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We present a K-theoretic approach to the Guillemin–Sternberg conjecture
(V. Guillemin and S. Sternberg, Invent. Math. 67 (1982), 515–538), about the
commutativity of geometric quantization and symplectic reduction, which was
proved by E. Meinrenken (J. Amer. Math. Soc. 9 (1996), 373–389; Adv. Math. 134,
(1998), 240–277) and Tian–Zhang (Y. Tian and W. Zhang, Invent. Math. 132
(1998), 229–259). Besides providing a new proof of this conjecture for the full non-
Abelian group action case, our methods lead to a generalization for compact Lie
group actions on manifolds that are not symplectic; these manifolds carry an
invariant almost complex structure and an abstract moment map. © 2001 Elsevier Science
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1. INTRODUCTION

This article is devoted to the study of the ‘‘quantization commutes with
reduction’’ principle of Guillemin–Sternberg [17]. The object of this paper
is twofold. The first goal is to give a K-theoretic approach to this problem,
which provides a new proof of results obtained by Meinrenken [29],
Meinrenken–Sjamaar [30], and Tian–Zhang [35]. The second goal is to
define an extension to the non-symplectic case.
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In the Kostant–Souriau framework one considers a prequantum
line bundle L over a compact symplectic manifold (M, w): L carries a
Hermitian connection NL with curvature form equal to −ıw. Suppose now
that a compact Lie group G, with Lie algebra g, acts on LQM, living the
data (w, NL) invariant. Then the G-action on (M, w) is Hamiltonian with
moment map fG: MQ gg given by the Kostant formula: LL(X)−NL

XM
=

ıOfG, XP, X ¥ g. Here LL(X) is the infinitesimal action of X on the section
of LQM and XM is the vector field on M generated by X ¥ g.

Choose now an invariant almost complex structure J on M that is com-
patible with w, in the sense that w(−, J−) defines a Riemannian metric. It
defines a quantization map

RRG, J(M, −): KG(M)Q R(G),

from the equivariant K-theory of complex vector bundles over M to the
character ring of G. The ‘‘quantization commutes with reduction’’ Theorem
tells us how the multiplicities of RRG, J(M, L) behave (see Theorem C).

Here our main goal is to compute the multiplicity of the trivial represen-
tation in RRG, J(M, L), when the data (L, J) are not associated to a
symplectic form.

We consider a compact manifold M on which a compact Lie group G
acts, and which carries a G-invariant almost complex structure J. Let
LQM be a G-equivariant Hermitian line bundle over M, equipped with a
Hermitian connection NL on L. This defines a map fL: MQ gg by the
equation

LL(X)−NL
XM

=ıOfL , XP, X ¥ g. (1.1)

(see [10, Sect. 7.1]). The map fL is an abstract moment map in the
sense of Karshon [20], since fL is equivariant, and for any X ¥ g, the
function OfL , XP is locally constant on the submanifold MX :={m ¥M,
XM(m)=0}.

If 0 is a regular value of fL, Z :=f−1
L (0) is a smooth submanifold of M

which carries a locally free action of G. We consider the orbifold reduced
space Mred=Z/G and we denote p:ZQMred the projection. In Lemma
6.9 we show that the almost complex structure J induces an orientation ored
on Mred and a Spinc structure on (Mred, ored). Let Q(Mred, −): Korb(Mred)
Q Z be the quantization map defined by the Spinc structure and let
Lred QMred be the orbifold line bundle induced by L.

We obtain the following ‘‘quantization commutes with reduction’’
theorem.

Theorem A. Let LQM be a G-equivariant Hermitian line bundle over
M, equipped with a Hermitian connection NL on L. Let fL: MQ gg be the
corresponding abstract moment map. If 0 is a regular value of fL, we have
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[RRG, J(M, L
k
ê)]G=Q(Mred, L

k
ê
red), k ¥N−{0}, (1.2)

if any of the following hold:

(i) G=T is a torus; or

(ii) k ¥N is large enough , so that the ball {t ¥ gg, ||t|| [ 1
k ||h||} is con-

tained in the set of regular values of fL. Here h=;a > 0 a is the sum of the
positive roots of G, and || · || is a G-invariant Euclidean norm on gg.

Here, for V ¥ R(G), we denote [V]G ¥ Z the multiplicity of the trivial
representation.

A similar result was proved by Jeffrey–Kirwan [19] in the Hamiltonian
setting when one relaxes the condition of positivity of J with respect to the
symplectic form. See also [13] for a similar result in the Spinc setting, when
G=S1.

As an example, let us apply Theorem A to the counterexemple due to
Vergne which shows that quantization does not always commute with
reduction. Let G=SU(2) and let M be the SU(2)-coadjoint orbit passing
through the unique positive root h. Thus M is the projective line bundle
CP1 with w equal to twice the standard Kähler form. The prequantum line
bundle is L=O(2) and RRG(M, L−1)=[RRG(M, L−1)]G=−1. Since
Mred=” we have [RRG(M, L−1)]G ] Q(Mred, (L−1)red): the condition (ii)
of Theorem A does not hold since h is not a regular value of the moment

map M+ gg. But if we take (L−1)
k
ê with k > 1 the condition (ii) is

satisfied, and thus [RRG(M, (L−1)
k
ê)]G=0 for k > 1. In fact a direct

computation shows that −RRG(M, (L−1)
k
ê) is the character of the irreduc-

ible SU(2)-representation with highest weight (k−1) h for all k \ 1.
The result of Theorem A can be rewritten when J defines an almost

complex structure Jred on Mred. It happens when the following decomposi-
tion holds

TM|Z=TZ À J(gZ) with gZ :={XZ, X ¥ g}. (1.3)

First we note that (1.3) always holds in the Hamiltonian case when J is
compatible with the symplectic form. Condition (1.3) already appears in
the works of Jeffrey–Kirwan [19], and Cannas da Silva–Karshon–Tolman
[13].

In all this paper we fix a G-invariant scalar product on gg which induces
an identification g 4 gg. Thus fG can be considered as a map from M to g,
and we define the endomorphism D of the bundle g×Z by: D(X)=
−dfG(J(XZ)), for X ¥ g. Condition (1.3) is then equivalent to: det D(z)
] 0 for all z ¥Z. The endomorphism D defines a complex structure JD on
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Z×gC, so the vector bundle Z×gC inherits two irreducible complex
spinor bundles Z×M •

C gC and Z×M •
JD gC related by

M •
JD gC ×Z=M •

C gC ×Z é pgLD ,

where LD QMred is a line bundle (see (6.11)). In this case we prove in
Proposition 6.12 that (1.2) has the form

[RRG, J(M, L
k
ê)]G=±RRJred(Mred, L

k
ê
red é LD), (1.4)

where ± is the sign of det D, and where RRJred(Mred, −) is the Riemann–
Roch character defined by Jred.

In this paper, we start from an abstract moment map fG: MQ gg, and
we extend the result of Theorem A to the fG-moment bundles, and the
fG-positive bundles. These notions were introduced in the Hamiltonian
setting by Meinrenken–Sjamaar [30] and Tian–Zhang [35]. Let us recall
the definitions.

Let H be a maximal torus of G with Lie algebra h.

Definition 1.1. A G-equivariant line bundle over M is called a
fG-moment bundle if for all components F of the fixed-point set MH the
weight of the H-action on L|F is equal to fG(F).

It is easy to see that the definition is independent of the choice of the
maximal torus. Note that fG(F) ¥ hg=(gg)H, since fG is equivariant. Any
Hermitian line bundle L is tautologically a moment bundle relative to the
abstract moment map fL.

For any b ¥ g, we denote by Tb the torus of G generated by
expG(t .b), t ¥ R, and Mb the submanifold of points fixed by Tb.

Definition 1.2. A complex G-vector bundle E is called fG-positive if
the following hold: for any m ¥Mb 5 f−1

G (b), we have

Ot, bP \ 0

for any weights t of the Tb-action on Em. A complex G-vector bundle E is
called fG-strictly positive when furthermore the last inequality is strict for
any b ] 0.

For any fG-strictly positive complex vector bundle E, and any b ¥ g such
that Mb 5 f−1

G (b) ]”, we define gE, b=inftOt, bP, where t runs over the
set of weights for the Tb-action on the fibers of each complex vector bundle
E|Z, Z being a connected component of Mb that intersects f−1

G (b).

It is not difficult to see that a fG-moment bundle L is fG-strictly positive
with gL, b=||b||2, for any b ¥ g such that Mb 5 f−1

G (b) ]” (see Lemma
7.9). The bundle M×CQM is the trivial example of fG-positive complex
vector bundle over M.
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Let h+ be the choice of some positive Weyl chamber in h. We prove in
Lemma 6.3 that the set BG :={b ¥ h+, Mb 5 f−1

G (b) ]”} is finite.

Theorem B. Let fG: MQ gg be an abstract moment map with 0 as
regular value. Let E be a fG-strictly positive G-complex vector bundle over M
(see Def. 1.2). We have

[RRG, J(M, E
k
ê)]G=Q(Mred, E

k
ê
red), k ¥N−{0}, (1.5)

if any of the following hold:

(i) G=T is a torus; or

(ii) k is large enough, so that k.gE, b >;a > 0 Oa, bP, for any b ¥BG

−{0}; here the sum ;a > 0 is taken over the positive roots of G.

Moreover if (1.3) holds, (1.5) becomes

[RRG, J(M, E
k
ê)]G=±RRJred(Mred, E

k
ê
red é LD).

Let us explain why Theorem B applied to a G-hermitian line bundle L
with the abstract moment map fG=fL implies Theorem A. It is sufficient
to prove that condition (ii) of Theorem A implies condition (ii) of
Theorem B. The curvature of (L, NL) is (NL)2=−ı wL, where wL is a
differential 2-form on M. From the equivariant Bianchi formula (see
Proposition 7.4 in [10]) we get OdfL , XP=−wL(XM, −) for any X ¥ g.
So, for any b ¥BG −{0}, and m ¥Mb 5 f−1

L (b), the last equality gives
OdfL |m, bP=0, hence b is a critical value of fL. Suppose now that k ¥N is
large enough so that the ball {t ¥ gg, ||t|| [ 1

k ||h||} is included in the set of
regular values of fL. This gives first ||b|| > 1

k ||h|| and then gL, b=||b||2 >
1
k Oh, bP, for any b ¥BG −{0}.

In the last section of this paper, we restrict ourselves to the Hamiltonian
case. In this situation, the abstract moment map fG and the almost
complex structure J are related by means of a G-invariant symplectic
2-form w :

• fG is the moment map associated to a Hamiltonian action of G over
(M, w): dOfG, XP=−w(XM, −) , for X ¥ g, and

• the data (w, J) are compatible: (v, w)Q w(v, Jw) is a Riemannian
metric on M.

When 0 is a regular value of fG, the compatible data (w, J) induce
compatible data (wred, Jred) on Mred. We have then a map RRJred(Mred, −).
If 0 is not a regular value of fG, we consider elements a in the principal face
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y of the Weyl chamber (see Sect. 7.4). For generic elements a ¥ y 5 fG(M),
the set Ma :=f−1

G (G ·a)/G is a symplectic orbifold and one can consider
the quantization map RRJa(Ma, −) relative to the choice of compatible
almost complex structure Ja.

In this situation, we recover the results of [29, 30, 35].

Theorem C (Meinrenken, Meinrenken–Sjamaar, Tian–Zhang). Let fG

be the moment map associated to a Hamiltonian action of G over (M, w),
and let J be a w-compatible almost complex structure. Let EQM be a
G-vector bundle.

If 0 ¨ fG(M) and E is fG-strictly positive, we have [RRG, J(M, E)]G=0.
If 0 ¥ fG(M) then:

(i) If 0 is a regular value, we have [RRG, J(M, E)]G=RRJred(Mred,
Ered), if E is fG-positive.

(ii) If 0 is not a regular value of fG and E=L is a fG-moment bundle,
we have [RRG, J(M, L)]G=RRJa(Ma, La), for every generic value a of y 5
fG(M) sufficiently close to 0. Here La is the orbifold line bundle L|f−1

G
(G·a)/G.

We now turn to an introduction of our method. We associate to the
abstract moment map fG: MQ g the vector field

HG
m=[fG(m)]M .m, m ¥M,

and we denote by CfG the set where HG vanishes. There are two important
cases. First, when the map fG is constant, equal to an element c in the
center of g, the set CfG corresponds to the submanifold Mc. Second, when
fG is the moment map associated with a Hamiltonian action of G over M.
In this situation, Witten [39] introduces the vector field HG to propose, in
the context of equivariant cohomology, a localization on the set of critical
points of the function ||fG ||2: here HG is the Hamiltonian vector field of
−1
2 ||fG ||2, hence HG

m=0 Y d(||fG ||2)m=0. This idea has been developed by
the author in [31, 32].

Using a deformation argument in the context of transversally elliptic
operator introduced by Atiyah [1] and Vergne [38], we prove in Section 4
that the map1 RRG can be localized near CfG. More precisely, we have the

1 When the almost complex strcture J is understood, we denote by RRG the quantization
map.

finite decomposition CfG=1b ¥BG
CG
b with CG

b=G(Mb 5 f−1
G (b)), and

RRG(M, E)= C
b ¥BG

RRG
b (M, E). (1.6)
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Each term RRG
b (M, E) is a generalized character of G that only depends

on the behavior of the data M, E, J, fG near the subset CG
b . In fact,

RRG
b (M, E) is the index of a transversally elliptic operator defined in an

open neighborhood of CG
b .

Our proof of Theorems B and C is in two steps. First we compute the
term RRG

0 (M, E) which is the Riemann–Roch character localized near
f−1

G (0). After, we prove that [RRG
b (M, E)]G=0 for every b ] 0. For

this purpose, the analysis of the localized Riemann–Roch characters
RRG

b (M, −): KG(M)Q R−.(G) is divided in three cases2 :

2 Gb is the stabilizer of b in G.

Case 1. b=0.

Case 2. b ] 0. and Gb=G.

Case 3. Gb ] G.

We work out Case 1 in Section 6.2. We compute the generalized char-
acter RRG

0 (M, E) when 0 is a regular value of fG. We prove in particular that
the multiplicity of the trivial representation in RRG

0 (M, E) is Q(Mred, Ered).
This last quantity is equal to ±RRJred(Mred, Ered é LD) when (1.3) holds.

Case 2 is studied in Section 5 for the particular situation where fG is
constant, equal to a G-invariant element b ¥ g. Then CfG=CG

b=Mb, and
(1.6) becomes RRG(M, E)=RRG

b (M, E). We prove then a localization
formula (see (1.7)) in the spirit of the Atiyah–Segal–Singer formula in
equivariant K-theory [3, 34]. Let us sketch out the result.

The normal bundle N of Mb in M inherits a canonical complex struc-
ture JN on the fibers. We denote by Na QMb the complex vector bundle
with the opposite complex structure. The torus Tb is included in the center
of G, so the bundle Na and the virtual bundle M •

C Na :=Meven
C Na |Q0

Modd
C Na carry a G×Tb-action: they can be considered as elements of

KG×Tb
(Mb)=KG(Mb) é R(Tb). Let KG(Mb) é̂ R(Tb) be the vector space

formed by the infinite formal sums ;a Ea ha taken over the set of weights
of Tb, where Ea ¥KG(Mb) for every a. The Riemann–Roch character RRG

can be extended to a map RRG×Tb that satisfies the commutative diagram

KG(Mb) ||||||||QRRG

R(G)

‡ ‡k

KG(Mb) é̂ R(Tb) |||QRRG×Tb
R(G) é̂ R(Tb).
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The arrow k: R(G)Q R(G) é̂ R(Tb) is the canonical map defined by
k(f)(g, h) :=f(gh). We shall notice that [k(f)]G×Tb=[f]G.

In Section 5, we define an inverse, denoted by [M •
C Na ]−1

b , of M •
C Na in

KG(Mb) é̂ R(Tb) which is polarized by b. It means that [M •
C Na ]−1

b =
;a Naha with Na ] 0 only if Oa, bP \ 0. We can state now our localization
formula as the following equality in R(G) é̂ R(Tb) :

RRG(M, E)=RRG×Tb(Mb, E|Mb é [M •
C Na ]−1

b ), (1.7)

for every E ¥KG(M).
In Section 6.3 we work out Case 2 for the general situation. The map

RRG
b (M

b, −) is the Riemann–Roch character on the G-manifold Mb,
localized near Mb 5 f−1

G (b), and we extend it to a map RRG×Tb
b (Mb, −):

KG(Mb) é̂ R(Tb)Q R−.(G) é̂ R(Tb). We prove then the following local-
ization formula

RRG
b (M, E)=RRG×Tb

b (Mb, E|Mb é [M •
C Na ]−1

b ), (1.8)

as an equality in R−.(G) é̂ R(Tb). With (1.8) in hand, we see easily that
[RRG

b (M, E)]G=0 if the vector bundle E is fG-strictly positive.
Section 6.4 is devoted to Case 3. The abstract moment map fG: MQ g

for the G-action on M induces abstract moment maps fGŒ : MQ gŒ for
every closed subgroup GŒ of G. For every b ¥BG, we consider the Riemann–
Roch characters RRG

b (M, −), RRGb
b (M, −), and RRH

b (M, −) localized
respectively on G(Mb 5 f−1

G (b)), Mb 5 f−1
G (b), and Mb 5 f−1

H
(b). The

major result of Section 6.4 is the induction formulas proved in Theorem
6.16 and Corollary 6.17, between these three characters. I will explain
briefly this result.

Let W be the Weyl group associated to (G, H). The choice of a Weyl
chamber h+ in h determines a complex structure on the real vector space
g/h. Our induction formulas make a crucial use of the holomorphic induc-
tion map HolGH: R(H)Q R(G) (see (9.92) in Appendix B). Recall that
HolGH(h

l) is, for any weight l, equal either to zero or to the character of an
irreducible representation of G (times ±1). In Theorem 6.16 we prove the
following relation between RRG

b (M, −) and RRH
b (M, −)

RRG
b (M, E)=

1
|Wb |

HolGH 1 C
w ¥W

w.RRH
b (M, E)2

=
1

|Wb |
HolGH(RR

H
b (M, E)M •

C g/h), (1.9)
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where Wb is the stabilizer of b in W. In Corollary 6.17 we get the other
relation:

RRG
b (M, E)=HolGGb (RR

Gb
b (M, E)M •

C g/gb). (1.10)

Let us compare (1.9), with the Weyl integration formula3: for any

3 See Remark 9.2.

f ¥ R(G) we have f=HolGH(f|H)=HolGH(f
+
|HM •

C g/h), where f|H is the
restriction of f to H, and f+

|H=;l m(l) hl is the unique element in
R(H) éQ such that ;w ¥W w.f+

|H=f|H and m(l) ] 0 only if l ¥ h+. In
(1.9), the W-invariant element 1

|Wb |
; w ¥W w.RRH

b (M, E) plays the role of
the restriction to H of the character f=RRG

b (M, E), and 1
|Wb |

RRH
b (M, E)

plays the role of f+
|H.

Since b is a Gb-invariant element, (1.10) reduces the analysis of Case 3
to the one of Case 2. From the result proved in Case 2, we have
[RRGb

b (M
b, E)]Gb=0 if the vector bundle E is fG-strictly positive. But

this does not implies in general that [RRG
b (M, E)]G=0. We have to take

the tensor product of E (so that E
k
ê becomes more and more fGb -strictly

positive) to see that [RRG
b (M, E

k
ê)]G=0, when gE

k
ê

, b=k.gE, b >;a > 0

Oa, bP.
In the Hamiltonian setting considered in Section 7, our strategy is the

same, but at each step we obtain considerable refinements that are the
principal ingredients of the proof of Theorem C.

Case 1. When 0 is a regular value of fG, we show that the Spinc struc-
ture on Mred is defined by Jred, hence Q(Mred, −)=RRJred(Mred, −). When 0
is not a regular value of fG, we use the ‘‘shifting trick’’ to compute the
G-invariant part of RRG

0 (M, E) (see Sect. 7.4).

Case 2. For any G-invariant element b ¥BG with b ] 0, we prove that
the inverse [M •

C Na ]−1
b is of the form ;a Na ha with Na ] 0 only if

Oa, bP > 0 (in general we have only Oa, bP \ 0).

Case 3. For b ¥BG with Gb ] G, we consider the open face s of the
Weyl chamber which contains b, and the corresponding symplectic slice Ys
which is a Gb-symplectic submanifold of M. The localized Riemann–Roch
characters RRG

b (M, E) and RRGb
b (Ys, −) are related by the following

induction formula

RRG
b (M, E)=HolGGb (RR

Gb
b (Ys, E|Ys )).
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Notation

Throughout the paper G will denote a compact, connected Lie group,
and g its Lie algebra. We let H be a maximal torus in G, and h be its Lie
algebra. The integral lattice L … h is defined as the kernel of exp: hQH,
and the real weight lattice Lg … hg is defined by: Lg :=hom(L, 2pZ). Every
l ¥ Lg defines a 1-dimensional H-representation, denoted Cl, where
h=exp X acts by hl :=e ıOl, XP. We let W be the Weyl group of (G, H), and
we fix the positive Weyl chambers h+ … h and hg

+ … hg. For any dominant
weight l ¥ Lg

+ :=Lg 5 hg
+, we denote by Vl the G-irreducible representation

with highest weight l, and qG
l

its character. We denote by R(G) (resp.
R(H)) the ring of characters of finite-dimensional G-representations (resp.
H-representations). We denote by R−.(G) (resp. R−.(H)) the set of gen-
eralized characters of G (resp. H). An element q ¥ R−.(G) is of the form
q=;l ¥ Lg

+
ml qG

l
, where l W ml, Lg

+ Q Z has at most polynomial growth.
In the same way, an element q ¥ R−.(H) is of the form q=;l ¥ Lg ml hl,
where l W ml, Lg Q Z has at most polynomial growth.

Some additional notation will be introduced later :

Gc: stabilizer subgroup of c ¥ g

Tb: torus generated by b ¥ g

Mc: submanifold of points fixed by c ¥ g

TM: tangent bundle of M
TGM: set of tangent vectors orthogonal to the G-orbits in M
C−.(G)G: set of generalized functions on G, invariant by conjugation
IndG

Gc : C
−.(Gc)Gc Q C−.(G)G: induction map

HolGGc : R(Gc)Q R(G): holomorphic induction map
RRG

b (M, −): Riemann–Roch character localized on G.(Mb 5 f−1
G (b))

Char(s): characteristic set of the symbol s

ThomG(M, J): Thom symbol
Thomc

G(M): Thom symbol localized near Mc

Thomf
G, b(M): Thom symbol localized near G.(Mb 5 f−1

G (b)).

2. QUANTIZATION OF COMPACT MANIFOLDS

Let M be a compact manifold provided with an action of a compact
connected Lie group G. A G-invariant almost complex structure J on M
defines a map RRG, J(M, −): KG(M)QR(G) from the equivariant K-theory
of complex vector bundles over M to the character ring of G.

Let us recall the definition of this map. The almost complex structure on
M gives the decomposition M TgM é C=Ái, j M i, j TgM of the bundle of
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differential forms. Using Hermitian structure in the tangent bundle TM of
M, and in the fibers of E, we define a twisted Dirac operator

D+
E :A

0, even(M, E)QA0, odd(M, E),

where A i, j(M, E) :=C(M,M i, j TgM éC E) is the space of E-valued forms
of type (i, j). The Riemann–Roch character RRG, J(M, E) is defined as the
index of the elliptic operator D+

E :

RRG, J(M, E)=[Ker D+
E]−[Coker D+

E].

In fact, the virtual character RRG, J(M, E) is independent of the choice of
the Hermitian metrics on the vector bundles TM and E.

If M is a compact complex analytic manifold, and E is an holomorphic
complex vector bundle, we have RRG, J(M, E)=;q=dimM

q=0 (−1)q [Hq(M,
O(E))], where Hq(M, O(E)) is the qth cohomology group of the sheaf
O(E) of the holomorphic sections of E over M.

In this paper, we shall use an equivalent definition of the map RRG, J.
We associate to an invariant almost complex structure J the symbol
ThomG(M, J) ¥KG(TM) defined as follows. Consider a Riemannian
structure q on M such that the endomorphism J is orthogonal relatively
to q, and let h be the following Hermitian structure on TM: h(v, w)=
q(v, w)− ıq(Jv, w) for v, w ¥ TM. Let p: TMQM be the canonical projec-
tion. The symbol ThomG(M, J): pg(Meven

C TM)Q pg(Modd
C TM) is equal, at

(x, v) ¥ TM, to the Clifford map

Clx(v): pg(Meven
C TM)|(x, v) Q pg(Modd

C TM)|(x, v), (2.1)

where Clx(v).w=vNw−ch(v).w for w ¥M •
C TxM. Here ch(v):M •

C TxMQ
M •−1 TxM denotes the contraction map relatively to h: for w ¥ TxM we
have ch(v).w=h(w, v). Here (TM, J) is considered as a complex vector
bundle over M.

The symbol ThomG(M, J) determines the Bott–Thom isomorphism ThomJ:
KG(M)QKG(TM) by ThomJ(E) :=ThomG(M, J) é pg(E), E ¥KG(M).
To make the notation clearer, ThomJ(E) is the symbol sE: pg(Meven

C TM
é E)Q pg(Modd

C TM é E) with

sE(x, v) :=Clx(v) é IdEx
, (x, v) ¥ TM, (2.2)

where Ex is the fiber of E at x ¥M.
Consider the index map IndexG

M: KG(TgM)Q R(G) where TgM is the
cotangent bundle of M. Using a G-invariant auxiliary metric on TM, we
can identify the vector bundle TgM and TM, and produce an ‘‘index’’ map
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IndexG
M: KG(TM)Q R(G). We verify easily that this map is independent of

the choice of the metric on TM.

Lemma 2.1. We have the commutative diagram

KG(M)||QThomJ KG(TM)

RRG, J
‡ IndexGM

R(G).

(2.3)

Proof. If we use the natural identification (M0, 1 TgM, ı) 5 (TM, J) of
complex vector bundles over M, we see that the principal symbol of the
operator D+

E is equal to sE (see [14]). L

We will conclude with the following Lemma. Let J0, J1 be two
G-invariant almost complex structures on M, and let RRG, J0, RRG, J1 be the
respective quantization maps.

Lemma 2.2. The maps RRG, J0 and RRG, J1 are identical in the following
cases:

(i) There exists a G-invariant Section A ¥ C(M, End(TM)), homoto-
pic to the identity in C(M, End(TM))G such thatAx is invertible, andAx .J

0
x=

J1
x .Ax for every x ¥M.

(ii) There exists an homotopy J t, t ¥ [0, 1] of G-invariant almost
complex structures between J0 and J1.

Proof of (i). Take a Riemannian structure q1 on M such that J1 ¥ O(q1)
and define another Riemannian structure q0 by q0(v, w)=q1(Av, Aw)
so that J0 ¥ O(q0). The Section A defines a bundle unitary map A:
(TM, J0, h0) Q (TM, J1, h1), (x, v) Q (x, Ax .v), where h l(. , .) :=q l(. , .) −
ıq l(J l., .), l=0, 1. This gives an isomorphism A N

x : MJ0 TxMQMJ1 TxM
such that the following diagram is commutative

MJ0 TxM|||QClx(v) MJ0 TxM

‡A N
x ‡A N

x

MJ1 TxM|||QClx(Ax .v) MJ1 TxM.

Then A N induces an isomorphism between the symbols ThomG(M, J0)
and Ag(ThomG(M, J1)): (x, v)Q ThomG(M, J1)(x, Ax .v). Here Ag: KG(TM)
QKG(TM) is the map induced by the isomorphism A. Thus the complexes
ThomG(M, J0) and Ag(ThomG(M, J1)) define the same class in KG(TM).
Since A is homotopic to the identity, we have Ag=Identity. We have
proved that ThomG(M, J0)=ThomG(M, J1) in KG(TM), and by Lemma
2.1 this shows that RRG, J0=RRG, J1.
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Proof of (ii). We construct A as in (i). Take first A1, 0 :=Id−J1J0 and
remark that A1, 0 .J0=J1 .A1, 0. Here we consider the homotopy A1, 0

u :=
Id−uJ1J0, u ¥ [0, 1]. If −J1J0 is close to Id, for example |Id+J1J0|
[ 1/2, the bundle map A1, 0

u will be invertible for every u ¥ [0, 1]. Then we
can conclude with Point (i). In general we use the homotopy J t, t ¥ [0, 1].
First, we decompose the interval [0, 1] in 0=t0 < t1 < · · · < tk−1 < tk=1
and we consider the maps A tl+1, tl :=Id−J tl+1J tl, with the corresponding
homotopy A tl+1, tl

u , u ¥ [0, 1], for l=0, ..., k−1. Because −J tl+1J tl Q Id
when tQ tŒ, the bundle maps A tl+1, tl

u are invertible for all u ¥ [0, 1] if
tl+1 −tl is small enough. Then we take the G-equivariant bundle map
A :=Pk−1

l=0 A
tl+1, tl with the homotopy Au :=Pk−1

l=0 A
tl+1, tl
u , u ¥ [0, 1]. We

have A.J0=J1 .A and Au is invertible for every u ¥ [0, 1], hence we
conclude with the point (i). L

3. TRANSVERSALLY ELLIPTIC SYMBOLS

We give here a brief review of the material we need in the next sections.
The references are [1, 11, 12, 38].

Let M be a compact manifold provided with a G-action. Like in the pre-
vious section, we identify the tangent bundle TM and the cotangent bundle
TgM via a G-invariant metric (. , .)M on TM. For any X ¥ g, we denote by
XM the following vector field: for m ¥M, XM(m) :=d

dt exp(−tX).m|t=0.
If E0, E1 are G-equivariant vector bundles over M, a morphism

s ¥ C(TM, hom(pgE0, pgE1)) of G-equivariant complex vector bundles will
be called a symbol. The subset of all (x, v) ¥ TM where s(x, v): E0

x Q E1
x is

not invertible will be called the characteristic set of s, and denoted
Char(s).

We denote by TGM the following subset of TM:

TGM={(x, v) ¥ TM, (v, XM(m))M=0 for all X ¥ g}.

A G-equivariant symbol s will be called elliptic if s is invertible outside a
compact subset of TM (Char(s) is compact), and it will be called transver-
sally elliptic if the restriction of s to TGM is invertible outside a compact
subset of TGM (Char(s) 5 TGM is compact). An elliptic symbol s defines
an element of KG(TM), and the index of s is a virtual finite dimensional
representation of G [3, 4, 5, 6]. A transversally elliptic symbol s defines an
element of KG(TGM), and the index of s is defined (see [1] for the analytic
index and [11, 12] for the cohomological one) and is a trace class virtual
representation of G. Remark that any elliptic symbol of TM is transversally
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elliptic, hence we have a restriction map KG(TM)QKG(TGM), which
makes the following diagram

KG(TM) ||Q KG(TGM)

‡ IndexGM ‡ IndexGM

R(G)||||QR−.(G).

(3.1)

commutative.

3.1. Index map on non-compact manifolds. Let U be a non-compact
G-manifold. Lemma 3.6 and Theorem 3.7 of [1] tell us that for any open
G-embedding j: U+M into a compact manifold we have a pushforward
map jg: KG(TGU)QKG(TGM) such that the composition

KG(TGU)|Q
jg KG(TGM)|||Q

IndexGM R−.(G)

is independent of the choice of j: U+M.

Lemma 3.1. Let U be a G-invariant open subset of a G-manifold X. If U
is relatively compact, there exists an open G-embedding j: U+M into a
compact G-manifold.

Proof. Here we follow the proof given by Boutet de Monvel in [9]. Let
q ¥ C.(X)G be a function with compact support, such that 0 [ q [ 1 and
q=1 on U. Let q: X×RQ R be the function defined by q(m, t)=
q(m)−t2. The interval (−., 1] is the image of q, and the fibers q−1(e) are
compact for every e > 0. According to Sard’s Theorem there exists a
regular value 0 < e0 < 1 of q. The set q−1(e0) is then a compact G-invariant
submanifold of X×R, and j: UQ q−1(e0), mW (m,`1− e0 ) is an open
embedding. L

Corollary 3.2. The index map IndexG
U: KG(TGU)Q R−.(G) is defined

when U is a G-invariant relatively compact open subset of a G-manifold.

3.2. Excision lemma. Let j: U+M be the inclusion map of a
G-invariant open subset on a compact manifold, and let jg: KG(TGU)
QKG(TGM) be the pushforward map. We have two index maps IndexG

M,
and IndexG

U such that IndexG
M p jg=IndexG

U. Suppose that s is a transver-
sally elliptic symbol on TM with characteristic set contained in TM|U.
Then, the restriction s |U of s to TU is a transversally elliptic symbol on
TU, and

jg(s |U)=s in KG(TGM). (3.2)

In particular, it gives IndexG
M(s)=IndexG

U(s |U).
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3.3. Locally free action. Let G and H be compact Lie groups and let M
be a compact G×H manifold.

In a first place, we suppose that G acts freely on M, and we denote by
p: MQM/G the principal fibration. Note that the map p is H-equivariant.
In this situation we have TG×HM 5 pg(TH(M/G)), and thus an isomor-
phism

pg: KH(TH(M/G))QKG×H(TG×HM). (3.3)

We rephrase now Theorem 3.1 of Atiyah in [1].
For each irreducible G-representation Vm, we associate the complex

vector bundle V
¯ m

:=M×H Vm on M/G and denote by V
¯

g
m its dual. The

group H acts trivially on Vm, this makes V
¯

g
m a H-vector bundle.

Theorem 3.3 (Atiyah). If s ¥KH(TH(M/G)), then we have the follow-
ing equality in R−.(G×H)

IndexG×H
M (pgs)= C

m ¥ L
g
+

IndexH
M/G(s é V

¯
g
m).Vm. (3.4)

In particular the G-invariant part of IndexG×H
M (pgs) is IndexH

M/G(s).

A classical example is when M=G, G=Gr acts by right multiplications
on G, and G=Gl acts by left multiplications on G. Then the zero map
s0: G×CQ G×{0} defines a Gr ×Gl-transversally elliptic symbol asso-
ciated to the zero differential operator C.(G)Q 0. This symbol is equal to
the pullback of C ¥KGr

(TGr
{point}) 5 R(Gr). In this case IndexGr ×Gl

G (s0) is
equal to L2(G), the L2-index of the zero operator on C.(G). The Gr-vector
bundle V

¯
g
m Q {point} is just the vector space Vg

m with the canonical action
of Gr. Finally, (3.4) is the Peter-Weyl decomposition of L2(G) in
R−.(Gr ×Gl): L2(G)=;m ¥ Lg

+
Vg
m é Vm.

We suppose now that G acts locally freely on M. The quotient
X :=M/G is an orbifold, a space with finite-quotient singularities. One
considers on X the H-equivariant proper orbifold vector bundles and the
corresponding R(H)-module Korb, H(X) [21]. In the same way we consider
the H-equivariant proper elliptic symbols on the orbifold TX and the cor-
responding R(H)-module Korb, H(TX). The principal fibration p: MQX
induces isomorphisms Korb, H(X)4KG×H(M) and Korb, H(TX)4KG×H(THM)
that we both denote by pg. The index map

IndexH
X : Korb, H(TX)Q R(H) (3.5)

is defined by the following equation: for any s ¥Korb, H(TX), IndexH
X (s)

:=[IndexG×H
M (pgs)]G.

456 PAUL-EMILE PARADAN



We are particularly interested in the case where the bundle TGMQM
carries a G×H-equivariant almost complex structure J. Taking the
quotient by G, it defines a H-equivariant almost complex structure JX
on the orbifold tangent bundle TXQX. Like in the smooth case, we have
the Thom symbol ThomH(X, JX) ¥Korb, H(TX) and a Riemann–Roch
character RRH: Korb, H(X)Q R(H) related as in Lemma 2.1.

3.4. Induction. Let i: H+ G be a closed subgroup with Lie algebra h,
and Y be a H-manifold (as in Corollary 3.2). We have two principal
bundles p1: G×YQY for the G-action, and p2: G×YQX := G×H Y for
the diagonal H-action. The map ig: KH(THY)QKG(TGX) is well defined
by the following commutative diagram

KH(THY)||Q
p
g
1 KG×H(TG×H(G×Y))

ig

‡ (p
g
2 )

−1

KG(TGX),

(3.6)

since pg
1 and pg

2 are isomorphisms.
Let us show how to compute ig(s), for an H-transversally elliptic symbol

s ¥ C(TY, hom(E0, E1)), where E0, E1 are H-equivariant vector bundles
over TY. First we note4 that T(G×H Y) 5 G×H (g/h À TY), and TG(G×H Y)

4 These identities come from the following G×H-equivariant isomorphism of vector
bundles over G×Y: TH(G×Y)Q G×(g/h À TY), (g, m; d

dt|t=0(g.e tX)+vm)W (g, m; prg/h(X)
+vm). Here prg/h : gQ g/h is the orthogonal projection.

5 G×H (THY). So we extend trivially s to g/h À TY, and we define
ig(s) ¥ C(G×H (g/h À TY), hom(G×H E0, G×H E1)) by ig(s)([g; t, x, v])
:=s(x, v) for g ¥ G, t ¥ g/h and (x, v) ¥ TY.

To express the G-index of ig(s) in terms of the H-index of s, we need the
induction map

IndG
H: C

−.(H)H Q C−.(G)G, (3.7)

where C−.(H) is the set of generalized functions on H, and the H and G
invariants are taken with the conjugation action. The map IndG

H is defined
as follows: for f ¥ C−.(H)H, we have >G IndG

H(f)(g) f(g) dg=cst >H
f(h) f|H(h) dh, for every f ¥ C.(G)G, where cst=vol(G, dg)/vol(H, dh).

We can now recall Theorem 4.1 of Atiyah in [1].

Theorem 3.4. Let i: HQ G be the inclusion of a closed subgroup, let Y
be a H-manifold satisfying the hypothesis of Corollary 3.2, and set X=
G×H Y. Then we have the commutative diagram
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KH(THY)||Qig KG(TGX)

‡ IndexHY ‡ IndexGX

C−.(H)H ||Q
IndG

H

C−.(G)G.

3.5. Reduction. Let us recall a multiplicative property of the index for
the product of manifold. Let a compact Lie group G acts on two manifolds
X and Y, and assume that another compact Lie group H acts on Y
commuting with the action of G. The external product of complexes on TX
and TY induces a multiplication (see [1] and [38], Section 2):

KG(TX)×KG×H(TY) Q KG×H(T(X×Y))

(s1, s2)W s1 í s2.
(3.8)

Let us recall the definition of this external product. Let E ±, F ± be G×H-
equivariant Hermitian vector bundles over X and Y respectively, and let
s1: E+Q E−, s2: F+Q F− be G×H-equivariant symbols. We consider the
G×H-equivariant symbol

s1 í s2 : E+é F+À E− é F− Q E− é F+À E+é F−

defined by

s1 í s2=R
s1 é I −I é sg

2

I é s2 sg
1 é I
S . (3.9)

We see that the set Char(s1 í s2) … TX×TY is equal to Char(s1)×
Char(s2). This exterior product defines the R(G)-module structure on
KG(TX), by taking Y=point and H={e}. If we take X=Y and H={e},
the product on KG(TX) is defined by

s1 í̃ s2 :=sgX(s1 í s2), (3.10)

where sX : TXQ TX×TX is the diagonal map.
In the transversally elliptic case we need to be careful in the definition of

the exterior product, since TG×H(X×Y) ] TGX×THY.

Definition 3.5. Let s be a H-transversally elliptic symbol on TY. This
symbol is called H-transversally good if the characteristic set of s intersects
THY in a compact subset of Y.
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Recall Lemma 3.4 and Theorem 3.5 of Atiyah in [1]. Let s1 be a
G-transversally elliptic symbol on TX, and s2 be a H-transversally elliptic
symbol on TY that is G-equivariant. Suppose furthermore that s2 is
H-transversally good, then the product s1 í s2 is G×H-transversally
elliptic. Since every class of KG×H(THY) can be represented by an
H-transversally good elliptic symbol, we have a multiplication

KG(TGX)×KG×H(THY) Q KG×H(TG×H(X×Y))

(s1, s2)W s1 í s2.
(3.11)

Suppose now that the manifolds X and Y satisfy the condition of
Corollary 3.2. So, the index maps IndexG

X, IndexG×H
Y , and IndexG×H

X×Y are
well defined. According to Theorem 3.5 of [1], we know that

IndexG×H
X×Y(s1 í s2)=IndexG

X(s1) · IndexG×H
Y (s2) in R−.(G×H),

for any s1 ¥KG(TGX) and s2 ¥KG×H(TH(X×H)). (3.12)

In the rest of this Section we suppose that the subgroup H … G is the
stabilizer of an element c ¥ g. The manifold G/H carries a G-invariant
complex structure Jc defined by the element c: at e ¥ G/H, the map Jc(e)
equals ad(c).(`−ad(c)2)−1 on Te(G/H)=g/h.

We recall now the definition of the map rc
G, H

: KG(TGX)QKH(THX)
introduced by Atiyah in [1]. We consider the manifold X×G with
two actions of G×H: for (g, h) ¥ G×H and (x, a) ¥X×G, we have
(g, h).(x, a) :=(g.x, gah−1) on X×1 G, and we have (g, h).(x, a) :=(h.x,
gah−1) on X×2 G.

The map G: X×2 GQX×1 G, (x, a)W (a.x, a) is G×H-equivariant, and
induces Gg: KG×H(TG×H(X×1 G))QKG×H(TG×H(X×2 G)). The G-action is
free on X×2 G, so the quotient map p: X×2 GQX induces an isomorphism
pg: KH(THX)QKG×H(TG×H(X×2 G)). We denote by s cg/h ¥KG×H(THG)
the pullback of the Thom class ThomG(G/H, Jc) ¥KG(T(G/H)), via the
quotient map GQ G/H.

Consider the manifold Y=G with the action of G×H defined by
(g, h).a=gah−1 for a ¥ G, and (g, h) ¥ G×H. Since the symbol s cg/h is
H-transversally good on TG, the product by s cg/h induces, by (3.11), the
map

KG(TGX) Q KG×H(TG×H(X×1 G))

s W s í s cg/h.
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Definition 3.6 (Atiyah). Let H the stabilizer of c ¥ g in G. The map
rc
G, H

: KG(TGX)QKH(THX) is defined for every s ¥KG(TGX) by

rc
G, H

(s) :=(pg)−1
p Gg(s í s cg/h).

Theorem 4.2 in [1] tells us that the following diagram is commutative

KG(TGX) ||Q
rcG, H KH(THX)

‡ IndexGX ‡ IndexHX

C−.(G)G P||
IndGH C−.(H)H.

(3.13)

We show now a more explicit description of the map rc
G, H

. Consider the
moment map

mG: TgXQ gg

for the (canonical) Hamiltonian action of G on the symplectic manifold
TgX. If we identify TX with TgX via a G-invariant metric, and g with gg

via a G-invariant scalar product, the ‘‘moment map’’ is a map mG: TXQ g

defined as follows. If E1, ..., E l is an orthonormal basis of g, we have
mG(x, v)=;i(E

i
M(x), v)ME i for (x, v) ¥ TX. The moment map admits the

decomposition mG=mH+mG/H, relative to the H-invariant orthogonal
decomposition of the Lie algebra g=h À h + . It is important to note that
TGX=m−1

G
(0), THX=m−1

H
(0), and TGX=THX 5 m−1

G/H
(0).

The real vector space g/h is endowed with the complex structure defined
by c. Consider over TX the H-equivariant symbol

sX
G, H: TX×Meven

C g/hQ TX×Modd
C g/h

(x, v; w)Q (x, v; wŒ),

with wŒ=Cl(mG/H(x, v)).w. Here h + 4 g/h, and Cl(X):MC g/hQMC g/h,
X ¥ g/h, denotes the Clifford action. This symbol has m−1

G/H
(0) for charac-

teristic set. For any symbol s over TX, with characteristic set Char(s), the
product s í̃ sX

G, H, defined at (3.10), is a symbol over TX with characteris-
tic set Char(s í̃ sX

G, H)=Char(s) 5 m−1
G/H

(0). Then, if s is a G-transversally
elliptic symbol over TX, the product s í̃ sX

G, H is a H-transversally elliptic
symbol.

Proposition 3.7. The map rc
G, H

: KG(TGX)QKH(THX) has the follow-
ing equivalent definition: for every s ¥KG(TGX)

rc
G, H

(s)=s í̃ sX
G, H in KH(THX).
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Proof. We have to show that for every s ¥KG(TGX), s í̃ sX
G, H=

(pg)−1
p Gg(s í s cg/h) in KH(THX). Let pG: TGQ G and pX: TXQX be

the canonical projections. The symbol s cg/h: p
g
G
(G×Meven

C g/h)Q pg
G
(G×

Modd
C g/h) is defined by s cg/h(a, Z)=Cl(Zg/h) for (a, Z) ¥ TG 4 G×g, where

Zg/h is the g/h-component of Z ¥ g.
Consider s: pg

XE0 Q pg
XE1, a G-transversally elliptic symbol on TX,

where E0, E1 are G-complex vector bundles over X. The product s í s cg/h
acts on the bundles pg

XE• é pg
G(G×M •

C g/h) at (x, v; a, Z) ¥ T(X×G) by

s(x, v)í Cl(Zg/h).

The pullback so :=Gg(s í sg/h) acts on the bundle G×(pg
XE• éM •

C g/h)
(here we identify T(X×G) with G×(g À TX)). At (x, v; a, Z) ¥ T(X×G)
we have

so(x, v; a, Z)=s í scg/h(a.x, vŒ; a, ZŒ), with

(vŒ, ZŒ)=([T(x, a)G]g)−1 (v, Z). Here T(x, a)G: T(x, a)(X×G)Q T(a.x, a)(X×G)
is the tangent map of G at (x, a), and [T(x, a)G]g: T(a.x, a)(X×G)Q
T(x, a)(X×G) its transpose. A small computation shows that ZŒ=Z+mG(v)
and vŒ=a.v. Finally, we get

so(x, v; a, Z)=s(a.x, a.v)í Cl(Zg/h+mG/H(v)).

Hence, the symbol (pg)−1 (so) acts on the bundle pg
XE• éM •

C g/h by

(pg)−1 (so)(x, v)=s(x, v)í Cl(mG/H(v)). L

For any G-invariant function f ¥ C.(G)G, the Weyl integration formula
can be written5

5 See Remark 9.2.

f=IndG
H(f|H M •

C g/h) in C−.(G)G. (3.14)

where f|H ¥ C.(H)H is the restriction to H=Gc. Equality (3.14) remains
true for any f ¥ C−.(G)G that admits a restriction to H.

Lemma 3.8. Let s be a G-transversally elliptic symbol. Suppose furthermore
that s is H-transversally elliptic. This symbol defines two classes s ¥KG(TGX)
and s|H ¥KH(THX) with the relation6 rc

G, H
(s)=s|H éM •

C g/h. Hence for

6 Here we note s|H éM •
C g/h for the difference s|H éMeven

C g/h−s|H éModd
C g/h.

the generalized character IndexG
X(s) ¥ R−.(G) we have a ‘‘Weyl integration’’

formula

IndexG
X(s)=IndG

H(IndexH
X (s|H) M •

C g/h). (3.15)
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Proof. If s is H-transversally elliptic, the symbol (x, v)Q s(x, v)í
Cl(mG/H(v)) is homotopic to (x, v)Q s(x, v)í Cl(0) in KH(THX). Hence
s|H í sX

G, H=s|H éM •
C g/h in KH(THX). (3.15) follows from the diagram

(3.13). L

Corollary 3.9. Let s be a G-transversally elliptic symbol which
furthermore is H-transversally elliptic, and let f ¥ C−.(G)G which admits a
restriction to H. We have

f=IndexG
X(s)Y f|H=IndexH

X (s|H).

In fact, if we come back to the definition of the analytic index given
by Atiyah [1], one can show the following stronger result. If s be a
G-transversally elliptic symbol which is also H-transversally elliptic, then
IndexG

X(s) ¥ C−.(G)G admits a restriction to H equal to IndexH
X (s|H) ¥

C−.(H)H.

4. LOCALIZATION—THE GENERAL PROCEDURE

We recall briefly the notations. Let (M, J, G) be a compact G-manifold
provided with a G-invariant almost complex structure. We denote by
RRG, J: KG(M)Q R(G) (or simply RRG), the corresponding quantization
map. We choose a G-invariant Riemannian metric (. , .)M on M. We define
in this section a general procedure to localize the quantization map through
the use of a G-equivariant vector field l. This idea of localization goes
back, when G is a circle group, to Atiyah [1] (see Lecture 6) and Vergne
[38] (see part II).

We denote by Fl: MQ gg the map defined by OFl(m), XP :=(lm, XM |m)M
for X ¥ g. We denote by sE(m, v), (m, v) ¥ TM the elliptic symbol associated
to ThomG(M) é pg(E) for E ¥KG(M) (see Section 2).

Let sE
1 be the following G-equivariant elliptic symbol

sE
1 (m, v) :=sE(m, v−lm), (m, v) ¥ TM. (4.1)

The symbol sE
1 is obviously homotopic to sE, so they define the same

class in KG(TM). The characteristic set Char(sE) is M … TM, but we see
easily that Char(sE

1 ) is equal to the graph of the vector field l, and

Char(sE
1 ) 5 TGM={(m, lm) ¥ TM, m ¥ {Fl=0}}.
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We will now decompose the elliptic symbol sE
1 in KG(TGM) near

Cl :={Fl=0}.

If a G-invariant subset C is a union of connected components of Cl
there exists a G-invariant open neighborhood Uc …M of C such that
Uc 5 Cl=C and “Uc 5 Cl=”. We associate to the subset C the symbol
sE

C :=sE
1 |Uc ¥KG(TGU

c) which is the restriction of sE
1 to TUc. It is well

defined since Char(sE
1 |Uc) 5 TGU

c={(m, lm) ¥ TM, m ¥ C} is compact.

Proposition 4.1. Let Ca, a ¥ A, be a finite collection of disjoint
G-invariant subsets of Cl, each of them being a union of connected compo-
nents of Cl, and let sE

Ca ¥KG(TGU
a) be the localized symbols. If Cl=1a Ca,

we have

sE=C
a ¥ A

iag(s
E
Ca) in KG(TGM),

where ia: Ua +M is the inclusion and iag: KG(TGU
a)QKG(TGM) is the

corresponding direct image.

Proof. This is a consequence of the property of excision (see Sect. 3.2).
We consider disjoint neighborhoods Ua of Ca, and take i: U=1a U

a +M.
Let qa ¥ C.(M)G be a test function (i.e., 0 [ qa [ 1) with compact support
on Ua such that qa(m) ] 0 if m ¥ Ca. Then the function q :=;a qa is a
G-invariant test function with support in U such that q never vanishes
on Cl.

Using the G-equivariant symbol sE
q (m, v) :=sE(m, q(m) v−lm), (m, v) ¥

TM, we prove the following :

(i) the symbol sE
q is G-transversally elliptic and Char(sE

q ) … TM|U,
(ii) the symbols sE

q and sE
1 are equal in KG(TGM), and

(iii) the restrictions sE
q |U and sE

1 |U are equal in KG(TGU).

With Point (i) we can apply the excision property to sE
q , hence sE

q=
ig(s

E
q |U). By (ii) and (iii), the last equality gives sE

1 =ig(s
E
1 |U)=

;a i
a
g(s

E
Ca).

Proof of (i). The point (m, v) belongs to Char(sE
q ) if and only if

q(m) v=lm(f). If m is not included in U, we have q(m)=0 and the
equality (f) becomes lm=0. But {l=0} … Cl …U, thus Char(sE

q ) …
TM|U. The point (m, v) belongs to Char(sE

q ) 5 TGM if and only if
q(m) v=lm and v is orthogonal to the G-orbit in m. This imposes m ¥ Cl,
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and finally we see that Char(sE
q ) 5 TGM 4 Cl is compact because the

function q never vanishes on Cl.

Proof of (ii). We consider the symbols sE
t , t ¥ [0, 1] defined by

sE
t (m, v)=sE(m, (t+(1−t) q(m)) v−lm).

We see as above that sE
t is an homotopy of G-transversally elliptic symbols

on TM.

Proof of (iii). Here we use the homotopy sE
t |U, t ¥ [0, 1]. L

Because RRG(M, E)=IndexG
M(sE) ¥ R(G), we obtain from Proposition

4.1 the following decomposition

RRG(M, E)=C
a ¥ A

IndexG
U

a(sE
Ca) in R−.(G). (4.2)

The rest of this article is devoted to the description, in some particular
cases, of the Riemann–Roch character localized near Ca:

RRG
Ca(M, −): KG(M) Q R−.(G) (4.3)

EW IndexG
U

a(sE
Ca).

5. LOCALIZATION ON Mb

Let (M, J, G) be a compact G-manifold provided with a G-invariant
almost complex structure. Let b be an element in the center of the Lie
algebra of G, and consider the G-invariant vector field l :=bM generated
by the infinitesimal action of b. In this case we have obviously

{FbM=0}={bM=0}=Mb.

In this section, we compute the localization of the quantization map on the
submanifold Mb following the technique explained in Section 4. We first
need to understand the case of a vector space.

The principal results of this section, i.e., Proposition 5.4 and Theorem
5.8, were obtained by Vergne [38, Part II], in the Spin case for an action of
the circle group.

5.1. Action on a vector space. Let (V, q, J) be a real vector space
equipped with a complex structure J and an Euclidean metric q such that
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J ¥ O(q). Suppose that a compact Lie group G acts on (V, q, J) in a
unitary way, and that there exists b in the center of g such that

Vb={0}.

We denote by Tb the torus generated by exp(t .b), t ¥ R, and tb its Lie
algebra.

The complex ThomG(V, J) does not define an element in KG(TV)
because its characteristic set is V.

Definition 5.1. Let Thomb
G(V) ¥KG(TGV) be the G-transversally7 elliptic

7 One can verify that Char(Thomb
G(V))5 TGV={(0, 0)}.

complex defined by

Thomb
G(V)(x, v) :=ThomG(V)(x, v−bV(x)) for (x, v) ¥ TV.

Before computing the index of Thomb
G(V) explicitly, we compare it with

the pushforward j!(C) ¥KG(TV) where j: {0}+ V is the inclusion and
CQ {0} is the trivial line bundle. Recall that IndexG

V(j!(C))=1.
We denote by V the real vector space V endowed with the complex

structure −J, and M •
C V :=Meven

C V−Modd
C V the corresponding element in

R(G).

Lemma 5.2. We have M •
C V . Thomb

G(V)=j!(C) in KG(TGV), hence

M •
C V. IndexG

V(Thomb
G(V))=1 in R−.(G).

Proof. The class j!(C) is represented by the symbol so : TV×Meven
C

(V é C)Q TV×Modd
C (V é C), (x, v, w)W (x, v, Cl(x+ıv).w). If we use the

following isomorphism of complex G-vector spaces

V é C Q V À V

x+ıvW (v−J(x), v+J(x)),

we can write so=s− í s+, where the symbols8 s± act on TV×M •
C V±

8 V+=V and V−=V.

through the Clifford maps s± (x, v)=Cl(v + J(x)). Finally we see that the
following G-transversally elliptic symbols on TV are homotopic
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Cl(v+J(x))í Cl(v−J(x))

Cl(v+J(x))í Cl(v−bV(x))

Cl(0)í Cl(v−bV(x)).

The lemma is proved since (x, v)Q Cl(0)í Cl(v−bV(x)) represents the
class M •

C V . Thomb
G(V) in KG(TGV). L

We compute now the index of Thomb
G(V). For a ¥ tgb, we define the

G-invariant subspaces9 V(a) :={v ¥ V, r(exp X)(v)=e ıOa, XP · v, -X ¥ tb},

9 We denote by z · v :=x.v+y.J(v), z=x+ıy ¥ C, the action of C on the complex vector
space (V, J), and zw=v é zzŒ, w=v é zŒ ¥ V é C the canonical action of C on V é C.

and (V é C)(a) :={v ¥ V é C, r(exp X)(v)=e ıOa, XPv, -X ¥ tb}.
An element a ¥ tgb, is called a weight for the action of Tb on (V, J) (resp.

on V é C) if V(a) ] 0 (resp. (V é C)(a) ] 0). We denote by D(Tb, V) (resp.
D(Tb, V é C)) the set of weights for the action of Tb on V (resp. V é C).
We shall note that D(Tb, V é C)=D(Tb, V) 2 −D(Tb, V).

Definition 5.3. We denote by V+, b the following G-stable subspace of V

V+, b := C
a ¥ D+(Tb, V)

V(a),

where D+(Tb, V)={a ¥ D(Tb, V), Oa, bP > 0}. In the same way, we denote
by (V é C)+, b the following G-stable subspace of V é C : (V é C)+, b :=
;a ¥ D+(Tb, V é C)(V é C)(a),whereD+(Tb, V é C)={a ¥ D(Tb, V é C), Oa, bP
> 0}.

For any representation W of G, we denote by det W the representation
Mmax

C W. In the same way, if WQM is a G complex vector bundle we
denote by det W the corresponding line bundle.

Proposition 5.4. We have the following equality in R−.(G) :

IndexG
V(Thomb

G(V))=(−1)dimC V+, b
det V+, b é C

k ¥N

Sk((V é C)+, b),

where Sk((V é C)+, b) is the kth symmetric product over C of (V é C)+, b.

Proposition 5.4 and Lemma 5.2 give the two important properties of the
generalized function q :=IndexV

G(Thomb
G(V)). First q is an inverse, in

R−.(G), of the function g ¥ GQ detCV (1−g−1) which is the trace of the
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(virtual) representation M •
C V. Second, the decomposition of q into irre-

ducible characters of G is of the form q=;l mlqG
l

with ml ] 0 2
Ol, bP \ 0.

Definition 5.5. For any R(G)-module A, we denote by A é̂ R(Tb), the
R(G) é R(Tb)-module formed by the infinite formal sums ;a Ea ha taken
over the set of weights of Tb, where Ea ¥ A for every a.

We denote by [M •
C V ]−1

b the infinite sum (−1) r det V+, b é;k ¥N

Sk((V é C)+, b), with r=dimC V+, b. It can be considered either as an
element of R−.(G), R(G) é̂ R(Tb), or R−.(Tb).

Let VQX be a G-complex vector bundle such that Vb=X. The torus
Tb acts on the fibers of VQX, so we can polarize the Tb-weights
and define the vector bundles V+, b and (V é C)+, b. In this case, the
infinite sum [M •

C Va ]−1
b :=(−1)dimC V

+, b
det V+, b é;k ¥N Sk((V é C)+, b)

is an inverse of M •
C Va in KG(X) é̂ R(Tb).

The rest of this Section is devoted to the proof of Proposition 5.4. The
case V+, b=V or V+, b={0} is considered by Atiyah [1] (see Lecture 6)
and Vergne [38] (see Lemma 6, Part II).

Let H be a maximal torus of G containing Tb. The symbol Thomb
G(V) is

also H-transversally elliptic and let Thomb
H(V) be the corresponding class

in KH(THV). Following Corollary 3.9, we can reduce the proof of Propo-
sition 5.4 to the case where the group G is equal to the torus H.

Proof of Proposition 5.4 for a torus action. We first recall the index
theorem proved by Atiyah in Lecture 6 of [1]. Let Tm the circle group act
on C with the representation tm, m > 0. We have two classes Thom ±

Tm (C) ¥
KTm

(TTm
(C)) that correspond respectively to b=±ı ¥ Lie(S1). Atiyah

denotes these elements “ ±.

Lemma 5.6 (Atiyah). We have, for m > 0, the following equalities in
R−.(Tm):

IndexTm
C (Thom+

Tm
(C))=5 1

1−t−m
6+=−tm. C

k ¥N

(tm)k

IndexTm
C (Thom−

Tm
(C))=5 1

1−t−m
6−= C

k ¥N

(t−m)k.

Here we follow the notation of Atiyah: [ 1
1−t−m]+ and [ 1

1−t−m]− are the
Laurent expansions of the meromorphic function t ¥ CQ 1

1−t−m around
t=0 and t=. respectively.
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From this lemma we can compute the index of Thom ±
Tm
(C) when m < 0.

Suppose m < 0 and consider the morphism o: Tm Q T|m|, tQ t−1. Using
the induced morphism og: KT|m|

(TT|m|
(C))QKTm

(TTm
(C)), we see that

og(Thom ±
T|m|

(C))=Thom +

Tm
(C). This gives IndexTm

C (Thom+
Tm
(C))=og(;k ¥N

(t−|m|)k)=;k ¥N (t−m)k and IndexTm
C (Thom−

Tm
(C))=og(−t |m|.;k ¥N(t |m|)k)=

−tm ;k ¥N(tm)k.
We can summarize these different cases as follows.

Lemma 5.7. Let Ta the circle group act on C with the representation tQ ta

for a ¥ Z0{0}. Let b ¥ Lie(Ta)4R a non-zero element. We have the following
equalities in R−.(Ta):

IndexTa
C (Thomb

Ta
(C))(t)=5 1

1−u−1
6e
u=ta

,

where e is the sign of Oa, bP.

We decompose now the vector space V into an orthogonal sum
V=Ái ¥ I Cai , where Cai is a H-stable subspace of dimension 1 over C
equipped with the representation t ¥HQ tai ¥C. Here the set I parametrizes
the weights for the action of H on V, counted with their multiplicities. Con-
sider the circle group Ti with the trivial action on Ák] i Cak and with
the canonical action on Cai . We consider V equipped with the action
of H×PkTk. The symbol Thomb

H(V) is H×PkTk-equivariant and is either
H-transversally elliptic, H×PkTk-transversally elliptic (we denote by sB the
corresponding class), or PkTk-transversally elliptic (we denote by sA the
corresponding class). We have the following canonical morphisms :

KH(THV)PKH×PkTk
(THV)QKH×PkTk

(TH×PkTk
V)

Thomb
H(V)P sB1 Q sB,

KH×PkTk
(TH×PkTk

V)PKH×PkTk
(TPkTk

V)QKPkTk
(TPkTk

V)

sB P sB2 Q sA.

(5.1)

We consider the following characters:

— f(t) ¥R−.(H) the H-index of Thomb
H(V),

— fB(t, t1, ..., tl) ¥R−.(H×PkTk) the H×PkTk-index of sB (the same
for sB1 and sB2 ).

— fA(t1, ..., tl) ¥R−.(PkTk) the PkTk-index of sA.

They satisfy the relations

(i) f(t)=fB(t, 1, ..., 1) and fB(1, t1, ..., tl)=fA(t1, ..., tl).
(ii) fB(tu, t1u−a1, ..., tlu−a1)=fB(t, t1, ..., tl), for all u ¥H.
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Point (i) is a consequence of the morphisms (5.1). Point (ii) follows from the
fact that the elements (u, u−a1, ..., u−al), u ¥H act trivially on V.

The symbol sA can be expressed through the map

KT1
(TT1

Ca1)×KT2
(TT2

Ca2)× · · · ×KTl
(TTl

Cal) Q KPkTk
(TPkTk

V)

(s1, s2, ..., sl)W s1 í s2 í · · · í sl.

Here we have sA=ìl
k=1 Thom

ek
Tk
(Cak) in KPkTk

(TPkTk
V), where ek is the

sign of Oak, bP. Finally, we get

f(u)=fB(u, 1, ..., 1)=fB(1, ua1, ..., ua1)

=fA(ua1, ..., ua1)=Pk
5 1
1−t−1
6ek
t=uak

.

To finish the proof, it suffices to note that the following identification of
H-vector spaces holds: V+, b4Áek > 0 Cak and (VéC)+, b4Ák Cekak . L

5.1. Localization of the quantization map on Mb. Let b ] 0 be a
G-invariant element of g. The localization formula that we prove for
the Riemann–Roch character RRG(M, −) will hold in10 R1(G) :=homZ

10 An element of R1(G) is simply a formal sum ;l mlqG
l with ml ¥ Z for all l.

(R(G), Z).
Let N be the normal bundle of Mb in M. For m ¥Mb, we have the

decomposition TmM=TmMbÀN |m. The linear action of b on TmM
precises this decomposition. The map LM(b): TmMQ TmM commutes
with the map J and satisfies TmMb=ker(LM(b)). Here we take N |m :=
Image(LM(b)). Then the almost complex structure J induces a
G-invariant almost complex structure Jb on Mb, and a complex structure JN
on the fibers of NQMb. We have then a quantization map
RRG(Mb, −): KG(Mb)QR(G). The torus Tb acts linearly on the fibers of
the complex vector bundle N. Thus we associate the polarized complex
G-vector bundles N+, b and (NéC)+, b (see Definition 5.5).

Theorem 5.8. For every E ¥KG(M), we have the following equality in
R1(G):

RRG(M, E)=(−1)rN C
k ¥N

RRG(Mb, E|Mb é det N+, bé Sk((NéC)+, b),

where rN is the locally constant function on Mb equal to the complex rank of
N+, b.

Before proving this result let us rewrite this localization formula in a more
synthetic way. The G×Tb-Riemann–Roch character RRG×Tb(Mb, −) is
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extended canonically to a map from KG(Mb) é̂R(Tb) to R(G) é̂R(Tb) (see
Definition 5.5). Note that the surjective morphism G×Tb QG, (g, t)
W g.t induces maps R(G)QR(G)éR(Tb), KG(M)QKG×Tb

(M), both
denoted k, with the tautological relation k(RRG(M, E))=RRG×Tb(M, k(E)).
To simplify, we will omit the morphism k in our notations.

Let Na be the normal bundle N with the opposite complex structure.
With the convention of Definition 5.5 the element M •

C Na ¥KG×Tb
(Mb) 4

KG(Mb) é R(Tb) admits a polarized inverse [M •
C Na ]−1

b ¥ KG(Mb) é̂
R(Tb). Finally the result of Theorem 5.8 can be written as the following
equality in R(G) é̂ R(Tb) :

RRG(M, E)=RRG×Tb(Mb, E|Mb é [M •
C Na ]−1

b ). (5.2)

Note that Theorem 5.8 gives a proof of some rigidity properties [7, 30].
Let H be a maximal torus of G. Following Meinrenken and Sjamaar, a
G-equivariant complex vector bundle EQM is called rigid if the action of
H on E|MH is trivial. Take b ¥ h such that Mb=MH, and apply Theorem
5.8, with b and −b, to RRH(M, E), with E rigid.

If we take +b, Theorem 5.8 shows that h ¥HQ RRH(M, E)(h) is of the
form h ¥HQ;a ¥ Ĥ naha with na ] 0 2 Oa, bP \ 0. (see Lemma 9.4). If we
take −b, we find RRH(M, E)(h)=;a ¥ Ĥ naha, with na ] 0 2 −Oa, bP
\ 0. Comparing the two results, and using the genericity of b, we see that
RRH(M, E) is a constant function on H, hence RRG(M, E) is then a con-
stant function on G. We can now rewrite the equation of Theorem 5.8,
where we keep on the right hand side the constant terms:

RRG(M, E)= C
F …MH,+

RR(F, E|F). (5.3)

Here the summation is taken over all connected components F of MH such
that N+, b

F =0 (i.e., we have Ot, bP < 0 for all weights t of the H-action on
the normal bundle NF of F).

Proof of Theorem 5.8. Let U be a G-invariant tubular neighborhood11 of

11 To simplify the notation, we keep the notation Mb even if we work in fact on a connected
component of the submanifold Mb.

Mb in M. We know from Section 4 that RRG(M, E)=IndexG
U(Thomb

G(M, J)
é E|U) where

Thomb
G(M, J)(m, w) :=ThomG(M, J)(m, w−bN(m)), (m, w) ¥ TU.

Let f:VQU be G-invariant diffeomorphism with a G-invariant neigh-
borhood V of Mb in the normal bundle N. We denote by Thomb

G(V, J)
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the symbol fg(Thomb
G(M, J)). Here we still denote by J the almost

complex structure transported on V via the diffeomorphism U 4V.
Let p:NQMb be the canonical projection. The choice of a G-invariant

connection on N induces an isomorphism of G-vector bundles over N:

TN ( pg(TMb ÀN)

wW Tp(w) À (w)V
(5.4)

Here wQ (w)V, TNQ pgN is the projection that associates to a tangent
vector its vertical part (see [10, Sect. 7] or [31, Sect. 4.1]). The map
J2 :=pg(Jb À JN) defines an almost complex structure on the manifold N
that is constant over the fibers of p. With this new almost complex
structure J2 we construct the G-transversally elliptic symbol over N

Thomb
G(N)(n, w)=ThomG(N, J2)(n, w−bN(n)), (n, w) ¥ TN.

We denote by i:VQN the inclusion map, and ig: KG(TGV)QKG(TGN)
the induced map.

Lemma 5.9. We have

ig(Thomb
G(V, J))=Thomb

G(N) in KG(TN).

Proof. We proceed as in Lemma 2.2. The complex structure Jn, n ¥V
and J2n, n ¥N are equal on Mb, and are related by the homotopy
J t

(x, v) :=J(x, t .v), u ¥ [0, 1] for n=(x, v) ¥V. Then, as in Lemma 2.2, we can
construct an invertible bundle map A ¥ C(V, End(TV))G, which is homo-
topic to the identity and such that A.J=J2 .A on V. We conclude as in
Lemma 2.2 that the symbols Thomb

G(V, J) and Thomb
G(N) |V are equal

in KG(TV). Then the Lemma follows from the excision property. L

Since E 4 pg(E|Mb), for any G-complex vector bundle E over N, the
former lemma tells us that RRG(M, E)=IndexG

N(Thomb
G(N) é pg(E|Mb)).

We consider now the Hermitian vector bundle NQMb with the action
of G×Tb. First we use the decomposition N=Áa N

a relatively to the
unitary action of Tb on the fibers of N. Let Na be an Hermitian vector
space of dimension equal to the rank of Na, equipped with the representa-
tion tQ ta of Tb. Let U be the group of Tb-equivariant unitary maps of the
vector space N :=Áa Na, and let R be the Tb-equivariant unitary frame of
(N, JN) framed on N. Note that R is provided with a U×G-action and a
trivial action of Tb: for x ¥Mb, any element of R|x is a Tb-equivariant
unitary map from N to N |x. The manifold N is isomorphic to R×U N,
where G acts on R and Tb acts on N.
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We denote by Thomb
G×Tb

(N) the G×Tb canonical extension of
Thomb

G(N). It can be considered as a G, G×Tb, or Tb-transversally
elliptic symbol. Here we consider Thomb

G×Tb
(N) as an element of

KG×Tb
(TTb

(R×U N)). Recall that we have two isomorphisms

pg
N: KG×Tb

(TTb
(R×U N))(KG×Tb×U(TTb×U(R×N)), (5.5)

pg: KG(TMb)(KG×U(TUR), (5.6)

where pN: R×NQ R×U N 4N and p: RQ R/U 4Mb are the quotient
maps relative to the free U-action. Following (3.11), we have a product

KG×U(TUR)×KTb×U(TTb
N)QKG×Tb×U(TTb×U(R×N)). (5.7)

The following Thom classes

— Thomb
G×Tb

(N) ¥KG×Tb
(TTb

(R×U N)),
— Thomb

Tb×U(N) ¥KTb×U(TTb
N), and

— ThomG(Mb) ¥KG(TMb)

are related by the following equality in KG×Tb×U(TTb×U(R×N)):

pg
N Thomb

G×Tb
(N)=(pg ThomG(Mb))í Thomb

Tb×U(N). (5.8)

We will justify (5.8) later. Every E ¥KG(M), when restrict to Mb, admit
the decomposition E|Mb=;a ¥ 5Tb E

a é Ca in KG×Tb
(Mb) 4KG(Mb) é

R(Tb). Multiplication of (5.8) by E gives

pg
N(Thomb

G×Tb
(N) é E|Mb)

= C
a ¥ 5Tb

pg(ThomG(Mb) é Ea)í (Thomb
Tb×U(N) é Ca).

Following (3.12) and Theorem (3.3), the last equality gives, after taking
the index and the U-invariant,

RRG×Tb(M, E)

=C
a

5C
i ¥ U1

RRG(Mb, Ea éW
a

g
i ) ·Wi · IndexTb×U(Thomb

Tb×U(N)) ·Ca
6U .
(5.9)

Here we used that RRG×Tb(M, E) is equal to the U-invariant part of
IndexG×Tb×U(pg

N(Thomb
G×Tb

(N)é E|Mb)), and the index of pg(ThomG(Mb)
é Ea) is equal to ;i ¥ U1 RRG(Mb, Ea éW

a
g
i ).Wi.
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Now we observe that for any L ¥ R(U), the U-invariant part of ;i ¥ U1

RRG(Mb, E|Mb éW
a

g
i ).Wi é L is equal to RRG(Mb, E|Mb é L) with L=

R×U L. With the computation of IndexTb×U(Thomb
Tb×U(N)) given in

Proposition 5.4 we obtain finally

RRG×Tb(M, E)

=(−1) rN C
k ¥N

RRG×Tb(Mb, E|Mb é det N+, b é Sk((N é C)+, b))

which implies the equality of Theorem 5.8.
We give now an explanation for (5.8), which is a direct consequence of

the fact that the almost complex structure J2 admits the decomposition
J2=pg(Jb À JN). Hence M •

C TnN equipped with the map Cln(v−bN(n)),
v ¥ TnN is isomorphic to M •

C TxMb éM •
C N |x equipped with Clx(v1)í

Clx(v2 −bN(n)) where x=p(n), and the vector v ¥ TnN is decomposed,
following the isomorphism (5.4), in v=v1+v2 with v1 ¥ TxMb and
v2 ¥N |x. Note that the vector w=bN(n) ¥ TnN is vertical, i.e., w=(w)V.

L

6. LOCALIZATION VIA AN ABSTRACT MOMENT MAP

Let (M, J, G) be a compact G-manifold provided with a G-invariant
almost complex structure. We denote by RRG: KG(M)Q R(G) the quan-
tization map. Here we suppose that the G-manifold is equipped with an
abstract moment map [15, 20].

Definition 6.1. A smooth map fG: MQ gg is called an abstract
moment map if

(i) the map fG is equivariant for the action of the group G, and

(ii) 12for every connected Lie subgroup K … G with Lie algebra k, the

12 Condition (ii) is equivalent to the following: for every X ¥ g, the function OfG, XP is
locally constant on MX.

induced map fK : MQ kg is locally constant on the submanifold MK of
fixed points for the K-action (the map fK is the composition of fG with the
projection gg Q kg).

The terminology ‘‘moment map’’ is usually used when we work in the
case of a Hamiltonian action. More precisely, when the manifold is
equipped with a symplectic 2-form w which is G-invariant, a moment map
F: MQ gg relative to w is a G-equivariant map satisfying dOF, XP=
−w(XM, −), X ¥ g.
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For the rest of this paper we make the choice of a G-invariant scalar
product over gg. This defines an identification gg 4 g, and we work with a
given abstract moment map fG: MQ g.

Definition 6.2. Let HG be the G-invariant vector field over M defined by

HG
m :=(fG(m)M)m, -m ¥M.

The aim of this section is to compute the localization, as in Section 4,
with the G-invariant vector field HG. We know that the Riemann–Roch
character is localized near the set {FH

G=0}, but we see that {FH
G=0}

={HG=0}. We will denote by CfG this set. Let H be a maximal torus of
G, with Lie algebra h, and let h+ be a Weyl chamber in h.

Lemma 6.3. There exists a finite subset BG … h+, such that

CfG= 0
b ¥BG

CG
b , with CGb=G.(Mb 5 f−1G (b)).

Proof. We first observe that HG
m=0 if and only if fG(m)=bŒ and

b −M |m=0, that is m ¥MbŒ 5 f−1
G (bŒ), for some bŒ ¥ g. For every bŒ ¥ g,

there exists b ¥ h+, with bŒ=g.b for some g ¥ G. Hence MbŒ 5 f−1
G (bŒ)=

g.(Mb 5 f−1
G (b)). We have shown that CfG=1b ¥ h+

CG
b , and we need to

prove that the set BG :={b ¥ h+, Mb 5 f−1
G (b) ]”} is finite. Consider the

set {H1, ..., Hl} of stabilizers for the action of the torus H on the compact
manifold M. For each b ¥ h we denote by Tb the subtorus of H generated
by exp(t .b), t ¥ R, and we observe that

Mb 5 f−1
G (b) ]”. ,Hi such that Tb …Hi and MHi 5 f−1

G (b) ]”

. ,Hi such that b ¥ fG(MHi) 5 Lie(Hi).

But fG(MHi) 5 Lie(Hi) … fHi
(MHi) is a finite set after Definition 6.1. The

proof is now completed. L

Definition 6.4. Let Thomf
G, [b](M) ¥KG(TGU

G, b) defined by

Thomf
G, [b](M)(x, v) :=ThomG(M)(x, v−HG

x ), for (x, v) ¥ TUG, b.

Here iG, b: UG, b+M is any G-invariant neighborhood of CG
b such that

UG, b 5 CfG=CG
b .
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Definition 6.5. For every b ¥BG, we denote by RRG
b (M, −): KG(M)

Q R−.(G) the localized Riemann–Roch character near CG
b , defined as in

(4.3), by

RRG
b (M, E)=IndexG

U
G, b(Thomf

G, [b](M) é E|UG, b),

for E ¥KG(M). Note that the map RRG
b (M, −) is well defined on a non-

compact manifold M when the abstract moment map is proper, since we
can take UG, b relatively compact and the index map IndexG

U
G, b is then

defined (see Corollary 3.2).

According to Proposition 4.1, we have the partition RRG(M, −)=;b ¥BG

RRG
b (M, −), and the rest of this article is devoted to the analysis of the

maps RRG
b (M, −), b ¥BG.

In Sections 6.3 and 6.4 we prove that [RRG
b (M, E)]G=0, when E is

fG-strictly positive with gE, b > Oh, bP (see Def. 1.2 for the notion of
fG-positivity). The next two Sections are devoted to the computation of
RRG

0 (M, −) when 0 is a regular value of the abstract moment map fG.

5.1. Induced Spinc structures. In this Section we first review the notion
of Spinc-structures (see [25, 14, 33]). After we show that the almost
complex structure J on M induces a Spinc-structure on Mred.

The group Spinn is the connected double cover of the group SOn.
Let g: Spinn Q SOn be the covering map, and let e be the element who
generates the kernel. The group Spinc

n is the quotient Spinn ×Z2
U1, where

Z2 acts by (e, −1). There are two canonical group homomorphisms

g: Spinc
n Q SOn , Det: Spinc

n Q U1

such that gc=(g, Det): Spinc
n Q SOn ×U1 is a double covering map.

Let p: EQM be an oriented Euclidean vector bundle of rank n, and let
PSO(E) be its bundle of oriented orthonormal frames. A Spinc-structure
on E is a Spinc

n-principal bundle PSpinc(E)QM, together with a Spinc-
equivariant map PSpinc(E)Q PSO(E). The line bundle L :=PSpinc(E)×Det C is
called the determinant line bundle associated to PSpinc(E). We have then a
double covering map13

13 If P, Q are principal bundle over M respectively for the groups G and H, we denote
simply by P×Q their fibering product over M which is a G×H principal bundle over M.

gc
E: PSpinc(E)Q PSO(E)×PU(L), (6.1)

where PU(L) :=PSpinc(E)×Det U1 is the associated U1-principal bundle
over M.

A Spinc-structure on an oriented Riemannian manifold is a Spinc-
structure on its tangent bundle. If a group K acts on the bundle E,
preserving the orientation and the Euclidean structure, we defines a
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K-equivariant Spinc-structure by requiring PSpinc(E) to be a K-equivariant
principal bundle, and (6.1) to be (K×Spinc

n)-equivariant.
We assume now that E is of even rank n=2m. Let D2m be the irreducible

complex Spin representation of Spinc
2m. Recall that D2m=D+

2m À D−
2m

inherits a canonical Clifford action c: R2m Q EndC(D2m) which is Spinc
2m-

equivariant, and which interchanges the graduation: c(v) : D ±
2m Q D +

2m, for
every v ¥ R2m. Let

S(E) :=PSpinc(E)×Spinc2m
D2m (6.2)

be the irreducible complex spinor bundle over EQM. The orientation on
the fibers of E defines a graduation S(E) :=S(E)+ÀS(E)−. Let E be
the bundle E with opposite orientation. A Spinc structure on E induces a
Spinc-structure on E, with the same determinant line bundle, and such that
S(E) ±=S(E) + .

More generally, we associated to an Euclidean vector bundle p: EQM
its Clifford bundle Cl(E)QM. A complex vector bundle SQM is called
a complex spinor bundle over EQM if it is a left-Cl(E)-module; moreover
S is called irreducible if Cl(E) é C 4 EndC(S). In fact the notion of
Spinc-structure (in terms of principal bundle) on a Euclidean bundle
EQM is equivalent to the existence of an irreducible complex spinor
bundle over EQM [33].

Since E=PSpinc(E)×Spinc2m
R2m, the bundle pgS(E) is isomorphic to

PSpinc(E)×Spinc2m
(R2m À D2m).

Definition 6.6. Let S-Thom(E): pgS(E)+Q pgS(E)− be the symbol
defined by

PSpinc(E)×Spinc2m
(R2m À D+

2m) Q PSpinc(E)×Spinc2m
(R2m À D−

2m)

[p; v, w]W [p, v, c(v) w].

When E is the tangent bundle of a manifold M, the symbol S-Thom(E)
is denoted by S-Thom(M). If a group K acts equivariantly on the
Spinc-stucture, we denote by S-ThomK(E) the equivariant symbol.

The characteristic set of S-Thom(E) is M 4 { zero section of E}, hence it
defines a class in K(E) if M is compact. When E=TM, the symbol
S-Thom(M) corresponds to the principal symbol of the Spinc Dirac
operator associated to the Spinc-structure [14]. When M is compact,
we define a quantization map Q(M, −): K(M)Q Z by the relation
Q(M, V) :=IndexM(S-Thom(M) é V): Q(M, V) is the index of the Spinc

Dirac operator on M twisted by V.
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These notions extend to the orbifold case. Let M be a manifold with a
locally free action of a compact Lie group G. The quotient X :=M/G is an
orbifold, a space with finite quotient singularities. A Spinc structure on X is
by definition a G-equivariant Spinc structure on the bundle TGMQM;
where TGM is identified with the pullback of TX via the quotient
map p: MQX. We define in the same way S-Thom(X) ¥Korb(TX), such
that pgS-Thom(X)=S-ThomG(TGM). The pullback by p induces an
isomophism pg: Korb(TX) 4KG(TGM). The quantization map Q(X, −) is
defined by: Q(X, E)=IndexX(S-Thom(X) é E).

Lemma 6.7. Let EQM be an oriented G-bundle. Let g0, g1 be two
G-invariant metric on the fibers of E, and suppose that (E, g0) admits an
equivariant Spinc-stucture denoted by PSpinc(E, g0). The trivial homotopy
gt=(1−t).g0+t.g1 between the metrics, induces an equivariant homotopy
between the principal bundles PSO(E, g0), PSO(E, g1) which can be lift to an
equivariant homotopy between PSpinc(E, g0) and a Spinc-bundle over (E, g1).
When the base M is compact, the corresponding symbols S-ThomG(E, g0)
and S-ThomG(E, g1) define the same class in KG(E).

Proof. Let S be the irreducible complex spinor bundle associated to
PSpinc(E, g0). We denote by c0: Cl(E, g0)Q EndC(S) the corresponding
Clifford action. Let At be the unique g0-symmetric endomorphism of E
such that gt(v, w)=g0(At(v), At(w)). The composition c0 p At is then a
Clifford action of (E, gt) on S. It defines a Spinc-structure on the bundle
(E, gt) which is homotopic to PSpinc(E, g0). L

Consider now the case of a complex vector bundle EQM, of complex
rank m. The orientation on the fibers of E is given by the complex struc-
ture J. Let PU(E) be the bundle of unitary frames on E. We have a
morphism j : Um Q Spinc

2m which makes the diagram14

14 Here i: Um + SO2m is the canonical inclusion map.

Um ||Qj Spinc
2m

i×det
‡g

c

SO2m ×U1.

(6.3)

commutative [25]. Then

PSpinc(E) :=Spinc
2m ×j PU(E) (6.4)

defines a Spinc-structure over E, with bundle of irreducible spinors
S(E)=M •

C E and determinant line bundle equal to detC E.
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Remark 6.8. Let M be a manifold equipped with an almost complex
structure J. The symbol S-Thom(M) defined by the Spinc-structure (6.4),
and the Thom symbol Thom(M, J) defined in Section 2 coincide.

Consider our case of interest, where M is a compact G-manifold
equipped with an equivariant almost complex structure J and with an
abstract moment map fG: MQ gg. Here we assume that 0 is a
regular value of fG: Z :=f−1

G (0) is a smooth submanifold of M with a
locally free action of G. Let Mred :=Z/G be the corresponding ‘‘reduced’’
space, and let p:ZQMred be the projection map. On Z we have an exact
sequence 0Q TZQ TM|Z |Q

dfG
gg×ZQ 0, and TZ=TGZ À gZ where

gZ 4 g×Z denotes the trivial bundle corresponding to the subspace of TZ
formed by the vector field generated by the infinitesimal action of g. So
TM|Z admits the decomposition

TM|Z=TGZ À gZ À gg×Z. (6.5)

The bundle pg(TMred) is identified with TGZ. Thus the decomposition (6.5)
can be rewritten

TM|Z=pg(TMred) À gC ×Z. (6.6)

with the convention gZ=(g é iR)×Z and gg×Z=(g é R)×Z.

Lemma 6.9. The data (J, fG) induce :

• an orientation ored on Mred,

• a Spinc-structure Qred on (Mred, ored).

Moreover, the irreducible complex spinor bundle M •
J TM, when restricted

to Z, defines a complex spinor bundle over pg(TMred) À gC ×Z that is
homotopic to pgS(Mred) éM •

C gC ×Z.

Proof. Since gC ×Z is canonically oriented by the complex multiplica-
tion by i, the orientation o(J) on M determines an orientation o(Mred) on
TMred such that o(J)=o(Mred) o(ı).

Let g0 be the Riemannian metric on TM|Z equal to the restriction to Z
of the Riemannian metric on M (which is taken compatible with J). If P is
the Spinc-structure on M determined by J (see 6.4), the restriction P |Z is
then a Spinc-structure on (TM|Z, g0). Let g1 be a G-invariant metric on the
bundle TM|Z which makes (6.6) an orthogonal sum, and which is constant
on the the trivial bundle gC ×Z. We know from Lemma 6.7 that the
Spinc-structure P |Z on (TM|Z, g0) is homotopic to Spinc-structure P1 on
(TM|Z, g1) (both are G-equivariant).
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The SO2k ×Ul-principal bundle PSO(pg(TMred))×PU(gC ×Z) is a reduc-
tion15 of the SO2n principal bundle PSO(pg(TMred) À gC ×Z), thus we have

15 Here 2n=dim M, 2k=dim Mred and l=dim(g), so n=k+l.

the commutative diagram

Q ||Q PSO(pg(TMred))×PU(gC ×Z)×PU(L |Z)

‡ ‡

P1|||Q PSO(pg(TMred) À gC ×Z)×PU(L |Z),

(6.7)

where L=detC (TM, J). Here Q is a (gc)−1 (SO2k ×Ul) 4 Spinc
2k ×

Ul-principal bundle. Finally we see that Qred=Q/(Ul ×G) is a Spinc

structure on Mred with determinant line bundle Lred=detC(TM|Z)/G.
The irreducible complex spinor bundle M •

J TM, when restricted to Z, is
homotopic to SŒ=P1 ×Spin

c
2n

D2m. Using (6.7) we get

SŒ=Q×(Spinc2k ×Ul)(D2k éM • C l)

=((Q/Ul)×Spinc2k
D2k) é ((Q/Spinc

2k)×Ul
M • C l)

=pgS(Mred) é (M • gC)×Z.

Here we have used the identificationsQ/Spinc
2k=PU(gC ×Z)and PU(gC ×Z)

×Ul
M • C l=(M • gC)×Z. L

We shall consider the particular case where J defines an almost complex
structure on Mred. It happens when the following decomposition holds

TM|Z=TZ À J(gZ). (6.8)

With (6.8), TM|Z decomposes in TM|Z=pg(TMred) À gZ À J(gZ) : let us
denote by pr: TM|Z Q pg(TMred) the corresponding projection. Since
gZ À J(gZ) is invariant by J, the endomorphism Jred :=pr p J is a
G-invariant almost complex structure on pg(TMred).

Using the identification g 4 gg, one considers the endomorphism D of
the trivial bundle g×Z defined by

D(X)=−dfG(J(XZ)), for X ¥ g. (6.9)

Condition (6.8) is then equivalent to : det D(z) ] 0 for all z ¥Z. We
shall use the normalized map D(D tD)−1/2, which is an orthogonal map for
the fixed Euclidean structure on g (to simplify we keep the same notation
D for it). Let JD be the complex structure on the trivial bundle gC ×Z
defined by the following matrix

JD :=R
0 −D

D−1 0
S .
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Lemma 6.10. Suppose that the decomposition (6.8) holds. On16 TM|Z=

16 Here we use the decomposition (6.6) of TM|Z.

pg(TMred) À gC ×Z the almost complex structure J is homotopic to Jred ×JD.
Hence the irreducible complex spinor bundle M •

J TM, when restricted to Z,
defines a complex spinor bundle over pg(TMred) À gC ×Z which is homotopic
to pg(M •

Jred TMred) éM •
JD gC ×Z.

Proof. Trough the decomposition TM|Z=pg(TMred) À gZ À J(gZ),
the map J is described by the matrix

RJred 0

A ı
S ,

hence J is homotopic to

JŒ=R
Jred 0

0 ı
S .

In the decomposition (6.6), JŒ has the following matrix

RJred B

0 C
S ,

with C ¥ End(gC ×Z) of the form

R −DbD−1 −D

b2D−1+D−1 b
S .

Hence JŒ is tied to Jred ×JD through the homotopies tQ t B and tQ t b,
0 [ t [ 1. L

6.2. The map RRG
0 . The map RRG

0 (M, −): KG(M)Q R−.(G) is the
Riemann–Roch character localized near C

G

0=f−1
G (0) (see Definition 6.5).

In particular, RRG
0 (M, −) is the zero map if 0 does not belong to fG(M).

In this Section, we assume that 0 ¥ fG(M) is a regular value of fG. We have
proved in the past Section that J induces an orientation o(Mred) on the
reduced space Mred together with a Spinc-structure on (Mred, o(Mred)). Let
S-Thom(Mred) be the elliptic symbol defined by this Spinc-structure and let
Q(Mred, −) be the corresponding quantization map.

Proposition 6.11. For every G-equivariant vector bundle EQM, we
have

RRG
0 (M, E)= C

m ¥ L
g
+

Q(Mred, Ered é Vg
m).Vm in R−.(G), (6.10)

480 PAUL-EMILE PARADAN



Here Ered=E/G is the orbifold vector bundle on Mred induced by E, and
Vm=Z×G Vm. In particular, the G-invariant part of RRG

0 (M, E) is equal to

Q(Mred, Ered) ¥ Z.

Equality (6.10) is obtained by Vergne [38, Part II] in the case of a
Hamiltonian action of the circle group on a compact symplectic manifold.

Suppose now that the decomposition (6.8) holds. The trivial bundle
gC ×Z has two irreducible complex spinor bundles M •

C gC ×Z and
M •

JD gC ×Z. Thus

M •
JD gC ×Z=M •

C gC ×Z é pgLD (6.11)

where pgLD QZ is the line bundle equal to HomClC (M
•
C gC ×Z,

M •
JD gC ×Z): at z ¥Z, pgLD |z is the complex vector space of linear maps

M •
C gC QM •

JD(z) gC commuting with the Clifford actions (see [33]). Note
that M ±

JD gC ×Z=M ±
C gC ×Z é pgLD if the orientation of JD coincide with

those defined by ı (i.e., det D > 0). If det D < 0, we have M ±
JD gC ×Z=

M +

C gC ×Z é pgLD.

Proposition 6.12. Suppose that the decomposition (6.8) holds, and let
RRJred(Mred, −) be the quantization map given by Jred. For every G-equiv-
ariant vector bundle EQM, we have

[RRG
0 (M, E)]G=± RRJred(Mred, Ered é LD), (6.12)

where ± is the sign of det D.

Proof of Proposition 6.11. Following Definition 6.5, the map RRG
0 (M, −)

is defined by Thomf
G, [0](M) ¥KG(TGU

G, 0), where UG, 0 is a (small) neigh-
borhood of Z in M. Since 0 is a regular value of fG, UG, 0 is diffeomorphic
to Z×gg, and the moment map is equal to the projection f:Z×gg Q gg in
a neighborhood of Z in Z×gg. We denote by sZ ¥KG(TG(Z×gg)) the
symbol corresponding to Thomf

G, [0](M) through the diffeomorphism
UG, 0 5Z×gg. Let IndexG

Z×g
g: KG(TG(Z×gg))Q R−.(G) be the index

map on Z×gg. The map RRG
0 (M, −) is defined by RRG

0 (M, E)=
IndexG

Z×g
g(sZ é E|Z).

Following Atiyah [1, Theorem 4.3], the inclusion map j:Z+Z×gg

induces an R(G)-module morphism j!: KG(TGZ)QKG(TG(Z×gg)), with
the commutative diagram
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KG(TGZ)||Qj! KG(TG(Z×gg))

IndexGZ

‡ IndexGZ×gg

R−.(G)

. (6.13)

More generally, the map i!: KG(TGZ)QKG(TGY) is defined by Atiyah
for any embedding i:Z+Y of G-manifolds with Z compact.

Consider now the case where i is the zero-section of a G-vector bundle
EQZ. In general the map i! is not an isomorphism. If furthermore the
G-action is locally free over Z, then TGZ, TGE are respectively subbundles
of TZQZ, TEQ E, and the projection TGEQ TGZ is a vector bundle
isomorphic to sg(TE) (where s: TGZ+ TZ is the inclusion). Hence the
vector bundle TGEQ TGZ inherits a complex structure over the fibers
(coming from the complex vector bundle TEQ TZ). In this situation, the
map i!: KG(TGZ)QKG(TGE) is the Thom isomorphism.

In the case of the (trivial) vector bundle Z×gg QZ, the map
j!: KG(TGZ)QKG(TG(Z×gg)) is then an isomorphism. Take s̃Z=(j!)−1

(sZ), and from the commutative diagram (6.13) we have RRG
0 (M, E)=

IndexG
Z(s̃Z é E|Z). From Theorem 3.3 we get

IndexG
Z(s̃Z é E|Z)= C

m ¥ L
g
+

IndexMred
(s red é Ered é Vm g).Vm,

where s red ¥Korb(TMred) corresponds to s̃Z=(j!)−1 (sZ) through the
isomorphism pg: Korb(TMred)QKG(TGZ). Proposition 6.12 follows
immediately from

Lemma 6.13. We have

j! p (p)g (S-Thom(Mred))=sZ

in KG(TG(Z×gg)).

Proof. Let S(M) the irreducible spinor bundle defined by the almost
complex structure J. Let J2 be the almost complex structure on Z×gg,
equal to J on Z, and which is constant on the fibers of the projection
Z×gg QZ. Since the almost complex structures J and J2 are homotopic
near Z, the complex sZ can be defined on Z×gg with J2: we take
S(M)|Z ×gg for bundle of spinors over Z×gg. Following (6.6) and (6.5),
for (z, t) ¥Z×gg a vector v ¥ T(z, t)(Z×gg) decomposes into v=v1+X
+ıY, where v1 ¥ pg(TMt), and X+ıY ¥ gC. The map sZ(z, t; v) acts on
S(M)z by the Clifford action pushed by the vector field17 HG(z, t)=ı t :

17 The tangent vector HG(z, t) ¥ gZ |z is equal to ıt ¥ gC ×Z.

sZ(z, t; v)=Clz(v1+X+ı(Y−t)).
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Using now Lemma 6.9, we see that sZ is homotopic to the symbol s −Z,
which acts on the product (pgS(Mred) éM •

C gC ×Z)×gg by

s −Z(z, t; v)=Clz(v1)í Cl(X+ı(Y−t)).

Now we see that the map Clz(v1)í Cl(X+ı(Y−t)) is homotopic, as a
G-transversally elliptic symbol, to Clz(v1)í Cl(t+ıX). The K-theory class
of this former symbol is equal to (p)g (S-Thom(Mred))í k!(C) (where
k: {0}+ gg) which is the symbol map of j! p (p)g (S-Thom(Mred)) (see the
construction of the map j! in [1] [Lecture 4]). We have shown that
j! p (p)g (S-Thom(Mred))=sZ in KG(TG(Z×gg)). L

Proof of Proposition 6.12. Here the proof is similar to the former proof
but we use Lemma 6.10 instead of Lemma 6.9. One as to show that

j! p (p)g (S-Thom(Mred) é LD)=±sZ

in KG(TG(Z×gg)), where ± is the sign of det D. By Lemma 6.10, we see
as before that sZ is homotopic to the product

Clz(v1)í ClJD (t+ıX) (6.14)

acting on (M •
Jred pg(TMred) éM •

JD gC ×Z)×gg. Now we use the iso-
morphism of irreducible complex spinor bundles (6.11) where we have two
different orientations o(JD) and o(ı) on gC ×Z: o(JD)=±o(ı) where ± is
the sign of det D. Hence the transversally elliptic symbol (6.14) is equal to

±Clz(v1)í Cl(t+ıX)í IdLD

acting on (M •
Jred pg(TMred) éM •

C gC ×Z é LD)×gg. L

6.3 The map RRG
b when Gb=G. When b ¥BG −{0} is in the center of

g, the map RRG
b (M, −) is the Riemann–Roch character localized near

Mb 5 f−1
G (b). In this Section we prove that [RRG

b (M, E)]G=0 if E is a
fG-strictly positive complex vector bundle.

The almost complex structure J and the abstract moment map
fG: MQ g restrict on Mb to an almost complex structure Jb and a abstract
moment map fG |Mb. The set Mb 5 f−1

G (b)=(fG |Mb)−1 (b) is a component
of the critical set of CfG|Mb, and we denote by RRG

b (M
b, −): KG(Mb)Q

R−.(G) the Riemann–Roch character on Mb localized near the component
(fG |Mb)−1 (b) (see Definition 6.5).
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Here we proceed as in Section 5. Let p:NQMb be the normal bundle
of Mb in M. The torus Tb + G acts linearly on the fibers of the complex
vector bundle N, thus we associate, as in Theorem 5.8, the polarized
complex G-vector bundles N+, b and (N é C)+, b.

Proposition 6.14. For every E ¥KG(M), we have the following equality
in R1(G) :

RRG
b (M, E)=(−1) rN C

k ¥N

RRG
b (M

b, E|Mb é det N+, b é Sk((N é C)+, b),

where rN is the locally constant function on Mb equal to the complex rank of
N+, b.

Consider the G×Tb-Riemann–Roch character RRG×Tb
b (Mb, −) localized

near Mb 5 f−1
G (b). It can be extended trivially to a map, still denoted by

RRG×Tb
b (Mb, −), from KG(Mb) é̂ R(Tb) to R−.(G) é̂ R(Tb). Following

Definition 5.5 the element M •
C Na ¥KG×Tb

(Mb) 4KG(Mb) é R(Tb) admits
a polarized inverse [M •

C Na ]−1
b ¥ KG(Mb) é̂ R(Tb). Finally the result of

Proposition 6.14 can be written as the following equality in R−.(G)
é̂ R(Tb) :

RRG
b (M, E)=RRG×Tb

b (Mb, E|Mb é [M •
C Na ]−1

b ). (6.15)

Consider the decomposition of RRG
b (M, E)=;l mb, l(E) qG

l
in irreduc-

ible characters qG
l
, l ¥ Lg

+. Let E be a fG-strictly positive complex vector
bundle over M, and let gE, b > 0 be the constant defined in Definition 1.2.
If Z is a connected component of Mb which intersects f−1

G (b), every
weight a of the Tb-action on the fibers of the complex vector bundle

E
k
ê |Z é det N+, b é Sk((N é C)+, b) satisfy Oa, bP \ k.gE, b . Lemma 9.4

and Corollary 9.5, applied to this situation, show that

mb, l(E
k
ê) ] 0 2 Ol, bP \ k.gE, b . (6.16)

In particular [RRG
b (M, E)]G=mb, 0(E)=0, so we have proved the

Corollary 6.15. Let E be a fG-strictly positive complex vector bundle
over M (see Def. 1.2). For any b ¥BG −{0}, with Gb=G, the G-invariant
part of RRG

b (M, E) is equal to 0.

Proof of Proposition 6.14. Here we proceed as in the proof of Theorem
5.8. The almost complex structure J induces an almost complex structure
Jb on Mb and a complex structure JN on the fibers of N. The G×Tb-
vector bundle p:NQMb is isomorphic to R×U NQMb=R/U, where R
is the Tb-equivariant unitary frame of (N, JN) framed on N.
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Let UG, b be a neighborhood of CG
b in M, and consider the G-trans-

versally elliptic symbol Thomf
G, [b](M) ¥KG(TGU

G, b) introduced in Defini-
tion 6.4. Here we choose UG, b diffeomorphic to an open subset of N of the
form V :={n=(x, v) ¥N, x ¥U and |v| < e}, where U is a neighborhood
of (fG |Mb)−1 (b) in Mb. The moment map fG, the vector field HG, and
Thomf

G, [b](M) are transported by this diffeomorphism to V (we keep the
same symbol for these elements).

We define now the homogeneous vector field H2 G on N by

H2 G
n :=(fG(p(n)))N (n), n ¥N. (6.17)

Using the isomorphism TN( pg(TMb ÀN) (see (5.4)) the manifold N
is endowed with the almost complex structure J2 :=pg(Jb À JN). With the
data (J2,H2 G), we construct the following G-transversally elliptic symbol
over N :

Thomf
G, [b](N)(n, w) :=ThomG(N, J2)(n, w−H2 G

n ), for (n, w) ¥ TN.
(6.18)

Let us now verify that

Thomf
G, [b](M)=Thomf

G, [b](N) in KG(TGV).

The invariance of the Thom class after the modification of the almost
complex structure is carried out in Lemma 5.9: the class of Thomf

G, [b](M)
is equal in KG(TGV) to the class of the symbol

s1(n, w) :=ThomG(N, J2)(n, w−HG
n ), (n, w) ¥ TV.

Using now the family of vectors field HG
t (n) :=(fG(x, t .v))V (n), t ¥

[0, 1], n=(x, v) ¥V, we construct the homotopy

st(n, w) :=ThomH(N, J2)(n, w−HG
t (n)), (n, w) ¥ TV

of G-transversally elliptic symbol between s1 and Thomf
G, [b](N) (one

easily verifies that Char(st) 5 TGV=CG
b for every t ¥ [0, 1]). Finally, we

have shown that Thomf
G, [b](N)=Thomf

G, [b](M) in KG(TGV), thus

RRG
b (E)=IndexG

N(Thomf
G, [b](N) é pg(E|Mb))

for every E ¥KG(M).
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Now we proceed as follows. For every (n, w) ¥ TV, the Clifford action
Thomf

G, [b](N)(n, w)=Cln(w−H2 G
n ) on M •

C TnV is equal to the exterior
product

Clx(w1 −[H2 G
n ]1)í Clx(w2 −[H2 G

n ]2) (6.19)

acting on M •
C TxMbéM •

C N |x, where x=p(n). Here wQ w1, TnVQ TxMb

is the tangent map Tp|n, and wQ w2=[w]V, TnVQN |x is the ‘‘vertical’’
map. We see that [H2 G

n ]1=HG
x is the vector field on Mb generated by the

moment map fG |Mb (see Definition 6.2).
Suppose that the exterior product (6.19) can be modified in

Clx(w1 −HG
x )í Clx(w2 −bN |n), (6.20)

without changing the K-theoretic class. This will prove a modified version
of (5.8) in KG×Tb×U(TG×Tb×U(R×N)):

pg
N Thomf

G, [b](N)=pg Thomf
G, [b](M

b)í Thomb
Tb×U(N), (6.21)

where pN: R×NQ R×U N=N, p: RQ R/U=Mb are the quotient maps
relative to the free U-action, and í is the product

KG×U(TG×UR)×KTb×U(TTb
N)QKG×Tb×U(TG×Tb×U(R×N)). (6.22)

The symbols Thomf
G, [b](N), Thomf

G, [b](M
b) and Thomb

Tb×U(N) belong
respectively to KG×Tb

(TG×Tb
(R×U N)), KG(TG(R/U)), and KTb×U(TTb×UN).

Proposition 6.14 follows after taking the index, and the U-invariants, in
(6.21).

Finally we explain why the change of [H2 G
n ]2 in bN |n can be done in

(6.19) without changing the class of Thomf
G, [b](N).

Let mN: gQ C(Mb, End(N)) be the ‘‘moment’’ relative to the choice of
a connection on NQMb (see Definition 7.5 in [10]). Then, for every
X ¥ g we have

[XN(x, v)]V=−mN(X)|x .v, (x, v) ¥N

(see Proposition 7.6 in [10]). When X=b, the vector field bN is vertical,
hence we have mN(b) |x .v=LN(b) |x .v=−bN(x, v), where LN(b) is the
infinitesimal action of b on the fiber of NQMb. We have also [H2 G

n ]2=
−mN(fG(x))|x .v, for every n=(x, v) ¥N.

Note that the quadratic form v ¥Nx Q |LN(b) |x .v|2 is positive definite
for x ¥Mb. Hence, for every X ¥ g close enough to b, the quadratic form
v ¥Nx Q (mN(b) |x .v, mN(X)|x .v) is positive definite for x ¥Mb.
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Consider now the homotopy

s t(n, w) :=Clx(w1 −HG
x )

í Clx(w2 −t.[H2 G
n ]2 −(1−t).bN |n), (n, v) ¥V t ¥ [0, 1].

We see that (n, w) ¥ Char(s t) 5 TGV if and only if

(i) w1=HG
x , w2=t[H2 G

n ]2+(1−t) bN(n), and
(ii) (w1, XMb(x))+(w2, [XN(x, v)]V)=0 for all X ¥ g.

Take now X=fG(x) in (ii). Using (i), we get

|HG
x |

2+t.|mN(fG(x))|x .v|2+(1−t).S(x, v)=0, (6.23)

with S(x, v) :=(mN(b) |x .v, mN(fG(x))|x .v).
If x ¥Mb is sufficiently close to (fG |Mb)−1 (b) , the term S(x, v) is posi-

tive for all v ¥Nx. In this case, (6.23) gives HG
x=0 and S(x, v)=0, which

insures that x ¥ CG
b and v=0.

We have proved that Char(s t) 5 TGV=CG
b for every t ¥ [0, 1] if V is

‘‘small’’ enough. Hence s t is an homotopy of G-transversally elliptic
symbols over TV between the exterior products (6.19) and (6.20). L

6.2. Induction formula. This section is concerned by an induction
formula which compare the map RRG

b (M, −) with the similar localized
Riemann–Roch characters defined for the maximal torus, and the stabilizer
Gb. The idea of this induction comes from a previous paper of the author
[32] where a similar induction formula in the context of equivariant
cohomology was proved.

Consider the restriction fH : MQ h of the moment map fG to the
maximal torus H. In this situation we use the vector field HH |m=
fH (m)M |m, m ¥M to decompose the map RRH(M, −): KH(M)Q R(H)
near the set CfH={HH=0}. From Lemma 6.3 there exists a finite
subset BH … h, such that CfH=1b ¥BH

CH
b , with CH

b=Mb 5 f−1
H
(b). As in

Definition 6.5, we define for every b ¥BH , the map RRH
b (M, −): KH(M)Q

R−.(H) which is the Riemann–Roch character localized near CH
b .

Let W be the Weyl group of (G, H). Note that BH is a W-stable subset
of h, and that BG …BH 5 h+.

Theorem 6.16. We have, for every b ¥BG, the following induction
formula between RRG

b (M, −) and RRH
b (M, −). For every E ¥KG(M), we

have18

18 See Eqs. (9.2) and (9.4) in Appendix B for the definition of the holomorphic induction
maps HolGH and HolGGb .
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RRG
b (M, E)=

1
|Wb |

HolGH(RR
H
b (M, E)M •

C g/h)

=
1

|Wb |
C

w ¥W
HolGH(w.RRH

b (M, E))

= C
bŒ ¥W.b

HolGH(RR
H
bŒ(M, E))

where Wb is the stabilizer of b in W.

We can use the previous induction formula between G and H index maps
to produce an induction formula between G and Gb index maps. Consider
the restriction fGb : MQ gb of the moment map to the stabiliser Gb of b in
G. Let RRGb

b (M, −) be the Riemann–Roch character localized near
CGb
b =Mb 5 f−1

G (b).19

19 Note that Mb 5 f−1
Gb (b)=Mb 5 f−1

G (b) because fGb=fG on Mb.

Corollary 6.17. For every b ¥BG and every E ¥KG(M), we have

RRG
b (M, E)=HolGGb (RR

Gb
b (M, E)M •

C g/gb) in R−.(G).

Proof of the Corollary. It comes immediately by applying the induction
formula of Theorem 6.16 to the couples (G, H) and (Gb, H).

Corollary 6.18. Let E be a fG-strictly positive complex vector bundle

over M (see Def. 1.2). We have [RRG
b (M, E

k
ê)]G=0, if k.gE, b > Oh, bP.

Here h=;a > 0 a is the sum of the positive roots of G, and gE, b is the
strictly positive constant defined in Definition 1.2.

Proof of Corollary 6.18. Let us first write the decomposition20RRGb
b (M, E

k
ê)

20 We choose a set Lg
+, b of dominant weight for Gb that contains the set Lg

+ of dominant weight
for G.

=;l ¥ L+b ml, b(E
k
ê) qGb

l , in irreducible character of Gb. We know from (6.16)

that ml, b(E
k
ê) ] 0 2 Ol, bP \ k.gE, b . Each irreducible character qGb

l is

equal to HolGbH (hl), so from Corollary 6.17 we have RRG
b (M, E

k
ê)=

HolGH((;l ml, b(E
k
ê) hl) Pa ¥ D(g/gb)(1−h−a)), where D(g/gb) is the set of

H-weight on g/gb.21 Finally , we see that RRG
b (M, E

k
ê) is a sum of terms of

21 The complex structure on g/gb is defined by b, so that Oa, bP > 0 for all a ¥ D(g/gb).
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the form ml, b(E
k
ê) HolGH(h

l−aI) where aI=;a ¥ I a and I is a subset of
D(g/gb).

We know from Appendix B that HolGH(h
lŒ) is either 0 or the character of

an irreducible representation; in particular HolGH(h
lŒ) is equal to ±1 only if

OlŒ, XP [ 0 for every X ¥ h+ (see Remark 9.3). So [RRG
b (M, E

k
ê)]G ] 0

only if there exists a weight l such that ml, b(E
k
ê) ] 0 and HolGH(h

l−aI)
=±1. The first condition imposes Ol, bP \ k.gE, b and the second gives
Ol, bP [ OaI, bP, and combining the two we end with k.gE, b [ OaI, bP [

;a ¥ D(g/gb)Oa, bP=Oh, bP. We have proved that [RRG
b (M, E

k
ê)]G=0 if

k.gE, b > Oh, bP. L

Proof of Theorem 6.16. The first two equalities of the Theorem can be
deduced from the third one, that is RRG

b (M, E)=;bŒ ¥W.b HolGH(RR
H
bŒ(M, E)).

First, it is easy to see that RRH
w.b(M, E)=w.RRH

b (M, E) for every w ¥W
and b ¥BH . Then the relation HolGH(f M •

C g/h)=;w ¥W HolGH(w.f), which
is true for every f ¥ R−.(H) (see Remark 9.2), gives the first equality of the
Theorem.

The map RRG
b (M, −) is defined through the symbol Thomf

G, [b](M) ¥
KG(TGU

G, b), where iG, b: UG, bQM is any G-invariant neighborhood of CG
b

such that UG, b 5 CfG=CG
b (see Definition 6.4). We define in the same way

the localized Thom complex Thomf
H, [b](M) ¥KH(THU

H, b).
For notational convenience, we will note in the same way the

direct image of Thomf
G, [b](M) (resp. Thomf

H, [b](M)) in KG(TGM) (resp.
KH(THM)) via iG, bg : KG(TGU

G, b)QKG(TGM) (resp. iH, b
g : KH(THU

H, b)Q
KH(THM)).

Then we have RRG
b (M, E)=IndexG

M(Thomf
G, [b](M)éE) for E ¥KG(M).

The Weyl group acts on KH(THM) and we remark that w.Thomf
H, [b](M)=

Thomf
H, [w.b](M) for every b ¥BH , and w ¥W. After taking the index we see

that RRH
w.b(M, E)=w.RRH

b (M, E) for every G-vector bundle E.
Consider the map rc

G, H
: KG(TGM)QKH(THM) defined with c ¥ h in the

interior of the Weyl chamber, so that Gc=H (see Sect. 3.5). The third
equality of the Theorem is an immediate consequence of the next Lemma.

Lemma 6.19. We have

rc
G, H

(Thomf
G, [b](M))= C

bŒ ¥W.b
Thomf

H, [bŒ](M) éM •
C g/h in KH(THM).
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Proof of Lemma 6.19. Consider a G-invariant open neighborhood UG, b

of CG
b such that UG, b 5 CfG=CG

b . We know from Proposition 3.7 that the
class rc

G, H
(Thomf

G, [b](M)) is represented by the restriction to TUG, b of the
symbol

sI(m, v)=Clm(v−HG
m)í Cl(mG/H(v)), (m, v) ¥ TM.

Here mG/H: TMQ g/h is the g/h part of the Hamiltonian moment map
mG: TMQ g. Let fG/H : MQ g/h (resp. fH : MQ h) be the g/h-part (resp.
the h-part) of the moment map fG. We will use in our proof the relation

(mG/H(HG), fG/H )g=||HG||2
M
−(HG,HH)M . (6.24)

Consider the family of H-equivariant symbols sh, h ¥ [0, 1] defined on TM
by

sh(m, v)=Clm(v−HG
m)í Cl(hmG/H(v)+(1−h) fG/H (m)), (m, v) ¥ TM.

We see that (m, v) ¥ Char(sh)Y v=HG
m and hmG/H(H

G
m)+(1−h) fG/H (m)

=0. Combining (6.24) with the fact that the vector field HH belongs to the
H-orbits, we see that Char(sh) 5 THM … {HG=0}, for every h ¥ [0, 1].
By this way we have proved that sI |UG, b is homotopic to the H-trans-
versally elliptic symbol sII |UG, b where

sII(m, v)=Clm(v−HG
m)í Cl(fG/H (m)), (m, v) ¥ TM.

We transform now sII via the following homotopy of H-transversally
elliptic symbols

su(m, v) :=Clm(v−HH
m −u.HG/H

m )í Cl(fG/H (m)), (m, v) ¥ TM,

for u ¥ [0, 1]. Here Char(su) 5 THM={HG=0} 5 {fG/H=0} for all
u ¥ [0, 1], hence sII |UG, b is homotopic to the H-transversally elliptic symbol
sIII |UG, b where

sIII(m, v)=Clm(v−HH
m )í Cl(fG/H (m)), (m, v) ¥ TM.

At this stage we have proved that sI |UG, b=sIII |UG, b in KH(THU
G, b). Note

that

Char(sIII |UG, b) 5 THU
G, b=G.(Mb 5 f−1

G (b)) 5 {fG/H=0}

=W.(Mb 5 f−1
G (b)),
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because G.b 5 h=W.b. Let i: UG, b+U be a H-invariant neighborhood
of W.(Mb 5 f−1

H
(b)) such that U 5 {HH=0}=W.(Mb 5 f−1

H
(b)). The

symbol sIII |U is H-transversally elliptic and

ig(sIII |U)=sIII |UG, b=sI |UG, b in KH(THU
G, b). (6.25)

As in the proof of Proposition 4.1, (6.25) is an immediate consequence of
the excision property.

The symbol (m, v)Q Clm(v−HH
m ) is H-transversally elliptic on TU, and

equal (by definition) to ;bŒ ¥W.b Thomf
H, [bŒ](M). Hence sIII |U is homotopic,

in KH(THU), to (m, v)Q Clx(v−HH
m )í 0g/h, where 0g/h is the zero map

from Meven
C g/h to Modd

C g/h. Finally we have shown that sIII |U=;bŒ ¥W.b

Thomf
H, [bŒ](M) éM •

C g/h in KH(THU), and then (6.25) finishes the proof.
L

7. THE HAMILTONIAN CASE

In this section, we assume that (M, w) is a compact symplectic manifold
with a Hamiltonian action of a compact connected Lie group G. The
corresponding moment map mG: MQ gg is defined by

dOmG, XP=−w(XM, −), -X ¥ g. (7.1)

The symplectic 2-form w insures the existence of a G-invariant almost
complex structure J compatible with w, i.e, such that:

(v, w)Q wx(v, Jxw), v, w ¥ TxM

is symmetric and positive definite for all x ¥M. We fix once and for
all a G-invariant compatible almost complex structure J, and we denote
by (−, −)M :=w(−, J−) the corresponding Riemannian metric. Let
RRG(M, −) be the quantization map defined with the compatible almost
complex structures J. Since two compatible almost complex structure are
homotopic [27], the map RRG(M, −) does not depend of this choice (see
Lemma 2.2).

Here the vector field HG is the Hamiltonian vector field of the function22

22 Equality 7.1 gives −1
2 d ||mG ||2=w(HG, −)

−1
2 ||mG ||2: MQ R, and {HG=0} is the set of critical points of ||mG ||2. We

know from the beginning of Section 6 that we have the decomposition
RRG(M, −)= ;b ¥BG

RRG
b (M, −), where RRG

b (M, −): KG(M)Q R−.(G)
is the Riemann–Roch character localized near the critical set CG

b=
G(Mb 5 m−1

G
(b)). In this section we prove the following theorem for the

mG-positive vector bundles (see Def. 1.2).
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Theorem 7.1. Let EQM be a G-equivariant vector bundle over M.
Forallb ¥BG −{0}, the G-invariant part of RRG

b (M, E) is equal to 0 if E is
mG-positive and m−1

G
(0) ]”, or if E is mG-strictly positive. If 0 is a regular

value of mG, the G-invariant part of RRG
0 (M, E) is equal to RR(Mred, Ered).

In Section 7.4, we consider the general case where 0 is not necessarily a
regular value of mG, and E=L a moment bundle for mG (see Def. 1.1).
With our K-theoritic approach we recover the following

Theorem 7.2 (Meinrenken–Sjamaar). Let LQM be a mG-moment
bundle, and let y be the principal face of M. The G-invariant part of
RRG(M, L) is equal to RR(Ma, La) for every generic value of y 5 mG(M)
sufficiently close to 0 (see Sect. 7.4 for the notations).

7.1 The map RRG
0 . We assume that 0 is a regular value of mG. The

orbifold space Mred :=m−1
G
(0)/G inherits a symplectic structure wred.

Let D(X)=−dmG(J(XM)) be the endomorphism of the trivial bundle
m−1

G
(0)×g defined in (6.9). The compatibility of J with w gives

(D(X), X)=w(XM, J(XM))M=||XM ||2,

thus decomposition (6.8) holds. A small check shows that the induced
almost complex structure Jred on Mred is compatible with wred. Moreover
tW tD+(1−t) Id is an homotopy of invertible maps between D and the
identity, hence the line bundle LD QMred defined in (6.11) is trivial. The
map RRG

0 is determined by the Proposition 6.12; in particular

[RRG
0 (M, E)]G=RRJred(Mred, Ered),

for any E ¥KG(M).

7.2 The map RRG
b when Gb=G. When b ¥BG −{0} is in the center of

g, we proved in Corollary 6.15, that the G-invariant part of RRG
b (M, E) is

equal to 0 when E is mG-strictly positive. In the Hamiltonian case we extend
this result for the mG-positive bundles.

Lemma 7.3. Let (X, w) be a connected symplectic manifold with a
G-action, and a proper moment map m: XQ g. Let J be a G-invariant almost
complex structure on X compatible with w. Let b be a G-invariant element
in a Weyl chamber h+ of the Lie group G, such that Xb 5 m−1(b) ]”.
Let N+, b be the polarized normal bundle of Xb in X (see Def. 5.5 and
Theorem 5.8).
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If N+, b=0, we have

m(X) 5 h+ … {X ¥ h+, (X, b) \ ||b||2 },

implying in particular that ||b||2 is the minimal value of ||m||2 on X.

Proof of the Lemma. Let Z be a connected component of Xb that
intersects m−1(b), and consider the set of weights {ai, i ¥ I} for the action of
Tb on the fibers of the vector bundle NQZ. We have then the following
description of the function (m, b) in the neighborhood of Z. For v ¥Nx,
with the decomposition v=Ái vi, we have for |v| small enough
(m, b)(x, v)=|b|2− 1

2 ;i ¥ IOai, bP |vi |2. If Oai, bP < 0 for every i ¥ I, we have

(m, b) \ ||b||2 in a neighborhood V of Z. (7.2)

As m−1(b) is connected and intersect Z, the last inequality imposes
m−1(b) …Z. Take X ¥ m(X) 5 h+, and consider K :=m−1([X, b]). From
the convexity theorem [2, 16, 23, 26], the set K is connected. Then
V 5K contains, but is not equal to m−1(b): there exists m ¥V 5K with
m(m) ¥ [X, b). So m(m)=b+t(X−b) with t > 0, and (m(m), b) \ ||b||2.
This two conditions imply that (X, b) \ ||b||2. L

Lemma 7.4. Let b ¥BG −{0} be a G-invariant element such that ||b||2 is
not the minimal value of ||mG ||2 on M. Then for every mG-positive vector
bundle E over M we have the decomposition RRG

b (M, E)=;l mb, l(E) qG
l

in
irreducible characters with

mb, l(E) ] 0 2 Ol, bP > 0.

In particular, if m−1
G
(0) is not empty, the G-invariant part of RRG

b (M, E) is
equal to 0 for every G-invariant b ¥BG −{0}. The result remains when M is
non-compact, and the moment map mG is proper.

Proof. Recall the localization formula on Mb obtained in Proposition
6.14. For every complex G-vector bundle E over M, we have the following
equality in R1(G)

RRG
b (M, E)=(−1) rN C

k ¥N

RRG
b (M

b, E|Mb é det N+, b é Sk((N é C)+, b).
(7.3)

Suppose that M is non-compact and that the moment map mG is proper
as a map from a G-invariant open neighborhood of m−1

G
(b) in M to a

G-invariant open neighborhood of b in g. Each terms of (7.3) are well
defined and the equality remains valid in this case (It is not difficult to
extend the proof given in Section 6.3 to this situation).
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If ||b||2 is not the minimal value of ||mG ||2, we know from Lemma 7.3 that
the vector bundle N+, b is not trivial over each connected component Z of
Mb that intersects m−1(b). Then every Tb-weight a on the fibers of the
complex vector bundle E|Z é det N+, bé Sk((NéC)+, b satisfies Oa, bP> 0.
Lemma 9.4 and Corollary 9.5, applied to this situation, show that
RRG

b (M, E)=;l mb, l(E) qG
l

with mb, l(E) ] 0 only if Ol, bP > 0. L

7.3 The map RRG
b when Gb ] G. Let s be the unique open face of h+

which contains b. The stabilizer subgroup Gt does not depend on the
choice of t ¥ s, and is denoted by Gs. Let gs be the Lie algebra of Gs, and
let Us the Gs-invariant open subset of gs defined by Us=Gs ·{y ¥ h+ | Gy …Gs}.

The symplectic cross-section Theorem [18, 26] asserts that the pre-image
Ys=m−1

G
(Us) is a symplectic submanifold of M provided with a Hamil-

tonian action of Gs. We denote by ws the symplectic 2-form on Ys, and
ms: Ys Q gs the moment map. Let Js be a Gs-invariant almost complex
structure on Ys, which is compatible with ws. The vector field Hs on Ys
generated by ms vanishes on Csb :=m−1

s (b) 5 (Ys)b=m−1
G
(b) 5Mb (see

Definition 6.2). We denote by23

23 For a non-compact G-manifold X, we denote by K̃G(X) the equivariant K-theory of X

with non-compact support.

RRGs
b (Ys, −): K̃Gs (Ys)Q R−.(Gs)

the Riemann–Roch character on Ys localized near the compact subset Csb
by the vector filed Hs. It is well defined even since ms is a proper map (see
Definition 6.5).

Theorem 7.5. For every E ¥KG(M), we have

RRG
b (M, E)=HolGGs (RR

Gs
b (Ys, E|Ys )) in R−.(G),

Corollary 7.6. Let b ¥BG with Gb ] G. If m−1
G
(0) ]”, we have

[RRG
b (M, E)]G=0, for every mG-positive vector bundle EQM. In general,

[RRG
b (M, E)]G=0, for every mG-strictly positive vector bundle E.

Proof of the Corollary. The moment map ms is proper as a map from a
Gs-invariant open neighborhood of m−1

s (b) in Ys to a Gs-invariant open
neighborhood of b in gs. If 0 ¥ mG(M) we see that tb ¥ ms(Ys) for any
0 < t < 1, hence ||b||2 is not the minimal value of ||ms ||2.

Proposition 7.4 can be used for the map RRGs
b (Ys, −). For any

mG-positive vector bundle E, we have RRGs
b (Ys, E|Ys )=;l mb, l(E) qGs

l

with mb, l(E) ] 0 only if Ol, bP > 0 (the same holds when 0 ¨ mG(M) and E
is mG-strictly positive). With the induction formula of Theorem 7.5 we get24

24 HolGGs (q
G
s
l
)=HolGH(h

l) since qGs
l =HolGsH (hl).
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RRG
b (M, E)=;l mb, l(E) HolGH(h

l). But HolGH(h
l)=±1 only if Ol, XP [ 0

for every X in the Weyl chamber (see Remark 9.3). This shows

HolGH(h
l)=±1 2 Ol, bP [ 0 2mb, l(E)=0.

We have then proved that [RRG
b (M, E)]G=0. L

Proofs of Theorem 7.5. We propose here two different proofs for this
induction formula. Both of them use the same technical remark.

The set G·Ys 5 G×Gs Ys is a G-invariant open neighborhood of the criti-
cal set CG

b in M. The symplectic form w, when restricted to G×Gs Ys, can be
written in terms of the moment map ms and the symplectic form ws.

w[g, y](X+v, Y+w)=−(ms(y), [X, Y])+ws |y(v, w), (7.4)

where X, Y ¥ g/gb, and v, w ¥ TyYs .25 With the complex structure JG/Gs on

25 We use here the identification T(G×Gs Ys) 5 G×Gs (g/gs À TYs) (see (3.6)).

G/Gs determined by b, we form the almost complex structure J2 :=JG/Gs ×Js
on G×Gs Ys. Equation (7.4) shows that J2 is compatible with w in a neigh-
borhood of CG

b , hence J2 is homotopic to J in a neighborhood of CG
b in

G×Gs Ys.

Remark 7.7. The almost complex structures J and J2 are homotopic in a
neighborhood of CG

b , so as in Lemma 2.2 we see that the computation of the
localized Riemann–Roch character RRG

b (M, E) can be done with J2 instead
of J.

First proof of Theorem 7.5. We will show here that Theorem 7.5 is a
consequence of the induction formula proved in Theorem 6.16 and of the
localization formula obtained in Proposition 6.14. The induction of
Corollary 6.17 shows that RRG

b (M, E)=HolGGs (RR
Gs
b (M, E)M• g/gs). So we

have to prove the equality

RRGs
b (Ys, E|Ys )=RRGs

b (M, E)M• g/gs. (7.5)

First we use the localization formula on both sides of the equality. For the
map RRGs

b (M, −) this gives

RRGs
b (M, E)=RRGs×Tb

b (Mb, E|Mb é [M•
C Na ]−1

b ), (7.6)

and for RRGs
b (Ys, −) we have

RRGs
b (Ys, E|Ys )=RRGs×Tb

b ((Ys)b, E|(Ys)b é [M •
C NŒ ]−1

b ). (7.7)

Here N and NŒ are respectively the normal bundle of Mb in M, and the
normal bundle of (Ys)b in Ys. The complex structures on the fibers of N
and NŒ are induced respectively by the almost complex structure J2, and by
the almost complex structure Js (see Remark 7.7).
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Now we remark that (Ys)b is an open neighborhood of Mb 5 m−1
G
(b) in

Mb, thus we have RRGs
b (Mb, F)=RRGs

b ((Ys)b, F|(Ys)b) for any equivariant
vector bundle F. So (7.6) and (7.7) shows us that (7.5) is equivalent to

RRGs×Tb
b ((Ys)b, E|(Ys)b é [M•

C Na ]−1
b é [M• g/gs ])

=RRGs×Tb
b ((Ys)b, E|(Ys)b é [M•

C NŒ ]−1
b ), (7.8)

where [M• g/gs ] is the trivial bundle M• g/gs×(Ys)bQ (Ys)b.
To finish the proof, we notice that the normal bundle NQMb, when

restricted to (Ys)b, can be decomposed as N |(Ys)b=NŒÀ [g/gs]. Here
[g/gs]Q (Ys)b is the trivial complex vector bundle defined by [g/gs]m=
{X(Ys)

b |m, X ¥ g/gs} for any m ¥ (Ys)b. This decomposition gives first the
equalityM•

C Na=M•
C NŒé [M•

C g/gs] and after26 [M •
C Na ]−1

b =[M•
C NŒ ]−1

b

26 The product of [M•
C NŒ ]−1

b and [M•
C g/gs ]

−1
b is well defined in K̃Gs ((Ys)

b) é̂ R(Tb) since
these elements are polarized by b: each of them is a sum over the set of weights of Tb of the
form ;a Eaha such that Ea ] 0 only if Oa, bP \ 0, and for any dŒ > d \ 0 the sum
;d [ Oa, bP [ dŒ Eaha is finite (see Definition 5.5).

é [M•
C g/gs ]

−1
b , which implies [M •

C Na ]−1
b é [M•

C g/gs ]=[M•
C NŒ ]−1

b .
Equation (7.8) is then proved. L

Second proof of Theorem 7.5. A G-invariant neighborhood UG, b of the
critical set CG

b in M can be taken of the form UG, b=G×Gs U
s, b where Us, b

a relatively compact Gs-invariant neighborhood of m−1
G
(b) 5Mb in Ys such

that Us, b 5 {Hs=0}=m−1
G
(b) 5Mb.

The maps RRG
b (M, −) and RRGs

b (Ys, −) are respectively defined by the
localized Thom symbols Thomm

G, [b](M) ¥KG(TGU
G, b) and Thomm

Gs, [b](Ys)
¥KGs (TGsU

s, b) (see Definition 6.4). The inclusion i: Gs + G induces an
isomorphism ig: KGs (TGsU

s, b)QKG(TG(G×Gs U
s, b)) (see Sect. 3.4).

Lemma 7.8. We have the equality

ig(Thomm
Gs, [b](Ys)M

•
C g/gs)=Thomm

G, [b](M).

This lemma, combined with Theorem 3.4, shows that RRG
b (M, E)= IndG

Gs
(RRGs

b (Ys, E|Ys )M
•
C g/gs)=HolGGs (RR

Gs
b (Ys, E|Ys )) for any G-complex

vector bundle EQM. The proof of Theorem 7.5 is then completed. L

Proof of Lemma 7.8. Through the identification T(G×Gs U
s, b) 5 G×Gs

(g/gs À TUs, b), the vector fields Hs and HG satisfy the relation HG
[g, y] 5

Hs
y, [g, y] ¥UG, b. The symbol s[g, y; X+v] of Thomm

G, [b](M) at [g, y; X+v] ¥
G×Gs (g/gs À TUs, b) acts on M•

J2 T[g, y]U
G, b 5M• g/gs éM•

Js TyU
s, b as the

product

s[g, y; X+v]=Cl(X)í Cly(v−Hs
y).
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Now we see that [g, y; X+v]Q Cl(X)í Cly(v−Hs
y) is homotopic, as

G-transversally elliptic symbol, to s2: [g, y; X+v]Q Cl(0)í Cly(v−Hs
y),

and s2 is, by definition, the image of Thomm
Gs, [b](Ys)M

•
C g/gs by ig. The

proof of Lemma 7.8 is then completed. L

7.4 The singular case. In this section, we do not assume that 0 is a
regular value of mG, and we use the ‘‘shifting trick’’ to compute
[RRG(M, L)]G in term of reduced manifolds of the type m−1

G
(a)/Ga,

for every mG-moment bundle L. We know from Theorem 7.1 that
[RRG(M, L)]G=0 if 0 ¨ mG(M) since every moment bundle is strictly posi-
tive (see Lemma 7.9). So, we assume for the rest of this section that
0 ¥ mG(M).

Let Oa be the coadjoint orbit through a ¥ gg. It has a canonical symplectic
2-form and the moment map Oa Q gg for the G-action is the inclusion. We
denote by Oa the coadjoint orbit Oa with the opposite symplectic form. The
product M×Oa is a symplectic manifold with a Hamiltonian moment map

ma: M×Oa Q gg

(m, t)W mG(m)−t.

On the symplectic manifold M×Oa we have a quantization map
RRG(M×Oa, −) with the following property: for any G-vector bundles E
and F over M and Oa respectively, we have RRG(M×Oa, pg

a (E)é
(p −a)

g (F))=RRG(M, E) ·RRG(Oa, F) in R(G). Here we denote by pa:
M×Oa QM the projection to the first factor and p −a the projection to the
second factor. Since RRG(Oa, C)=1 we have

RRG(M×Oa, pg
a (L))=RRG(M, L). (7.9)

We can now compute [RRG(M, L)]G by localizing the character
RRG(M×Oa, pg

a (L)) with the moment map ma. We need the following
Lemma which was proved by Tian–Zhang [36] for the prequantum line
bundles.

Lemma 7.9. Let L be a mG-moment bundle over M. There exists E > 0 such
that for any |a| < E, the vector bundle pg

a (L) is ma-positive. For a=0, the
bundle L=pg

0 (L) is mG-strictly positive.

Let RRG
0 (M×Oa, −) be the Riemann–Roch character localized near

m−1
a (0)4 m−1

G
(Oa). Theorem 7.1, Equality 7.9, and Lemma 7.9 show that

[RRG(M, L)]G=[RRG
0 (M×Oa, pg

a (L))]
G, (7.10)

for any moment bundle L if a ¥ mG(M) is close enough to 0.
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There exists a unique open face y of the Weyl chamber h+ such that
mG(M) 5 y is dense in mG(M) 5 h+. The face y is called the principal face of
(M, mG) [26]. All points in the open face y have the same connected cen-
tralizer Gy. Let Ay be the identity component of the center of Gy and [Gy, Gy]
its semi-simple part. Note that we have an identification between the
Lie algebra ay of Ay and the linear span of the face y. The Principal-cross-
section Theorem [26] tells us that Yy :=m−1

G
(y) is a symplectic

Gy-manifold, with a trivial action of [Gy, Gy]. So, the restriction of mG on Yy
is a moment map my:Yy Q ay for the Hamiltonian action of the torus Ay. We
decompose the torus Ay in a product of two subtorus Ay=A1

y ×A2
y where A1

y

is the identity component of the principal stabilizer for the action of Ay on
Yy.

We take now a with value in y 5 mG(M). For generic values a ¥
y 5 mG(M), m−1

G
(a)=m−1

y (a) is a smooth manifold of M with a locally free
action of A2

y , hence the quotient Ma :=m−1
G
(a)/Ga=m−1

y (a)/(A2
y) is a

symplectic orbifold. We denote by RR(Ma, −) the quantization map defined
by the choice of a compatible almost complex structure. If L is a
mG-moment bundle on M, L|Yy is a my-moment bundle: the action of
A1
y[Gy, Gy] on L|Yy is trivial. Then the quotient L|m−1

y (a)/Ga=L|m−1
y (a)/(A

2
y) is

an orbifold line bundle over Ma for generic a.
We compare now the Riemann–Roch character RRGy

0 (Yy, −) localized
near m−1

y (a) by the moment map my−a and the Riemann–Roch character
RRG

0 (M×Oa, −) localized near m−1
a (0)=G·(m−1

y (a)×{a}). All we need is
contained in the following

Proposition 7.10. Let E be a G-vector bundle over M, and take a ¥ y. We
have RRG

0 (M×Oa, pg
aE)=IndG

Gy (RR
Gy
0 (Yy, E|Yy )), in particular [RRG

0 (M
×Oa, pg

aE)]
G=[RRGy

0 (Yy, E|Yy )]
Gy.

If L is a mG-moment bundle, the action of A1
y[Gy, Gy] on L|Yy is trivial,

then [RRGy
0 (Yy, L|Yy)]

Gy=[RRA2
y

0 (Yy, L|Yy)]
A2
y. Finally, for every generic value

a ¥ y 5 mG(M), the quotient La :=L|m−1
y (a)/A

2
y is an orbifold line bundle over

Ma, so from Section 7.1 we get [RRA2
y

0 (Yy, L|Yy)]
A2
y=RR(Ma, La).

With this last equality, Proposition 7.9, and equality (7.10) we have
proved the central result of this section

Proposition 7.11. Suppose that 0 ¥ mG(M). If L is a mG-moment bundle,
there exist E > 0, such that

[RRG(M, L)]G=RR(Ma, La),

for every generic value a ¥ y 5 mG(M) with |a| < E.
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7.4.1. Proof of Lemma 7.9. Let L be a mG-moment bundle over M,
where mG: MQ gg is a Hamiltonian moment map. Recall that the Lie
algebra g is identified to gg trough an invariant scalar product (−, −). Let
H be a maximal torus of G with Lie algebra h.

Lemma 7.12. For b ¥ h and m ¥Mb 5 m−1
G
(c), the weight a for the action

of Tb on Lm satifies (a, b)=(c, b).

Proof. Let N be the connected component of Mb containing m, and let
mŒ be a point of NH. Since N is connected, a is also the weight for the
action of Tb on LmŒ, and mG(mŒ) is the weight for the action of H on LmŒ:
then (a, X)=(mG(mŒ), X) for every X ¥ Lie(Tb). But the map xQ
(mG(x), b) is constant on N, then (c, b)=(mG(m), b)=(mG(mŒ), b)=
(a, b). L

The element a is taken in h. The critical set of the function ||ma ||2:
M×Oa Q Radmits the following decomposition Cr(||ma ||2)=G·(Cr(||ma ||2) 5
(M×{a}))=G·((Cr(||mGa

−a||2) 5 m−1
G
(ga))×{a}), where mGa

: MQ ga is
the moment map for the action of Ga. Let Ba the finite subset of h defined
by Ba={b ¥ h, Mb 5 m−1

G
(b+a) ]”}. Finally we have the decomposition

Cr(||ma ||2)= 0
b ¥Ba

G· (Mb 5 m−1
G
(b+a)×{a}).

Using Lemma 7.12, we see that pg
aL is ma-positive if and only if

(b+a, b) \ 0 for every b ¥Ba. (7.11)

We first see that it is trivially true if a=0: in this case L is strictly positive.
Let mH : MQ h be the moment map for the maximal torus H. Consider

the finite set BH, a which parameterizes the critical set of ||mH −a||2:
BH, a={b ¥ h, Mb 5 m−1

H
(b+a) ]”}. We have obviously the inclusion

Ba …BH, a, so it suffices to show (7.11) for BH, a.
To finish our proof we use now a characterization of the set BH, a we

gave in [31]. There exists a finite collection B of affine subspaces of h such
that

BH, a … {PD(a)−a, D ¥B}

for every a ¥ h. Here PD: hQ h is the orthogonal projection on D. It is now
easy to compute the sign of (PD(a), PD(a)−a) for all D ¥B. A simple
computation gives (PD(a), PD(a)−a)=|PD(0)|2−(a, PD(0)). Hence, either
0 ¥ D and then (PD(a), PD(a)−a) is equal to 0 for all a ¥ h, or 0 ¨ D and
then (PD(a), PD(a)−a) > 0 if |a| < |PD(0)|. We can take E=inf0 ¨ D |PD(0)| in
Lemma 7.9. L
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7.4.2. Proof of Proposition 7.10. Since the point a takes value in y we
identify the coadjoint orbit Oa with G/Gy. Let Ha be the Hamiltonian
vector field of the function −1

2 ||ma ||2: M×G/Gy Q R. To simplify the nota-
tions, Yy will denote a small neighborhood of m−1

G
(a) in the symplectic slice

m−1
G
(y) such that the open subset U :=(G×Gy Yy)×G/Gy is then a neigh-

borhood of m−1
a (0)=G·(m−1

y (a)×{ē}) which satisfies U 5 {Ha=0}=
m−1

a (0). Following Definition 6.4, the localized Riemann–Roch character
RRG

0 (M×G/Gy, −) is computed by means of the Thom class Thomma
G, [0]

(M×G/Gy) ¥KG(TGU). On the other hand, the localized Riemann–
Roch character RRGy

0 (Yy, −) is computed by means of the Thom class
Thommy−a

Gy, [0](Yy) ¥KGy (TGyYy).
Proposition 7.10 will follow from a simple relation between Thomma

G, [0]

(M×G/Gy) and Thommy−a
Gy, [0](Yy).

First, one considers the isomorphism

f: UQUŒ

([g; y], [h])Q [g; [g−1h], y],
(7.12)

with UŒ :=G×Gy (G/Gy×Yy), and let fg: KG(TGUŒ)QKG(TGU) be the
induced isomorphism. After one consider the inclusion i: Gy + G which
induces an isomorphism ig: KGy (TGy (G/Gy×Yy))QKG(TGUŒ) (see Sect.
3.4). Let j: Yy + G/Gy×Yy be the Gy-invariant inclusion map defined by
j(y) :=(ē, y). We have then a pushforward map j!: KGy (TGyYy)Q
KGy (TGy (G/Gy×Yy)). Finally we have produced a map G :=fg

p ig p j!
from KGy (TGyYy) to KG(TGU), such that IndexG

U(G(s))=IndG
Gy (IndexGy

Yy
(s))

for every s ¥KGy (TGyYy).
Proposition 7.10 is an immediate consequence of the following

Lemma 7.13. We have the equality

G(Thommy−a
Gy, [0](Yy))=Thomma

G, [0](M×G/Gy).

Proof. Let m −a :=ma p f−1 be the moment map on UŒ, and let H −, a be
the Hamiltonian vector field of −1

2 ||m −a ||
2. For the tangent manifold TUŒ we

have the decomposition

TUŒ 4 G× Gy (g/gy À G×Gy (g/gy) À TYy).

A small computation gives H −, a(m)=prg/gy (ha)+R(m)+Hy
a(y)+S(m)

for m=[g; y, [h]] ¥UŒ, where R(m) ¥ g/gy and S(m) ¥ TyYy vanishes
when m ¥ G×Gy ({ē}×Yy), i.e., [h]=ē. Here Hy

a is the Hamiltonian vector
field of the function −1

2 ||my−a||2: Yy Q R.
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The transversally elliptic symbol s1 :=(f−1)g (Thomma
G, [0](M×G/Gy)) is

equal to the exterior product

s1(m, t1+t2+v)

=Cl(t1 −prg/gy (ha))í Cl(t2 −R(m))í Cl(v−Hy
a −S(m)),

with t1 ¥ g/gy, t2 ¥ g/gy, v ¥ TYy.
Now we simplify the symbol s1 without changing its K-theoretic class.

Since Char(s1) 5 TGUŒ=G×Gy ({ē}×Yy), we can transform s1 through
the Gy-invariant diffeomorphism h=eX from a neighborhood of 0 in g/gy
to a neighborhood of ē in G/Gy. This gives s2 ¥KG(TG(G×Gy (g/gy×Yy)))
defined by

s2([g, X, y], t1+t2+v)

=Cl(t1 −prg/gy (e
Xa))í Cl(t2 −R(m))í Cl(v−Hy

a −S(m)).

Now trivial homotopies link s2 with the symbol s3, where we have
removed the terms R(m) and S(m), and where we have replaced prg/gy (e

Xa)=
[X, a]+o([X, a]) by the term [X, a]:

s3([g, X, y], t1+t2+v)=Cl(t1 −[X, a])í Cl(t2)í Cl(v−Hy
a).

Now, we get s3=ig(s4) where the symbol s4 ¥KGy (TGy (g/gy×Yy)) is
defined by

s4(X, y; t2+v)=Cl(−[X, a])í Cl(t2)í Cl(v−Hy
a).

So s4 is equal to the exterior product of (y, v)Q Cl(v−Hy
a), which is

Thommy−a
Gy, [0](Yy), with the transversally elliptic symbol on g/gy: (X, t2)Q

Cl(−[X, a])í Cl(t2). As in Lemma 5.2, we see that the K-theoretic class
of this former symbol is equal to k!(C) where k: {0}+ g/gy. This shows
that

s4=k!(C)í Thommy−a
Gy, [0](Yy)=j!(Thommy−a

Gy, [0](Yy)). L

8. APPENDIX A: G=SU(2)

We restrict our attention to an action of G=SU(2) on a compact mani-
fold M. We suppose that M is endowed with a G-invariant almost complex
structure J and an abstract moment map f: MQ g. In this situation, the
decomposition RRG(M, −)=;b ¥BG

RRG
b (M, −) becomes simple.
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Let S1 be the maximal torus of SU(2), and fS1: MQ R the induced
moment map for the S1-action. The critical set {HG=0} has a particularly
simple expression: {HG=0}=f−1(0) 2 G.MS1

+ , where MS1

+ is the union of
the connected components F …MS1

with fS1(F) > 0. Note that the critical
set {HS1

=0} is equal to f−1
S1
(0) 2MS1

,

The non-symplectic case. Here the induction formula of Theorem 6.16,
and Proposition 6.14 gives

RRG(M, E)=RRG
0 (M, E)+HolGS1(G(E)(t).(1−t−2)) (8.1)

where G(E) ¥ R−.(S1) is determined by

G(E)=(−1) rN C
k ¥N

RRS1
(MS1

+ , E|MS1
+
é det N+é Sk((N é C)+)). (8.2)

Here NQMS1

+ is the normal bundle of MS1

+ in M.

The Hamiltonian case. Here we suppose that (M, w) is a symplectic
manifold, with moment map m and a w-compatible almost complex struc-
ture J. Let Y=m−1(R > 0) be the symplectic slice associated to the interior
of the Weyl chamber R > 0 … Lie(S1).

The induction formula of Theorem 7.5 gives

RRG(M, E)=RRG
0 (M, E)+HolGS1(G2(E)) (8.3)

where G2(E) ¥ R−.(S1) is determined by

G2(E)=(−1) rN2 C
k ¥N

RRS1
(MS1

+ , E|MS1
+
é det N2 +é Sk((N2 é C)+)). (8.4)

Here N2 QMS1

+ is the normal bundle of MS1

+ in Y.
Recall that the irreducible characters fn of G=SU(2) are labeled by

Z \ 0, and are completely determined by the relation fn=HolGS1(tn) in R(G)
(See Lemma 9.1). Hence the component HolGS1(G(E)(t).(1−t−2)) of (8.1)
does not contain the trivial character f0 if G(E)=;n ¥ Z antn with

an ] 0 2 n \ 3. (8.5)

Equation (8.2) tells us that (8.5) is satisfied if the weights for the action of
S1 in the fibers of the complex vector bundle E|MS1

+
é det N+ are all bigger

than 3.

502 PAUL-EMILE PARADAN



The conditions are weaker in the ‘‘Hamiltonian’’ situation. The term
HolGS1(G2(E)) of (8.3) does not contain the trivial character f0 if G2(E)=
;n ¥ Z antn with

an ] 0 2 n \ 1, (8.6)

and this condition is fulfilled if the weights for the action of S1 in the fibers
of the complex vector bundle E|MS1

+
é det N2 + are all bigger than 1. Here

we have another important difference: the vector bundle N2 +QMS1

+ is not
equal to the zero bundle if 0 ¥ m(M) (see Lemma 7.3).

We see finally that, in the Hamiltonian case, the condition ‘‘E is
m-positive’’ implies

0 ¥ m(M)2 [RRG(M, E)]G=[RRG
0 (M, E)]G.

9. APPENDIX B: INDUCTION MAP AND MULTIPLICITIES

Let G be a compact connected Lie group, with maximal torus H, and
hg
+ … hg=(gg)H some choice of positive Weyl chamber. We denote by R+

the associated system of positive roots, and we label the irreducible repre-
sentations of G by the set Lg

+=Lg 5 hg
+ of dominant weights. For any

weights a ¥ Lg we denote by HQ Cg, hW ha the corresponding character:
(exp(X))a=e ıOa, XP for X ¥ h.

Let W be the Weyl group of (G, H), and L2(H) be the vector space of
square integrable complex functions on H. For f ¥ L2(H), we consider
J(f) =;w ¥W (−1)w w.f, where WQ {1, −1}, wQ (−1)w, is the signature
operator and w.f ¥ L2(H) is defined by w.f(h)=f(w−1.h), h ¥H (see
Section 7.4 of [8]). The map 1

|W| J is the orthogonal projection from L2(H)
to the space of W-anti-invariant elements of L2(H).

Let r ¥ hg be the half sum of the positive roots. The function
HQ Cg, hW hr is well defined as an element of L2(H) (even if r is not a
weight). The Weyl’s character formula can be written in the following way.
For any dominant weight l ¥ Lg

+, the restriction qG
l
|H of the irreducible

G-character qG
l

satisfies

J(hr).qG
l
|H=J(hl+r) in L2(H). (9.1)

For our purpose we give an expression of the character qG
l

through the
induction map IndG

H: C
−.(H)Q C−.(G)G (see (3.7)). Consider the affine

action of the Weyl group on the set of weights: w p l=w.(l+r)−r for
w ¥W and l ¥ Lg.
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Lemma 9.1. (1) For any dominant weight l ¥ Lg
+, the character qG

l
is

determined by the relation qG
l
=IndG

H(h
lPa ¥R+

(1−ha)) in C−.(G)G.

(2) For l ¥ Lg and w ¥W, we have IndG
H(h

w p lPa ¥R+
(1−ha))=

(−1)w IndG
H(h

lPa ¥R+
(1−ha)).

(3) For any weight l, the following statements are equivalent:

(a) IndG
H(h

lPa ¥R+
(1−ha))=0,

(b) W p l 5 Lg
+=”,

(c) The element l+r is not a regular element of hg.

Proof of (1). To prove it, we need the following relations proved in
[8, Sect. 7.4]:

(i) J(hr)=h−rPa ¥R+
(1−ha),

(ii) J(hr).J(hr)=Pa ¥R (1−ha).

Let dg and dt be respectively the normalized Haar measures on G and H.
For any f ¥ C.(G)G we have

F
G

qG
l
(g) f(g) dg=

1
|W|

F
H

qG
l
|H (h) Pa ¥R(1−ha) f|H (h) dh [1]

=
1
|W|

F
H
J(hl+r) J(hr) f|H (h) dh [2]

=F
H
hl+r J(hr) f|H (h) dh [3]

=F
H
hl Pa ¥R+

(1−ha) f|H (h) dh. [4]

The first equality is the Weyl integration formula. Equality [2] comes from
(ii) and (9.1). Since 1

|W| J is the orthogonal projection on L2(H)W-anti-invariant

and hW J(hr) f|H(h) is W-anti-invariant we obtain the third equality. The
equality [4] comes from (i).

Proof of (2). From (i), wee see that hw p lPa ¥R+
(1−ha)=hw(l+r)J(hr)=

(−1)w w−1.(hl+rJ(hr))=(−1)w w−1.(hlPa ¥R+
(1−ha)), hence the relation

(2) is proved since IndG
H is W-invariant.

Proof of (3). The implication (a) 2 (b) is an immediate consequence
of (1) and (2). Proposition 3 in Section 7.4 of [8] tells us that {J(hlŒ+r),
lŒ ¥ Lg

+} is an orthogonal basis of the Hilbert space L2(H)W-anti-invariant. For
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l ¥ Lg and lŒ ¥ Lg
+ we have OJ(hl+r), J(hlŒ+r)PL2=|W| OJ(hl+r), hlŒ+rPL2=

|W|;w ¥W (−1)w >T tw p l−lŒ dt. Thus, the condition W p l 5 Lg
+=” is equiva-

lent to J(hl+r)=0. But the equality [2] gives IndG
H(h

lPa ¥R+
(1−ha))=

1
|W| IndG

H(J(h
l+r) h−rPa ¥R+

(1−ha)), hence J(hl+r)=0 implies the point (a).
We have proved that (b) 2 (a). Finally we see that J(hl+r)=0Y
,w ¥W, w.(l+r)=l+r Y l+r is not a regular value of hg. We have
proved that (b) Y (c). L

From the previous Lemma, we see that vW IndG
H(v(h) Pa ¥R+

(1−ha)) is
the holomorphic induction map

HolGH: R(H)Q R(G). (9.2)

We keep the same notation for the extended map HolGH: R
−.(H)Q

R−.(G). Note that the choice of a positive Weyl chamber hg
+ determines a

complex structure on g/h, and Pa ¥R+
(1−ha) is the trace of the virtual

H-representation M •
C g/h ¥ R(H). Then the map HolGH will be defined

simply by the relation HolGH(v)=IndG
H(v M •

C g/h).

Remark 9.2. The relations (i) and (ii) used in the proof of the past
lemmashowthat;w ¥W w.Pa > 0 (1−ha)=;w ¥W w.(J(hr) hr)=J(hr).J(hr)
=Pa (1−ha). In other words ;w ¥W w.M •

C g/h=(M •
Rg/h) é C=M •

C g/h
M •

C g/h in R(H). These equalities give

IndG
H
11C

w
w.f2 M •

C g/h2=IndG
H(f M •

R g/h) (9.3)

since IndG
H is W-invariant. The Weyl integration formula is usually state

as the relation f= 1
|W| IndG

H(f|H M •
R g/h) for any f ¥ C.(G)G. But f|H is

W-invariant, so (9.3) gives 1
|W| IndG

H(f|H M •
R g/h)=IndG

H(f|H M •
C g/h).

Finally, for any f ¥ R(G), the Weyl integration formula is equivalent to the
following equality in R(G):

f=HolGH(f |H).

Remark 9.3. A weight l satisfies HolGH(h
l)=±1 if and only if

0 ¥ W p l 5 Lg
+, that is, l=−(r−w.r) for some w ¥W. But a small com-

putation shows that r−w.r=;a > 0, w −1.a < 0=a, hence Or−w.r, XP \ 0 for
any X ¥ h+. Finally the equality HolGH(h

l)=±1 implies that Ol, XP [ 0 for
any X ¥ h+.

Consider now the stabiliser Gb of the non-zero element b ¥ h+. The
subgroup H is also a maximal torus of Gb. The Weyl group Wb of (Gb, H)
is identified with {w ¥W, w.b=b}. We consider a Weyl chamber
hg
+, b … hg for Gb that contains the Weyl chamber hg

+ of G. The irreducible
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representations qGb
l , l ¥ Lg

+, b of Gb are labeled by the set Lg
+, b=Lg 5 hg

+, b

of dominant weights.
We have a unique ‘‘holomorphic’’ induction map HolGGb : R(Gb)Q R(G)

such that HolGH=HolGGb pHolGbH . This map is defined precisely by the
equation27

27 We take on g/gb the complex structure defined by b.

HolGGb (v)=IndG
Gb (v M

•
C g/gb), (9.4)

for every v ¥ R(Gb).
We finish this appendix with some general remarks about P-transversally

elliptic symbols on a compact manifold M, when a subgroup T in the
center of P acts trivially on M.

More precisely, let H be a compact maximal torus in P, h+ be a choice of
a positive Weyl chamber in the Lie algebra h of H, and let b ¥ h+ be a non-
zero element in the center of the Lie algebra p of P.28 We suppose here that

28 The Lie group P is supposed connected then b ¥ (p)P.

the subtorus T …H, which is equal to the closure of {exp(t .b), t ¥ R}, acts
trivially on M.

Every P-equivariant complex vector bundle EQM can be decomposed
relatively to the T-action: E=Áa ¥ T̂ Ea é Ca, where Ea :=homT(Ca, E)29

is a P-complex vector bundle with a trivial action of T. Then, each

29 The torus T acts on the complex line Ca with the representation tQ ta.

P-equivariant symbol s : pg(E1)Q pg(E2) where E1, E2 are P-equivariant
complex vector bundles over M, and where p: TMQM is the canonical
projection, admits a finite P×T-equivariant decomposition

s=C
a ¥ T̂

sa é Ca. (9.5)

Here sa: pg(Ea
1)Q pg(Ea

2) is a P-equivariant symbol, trivial for the
T-action.

Let us consider the inclusion map i: T+H, with the induced maps
i: Lie(T)Q h at the level of Lie algebra and ig: hg Q Lie(T)g. Note that
ig(l) is a weight for T if l is a weight for H.

Lemma 9.4. Let M be a P-manifold with the same properties as above.
Let s: pg(E1)Q pg(E2) be a P-equivariant transversally elliptic symbol
over M and denote by ml(s), l ¥ Lg

P,+, the multiplicities of its index:
IndexP

M(s)=;l ¥ Lg
P,+

ml(s) qP
l
. Then, if ml(s) ] 0, the weight a=ig(l)

occurs in the decomposition (9.5).
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Corollary 9.5. Suppose that the weights a ¥ T̂ which occur in the
decomposition (9.5) satisfy Oa, bP \ g for some fixed g ¥ R. Then, for the
multiplicities, we get

ml(s) ] 0 2 Ol, bP \ g.

In particular, IndexP
M(s) does not contain the trivial representation when

g > 0.

Remark 9.6. The previous Lemma and Corollary remain true if M is a
P-invariant open subset of a compact P-manifold.

For the Corollary, we have just to notice that30 Ol, bP=Oa, bP for

30 We use the same notations for b ¥ Lie(T) and i(b) ¥ h.

a=ig(l). Then, if we have Oa, bP \ g for all T-weights occurring in s, we
get Ol, bP \ g for every l such that ml(s) ] 0.

Proof of Lemma 9.4. Let PŒ be a Lie subgroup of P such that
r: T×PŒQ P, r(t, g)=t.g, is a finite covering of P. The map r induces
rg: KP(TPM)QKT×PŒ(TPŒM)31 and an injective map rg: R−.(P)Q R−.

31 Note that TPŒM=TPM because T acts trivially on M.

(T×PŒ), such that IndexT×PŒ
M (rgs)=rg(IndexP

M(s)).
The decomposition (9.5) can be read through the identification

KT×PŒ(TPŒM)=KPŒ(TPŒM) é R(T): we have rgs=;a ¥ T̂ sa é Ca with sa ¥

KPŒ(TPŒM). Hence

IndexT×PŒ
M (rgs)(t, g)=C

a ¥ T̂

IndexPŒ
M(sa)(g). ta, (t, g) ¥ T×PŒ. (9.6)

The irreducible characters qP
l

satisfy rgqP
l
(t, g)=qP

l
|PŒ(g). t i

g(l). If we start
from the decomposition IndexP

M(s)=;l ¥ Lg
P,+

ml(s) qP
l

relative to the
irreducible characters of P, we get

rg(IndexT×PŒ
M (s))(t, g)=C

a ¥ T̂

1 C
ig(l)=a

ml(s) qP
l
|PŒ(g)2 . ta, (9.7)

for any (t, g) ¥ T×PŒ. If we compare (9.6) and (9.7), we get IndexPŒ
M(sa)=

;ig(l)=a ml(s) qP
l
|PŒ. The map rg: R−.(P)Q R−.(T×PŒ) is injective, so

;ig(l)=a ml(s) qP
l
|PŒ=0 if and only if ml(s)=0 for every l satisfying

ig(l)=a. Hence if the multiplicity ml(s) is non zero, the element a=ig(l)
is a weight for the action of T on s: pg(E1)Q pg(E2). L
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