg (M)

® E“) isequalto Y, ;s RRO(MF, Ec@ W) .W,.
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Now we observe that for any L € R(U), the U-invariant part of ;.5
RRC(MP,E|yyr @ WT).W,® L is equal to RRC(M?, E|,s ® L) with L=
Rx,; L. With the computation of Index"*Y(Thom# ,xv(N)) given in
Proposition 5.4 we obtain finally

RR"(M, E)

=(—1)" Y. RRYT(MP* E|» @ det /' F @ SK(N ® C)*F))

keN

which implies the equality of Theorem 5.8.

We give now an explanation for (5.8), which is a direct consequence of
the fact that the almost complex structure J admits the decomposition
.7=p*(Jﬂ ®J,). Hence Ag T, A equipped with the map CI,(v—f . (n)),
veT, A is isomorphic to Arx T,M?® Ap 4|, equipped with CI (v,) ®
Cl.(v,— f(n)) where x = p(n), and the vector ve T,/ is decomposed,
following the isomorphism (5.4), in v=wv,4+0v, with v, e T M? and
v, € A"|,. Note that the vector w = B ,-(n) € T,/ is vertical, i.e., w = (w)".

6. LOCALIZATION VIA AN ABSTRACT MOMENT MAP

Let (M, J,G) be a compact G-manifold provided with a G-invariant
almost complex structure. We denote by RR®: K;(M) — R(G) the quan-
tization map. Here we suppose that the G-manifold is equipped with an
abstract moment map [ 15, 20].

DErFINITION 6.1. A smooth map f;: M — g* is called an abstract
moment map if

(i) the map f; is equivariant for the action of the group G, and

(ii) '*for every connected Lie subgroup K — G with Lie algebra f, the
induced map fy: M — I* is locally constant on the submanifold M* of
fixed points for the K-action (the map f% is the composition of f; with the
projection g* — £¥).

The terminology “moment map” is usually used when we work in the
case of a Hamiltonian action. More precisely, when the manifold is
equipped with a symplectic 2-form @ which is G-invariant, a moment map
&: M — g* relative to w is a G-equivariant map satisfying d<{®, X) =
—0(Xy, —), X €g.

12 Condition (ii) is equivalent to the following: for every X e g, the function <f;, X) is
locally constant on M*.
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For the rest of this paper we make the choice of a G-invariant scalar
product over g*. This defines an identification g* ~ g, and we work with a
given abstract moment map f;: M — g.

DEerFINITION 6.2.  Let s#¢ be the G-invariant vector field over M defined by
%Sl :=(fG(m)M)m: V’/ne]‘l

The aim of this section is to compute the localization, as in Section 4,
with the G-invariant vector field #°. We know that the Riemann-Roch
character is localized near the set {®,c =0}, but we see that {®,c =0}
= {#°=0}. We will denote by C’¢ this set. Let H be a maximal torus of
G, with Lie algebra b, and let h, be a Weyl chamber in .

LemMmA 6.3.  There exists a finite subset B, < by, such that

clo=J) C§,  with C5=G.(MFnf5(B)).

Be%g

Proof. We first observe that #¢ =0 if and only if f;(m)=p" and
Bl =0, that is me M? n f;'(B'), for some B’ eg. For every B eg,
there exists el , with ' =g.B for some ge G. Hence M* n f5'(B') =
g.(M? ~ f5'(B)). We have shown that C/¢ =(J,., C§7, and we need to
prove that the set %; :={Beb,, MP n f5'(B) # &} is finite. Consider the
set {H,, ..., H,} of stabilizers for the action of the torus H on the compact
manifold M. For each  eh we denote by T, the subtorus of H generated
by exp(z.B), t € R, and we observe that

M’ f5'(B) # & <> 3H, such that T, = H, and M™ n f5'(B) # &
< 3H, such that S e f,(M*™) N Lie(H,).

But fo(M™) n Lie(H;) < f,(M™) is a finite set after Definition 6.1. The
proof is now completed. |

DEFINITION 6.4.  Let Thom 45(M) € K4(T;%% ") defined by
Thom, 5;(M)(x, v) := Thomg(M)(x,v—#¢),  for (x,v)eTU%’.

Here i%”: %%/ <, M is any G-invariant neighborhood of C§ such that
WP ~ Clo = 6.
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DerFNITION 6.5. For every f € %#;, we denote by RRg(M, —): Ke(M)
— R™(G) the localized Riemann-Roch character near C g, defined as in
(4.3), by

RR§(M, E) = Index§e.s(Thom/, 5(M) ® Eye.s),

for E € K;(M). Note that the map RRg(M , —) is well defined on a non-
compact manifold M when the abstract moment map is proper, since we
can take #%* relatively compact and the index map Indexje.s is then
defined (see Corollary 3.2).

According to Proposition 4.1, we have the partition RRO(M, —) = 5.4,
RRg(M , —), and the rest of this article is devoted to the analysis of the
maps RR§ (M, —), f € %;.

In Sections 6.3 and 6.4 we prove that [RR?(M, E)]°=0, when E is
fe-strictly positive with 5y 5 > <0, B> (see Def. 1.2 for the notion of
fe-positivity). The next two Sections are devoted to the computation of
RR§ (M, —) when 0 is a regular value of the abstract moment map f.

5.1. Induced Spin® structures. In this Section we first review the notion
of Spin‘-structures (see [25, 14, 33]). After we show that the almost
complex structure J on M induces a Spin°-structure on .#,.,.

The group Spin, is the connected double cover of the group SO,.
Let #: Spin, —» SO, be the covering map, and let ¢ be the element who
generates the kernel. The group Spin; is the quotient Spin, x,, U,, where
Z, acts by (e, —1). There are two canonical group homomorphisms

n: Spin; — SO, , Det: Spin{ — U,

such that #° = (7, Det): Spin;, — SO, x U, is a double covering map.

Let p: E > M be an oriented Euclidean vector bundle of rank #, and let
Pso(E) be its bundle of oriented orthonormal frames. A Spin°-structure
on E is a Spin;-principal bundle Pg,,:(E) — M, together with a Spin‘-
equivariant map Pg;,c(E) — Pso(E). The line bundle L := Pg,c(E) Xp C is
called the determinant line bundle associated to Pg,,c(E). We have then a
double covering map*?

ng: PSpin°(E) — Pgo(E) x Py(L), (6.1)

where Py(L) := Pge(E) Xpe, U; is the associated U,-principal bundle
over M.

A Spin‘-structure on an oriented Riemannian manifold is a Spin®-
structure on its tangent bundle. If a group K acts on the bundle E,
preserving the orientation and the Euclidean structure, we defines a

BIf P, Q are principal bundle over M respectively for the groups G and H, we denote
simply by P x Q their fibering product over M which is a G x H principal bundle over M.
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K-equivariant Spin‘-structure by requiring Pg,,c(E) to be a K-equivariant
principal bundle, and (6.1) to be (K x Spin{)-equivariant.

We assume now that FE is of even rank n =2m. Let 4,,, be the irreducible
complex Spin representation of Spin$,. Recall that 4,, =4} @ 4,

inherits a canonical Clifford action ¢: R*” — Endc(4,,) which is Spin$,, -

equivariant, and which interchanges the graduation: ¢(v) : 45, — 45, for

every v € R™. Let
F(E):= PSpin°(E) Xsping, Ay, (6.2)

be the irreducible complex spinor bundle over E — M. The orientation on
the fibers of E defines a graduation S(E):= S (E)* ® #(E)~. Let E be
the bundle E with opposite orientation. A Spin® structure on E induces a
Spin°®-structure on E, with the same determinant line bundle, and such that
F(E)t=S(E)*.

More generally, we associated to an Euclidean vector bundle p: E > M
its Clifford bundle CI(E) - M. A complex vector bundle & — M is called
a complex spinor bundle over £ — M if it is a left-CI(£)-module; moreover
& 1is called irreducible if CI(E) ® C ~ Endc(%). In fact the notion of
Spin‘-structure (in terms of principal bundle) on a Euclidean bundle
E — M is equivalent to the existence of an irreducible complex spinor
bundle over E - M [33].

Since E = Py (E) Xgping, R*", the bundle p*¥(E) is isomorphic to
Ppine(E) Xsping,, (R @ 4,,).

DEFINITION 6.6. Let S-Thom(E): p*¥#(E)* — p*¥(E)~ be the symbol
defined by

PSpinC(E) XSpingm (RZm @ A;rm) g PSpinc(E) XSpingm (Rzm @ A;m)
[p; v, w]l— [p, v, e(v) w].

When E is the tangent bundle of a manifold A, the symbol S-Thom(E)
is denoted by S-Thom(M). If a group K acts equivariantly on the
Spin‘-stucture, we denote by S-Thomy (E) the equivariant symbol.

The characteristic set of S-Thom(E) is M =~ { zero section of E}, hence it
defines a class in K(E) if M is compact. When E =TM, the symbol
S-Thom(M) corresponds to the principal symbol of the Spin® Dirac
operator associated to the Spin°-structure [14]. When M is compact,
we define a quantization map 2(M, —): K(M)— Z by the relation
2(M, V) :=1Indexy(S-Thom(M) ® V): 2(M,V) is the index of the Spin®
Dirac operator on M twisted by V.
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These notions extend to the orbifold case. Let M be a manifold with a
locally free action of a compact Lie group G. The quotient & := M /G is an
orbifold, a space with finite quotient singularities. A Spin® structure on % is
by definition a G-equivariant Spin® structure on the bundle T M — M;
where To;M is identified with the pullback of TZ via the quotient
map 7n: M —» Z. We define in the same way S-Thom(%Z) € K,,(TZ), such
that #*S-Thom(%Z') = S-Thom;(T;M). The pullback by = induces an
isomophism 7n*: K, (T%) ~ K;(T;M). The quantization map 2(Z, —) is
defined by: 2(%, &) = Index, (S-Thom(%) ® &).

LemMma 6.7. Let E—~ M be an oriented G-bundle. Let g,, g, be two
G-invariant metric on the fibers of E, and suppose that (E, g,) admits an
equivariant Spin‘-stucture denoted by Pg,.«(E, g,). The trivial homotopy
g =(1—1).gy+1.g, between the metrics, induces an equivariant homotopy
between the principal bundles Py, (E, g,), Pso(E, g,) which can be lift to an
equivariant homotopy between Py «(E, g,) and a Spin®-bundle over (E, g,).
When the base M is compact, the corresponding symbols S-Thom(E, g,)
and S-Thom(E, g,) define the same class in K;(E).

Proof. Let & be the irreducible complex spinor bundle associated to
Py, (E, g). We denote by c,: CI(E, g,) - Endc (&) the corresponding
Clifford action. Let 4, be the unique g,-symmetric endomorphism of F
such that g,(v, w) = gy(4,(v), 4,(w)). The composition ¢, o 4, is then a
Clifford action of (E, g,) on &. It defines a Spin°-structure on the bundle
(E, g,) which is homotopic to Pg,o(E, g5). |

Consider now the case of a complex vector bundle £ — M, of complex
rank m. The orientation on the fibers of E is given by the complex struc-
ture J. Let Py(E) be the bundle of unitary frames on E. We have a
morphism j : U,, — Spin$,, which makes the diagram'

U, —i, Spin3,,

k l'f (6.3)

SO,,, xU;.
commutative [25]. Then
Pgpine(E) := Spinj,, X; Py(E) (6.4)

defines a Spin‘-structure over E, with bundle of irreducible spinors
S (E) = A¢ E and determinant line bundle equal to det; E.

' Here i: U,, > SO,,, is the canonical inclusion map.
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Remark 6.8. Let M be a manifold equipped with an almost complex
structure J. The symbol S-Thom(M) defined by the Spin°®-structure (6.4),
and the Thom symbol Thom(M, J) defined in Section 2 coincide.

Consider our case of interest, where M is a compact G-manifold
equipped with an equivariant almost complex structure J and with an
abstract moment map f;: M — g*. Here we assume that 0 is a
regular value of f;: % := f5'(0) is a smooth submanifold of M with a
locally free action of G. Let ., := Z /G be the corresponding “reduced”
space, and let n: & — 4,4 be the projection map. On Z we have an exact
sequence 0 > TZ - TM|, s, g*x% -0, and TZ =T;Z ® g, where
gy ~ g X & denotes the trivial bundle corresponding to the subspace of T#
formed by the vector field generated by the infinitesimal action of g. So
TM |, admits the decomposition

M|y =TeZ ®g, ®g*x Z. (6.5)

The bundle n*(T.#,.) is identified with T;% . Thus the decomposition (6.5)
can be rewritten

TM|y =" (Tllg) ® gc X Z. (6.6)

with the convention g, = (g ® iR) x Z and ¢* X Z = (g ® R) x Z.

LemMmA 6.9. The data (J, ) induce :

* an orientation 0.y on Mg,

e a Spin®-structure Q.o on (Mg, 0peq)-

Moreover, the irreducible complex spinor bundle N\; TM, when restricted
to %, defines a complex spinor bundle over n*(TM,y) ® gc X % that is
homotopic to w*F (M) ® Np gc X Z.

Proof. Since g x Z is canonically oriented by the complex multiplica-
tion by i, the orientation o(J) on M determines an orientation o(.#,) on
T M, such that o(J) = o(M,.4) 0(1).

Let g, be the Riemannian metric on TM |, equal to the restriction to &
of the Riemannian metric on M (which is taken compatible with J). If P is
the Spin‘-structure on M determined by J (see 6.4), the restriction P|, is
then a Spin°-structure on (TM |,, g,). Let g, be a G-invariant metric on the
bundle TM |, which makes (6.6) an orthogonal sum, and which is constant
on the the trivial bundle g-. x Z. We know from Lemma 6.7 that the
Spin‘-structure P|, on (TM|,, g,) is homotopic to Spin®-structure P, on
(TM|,, g,) (both are G-equivariant).



LOCALIZATION OF THE RIEMANN-ROCH CHARACTER 479

The SO,, x U,-principal bundle Pso(n*(T.A,.q)) X Py(gec X Z) is a reduc-
tion" of the SO,, principal bundle Pg,(7*(T.A,y) ® gc X Z), thus we have
the commutative diagram

Q —— Pyo (™ (T M) X Py (e X Z) X Py(L|y)

l l (6.7)
P, ——— Pyo (n*(Tlleg) ® gc X Z) X Py(L]),

where L =det.(TM,J). Here Q is a (%' (SO, x U,) ~ Spin}, x
U,-principal bundle. Finally we see that Q,4,=Q/(U,xG) is a Spin®
structure on .4,y with determinant line bundle L,y = det.(TM|,)/G.

The irreducible complex spinor bundle A’ TM, when restricted to %, is
homotopic to &’ =Py XS 4o, Using (6.7) we get

L' = Q X (sping xup (e ® \° ch
=((Q/U) Xsping, Aoi) @ ((Q/Spinj;) xy, A ch
=1"S (Mrea) ® (N 8c) X Z.
Here we have used the identifications Q /Spin5, = Py(g¢ X Z)and Py (g X )
Xy, NC'=(Ngo)xZ. 1
We shall consider the particular case where J defines an almost complex
structure on .#,.4. It happens when the following decomposition holds

TM|, =TZ ® J(gy). (6.8)

With (6.8), TM |, decomposes in TM |, = #*(TM,oq) ® g5 ® J(g4) : let us
denote by pr: TM|, — n*(T.#,,) the corresponding projection. Since
gy ®J(g») is invariant by J, the endomorphism J. 4 :=proJ is a
G-invariant almost complex structure on 7*(T.4,,).

Using the identification g~ g*, one considers the endomorphism 2 of
the trivial bundle g x & defined by

D(X)=—dfg(J(X,)), for X e g. (6.9)

Condition (6.8) is then equivalent to : det 2(z) #0 for all ze . We
shall use the normalized map 2(2'%) "/, which is an orthogonal map for
the fixed Euclidean structure on g (to simplify we keep the same notation
9 for it). Let J, be the complex structure on the trivial bundle g x &
defined by the following matrix

S <0 —@)
77\ o /)

'S Here 2n = dim M, 2k = dim .#,.; and I = dim(g), so n=k+1.
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LeMMA 6.10. Suppose that the decomposition (6.8) holds. On'* TM |, =
*(Tll,eq) ® g X Z the almost complex structure J is homotopic to J 4 X J,.
Hence the irreducible complex spinor bundle \; TM, when restricted to Z,
defines a complex spinor bundle over n*(TM,q) ® gc X & which is homotopic
t0 (N5, Tlleg) ® N3, 8c X Z.

Proof. Trough the decomposition TM |, = 7*(Tl,q) ® g ® J(g4),
the map J is described by the matrix

<J¥d O)

4 1)
Jred 0

.r=< )
0

In the decomposition (6.6), J' has the following matrix

<Jred B>
0o ¢/

with C € End(ge X Z) of the form

< —2b2! —9)

g '+27 b /)

Hence J' is tied to J.4 xJ, through the homotopies t > ¢ B and ¢t -t b,
0<r<l1. |

6.2. The map RR§. The map RRS(M, —): Ko(M)— R™°(G) is the
Riemann-Roch character localized near C: = f'(0) (see Definition 6.5).
In particular, RRS (M, —) is the zero map if 0 does not belong to f(M).
In this Section, we assume that 0 € f;(M) is a regular value of f;. We have
proved in the past Section that J induces an orientation o(.#.4) on the
reduced space #,.; together with a Spin‘-structure on (M4, 0(M.q)). Let
S-Thom(.4,.4) be the elliptic symbol defined by this Spin°-structure and let
9( M4, —) be the corresponding quantization map.

hence J is homotopic to

ProrosiTION 6.11.  For every G-equivariant vector bundle E — M, we
have

RR{(M,E)= Y, XMy, Eca®V;).V, in R™(G), (6.10)

pedy

' Here we use the decomposition (6.6) of TM |,.
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Here E,., = E/G is the orbifold vector bundle on M, induced by E, and
V,=2Z xsV,. In particular, the G-invariant part of RR§ (M, E) is equal to

E(%ed5 Ered) e”Z.

Equality (6.10) is obtained by Vergne [38, Part II] in the case of a
Hamiltonian action of the circle group on a compact symplectic manifold.

Suppose now that the decomposition (6.8) holds. The trivial bundle
gc XZ has two irreducible complex spinor bundles Ag gcxZ and
AJ, 8¢ X Z. Thus

N7, 8e X Z =N\; e X Z ®*L, (6.11)

where 7*L, - % is the line bundle equal to Homg (Af gc X Z,
Ny, 8c X Z): at ze Z, n*L,|, is the complex vector space of linear maps
A¢ 8¢ = A}, 8c commuting with the Clifford actions (see [33]). Note
that A3 gc X Z = A& gc X Z ® n*L,, if the orientation of J,, coincide with
those defined by 1 (i.e., det 2 > 0). If det 2 <0, we have A7 gcxZ =
A gc X Z ® n*L,,.

ProrosITION 6.12.  Suppose that the decomposition (6.8) holds, and let
RR'( Mo, —) be the quantization map given by J.,. For every G-equiv-
ariant vector bundle E — M, we have

[RRg(Ma E)]G = i RRJred(%e ] Ered ® L@)a (612)

where + is the sign of det 9.

Proof of Proposition 6.11. Following Definition 6.5, the map RRS(M, —)
is defined by Thom/, ;o;(M) € Ks(Tc%%°), where %%° is a (small) neigh-
borhood of % in M. Since 0 is a regular value of f;, #%° is diffecomorphic
to Z x g*, and the moment map is equal to the projection f: Z x g* — g* in
a neighborhood of Z in Z x g*. We denote by g, € K5(Ts(Z x g*)) the
symbol corresponding to Thom/ ;(M) through the diffeomorphism
U%° =% xg*. Let Index$, »: Ko(To(Z xg*)) > R™°(G) be the index
map on % xg* The map RR{(M,—) is defined by RRS(M,E)=
Index§, (0, ® E»).

Following Atiyah [1, Theorem 4.3], the inclusion map j: & <, % x g*
induces an R(G)-module morphism j;: K;(TeZ) —» Ko(To(Z x g*)), with
the commutative diagram
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Ks(TeZ) — Ko(To(Z x g%))

\ 1 (6.13)
Index 4

R™(G)

More generally, the map i: K;(T;Z) —» K5(Ts%) is defined by Atiyah
for any embedding i: & <, % of G-manifolds with % compact.

Consider now the case where i is the zero-section of a G-vector bundle
& — Z. In general the map i, is not an isomorphism. If furthermore the
G-action is locally free over &, then Ty %, T;& are respectively subbundles
of T - %, T — &, and the projection T8 - T;Z is a vector bundle
isomorphic to s*(T&) (where s: T;Z <, TZ is the inclusion). Hence the
vector bundle T4;& — T;Z inherits a complex structure over the fibers
(coming from the complex vector bundle T& — TZ). In this situation, the
map i;: Ko(TgZ) - K;(T;6) is the Thom isomorphism.

In the case of the (trivial) vector bundle % xg*— %, the map
ji: Ke(TeZ) —» Kg(To(Z x %)) is then an isomorphism. Take 6, = (j,)™
(64), and from the commutative diagram (6.13) we have RRS(M, E) =
Index$ (6, ® E|,). From Theorem 3.3 we get

Index$ (6, ® E|y)= ), Index, (6" ® E, ®V,*).V,,
yeA: -
where 0™ e K, (T.#,,) corresponds to &, =(j) ' (c,) through the
isomorphism 7% K, (TAy) > Ks(TgZ). Proposition 6.12 follows
immediately from

LEmMMA 6.13. We have
Jio (m)* (S-Thom(A,ey)) = 04

in Kg(Tg(Z % g%)).

Proof. Let (M) the irreducible spinor bundle defined by the almost
complex structure J. Let J be the almost complex structure on % x g*,
equal to J on £, and which is constant on the fibers of the projection
Z xg*—> Z. Since the almost complex structures J and J are homotopic
near %, the complex o, can be defined on % xg* with J: we take
F(M)|, x g* for bundle of spinors over Z x g*. Following (6.6) and (6.5),
for (z,&) e Z xg* a vector ve T, ,(Z xg*) decomposes into v=0v, +X
+1Y, where v, e n*(TM,), and X +1Y € gc. The map o,(z, & v) acts on
(M), by the Clifford action pushed by the vector field"” #(z, &) =1 & :

04(z, & 0)=ClL(v, + X +1(Y =&)).

' The tangent vector #%(z, &) € g4 |, is equal to 1€ € gc X Z.
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Using now Lemma 6.9, we see that o, is homotopic to the symbol o/,
which acts on the product (7*F(M,q) ® N gc X Z) X g* by

O'ZQ»(Z, é, U) = Clz(vl) @ CI(X+I(Y_6))

Now we see that the map Cl,(v,) ® CI(X +1(Y —¢)) is homotopic, as a
G-transversally elliptic symbol, to Cl,(v;) ® CI(£+1X). The K-theory class
of this former symbol is equal to (n)* (S-Thom(./,.4)) ® k(C) (where
k: {0} <> g*) which is the symbol map of j, o (n)* (S-Thom(4,)) (see the
construction of the map j, in [1] [Lecture 4]). We have shown that
jr o (@* (S-Thom(A,ey)) =05 in Ko(Tg(Z xg%)). 1

Proof of Proposition 6.12. Here the proof is similar to the former proof
but we use Lemma 6.10 instead of Lemma 6.9. One as to show that

j! ° (7[)* (S_Thom('ﬂred) ® L.@) = iag’

in Kg(Tg(Z x g%)), where + is the sign of det 2. By Lemma 6.10, we see
as before that o, is homotopic to the product

CL(v)) © Cl,, ({+1X) (6.14)

acting on (Aj, n*(Tllyy) ® N7, 8c X Z) xg*. Now we use the iso-
morphism of irreducible complex spinor bundles (6.11) where we have two
different orientations o(J,;) and o(1) on gc X Z: o(J,) = +o0(1) where + is
the sign of det 2. Hence the transversally elliptic symbol (6.14) is equal to

+CL (1) © Cl¢+1X) O 1d,,

acting on (A}, 7*(Tolle) ® N 8 X Z ® Lg) xg" I

6.3 The map RRj when G, =G. When f € %;—{0} is in the center of
g, the map RRIG,(M , —) is the Riemann-Roch character localized near
M’ f5'(B). In this Section we prove that [RR}(M, E)]°=0if E is a
[fg-strictly positive complex vector bundle.

The almost complex structure J and the abstract moment map
fe: M — g restrict on M* to an almost complex structure J, » and a abstract
moment map f; ;4. The set MP A f21(B) = (fs1y?) ™" (B) is a component
of the critical set of C/™’, and we denote by RRj(M*, —): Ko(M”*) >
R~*(G) the Riemann—Roch character on M” localized near the component
(fslu?) 7" (B) (see Definition 6.5).
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Here we proceed as in Section 5. Let p: 4/~ — M* be the normal bundle
of M*? in M. The torus Ty < G acts linearly on the fibers of the complex
vector bundle /7, thus we associate, as in Theorem 5.8, the polarized
complex G-vector bundles A" *# and (& ® C)™~.

PROPOSITION 6.14.  For every E € Ks(M), we have the following equality
in R(G) :

RR(M,E)=(=1)"" Y. RR§(M*, E|ypp ® det /" @ SK(N ® C)*F),

keN

where 1, is the locally constant function on M? equal to the complex rank of
NTE

Consider the G x T;-Riemann-Roch character RR}*™(M”*, —) localized
near M*?n f3'(B). It can be extended trivially to a map, still denoted by
RR§*™(M?*, —), from Kgz(M*)& R(T;) to R™(G) ® R(T,). Following
Definition 5.5 the element Ag ,/V € Ko, (M )~ Kg(MP) ® R(Tj) admits
a polarized inverse [ Ay A~ ] € Ko(M ﬂ) ® R(T,). Finally the result of
Proposition 6.14 can be written as the following equality in R™°(G)
® R(Ty) :

RRG(M, E) = RRS*"* (M, E|,p ® [N 4 15"). (6.15)

Consider the decomposition of RRG(M E)=3, m;,(E) x¢ in irreduc-
ible characters y¢, A€ A}. Let E be a fg-strictly positive complex vector
bundle over M, and let n; ; >0 be the constant defined in Definition 1.2.
If & is a connected component of M? which intersects f;'(f), every
wekight a of the Tg-action on the fibers of the complex vector bundle

E®|, ® det &P ® SK(N ® C)*F) satisty <a, B > k.75, Lemma 9.4
and Corollary 9.5, applied to this situation, show that

k
my (E®)#0 = O, B = k.05 4. (6.16)
In particular [RRg(M ,E)]= my o(E) = 0, so we have proved the

COROLLARY 6.15. Let E be a fg-strictly positive complex vector bundle
over M (see Def. 1.2). For any f € %;— {0}, with G; = G, the G-invariant
part of RR§(M, E) is equal to 0.

Proof of Proposition 6.14. Here we proceed as in the proof of Theorem
5.8. The almost complex structure J induces an almost complex structure
Js on M # and a complex structure J, on the fibers of 4. The G x Ty-
vector bundle p: &/~ — M?* is isomorphic to Rx; N - M?=R/U, where R
is the T s-equivariant unitary frame of (4", J ;) framed on N.
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Let #%# be a neighborhood of Cg in M, and consider the G-trans-
versally elliptic symbol Thom/; (M) € Ko(ToU £} introduced in Defini-
tion 6.4. Here we choose % % # diffeomorphic to an open subset of 4 of the
form ¥ :={n=(x,v) € A, x € U and |v| < ¢}, where % is a neighborhood
of (fsly?) ' (B) in MP. The moment map f;, the vector field #¢, and
Thom/, ;,(M) are transported by this diffeomorphism to ¥~ (we keep the
same symbol for these elements).

We define now the homogeneous vector field #¢ on A" by

H = (fo(p(m)).y (n),ne N (6.17)
Using the isomorphism TA" x p*(TM*? & A ) (see (5.4)) the manifold A~
is endowed with the almost complex structure J := p *(Jp ® J ). With the

data (J, #°), we construct the following G-transversally elliptic symbol
over A" :

ThomY, ;4,(A")(n, w) := Thomg (A", T)(n, w—FE),  for (n,w)eTAH.
(6.18)

Let us now verify that
ThomY, (M) = ThomZ, (A7) in Ke(Tg?").

The invariance of the Thom class after the modification of the almost
complex structure is carried out in Lemma 5.9: the class of ThomZ 5,(M)
is equal in K;(T;7") to the class of the symbol

o,(n, w) :=Thomg (N, N)(n,w—H#C),  (n,w)eT¥ .

Using now the family of vectors field #%(n) := (fgo(x, t.v)), (n), te
[0,1], n=(x,v) € ¥, we construct the homotopy

o,(n, w) := Thomy (N, J)(n, w— #C(n)), (n,w)eTy

of G-transversally elliptic symbol between o, and Thom} tp7(A) (one
easily verifies that Char(g,) N Tg? = Cg for every ¢t € [0, 1]). Finally, we
have shown that Thom 4,(4") = Thom{, (;1(M) in K4(T47"), thus

RR§(E) =Index5(Thom{, (5(A") ® p*(Eps))

for every E € K;(M).
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Now we proceed as follows. For every (n, w) € T7", the Clifford action
ThomZ, s (A ) (m, w) =Cl,(w—#F) on Ap T, is equal to the exterior
product

CL(w, —[#71)) © CL(w,—[#7],) (6.19)

acting on Ay T.M*?® AL A|,, where x = p(n). Here w » w;, T,¥" - T, M*
is the tangent map Tp|,, and w - w, = [w]", T,¥" — A"|, is the “vertical”
map. We see that [#°], = #¢ is the vector field on M” generated by the
moment map f;|,# (see Definition 6.2).

Suppose that the exterior product (6.19) can be modified in

ClL(w, = H7) © CL(wy =B ly), (6.20)

without changing the K-theoretic class. This will prove a modified version
of (5.8) in K 1yxu(Taxt,xv(RXN)):

ny Thom% 151 (A") = n* Thom{, 15 (M*) © Thomf ,,(N), (6.21)

where 7y: RXN - Rxy; N=.", 1: R— R/U = M* are the quotient maps
relative to the free U-action, and © is the product

Kewv(ToxvR) X Kyyuy(TryN) = Kgyrywv(Toxr, xo(RXN)).  (6.22)

The symbols Thom/ 4,(4"), Thom{, ;;,(M”) and Thomf,,,(N) belong
respectively to KGxTﬁ(TGXTﬁ(R Xy N)), Ks(Tg(R/U)), and KvﬂxU(TT,,xUN)~
Proposition 6.14 follows after taking the index, and the U-invariants, in
(6.21).

Finally we explain why the change of [#¢], in 8|, can be done in
(6.19) without changing the class of Thom{;’ 5 (A).

Let u”: g — I'(M?, End(./")) be the “moment” relative to the choice of
a connection on A — M? (see Definition 7.5 in [10]). Then, for every
X € g we have

[X/V(x’ v)]Vz_:uJV(X)lx'v’ (x’ U)E./V

(see Proposition 7.6 in [10]). When X = f, the vector field f, is vertical,
hence we have u”'(B)|,.v=2L"(B)|,.v=—pB(x, v), where L (p) is the
infinitesimal action of f on the fiber of 4" — M*. We have also [ #°], =
—u(f5(x))],.v, for every n = (x, v) € N

Note that the quadratic form v e A, — |Z*(B)|,.v|* is positive definite
for x e M*. Hence, for every X e g close enough to 8, the quadratic form
ve N, = (u’(B)|,.v, u”(X)|,.v) is positive definite for x € M*.
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Consider now the homotopy
o'(n,w) :=CIl (w,—H#F)
GClx(WZ_t[%312_(1_t)ﬁﬂln)a (n’ U)GV te[O,l].
We see that (n, w) € Char(c*) n T¢ 7 if and only if

W) wi=H7, w,=t[#JL+(1—1) B (n), and
() (W, Xpp(x))+ Wy, [X 4 -(x, v)]") =0 forall X eg.

Take now X = f;(x) in (ii). Using (i), we get
|52+t |1 (fe (), -0+ (1=1).2(x, v) =0, (6.23)

with 2(x, v) := (£ (B) |- v, " (f6(x))],-0).

If x € M? is sufficiently close to ( fg|x#) " (B) , the term X(x, v) is posi-
tive for all v € 4. In this case, (6.23) gives # ¢ =0 and X(x, v) = 0, which
insures that x e C§ and v = 0.

We have proved that Char(¢") n Tg7? = Cg for every t € [0, 1] if ¥ is
“small” enough. Hence ¢’ is an homotopy of G-transversally elliptic
symbols over T#" between the exterior products (6.19) and (6.20). ||

6.2. Induction formula. This section is concerned by an induction
formula which compare the map RR,,?(M , —) with the similar localized
Riemann—Roch characters defined for the maximal torus, and the stabilizer
G;. The idea of this induction comes from a previous paper of the author
[32] where a similar induction formula in the context of equivariant
cohomology was proved.

Consider the restriction fy: M — 15 of the moment map f; to the
maximal torus H. In this situation we use the vector field #7|,
fu ()|, me M to decompose the map RR¥(M, —): Ky(M)— R(H)
near the set C/#={#"=0}. From Lemma 6.3 there exists a finite
subset %, < b, such that C/# = J;_4, C§, with Cj = M*n f(p). As in
Definition 6.5, we define for every f§ € %, the map RRII,?'(M, —): Ky(M) -
R~°(H) which is the Riemann-Roch character localized near C f,?' .

Let W be the Weyl group of (G, H). Note that 4, is a W-stable subset
of h, and that B; = B, Nn'b,.

THEOREM 6.16. We have, for every e %B;, the following induction
formula between RR?(M, —) and RRII;(M, —). For every Ee€ Kz(M), we
have'®

¥ See Egs. (9.2) and (9.4) in Appendix B for the definition of the holomorphic induction
maps HolF and Holg, .
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RRY(M, E) = ﬁHolz(RR”(M E) Ab 9/b)

|Wp| wgw Holf(w.RR} (M, E))

= ) Holj(RR;(M, E))
Bew.p
where Wy is the stabilizer of B in W.

We can use the previous induction formula between G and H index maps
to produce an induction formula between G and G; index maps. Consider
the restriction fg,: M — g, of the moment map to the stabiliser G5 of § in
G. Let RRgﬁ (M, —) be the Riemann-Roch character localized near
CP=M* £3'(p).”

COROLLARY 6.17. For every € B, and every E € K;(M), we have
RR§(M, E) =Holg (RRf,fﬁ(M E) A\t g/gﬂ) in R™(G).

Proof of the Corollary. It comes immediately by applying the induction
formula of Theorem 6.16 to the couples (G, H) and (G, H).

COROLLARY 6.18. Let E be a fg-strictly positive complex vector bundle
over M (see Def. 1.2). We have [RRg(M, E®)]G=0, if k.ng 5, > <0, B.
Here =3 ,.,« is the sum of the positive roots of G, and 7, is the
strictly positive constant defined in Definition 1.2.

Proofof Corollary 6.18. Let us first write the decomposition® RR§*(M, E ®)

=3, a5 M, ﬂ(E ) x5, in irreducible character of G;. We know from (6.16)
that m; ,(E );EO = {4, B> = k.ng 5. Each irreducible character x 9 is
equal to Holf(h*), so from Corollary 6.17 we have RRj(M,E ®) =
Hol¢((3, mw(Eé) W) 1T, 4514,y (1—h7%)), where zlic(g/gﬂ) is the set of
H-weight on g/g,.”" Finally , we see that RRS (M, E ®) is a sum of terms of

" Note that M’  f 5 (8) = M’  f5'(B) because f5, = f5 on M”.

*We choose a set A% ; of dominant weight for G that contains the set A% of dominant weight
for G.

*! The complex structure on g/g, is defined by g, so that («, > > 0 for all « € 4(g/gp).
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the form m;, ,(E ) Hol§(h*~7) where a; =3 ,.; « and I is a subset of
A(s/ap)
We know from Appendix B that Hol$ (/%) is either 0 or the character of
an irreducible representation; in particular Hol$ (k%) is equal to +1 only if
k

A, X)<0 for every X eh, (see Remark 9.3). So [RR?(M, E®)]G7&0

only if there exists a weight A such that m, ﬁ(E®) #0 and Hol% (h*~*)

= +1. The first condition imposes {4, > >k.nz s and the second gives
{4, B> <<y, B>, and combining the two we end with k.7 ; < <oy, f) <
k

Y atosop <% B> =<6, B>. We have proved that [RR§(M,E®)1°=0 if
k.ngs><6,6>. |

Proof of Theorem 6.16. The first two equalities of the Theorem can be
deduced from the third one, that is RRS(M, E) =Yy .y 5 Hol§(RR} (M, E)).

First, it is easy to see that RRY s(M,E)=w. RRH(M E) for every we W

and f € %y . Then the relation Holg(d) At g/B) =3, . Hol%(w.¢), which
is true for every ¢ € R™*(H) (see Remark 9.2), gives the first equality of the
Theorem.

The map RRg(M, —) is defined through the symbol Thom{;) (M) e
Ko(Tgu%?), where i%?: 4 %* — M is any G-invariant neighborhood of C§
such that #“# n C/o = C§ (see Definition 6.4). We define in the same way
the localized Thom complex Thom wp(M) € Ky(Tg )

For notational convenience, we will note in the same way the
direct image of ThomG s (M) (resp. Thom{,, 51(M)) in Kg(TgM) (resp.
K, (TyM)) via i$?: Ko(ToU%P) - Kg(TgM) (resp. i?: Ky (T, AP >
Ky(TyM)).

Then we have RR§(M, E) =Index§, (Thom 4 (M) ® E) for E € Ks(M).
The Weyl group acts on K(T;M) and we remark that w.Thom}; (M) =
ThomY, (. ;(M) for every B € %, and we W. After taking the index we see
that RRZ s (M, E)= w.RR/? (M, E) for every G-vector bundle E.

Consider the map r), ,: Ko(TgM) > Ky (T M) defined with y € b in the
interior of the Weyl chamber, so that G, = H (see Sect. 3.5). The third
equality of the Theorem is an immediate consequence of the next Lemma.

LEMMA 6.19. We have

r’ (Thomf ;(M))= Y Thomf 4y(M)® Az /b in Ky(T,M).

pew.p
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Proof of Lemma 6.19. Consider a G-invariant open neighborhood %% #
of C§ such that #%# n C/° = C§. We know from Proposition 3.7 that the
class rf;'H(Thomé, tp1(M)) is represented by the restriction to T# %% of the
symbol

a;(m, v) = Cl,(v—H#7) © Cl(pg;u(v)), (m,v)eTM.
Here ug,u: TM — g/b is the g/bh part of the Hamiltonian moment map

Ug: TM —g. Let fg/y: M — g/b (resp. f: M —b) be the g/bh-part (resp.
the h-part) of the moment map f;. We will use in our proof the relation

(ueu(H ), form)y = 1H N, — (A, AT,y (6.24)

Consider the family of H-equivariant symbols a4, 6 € [0, 1] defined on TM
by

ay(m, v) = CL,(v—H7) © Cl(Oug (V) +(1—0) fo;u(m)),  (m,v) e TM.
We see that (m, v) € Char(c,) « v=#y and Oug,u(H 1)+ (1—0) fo,1(m)
= 0. Combining (6.24) with the fact that the vector field s#” belongs to the
H-orbits, we see that Char(ay) N TyM < {#° =0}, for every 6 €[0, 1].

By this way we have proved that o,|,cs is homotopic to the H-trans-
versally elliptic symbol ¢/, |65 where

o (m, v) = CL,(v— A7) © CI( f55 (m)), (m,v) e TM.

We transform now o,; via the following homotopy of H-transversally
elliptic symbols

o“(m, v) :=ClL,(v—H#T —u.#5")© Cl( fo/u(m)), (m,v) e TM,
for ue[0,1]. Here Char(¢“)nTyM ={#°=0}n{fgy =0} for all

u e [0, 1], hence g, |45 4 is homotopic to the H-transversally elliptic symbol
0111 |46 Where

o (m, v) = Cl,(v=H,) © CI( f5u(m)), (m,v) e TM.

At this stage we have proved that o, |,6.# = g,y |46 in Ky (Ty%%*). Note
that

Char(a]462) N TH%G’/S = G~(Mﬂ N fgl(ﬁ)) N {fG/H = 0}
=W.(M"n f51(B)),
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because G.f nh=W.p. Let i: #%* <, % be a H-invariant neighborhood
of W.(M*?n~ f.'(B)) such that Z N {#" =0} =W .(M*~ f.'(B)). The
symbol ;;; |, is H-transversally elliptic and

ix(0prla) = Oprlacs = 0rlpsr  in KH(TH%G’ﬂ)- (6.25)

As in the proof of Proposition 4.1, (6.25) is an immediate consequence of
the excision property.

The symbol (m, v) — CI,,(v—#") is H-transversally elliptic on T%, and
equal (by definition) to > s .y 5 Thom{,’ tp1(M). Hence o |, is homotopic,
in Ky(Ty), to (m,v) > ClL(v—#%)O0,,, where 0, is the zero map
from AZ*g/h to AZ*g/h. Finally we have shown that o, ly =X 4w s
Thom}; (41(M) ® At ¢/b in K (T,%), and then (6.25) finishes the proof.

7. THE HAMILTONIAN CASE

In this section, we assume that (M, w) is a compact symplectic manifold
with a Hamiltonian action of a compact connected Lie group G. The
corresponding moment map ug: M — g* is defined by

dug, X>=—w(X,, =), VXeg. (7.1)

The symplectic 2-form @ insures the existence of a G-invariant almost
complex structure J compatible with w, i.e, such that:

(l), W) - C()x(li, wa)a v, we TxM

is symmetric and positive definite for all xe M. We fix once and for
all a G-invariant compatible almost complex structure J, and we denote
by (—, =)y :=w(—,J—) the corresponding Riemannian metric. Let
RRY(M, —) be the quantization map defined with the compatible almost
complex structures J. Since two compatible almost complex structure are
homotopic [27], the map RRY(M, —) does not depend of this choice (see
Lemma 2.2).

Here the vector field # ¢ is the Hamiltonian vector field of the function®
F gl M - R, and {#°=0} is the set of critical points of [us|>. We
know from the beginning of Section 6 that we have the decomposition
RR(M,—)= Y4.4,RR;(M,—), where RR§(M,—): Ks(M)— R (G)
is the Riemann-Roch character localized near the critical set C§ =
G(M?* n ,u;l(/?)). In this section we prove the following theorem for the
Ug-positive vector bundles (see Def. 1.2).

2 Equality 7.1 gives 5 d ||ugl|* = (#°, —)
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THEOREM 7.1. Let E— M be a G-equivariant vector bundle over M.
Forallp € B;— {0}, the G-invariant part of RR(M, E) is equal to 0 if E is
Ug-positive and ,u;l(O) # &, or if E is ug-strictly positive. If 0 is a regular
value of uig, the G-invariant part of RRS (M, E) is equal to RR(M g, E..s).

In Section 7.4, we consider the general case where 0 is not necessarily a
regular value of u;, and E =L a moment bundle for u; (see Def. 1.1).
With our K-theoritic approach we recover the following

THEOREM 7.2 (Meinrenken-Sjamaar). Let L— M be a ug-moment
bundle, and let t be the principal face of M. The G-invariant part of
RRY(M, L) is equal to RR(M,, L,) for every generic value of v N ug(M)
sufficiently close to 0 (see Sect. 7.4 for the notations).

7.1 The map RR§. We assume that 0 is a regular value of u;. The
orbifold space M, := ,u;l(O) /G inherits a symplectic structure 4.
Let 2(X)=—du;(J(X,,)) be the endomorphism of the trivial bundle
,u;l(O) x g defined in (6.9). The compatibility of J with w gives

(2(X), X) = o(Xyr, J(Xy))u = [ X,

thus decomposition (6.8) holds. A small check shows that the induced
almost complex structure J.; on .4, is compatible with w,.4. Moreover
t—t2+(1—1t) Id is an homotopy of invertible maps between 2 and the
identity, hence the line bundle L, — .#,4 defined in (6.11) is trivial. The
map RR{ is determined by the Proposition 6.12; in particular

[RRg(Ma E)]G = RRJIEG('%de Ered)s

for any E € K;(M).

7.2 The map RR§ when G, =G. When f € %;—{0} is in the center of
g, we proved in Corollary 6.15, that the G-invariant part of RR§(M, E) is
equal to 0 when E is ug-strictly positive. In the Hamiltonian case we extend
this result for the ug-positive bundles.

LemMa 7.3. Let (Z,w) be a connected symplectic manifold with a
G-action, and a proper moment map p: & — g. Let J be a G-invariant almost
complex structure on & compatible with w. Let f be a G-invariant element
in a Weyl chamber Yy, of the Lie group G, such that Z*u™'(B) # &.
Let & ** be the polarized normal bundle of X? in & (see Def. 5.5 and
Theorem 5.8 ).
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If /+F =0, we have

wZ) b, ={Xeb,, (X, =B},
implying in particular that ||B||* is the minimal value of ||u||* on & .

Proof of the Lemma. Let Z be a connected component of Z# that
intersects u~'(f), and consider the set of weights {a;, i € I'} for the action of
T, on the fibers of the vector bundle /" — Z. We have then the following
description of the function (u, f) in the neighborhood of &. For v e A7,
with the decomposition v=@, v,, we have for |v| small enough

(1 By = 1B =3 i<, B |0,]* If {ay, B> < O for every i € I, we have
(4, B) = ||BI* in a neighborhood ¥~ of &. (7.2)

As u7'(B) is connected and intersect %, the last inequality imposes
u'(B)=Z. Take X € (%) nh,, and consider # :=u ([ X, B]). From
the convexity theorem [2, 16, 23, 26], the set " is connected. Then
¥ N A contains, but is not equal to u~'(B): there exists m e ¥~ n A with
p(m) € [X, ). So u(m)=p+t(X—p) with >0, and (u(m), B) > Bl
This two conditions imply that (X, ) > [8lI> |

LemmA 7.4. Let e B;—{0} be a G-invariant element such that ||B|* is
not the minimal value of |ug||* on M. Then for every ug-positive vector
bundle E over M we have the decomposition RR§(M, E) =Y, my ,(E) x¢ in
irreducible characters with

mp ,(E)#0 = {4, > >0.

In particular, if ,u;l(O) is not empty, the G-invariant part of RRg(M ,E) is
equal to 0 for every G-invariant € B;—{0}. The result remains when M is
non-compact, and the moment map lg is proper.

Proof. Recall the localization formula on M?# obtained in Proposition
6.14. For every complex G-vector bundle E over M, we have the following
equality in R(G)

RRG(M,E)=(=1)"" Y. RRG(M’ E|yp ®det /" @ SK(N/ ® C)*™F).
keN
(7.3)

Suppose that M is non-compact and that the moment map u, is proper
as a map from a G-invariant open neighborhood of ,ugl(ﬁ) in M to a
G-invariant open neighborhood of § in g. Each terms of (7.3) are well
defined and the equality remains valid in this case (It is not difficult to
extend the proof given in Section 6.3 to this situation).
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If || 8]|* is not the minimal value of ||us||?, we know from Lemma 7.3 that
the vector bundle 4" # is not trivial over each connected component & of
M? that intersects x~'(f). Then every T,-weight a on the fibers of the
complex vector bundle E|, ® det 4 ™# @ S¥(N ® C)* 7 satisfies <a, B> > 0.
Lemma 9.4 and Corollary 9.5, applied to this situation, show that
RR§(M,E) =Y, my ,(E) x¢ with my ,(E) # 0 only if (1, 8> >0. ||

7.3 The map RRg when Gz # G. Let o be the unique open face of b,
which contains f. The stabilizer subgroup G: does not depend on the
choice of ¢ € g, and is denoted by G,. Let g, be the Lie algebra of G,, and
let U, the G, -invariant open subset of g, defined by U, =G, -{y €b, | G, = G,}.

The symplectic cross-section Theorem [ 18, 26] asserts that the pre-image
¥ = ,u;l(U,,) is a symplectic submanifold of M provided with a Hamil-
tonian action of G,. We denote by w, the symplectic 2-form on %, and
U, ¥, — g, the moment map. Let J, be a G,-invariant almost complex
structure on %, which is compatible with w,. The vector field s#° on %,
generated by g, vanishes on C§:=u, (B) N (%) =u'(B) " M’ (see
Definition 6.2). We denote by*

RRS(¥,, —): K, (%,) > R(G,)

the Riemann-Roch character on %, localized near the compact subset C§
by the vector filed 5#°. It is well defined even since u, is a proper map (see
Definition 6.5).

THEOREM 7.5. For every E € Ky(M), we have

RR?(M, E)= Holga(RRg"(@‘,, Ely)) in R™(G),

COROLLARY 7.6. Let Be%B; with Gy #G. If ,u;l(O) # &, we have
[RRg(M ,E)]9=0, for every ug-positive vector bundle E — M. In general,
[RRg(M , E)]1° =0, for every ug-strictly positive vector bundle E.

Proof of the Corollary. The moment map g, is proper as a map from a
G, -invariant open neighborhood of u,'(f) in %, to a G,-invariant open
neighborhood of f in g,. If 0€ ug(M) we see that tf e u,(%,) for any
0 <t < 1, hence ||B]|* is not the minimal value of ||u, ||

Proposition 7.4 can be used for the map RR%(@G, —). For any
Ug-positive vector bundle E, we have RR% (%,,Ely,) =2, my ,(E) x%
with my ;(E) # 0 only if {4, > > 0 (the same holds when 0 ¢ y;(M) and E
is pg-strictly positive). With the induction formula of Theorem 7.5 we get*

3 For a non-compact G-manifold &, we denote by K,(Z) the equivariant K-theory of &
with non-compact support.
*Hol§ (x%) = Hol§(h*) since x5~ = Hol§y (h*).
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RR§(M, E) =3, my ;(E) Hol§(h*). But Hol§(h*) = 1 only if <4, X)> <0
for every X in the Weyl chamber (see Remark 9.3). This shows

Hol§(h") = +1 = (4, ) <0 = my ,(E)=0.

We have then proved that [RR(M, E)]°=0. |

Proofs of Theorem 7.5. We propose here two different proofs for this
induction formula. Both of them use the same technical remark.

The set G-%, = G X5, %, is a G-invariant open neighborhood of the criti-
cal set C ‘,f in M. The symplectic form w, when restricted to G X, %, can be
written in terms of the moment map g, and the symplectic form w, .

Opg (X +0, Y +w) = —(14,(3), [X, YD + o, |, (v, w), (7.4)

where X,Y € g/g;, and v, we T,%,.* With the complex structure Jg,;, on
G /G, determined by f, we form the almost complex structure J := J,, /6, X J,
on G xg, %,. Equation (7.4) shows that J is compatible with w in a nelgh—
borhood of C§, hence J is homotopic to J in a neighborhood of C§ 5 in
Gxs ¥,.

Remark 7.7. The almost complex structures J and J are homotopic in a
neighborhood of C§ 5> 80 as in Lemma 2.2 we see that the computation of the
localized Riemann-Roch character RRS 5 (M, E) can be done with J instead
of J.

First proof of Theorem 7.5. We will show here that Theorem 7.5 is a
consequence of the induction formula proved in Theorem 6.16 and of the
localization formula obtained in Proposition 6.14. The induction of
Corollary 6.17 shows that RR§(M, E) = Hol¢ (RRj (M, E)\" g/s,). So we
have to prove the equality

RR§(%,, Ely,) = RRF (M, E)\" ¢/3,. (7.5)

First we use the localization formula on both sides of the equality. For the
map RR§ (M, —) this gives

RRg"(M, E)=RR§”XT”(Mﬂ,E|Mﬁ®[/\};./17]/;1), (7.6)
and for RR§(%,, —) we have
RRG(¥,, Ely,) = RRE T ((%,)’, E|@,y ® [Nc /7 15). (1.7

Here 4" and 4" are respectively the normal bundle of M” in M, and the
normal bundle of (%,)? in %,. The complex structures on the fibers of A~
and /" are induced respectively by the almost complex structure J, and by
the almost complex structure J, (sce Remark 7.7).

 We use here the identification T(G %, %,) = G %, (3/9, ® T%,) (see (3.6)).
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Now we remark that (%,)” is an open neighborhood of M” n u_'() in
M?”, thus we have RR§*(M”, F) = RRj ((%,)?, F|@,) for any equivariant
vector bundle F. So (7.6) and (7.7) shows us that (7.5) is equivalent to

RRET (%), Elw,y ® [Ae A 15" ® [N 9/8, 1)
_ _R.RgUXTﬂ((@D')ﬂ’ El(@”)ﬂ ® [/\;: N ]El)’ (78)

where [ A" g/g, ]is the trivial bundle A" g/g, X (%,)* — (%,)".

To finish the proof, we notice that the normal bundle .4 — M?*, when
restricted to (%,)”, can be decomposed as A |4 p = A" @ [g/g,]. Here
[g/a,]1— (%) is the trivial complex vector bundle defined by [g/g,],, =
{X (5, |m» X €0/9,} for any me (#%,)”. This decomposition gives first the

equality Ay /"= Ag 47 ® [A¢ g/g,]andafter [Ag A 15" = [Ac A7 15

® [Ac 8/g, 15's which implies [Ag A 15" ® [Aca/g, 1=[Ac 47 15"
Equation (7.8) is then proved. ||

Second proof of Theorem 7.5. A G-invariant neighborhood #%# of the
critical set C§ in M can be taken of the form #%” =G x; U>" where #**
a relatively compact G, -invariant neighborhood of ,u;l(ﬁ) N M*? in %, such
that %%F n {#° =0} = u.' (B) " M.

The maps RRg(M , —) and RRg" (%,, —) are respectively defined by the
localized Thom symbols Thom¥ 45 (M) € Ko(T;%%*) and Thom{, 4(%,)
eK; (Tgu™ ) (see Definition 6.4). The inclusion i: G, <, G induces an
isomorphism i,: K, (Tg, %7") - Kg(To(G xg, %*")) (see Sect. 3.4).

LemMma 7.8. We have the equality

i(Thomg, 15,(%,) A¢ 8/8,) = Thomg 15,(M).

This lemma, combined with Theorem 3.4, shows that RR§(M, E) = Indg,
(RR§(¥,, Ely,) N¢ 8/9,) = Holg (RR}*(%,, Ely))) for any G-complex
vector bundle £ — M. The proof of Theorem 7.5 is then completed. ||

Proof of Lemma 7.8. Through the identification T(G x;, %)=~ G %,
(8/9, ® T*?), the vector fields #° and #¢ satisfy the relation #°(, ;=
A, (g, y]eU%". The symbol gy, .y, of Thom% (M) at[g, y; X +v] e
GXg, (8/8, ® TA™F) acts on A5 Ty, A=\ g/s, ® \;, T, %" as the

product

Oy x+01 = CU(X) © Cl (v— 7).

% The product of [Ay #7 15" and [ AL /g, 15" is well defined in K4, ((%,)?) & R(T,) since
these elements are polarized by f: each of them is a sum over the set of weights of T, of the
form Y, E,h* such that E,#0 only if <{a, f)>>0, and for any ¢'>0>0 the sum
Y s<a py<s Eoh* s finite (see Definition 5.5).
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Now we see that [g, y; X +v] - CI(X) © Cl,(v—#7) is homotopic, as
G-transversally elliptic symbol, to &G:[g, y; X +v]— CI(0) © Cl,(v—#7),
and & is, by definition, the image of Thom{ 4 (%,) At g/g, by ix. The
proof of Lemma 7.8 is then completed. ||

7.4 The singular case. In this section, we do not assume that 0 is a
regular value of u;, and we use the “shifting trick” to compute
[RR°(M,L)]° in term of reduced manifolds of the type u.'(a)/G,,
for every ug-moment bundle L. We know from Theorem 7.1 that
[RRE(M, L)1 =0 if 0 ¢ us(M) since every moment bundle is strictly posi-
tive (see Lemma 7.9). So, we assume for the rest of this section that
0 € ug(M).

Let @, be the coadjoint orbit through a € g*. It has a canonical symplectic
2-form and the moment map ¢, — g* for the G-action is the inclusion. We
denote by @, the coadjoint orbit ¢, with the opposite symplectic form. The
product M x @, is a symplectic manifold with a Hamiltonian moment map

ta M X0, — g*
(m, &) — ug(m)—¢.

On the symplectic manifold M x @, we have a quantization map
RRY(M x O,, —) with the following property: for any G-vector bundles E
and F over M and @, respectively, we have RRY(M x0,,n*(E)®
(7!)*(F))=RR%(M,E)-RR°(0,,F) in R(G). Here we denote by ,:
M x @, - M the projection to the first factor and #/, the projection to the
second factor. Since RR%(0,, C) = 1 we have

RR(M x @,, n*(L)) = RRS(M, L). (7.9)

We can now compute [RRY(M,L)]¢ by localizing the character
RRS(M x 0,, n*(L)) with the moment map u,. We need the following
Lemma which was proved by Tian—Zhang [36] for the prequantum line
bundles.

Lemma 7.9. Let L be a ug-moment bundle over M. There exists € > 0 such
that for any |a| <e, the vector bundle m (L) is p,-positive. For a=0, the
bundle L = nty (L) is ug-strictly positive.

Let RR§(M x@,, —) be the Riemann-Roch character localized near
#7'(0) ~ u'(0,). Theorem 7.1, Equality 7.9, and Lemma 7.9 show that

[RRE(M, L)]° = [RR{(M x 0, w3 (L))1°, (7.10)

for any moment bundle L if a € uz(M) is close enough to 0.
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There exists a unique open face v of the Weyl chamber f), such that
Ueg(M) N7 is dense in ug(M) N b, . The face 7 is called the principal face of
(M, ug) [26]. All points in the open face ¢ have the same connected cen-
tralizer G,. Let 4, be the identity component of the center of G, and [G,, G, ]
its semi-simple part. Note that we have an identification between the
Lie algebra a, of 4, and the linear span of the face 7. The Principal-cross-
section Theorem [26] tells us that Y,:=px_'(r) is a symplectic
G,-manifold, with a trivial action of [G,, G,]. So, the restriction of y; on %,
is a moment map y,: %, — a, for the Hamiltonian action of the torus 4,. We
decompose the torus A, in a product of two subtorus 4, = A} x A2 where 4!
is the identity component of the principal stabilizer for the action of 4, on
Y.
We take now a with value in 7N ug(M). For generic values ae
TN ue(M), p.'(a) = pu;'(a) is a smooth manifold of M with a locally free
action of A2, hence the quotient ./, :=pu’'(a)/G,=u;"(a)/(A}) is a
symplectic orbifold. We denote by RR(.#,, —) the quantization map defined
by the choice of a compatible almost complex structure. If L is a
Ug-moment bundle on M, L[, is a pu,-moment bundle: the action of
A;[G., G,] on Ly, is trivial. Then the quotient L|,-1,/G, = L|,~1(,,/(4?) is
an orbifold line bundle over .#, for generic a.

We compare now the Riemann-Roch character RRS*(%,, —) localized
near U; 1(a) by the moment map u, —a and the Rlemann—Roch character
RR§(M x 0,, —) localized near u;'(0)=G-(u;'(a)x {a}). All we need is
contained in the following

ProPoSITION 7.10. Let E be a G-vector bundle over M, and take a e t. We
have RR{(M x 0,, nyE) =Ind¢ (RR§(%,, E|y)), in particular [RR§(M
x0,,n,E)]°= [RRo (%,, Ely,)]1"

If L is a pg-moment bundle, the action ?f Al[G,,G,] on Ll is trivial,
then [RR{*(%,, Ly )]% = [RRA (%, L|y)]*. Flnally, for every generic value
a €t ug(M), the quotient L, := L| @/ A? is an orbifold line bundle over
M, so from Section 7.1 we get [RR: (%, ngr)]"3 =RR(M,, L,).

With this last equality, Proposition 7.9, and equality (7.10) we have
proved the central result of this section

ProrosiTiON 7.11.  Suppose that 0 € ug(M). If L is a ug-moment bundle,
there exist € > 0, such that

[RR(M, L)1° = RR(M,, L,),

Jor every generic value a € T N ug(M) with |a| <e.
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7.4.1. Proof of Lemma 7.9. Let L be a ug-moment bundle over M,
where pg: M — g* is a Hamiltonian moment map. Recall that the Lie
algebra g is identified to g* trough an invariant scalar product (—, —). Let
H be a maximal torus of G with Lie algebra b.

LemMMA 7.12. For febhand me M* n ,u;l(y), the weight o for the action
of Ty on L, satifies (a, §) = (7. ).

Proof. Let N be the connected component of M# containing m, and let
m' be a point of N¥. Since N is connected, « is also the weight for the
action of Ty on L,,, and ug(m') is the weight for the action of H on L,,:
then (a, X) = (ug(m'), X) for every X € Lie(T;). But the map x—
Eﬂc%), ﬁ; is constant on N, then (, f)=(uc(m), p) = (us(m'), p) =
a, B).

The element a is taken in §. The critical set of the function ||u,|*:
M x O, - Radmits the following decomposition Cr(|| g, ||*) = G- (Cr(||g, ||?) N
(M x {a})) = G- ((Cr(llug, —al) 417 (8,)) x {a}), where pig,: M — g, is
the moment map for the action of G,. Let 4, the finite subset of Iy defined
by B, ={Bpeb, M’ n u;'(B+a) # &}. Finally we have the decomposition

Cr(lm ) = U G-(M* A ' (B+a) x {a}).

Be®a

Using Lemma 7.12, we see that n* L is u,-positive if and only if
(B+a,p)=0 forevery fe4%,. (7.11)

We first see that it is trivially true if a = 0: in this case L is strictly positive.

Let ygy: M — b be the moment map for the maximal torus H. Consider
the finite set %, , which parameterizes the critical set of |uy —al*
Byo={peb, M\ Ay '(B+a)# F}. We have obviously the inclusion
B, = By, ,, so it suffices to show (7.11) for %y ,.

To finish our proof we use now a characterization of the set %, , we
gave in [31]. There exists a finite collection 4 of affine subspaces of [) such
that

By o <{Ps(a)—a, A€ B}

for every a e h). Here P,: ) —» b is the orthogonal projection on 4. It is now
easy to compute the sign of (P,(a), P,(a)—a) for all 4€ #. A simple
computation gives (P,(a), P,(a)—a) = |P,(0)|*— (a, P,(0)). Hence, either
0€ 4 and then (P,(a), P,(a)—a) is equal to 0 for all ael, or 0 ¢ 4 and
then (P(a), Py(a)—a) > 0 if |a| < |P,(0)|. We can take € = infy, , |P,(0)| in
Lemma 7.9. ||
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7.4.2. Proof of Proposition 7.10. Since the point a takes value in 7 we
identify the coadjoint orbit ¢, with G/G,. Let #“ be the Hamiltonian
vector field of the function 3! ||| M x G/G, — R. To simplify the nota-
tions, %, will denote a small neighborhood of ,ugl(a) in the symplectic slice
,ugl(r) such that the open subset % := (G x5, %,) x G/G, is then a neigh-
borhood of u;'(0)=G-(u;'(a)x{e}) which satisfies % N {#“=0} =
u;"'(0). Following Definition 6.4, the localized Riemann-Roch character
RR{(M xG/G,, —) is computed by means of the Thom class Thom/ [01
(M xG/G,)e K;(Tz%«). On the other hand, the localized Riemann—
Roch character RR{*(%,, —) is computed by means of the Thom class
Thom§: 6,(%;) € K, (T, %.,).

Proposition 7.10 will follow from a simple relation between Thom
(M x G/G,) and Thom§ 5,(%,).

First, one considers the isomorphism

O U - U
([g; ¥, [A]) — [g; [g A1, ¥],

with %' :=G x4 (G/G,x%,), and let ¢* K;(TeU') > Ko(Te) be the
induced isomorphism. After one consider the inclusion i: G, <s G which
induces an isomorphism i,: K; (T (G/G, x%,)) - Ks(Tg%') (see Sect.
3.4). Let j: %, <, G/G, x %, be the G,-invariant inclusion map defined by
j(y):=(e,y). We have then a pushforward map j:K; (T %,)—
K; (T (G/G, x%,)). Finally we have produced a map @ :=¢*o i, o j
from K (T4 %,) to K(T4%), such that Index$,(0(0)) = Indg (Index§; (o))
for every 0 € K¢ (Tg,%,).
Proposition 7.10 is an immediate consequence of the following

(7.12)

Lemma 7.13.  We have the equality
O(Thom{ 1,(%,)) = Thom% ;(M x G/G,).

Proof. Let u, :=p, o ¢~' be the moment map on %', and let #"° be
the Hamiltonian vector field of 3! ||u, > For the tangent manifold T%' we
have the decomposition

TU' ~Gx(8/9. ®Gxg, (8/8,) ®TH,).

A small computation gives #"“(m)= pr,, (ha)+ R(m)+#  (y)+S(m)
for m=[g; y,[h]]€ ', where R(m)eg/g, and S(m)e T,%, vanishes
when m e G %, ({€} x%¥,), i.e., [h] =&. Here #}, is the Hamiltonian vector
field of the function 3! ||u, —al|* %, — R.
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The transversally elliptic symbol g, := (¢~")* (Thom% (M xG/G,)) is
equal to the exterior product

o-l(ma él +52+U)
= Cl(&, — pryjq,(ha)) © CI(E, — R(m)) © Cl(v—H#'; —S(m)),

with &, e g/g.. & €g/8,, ve TY,.

Now we simplify the symbol ¢; without changing its K-theoretic class.
Since Char(g,) N T%' =G %g, ({€} x%,), we can transform o, through
the G,-invariant diffeomorphism 4 = e* from a neighborhood of 0 in g/g,
to a neighborhood of € in G/G,. This gives g, € Ko(Ts(G %4, (8/9. X %,)))
defined by

0-2([g’ X7 y]a fl +52 +U)
= CI(&, — pryyq, (e¥a)) © CU(&, — R(m)) © Cl(v— A, —S(m)).
Now trivial homotopies link ¢, with the symbol og,;, where we have

removed the terms R(m) and S(m), and where we have replaced pr,,, (e*a) =
[X,a]l+o([X,a]) by the term [ X, a]:

a;([g, X, ¥], & +&+0) = Cl(&, —[X, a]) © CI(&,) © Cl(v—#).

Now, we get g3 =i.(g,) where the symbol g, € K; (T (8/9, x%,)) is
defined by

04(X, y; & +v) = Cl(—[X, a]) © Cl(&;) © Cl(v— 7).

So g, is equal to the exterior product of (y,v) —» Cl(v— %), which is
Thom{ 6,(%,), with the transversally elliptic symbol on g/g,: (X, &) —
CI(—[X,a]) © CI(&,). As in Lemma 5.2, we see that the K-theoretic class
of this former symbol is equal to k,(C) where k: {0} <> g/g,. This shows
that

o4 = k,(C) © Thomg [4,(%,) = ji(Thom% 10;(%.)). 1

8. APPENDIX A: G=SU(2)

We restrict our attention to an action of G = SU(2) on a compact mani-
fold M. We suppose that M is endowed with a G-invariant almost complex
structure J and an abstract moment map f: M — g. In this situation, the
decomposition RRY(M, —) =3 5. 4, RR;(M, —) becomes simple.
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Let S! be the maximal torus of SU(2), and fs: M —» R the induced
moment map for the S'-action. The critical setl{% ¢=0} hlas a particularly
simple expression: {#°=0} = f7'(0) U G.M*,, where M is the union of
the connected components F < M s' with fs1(F) > 0. Note that the critical
set {%’Sl =0} is equal to f'(0) U MS,

The non-symplectic case. Here the induction formula of Theorem 6.16,
and Proposition 6.14 gives

RRY(M, E) = RRS(M, E)+Hol% (O(E)(t).(1—172)) 8.1)

where @(E) € R™°(S") is determined by

O(E)=(—1)" ¥ RRS(MS,E|,s ®det /* @ S(N4 ®C)Y)). (8.2)

keN

Here /" — M is the normal bundle of M* in M.

The Hamiltonian case. Here we suppose that (M, w) is a symplectic
manifold, with moment map u and a w-compatible almost complex struc-
ture J. Let % = u~'(R.,) be the symplectic slice associated to the interior
of the Weyl chamber R. , = Lie(S").

The induction formula of Theorem 7.5 gives

RRY(M, E) = RRS(M, E)+HolS (B(E)) (8.3)

where @(E) € R-°(S") is determined by

O(E)=(~1)"" ¥ RRS(MS,E|,s ®det J/'* @ S(F ® C)*)). (8:4)

keN

Here .7 — M is the normal bundle of M% in ¥.

Recall that the irreducible characters ¢, of G =SU(2) are labeled by
Z.,, and are completely determined by the relation ¢, = Hol$1(¢") in R(G)
(See Lemma 9.1). Hence the component Hol$i(@(E)(¢).(1—17%)) of (8.1)
does not contain the trivial character ¢, if O(E) =Y, .7 a,t” with

a,#0 =n=3. 8.5
Equation (8.2) tells us that (8.5) is satisfied if the weights for the action of

S!in the fibers of the complex vector bundle E| us' ®det A" are all bigger
than 3.
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The Sonditions are weaker in the ‘“Hamiltonian” situation. Th~e term
Hol$i1(O(E)) of (8.3) does not contain the trivial character ¢, if @(E) =
> ez a,t" with

a,70 =n>=1, 8.6)

and this condition is fulfilled if the weights for the action of S! in the fibers
of the complex vector bundle E|;s' ® det Nt are all bigger than 1 Here
we have another important difference: the vector bundle 4+ — M s' is not
equal to the zero bundle if 0 € u(M) (see Lemma 7.3).

We see finally that, in the Hamiltonian case, the condition “E is
u-positive’” implies

0 e (M) = [RR(M, E)]° = [RRS(M, E)]°.

9. APPENDIX B: INDUCTION MAP AND MULTIPLICITIES

Let G be a compact connected Lie group, with maximal torus H, and
bt =bh* = (g*)" some choice of positive Weyl chamber. We denote by R,
the associated system of positive roots, and we label the irreducible repre-
sentations of G by the set A% = A* " }% of dominant weights. For any
weights « € 4* we denote by H — C*, h+— h* the corresponding character:
(exp(X))* = =% for X e }y.

Let W be the Weyl group of (G, H), and L*(H) be the vector space of
square integrable complex functions on H. For f e L?*(H), we consider
J(f) =X, ew (1) w.f, where W - {1, —1}, w > (—1)", is the signature
operator and w.f e LA(H) is defined by w.f(h) = f(w™ h),he H (see
Section 7.4 of [8]). The map |1W| J is the orthogonal projection from L*(H)
to the space of W-anti-invariant elements of L*(H).

Let pebh® be the half sum of the positive roots. The function
H — C*, h— h* is well defined as an element of L?(H) (even if p is not a
weight). The Weyl’s character formula can be written in the following way.
For any dominant weight A€ A%, the restriction 9|, of the irreducible
G-character x¢ satisfies

J(h?).x%)y = J(W***) in LX(H). ©.1)

For our purpose we give an expression of the character ¢ through the
induction map Ind$: € °(H) - € =(G)¢ (see (3.7)). Consider the affine
action of the Weyl group on the set of weights: wo A=w.(A+p)—p for
weW and Ae A*
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Lemma 9.1. (1) For any dominant weight A e A%, the character X0 is
determined by the relation x¢ =Ind§(h*Il, ., (1—h%)) in €°(G)°.

(2) For Aed* and weW, we have Ind§(h* *II,.q (1—h%))=
(=1)" Ind§ (W11, ., (1 —h")).
(3) For any weight A, the following statements are equivalent:
(@) Indg(h*l, s, (1—-h") =0,
(b) Woin Ai=g,

(¢) The element A+ p is not a regular element of h*.

Proof of (1). To prove it, we need the following relations proved in
[8, Sect. 7.4]:

@O J)=h"H, .5, (1-h),
@) Jh?).J(h) =1,y (1-h").

Let dg and dt be respectively the normalized Haar measures on G and H.
For any f € *(G)¢ we have

1
ijf(g)f(g)dg=Wfof|H(h)HM(l—h“mH(h)dh [1]

1
=7, TEN T F1i () [2]
= [ W TW) £ () dh [3]
= WMo, (1=1) f 1 (h) dh. [4]

The first equality is the Weyl integration formula. Equality [2] comes from
(i) and (9.1). Since 5 J is the orthogonal projection on L>(H )" nwriart
and i J(h*) f|z(h) is W-anti-invariant we obtain the third equality. The
equality [4] comes from (i).

Proof of (2). From (i), wee see that 2*°*IT, ., (1—h") =h"**PJ(h*) =
(=D w . (B*PI(h)) = (=1)* w'.(h*],. 5, (1—F")), hence the relation
(2) is proved since Ind$, is W-invariant.

Proof of (3). The implication (a) = (b) is an immediate consequence
of (1) and (2). Proposition 3 in Section 7.4 of [8] tells us that {J(h***),
A'e A%} is an orthogonal basis of the Hilbert space L2(H )" i For



LOCALIZATION OF THE RIEMANN-ROCH CHARACTER 505

A€ A* and X' € A% we have (J(h**7), J(W**P) )2 = [W| (I (h**P), h*+P) 2 =
W| X ew (—1)" [z £°*~* dt. Thus, the condition W o A A% = (¥ is equiva-
lent to J(A**”)=0. But the equality [2] gives Indf (h*I1, s, (1—F")) =
i Ind G (J(B**7) h™*11, g, (1—h")), hence J(h***) = 0 implies the point (a).
We have proved that (b) = (a). Finally we see that J(A*™") =0«
IweW,w.(A+p)=A+p < A+p is not a regular value of h*. We have
proved that (b) < (c). |

From the previous Lemma, we see that vi— Ind§(v(h) I, ., (1—h%)) is
the holomorphic induction map

HolS: R(H) - R(G). ©9.2)

We keep the same notation for the extended map Hol$: R™°(H) —
R*(G). Note that the choice of a positive Weyl chamber ) determines a
complex structure on g/bh, and 17, .y, (1—h%) is the trace of the virtual
H-representation Ag g/h € R(H). Then the map Hol$ will be defined
simply by the relation Hol$(v) = Ind§ (v A% g/b).

Remark 9.2. The relations (i) and (ii) used in the proof of the past
lemmashowthat’, ., w. Il ., (1=h%) =3, . w.(J(B") h*) =J(h*).J(h*)
=11, (1—h"). In other words ¥, . w.Ac 8/h=(Arg/h) ® C=A¢ g/b
Ac ¢/b in R(H). These equalities give

Ind§<<z W-¢> Ne 9/b> =Ind%(¢ A& g/b) (C3))

since Ind§, is W-invariant. The Weyl integration formula is usually state
as the relation f=ﬁlndf,(f|H Aw g/b) for any f e €*(G)°. But f| is
W-invariant, so (9.3) gives 5 Ind5(f 1y Ak 6/b) =Ind%(flx At a/b).
Finally, for any ¢ € R(G), the Weyl integration formula is equivalent to the
following equality in R(G):

¢ = Hol5 (41x).

Remark 9.3. A weight A satisfies Hol%(h*)= +1 if and only if
0e Woln A%, thatis, A= —(p—w.p) for some we W. But a small com-
putation shows that p—w.p =3, ., 1.0 =, hence {p—w.p, X) >0 for
any X €}, . Finally the equality Hol,(A*) = +1 implies that {1, X <0 for
any X eb,.

Consider now the stabiliser G, of the non-zero element geb,. The
subgroup H is also a maximal torus of G,;. The Weyl group W of (G4, H)
is identified with {weW,w.f=p}. We consider a Weyl chamber
b} s = b* for Gy that contains the Weyl chamber b’ of G. The irreducible
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representations x5#, A€ A% , of G, are labeled by the set A7 ;= A*NbH% ,
of dominant weights.

We have a unique “holomorphic” induction map HolG R(G;) — R(G)
such that Hol; = Holg, o Hol7f. This map is defined premsely by the
equatlon

Hol¢, (v) = Indg, (v A¢ 8/9p), 4

for every v e R(Gp).

We finish this appendix with some general remarks about P-transversally
elliptic symbols on a compact manifold M, when a subgroup T in the
center of P acts trivially on M.

More precisely, let H be a compact maximal torus in P, b, be a choice of
a positive Weyl chamber in the Lie algebra ) of H, and let § € b, be a non-
zero element in the center of the Lie algebra p of P.?® We suppose here that
the subtorus T = H, which is equal to the closure of {exp(z.f), ¢ € R}, acts
trivially on M.

Every P-equivariant complex vector bundle E — M can be decomposed
relatively to the T-action: E =@, .3+ E*® C,, where E*:=hom;(C,, E)*
is a P-complex vector bundle with a trivial action of T. Then, each
P-equivariant symbol ¢ : p*(E,) — p*(E,) where E,, E, are P-equivariant
complex vector bundles over M, and where p: TM — M is the canonical
projection, admits a finite P x T-equivariant decomposition

o=y 0°®C,. 9.5)

aeT

Here o p*(E$) — p*(E%) is a P-equivariant symbol, trivial for the
T-action.

Let us consider the inclusion map i: T <, H, with the induced maps
i: Lie(T) —» b at the level of Lie algebra and i*: h* — Lie(T)*. Note that
i*(1) is a weight for T if A is a weight for H.

LemMA 9.4. Let M be a P-manifold with the same properties as above.
Let o: p*(E,) — p*(E,) be a P-equivariant transversally elliptic symbol
over M and denote by m,(0), A€ A} ., the multiplicities of its index:
Index%, (o) = Yiear, (o) 17 Then, if m;(c) #0, the weight a=i*(A)
occurs in the decomposition (9.5).

*” We take on g/g, the complex structure defined by S.
% The Lie group P is supposed connected then S e (p)*.
¥ The torus T acts on the complex line C, with the representation ¢ — ¢°.
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COROLLARY 9.5. Suppose that the weights ac€ T which occur in the
decomposition (9.5) satisfy <a, B) =n for some fixed ne R. Then, for the
multiplicities, we get

m(0) #0 =<4, B) =>1.

In particular, Index? (a) does not contain the trivial representation when
n>0.

Remark 9.6. The previous Lemma and Corollary remain true if M is a
P-invariant open subset of a compact P-manifold.

For the Corollary, we have just to notice that® {4, 8> =<a, B) for
a = i*(A). Then, if we have {a, B = # for all T-weights occurring in o, we
get {4, B> = n for every A such that m;, (o) # 0.

Proof of Lemma 9.4. Let P' be a Lie subgroup of P such that
r:TxP - P, r(t,g)=t.g, is a finite covering of P. The map r induces
r*: Kp(TpM) = K¢, p(TpM)* and an injective map r*: R™°(P) - R~
(T x P"), such that Index}** (r*o) = r*(Index%,(0)).

The decomposition (9.5) can be read through the identification
Ky p(ToM)=Kp(TpM)® R(T): we have r'e=3,.4 0°® C, with ¢°¢
K, (TpM). Hence

Index; " (r*o)(t, g) = ), Indexj (c°)(g). t*, (t,g9)eTxP. (9.6)

aeT

The irreducible characters y” satisfy r*y"(z, g) = x"1p(g). 17D If we start
from the decomposition Index? (¢)=Y,. 4, mi(o) x; relative to the
irreducible characters of P, we get

r*(Index; " (0))(t, g) = Z( Y m(o) X! Ipr(g)>-t", ()

aeT i*(l):a

for any (¢, g) € T x P'. If we compare (9.6) and (9.7), we get Index?,(c*) =
Y*y=a M;(0) x"|p. The map r*: R™°(P) > R™(T x P') is injective, so
Di*y=a M(0) 17| =0 if and only if m,;(c) =0 for every A satisfying
i*(A) = a. Hence if the multiplicity m,(c) is non zero, the element a = i*(1)
is a weight for the action of T on ¢: p*(E,) — p*(E,). |

% We use the same notations for § € Lie(T) and i(f) € b.
3 Note that T, M = T, M because T acts trivially on M.
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