
Ž .Journal of Algebra 224, 397]426 2000

doi:10.1006rjabr.1999.8070, available online at http:rrwww.idealibrary.com on

Flag Varieties and Interpretations of Young
Tableau Algorithms1

Marc A. A. van Leeuwen
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BP 30179, 86962 Futuroscope Chasseneuil Cedex, France

E-mail: maavl@mathlabo.univ-poitiers.fr

Communicated by Peter Littelmann

Received October 10, 1998

The conjugacy class of nilpotent n = n matrices can be parameterized by
partitions l of n, and for a nilpotent h in the class parameterized by l, the variety
FF of h-stable flags has its irreducible components parameterized by the standardh

Young tableaux of shape l. We indicate how several algorithmic constructions
defined for Young tableaux have significance in this context, thus extending
Steinberg’s result that the relative position of flags generically chosen in the
irreducible components of FF parameterized by tableaux P and Q is the permuta-h

Ž .tion associated to P, Q under the Robinson]Schensted correspondence. Other
constructions for which we give interpretations are Schutzenberger’s involution of¨

Žthe set of Young tableaux, jeu de taquin leading also to an interpretation of
.Littlewood]Richardson coefficients , and the transpose Robinson]Schensted cor-

Ž .respondence defined using column insertion . In each case we use a doubly
Ž .indexed family of partitions, defined in terms of the flag or pair of flags

determined by a point chosen in the variety under consideration, and we show that
for generic choices, the family satisfies combinatorial relations that make it

Žcorrespond to an instance of the algorithmic operation being interpreted as
Ž . .described in M. A. A. van Leeuwen, Electron. J. Combin. 3, No. 2 1996 , R15 .
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0. INTRODUCTION

The Schensted algorithm, which defines a bijective correspondence
Ž .between permutations and pairs of standard Young tableaux, and the

Ž .Schutzenberger or evacuation algorithm, which defines a shape-preserv-¨
ing involution of the set of Young tableaux, can both be described using
doubly indexed families of partitions that satisfy certain local rules, as

w xdescribed in 9 . In this paper we show how both correspondences occur in
relation to questions concerning varieties of flags stabilized by a fixed
nilpotent transformation h. The mentioned doubly indexed families of
partitions arise very naturally in this context, and they provide detailed
information concerning the internal steps of the algorithms, rather than
just about the correspondences defined by them. As a consequence, the
study of the Schutzenberger algorithm also leads to an interpretation of¨
jeu de taquin and of the Littlewood]Richardson coefficients. The connec-
tions between geometry and combinatorics presented here include and

w x w xextend results due to Steinberg 22, 23 and Hesselink 3 .
The basic fact underlying these interpretations is that the irreducible

components of the variety FF of h-stable complete flags is parameterizedh

in a natural way by the set of standard Young tableaux of shape equal to
Ž .the Jordan type J h of h. In fact there are two dual parameterizations,

and we show that the transition between them is given by the Schutzen-¨
berger involution. Taking a projection on varieties of incomplete flags by
forgetting the parts of flags below a certain dimension, we obtain from this

Ž .an interpretation of jeu de taquin operating on skew standard tableaux
and a bijection between Littlewood]Richardson tableaux and irreducible
components of a variety of h-stable subspaces of fixed type and cotype.

The other interpretations involve the Robinson]Schensted algorithm
and relative positions of flags. We give a derivation of Steinberg’s result
that the relative position of two generically chosen flags in given irre-
ducible components of FF is the permutation related by the Robinson]h

Schensted correspondence to the pair of the tableaux parameterizing those
components. For this result a specific choice of parameterization is re-
quired, but there are variations of the statement for other choices; in
particular when dual parameterizations are used for the two components,
one obtains the transpose Robinson]Schensted correspondence, defined
using column insertion. Together, these interpretations give a geometric
meaning to many key properties of the combinatorical correspondences:
involutivity of the Schutzenberger correspondence, confluence of jeu de¨
taquin, the fact that the number of skew tableaux of a fixed shape and
given rectification P depends only on the shape of P, symmetry of the
Robinson]Schensted correspondence, and the various relations between
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this correspondence, its transpose, and the Schutzenberger correspon-¨
dence.

This paper is organized as follows. In Section 1 we review the essential
facts in the linear algebra of a vector space equipped with a nilpotent
transformation h, followed in Section 2 by the definition of the variety FFh

and the parameterizations of its irreducible components by Young tableaux.
In Sections 3 and 4 we give the respective interpretations of the Schutzen-¨
berger algorithm, and of jeu de taquin and Littlewood]Richardson
tableaux. In Section 5 we discuss relative positions of flags, which are used
in Section 6 to give a geometric interpretation of the Robinson]Schensted
correspondence, and in Section 7 to give a similar but independent
interpretation of the transposed Robinson]Schensted correspondence.

In our combinatorial notation, as well as in our approach to the
w xalgorithms considered, we shall closely follow 9 ; we collect here the

essential definitions used. A partition l is an infinite weakly decreasing
Ž .sequence l G l G ??? of natural numbers called the parts of l with0 1

< <finite sum, denoted by l . To each partition l is associated its Young
Ž . Ž . Ž . Ž Ž .diagram Y l ; N = N, defined by i, j g Y l m j - l so that aY li

< <. ts l ; the transposed partition l of l is the one whose Young diagram is
Ž . Ž .obtained by reflection of Y l in the main diagonal. The elements of Y l

Žare called its squares and are depicted correspondingly so that they may
.be filled with values ; Young diagrams are displayed with the first index i

increasing downward and the second increasing toward the right, like
matrices. The set of all partitions is denoted by PP and is partially ordered
by inclusion of Young diagrams, written : ; the elements of PP sn
� < < 4l g PP l s n are called partitions of n. For the predecessor relation in

y w xPP, which was denoted by m g l in 9 , we shall write instead m $ l, with
Ž . Ž . � 4m U l meaning that m $ l or m s l. When m $ l and Y l rY m s x ,

we call the square x a corner of l and a cocorner of m, and write
5l s m q x, m s l y x, and l y m s x. We write x y to indicate that

squares x and y are adjacent.
Ž .A Young tableau is an injective map T : Y l ª N, for some l g PP

Ž .called the shape sh T of T , such that when each number T i, j is written
Ž .as an entry into square i, j , all rows and columns are increasing. Each

Ž .such T determines a saturated decreasing chain ch T from l to 0 in PP,
Ž .by recording the successive shapes as the squares are removed from Y l

in order of decreasing entries. When ch T s ch T X we write T ; T X, which
is an equivalence relation on tableaux; for tableaux of fixed shape l, a set
of representatives of the equivalence classes is formed by the set TT ofl

< <normalized tableaux, whose entries are all - l . For any non-empty
Young tableau T , the square containing the highest entry of T is denoted

u v Ž .by T , and the tableau obtained by removing that square and its entry
from T by Ty. By applying the deflation procedure used in the definition
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of the Schutzenberger algorithm to T , a tableau T x is obtained, in which¨
the smallest entry has disappeared. The result of applying the full

Ž .Schutzenberger algorithm to T is denoted by S T , and the pair of¨
tableaux obtained the Schensted algorithm to a permutation s is denoted

Ž . Ž w x .by RS s see 9 for definitions .
When numbering or indexing with natural numbers, these definitions all

start using 0, rather than 1; this holds in particular for the parts of a
partition, and the rows and columns of Young diagrams. This leads to

Ž .simpler expressions, but note that while row i of Y l has length l , it hasi
w xno square in column l . We even have gone a bit further than in 9 , byi

defining entries of normalized tableaux to start at 0. Also, the group S isn
� 4taken to consist of permutations of 0, . . . , n y 1 , represented by se-

quences of the form s , s , . . . , s ; in particular, the order reversing0 1 ny1
permutation n g S satisfies n s n y 1 y i.˜ ˜n i

w xThe work presented here was motivated by that of the author’s thesis 7 ,
which deals with the significantly more complicated case of other classical

Ž .groups in characteristic / 2 instead of GL . There a combinatorialn
algorithm analogous to the Robinson]Schensted algorithm is deduced that
performs the corresponding computation of generic relative positions of
flags; however, there are complications that cause the descriptions and
proofs to be much more technical than those in the current paper. Our

w xaim here was to separate the main techniques and arguments of 7 from a
number of distracting technicalities, by applying them in the simpler
situation of GL ; even so the reasoning is sometimes detailed and subtle.n
At the same time we believe that in describing that situation as transpar-
ently as possible, we have been able to provide some new insight.

1. NILPOTENT TRANSFORMATIONS

Let V be a vector space of finite dimension n over an infinite field k. In
this section we recall some basic facts concerning V, equipped with a fixed
nilpotent endomorphism h. Most of these facts are also discussed, from a

w xsomewhat more general and elevated perspective, in 11, Chap. II .
X Ž X. XA subspace V of V is called h-stable if h V : V . There exists a

decomposition of V as a direct sum of non-zero h-stable subspaces that
cannot be so decomposed further; any summand of dimension d admits a

Ž . Ž .basis x , . . . , x such that h x s 0 and h x s x for 0 - i - d.0 dy1 0 i iy1
This is called a decomposition into Jordan blocks; it is generally not
unique, but the multiset of the dimensions of the blocks depends only on
h. Arranged into weakly decreasing order these dimensions form a parti-

Ž .tion of n, called the Jordan type J h of h. Throughout this paper we write
Ž . Ž .l for J h and u for the unipotent transformation h q 1 g GL V corre-



FLAG VARIETIES AND YOUNG TABLEAUX 401

sponding to h; when h is variable, l and u are assumed to vary corre-
spondingly.

j ŽOne can characterize l in terms of the powers h of h among which we
0 .include h s 1 , without referring to any particular decomposition into

Jordan blocks, as follows.

Ž c. t1.1. PROPOSITION. For all c G 0 one has dim ker h s Ý l , which0 F j- c j

Ž .is the number of squares in the first c columns of the Young diagram Y l .
Ž c. tSimilarly, dim im h s Ý l , which is the number of squares in thejG c j

Ž .remaining columns of Y l .

Proof. This is easily verified for individual Jordan blocks, from which
the general case follows.

For any h-stable subspace V X of V, h induces nilpotent endomorphisms
X X < Xof the spaces V and VrV , which will be denoted respectively by h andV

h X . Since a nilpotent endomorphism of a 1-dimensional space is neces-r V
Ž .sarily 0, a subspace l of dimension 1 a line is h-stable if and only if

Ž .l : ker h, and similarly a subspace H of codimension 1 a hyperplane is
h-stable if and only if H = im h.

X Ž < X .1.2. PROPOSITION. Let V be an h-stable subspace of V. Then J h : l,V
Ž .Xand J h : l.r V

Proof. The image of the subspace ker h j under the projection V ª
X j Ž < X . j j jq1VrV is ker h rker h , for all j G 0; since ker h : ker h , it followsV

Ž j. Ž Ž < X . j.that dim ker h y dim ker h increases weakly as j increases:V

j jq1j jq1X X< <dim ker h y dim ker h F dim ker h y dim ker h .Ž . Ž .Ž . Ž .Ž . Ž .V V

1Ž .

t Ž . Ž jq1. Ž j.The length l of column j of Y l is equal to dim ker h y dim ker hj
Ž . Ž < X. t tby Proposition 1.1, so from 1 one gets J h F l , and combining thisV j j

Ž < X . jfor all j yields J h : l. Similarly, the kernel of the projection im h ªV
Ž j. X Ž . j X j

Xim h rV s im h is equal to V l im h , so its dimensionr V
Ž j. Ž Ž . j. j

Xdim im h y dim im h decreases weakly as j increases, since im hr V
jq1 t Ž j. Ž jq1.= im h . Then using l s dim im h y dim im h , it follows analo-j

t Ž . t
Xgously to the argument above that l G J h for all j, whencej r V j

Ž .XJ h : l.r V

Ž < X . X Ž .XThe partition J h is called the type of V , and J h is the cotypeV r V
X Ž . Ž < X . j X jof V in V . Since the spaces ker h s V l ker h whose dimensionsV

determine the type of V X are not directly related to the spaces V X l im h j

Žthat were used to determine its cotype, it is not generally possible for a
.fixed value of l to determine the type from the cotype or vice versa.
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However, there is an exception when l is a ‘‘rectangular’’ partition, i.e.,
when all of its non-zero parts have a fixed size d: in that case one has
ker h j s im h dy j for 0 F j F d. This leads to the following fact.

Ž .1.3. PROPOSITION. If l s d, d, . . . , d with d occurring m times, and
Ž < X. Ž . Ž . Ž .XJ h s m , . . . , m , then J h s d y m , . . . , d y m .V 0 my1 r V my1 0

Proof. From the proof of Proposition 1.2, one has for 0 F j - d

t X Xjq1 jX<J h s dim V l ker h y dim V l ker hŽ . Ž . Ž .jV

s dim V X l im h dy jy1 y dim V X l im h dy jŽ . Ž .
t tt

X Xs l y J h s m y J h ,Ž . Ž .dy jy1 r V r Vdyjy1 dyjy1

XŽ < . Ž .Xfrom which the stated relation between J h and J h follows.V r V

We now specialize to the cases of h-stable lines and hyperplanes. As we
have seen above, h-stability of a line l means l : ker h, so the set of

Ž .h-stable lines is identified with the projective space P ker h , which we
Ž . Ž .shall denote by P V . Also, the cotype J h of l is determined by theh r l

Ž . Ž j. � 4weakly decreasing sequence of values dim l l im h g 0, 1 , for j G 0.
We define for j g N subspaces

W h s ker h l im h j 2Ž . Ž .j

of ker h, which form a weakly decreasing chain. We also define subsets

U h s P W h _P W h 3Ž . Ž . Ž . Ž .Ž . Ž .j j jq1

Ž . Ž .of the projective space P V ; the non-empty U h form a finite partitionh j

Ž . t Ž .of that space. We have dim W h s l by Proposition 1.1; therefore U hj j j

is non-empty if and only if the following equivalent statements hold:
lt ) lt ; there is a corner of l in column j; at least one part of l equalsj jq1

j q 1. For the case of h-stable hyperplanes we can apply these definitions
to hU , the nilpotent endomorphism of the dual vector space V U given by

U Ž . Ž Ž .. Uh f : ¨ ¬ f h ¨ for f g V and ¨ g V. We therefore define

U U U < jW h s W h s f g V f im h s 0 n f ker h s 0 . 4Ž . Ž . Ž . Ž .� 4Ž .j j

Ž U . Ž U .The set U h is contained in the set P V of 1-dimensional subspaces ofj

V U , which is in canonical bijection with the set of hyperplanes H of V by
� U < Ž . 4H ¬ f g V f H s 0 . We shall denote this set of hyperplanes by

U Ž . � U Ž . < 4P V , and its subset H g P V H = im h of h-stable hyperplanes by
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U Ž . U Ž . U Ž .P V . Then we define U h as the subset of P V corresponding toh j h

Ž U .U h :j

U U < j jq1U h s H g P V H = ker h n H W ker h . 5Ž . Ž . Ž .� 4cj

Ž . U Ž . Ž .The U h and U h respectively partition P V according to cotype andj j h
U Ž .P V according to type:h

Ž . Ž .1.4. PROPOSITION. If l g U h , then the Young diagram of J h isj r l
U Ž .obtained from that of l by remo¨ing its corner in column j. If H g U h ,j

Ž < .then the Young diagram of J h is obtained from that of l by remo¨ing itsH

corner in column j.

Ž .Proof. If l g U h , then by reasoning as in the proof of Proposition 1.2j
t Ž . t t Ž . t

X Xwe find that l y J h s 1, and l s J h for all c / j. Thej r V j c r V c
U Ž .argument for H g U h is entirely analogous.j

� 4 Ž .For any basis b , . . . , b of ker h with the property that each W h is0 k j

� t4spanned by b N 0 F i - l , one can find a decomposition into Jordani j
Ž < . ² : Žblocks V s B [ ??? [ B such that ker h s b for all i it suffices toB0 k ii

X jŽ X. ² : Ž .choose vectors ¨ with h ¨ s b , where b g U h , and set B si i i i j i
² kŽ X. :. Ž .h ¨ N 0 F k F j . For any given l g P V the basis can be choseni h

² :such that l s b for some i; we shall call a corresponding decompositioni
of V into Jordan blocks adapted to l. We shall similarly call a decomposi-

U Ž .tion of V into Jordan blocks adapted to H g P V if H contains allh

Ž < .these blocks but one; for that block B one has H l B s im h . We seeBi i i

Ž . Ž .that the centralizer Z of u in GL V acts transitively on each set U hu j
U Ž .and on each U h . The following characterizations of the index j suchj

Ž . Ž U Ž ..that l g U h respectively H g U h will be useful in what follows.j j

Ž . Ž .1.5. LEMMA. 1 If l g U h , then j is the minimal ¨alue for whichj
Ž . Ž .ker h rl = W h .j r l

Ž . U Ž .2 If H g U h , then j is the minimal ¨alue for which im h :j

Ž < . Ž < . jim h q ker h .H H

Ž . U Ž . j Ž < . Ž < . j3 H g U h if and only if im h q ker h s im h q ker h .H Hj

Ž . U Ž . Ž < . Ž . Ž < .4 If H g U h , then W h s W h for c / j, while W h isH Hj c c j

Ž .a hyperplane in W h .j

Proof. In each case let the initial condition be satisfied, and let V s
ŽB [ ??? [ B be a decomposition into Jordan blocks adapted to l respec-0 k

. Ž .tively to H . For 1 , let B be the block containing l; then Vrl (i
Ž .B [ ??? [ B rl [ ??? [ B , and the projection V ª Vrl is the identity0 i k

on all summands except B . This reduces to the case V s B ; theni i
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Ž . � 4 Ž . Ž . Ž .ker h rl s 0 and J h s j , whence the statement is obvious. For 2 ,r l
let B be the block not contained in H; then the intersection of im h withi

Ž < .any other block is contained in im h ; this again reduces us to the caseH
Ž < . Ž . Ž .V s B , where the statement follows from J h s j . Part 3 nowHi

c Ž .follows because ker h  H for c ) j. Part 4 also follows by considering
Ž < . Ž .the decomposition of V, or by observing that W h : W h andHc c

tŽ Ž ..dim W h s l , in conjunction with Proposition 1.4.c c

2. FLAGS

Ž .A complete flag f in V is a saturated chain 0 s f ; f ; ??? ; f s V0 1 n
of subspaces of V. We have dim f s i, and the individual spaces f arei i
called the parts of f. Let FF be the set of all such flags, called the flag

Ž wmanifold of V. It has the structure of a projective algebraic variety see 4,
x.8.1 , and the maps f ¬ f are morphisms onto the respective Grassmanni

varieties. Of particular interest are the morphisms giving the line and
Ž . U Ž .hyperplane parts: if n ) 0 we define a : FF ª P V and v : FF ª P V by

Ž . Ž . Ž . Ž . U Ž .a f s f , v f s f . The group GL V acts on FF, P V , and P V ,1 ny1
Ž .and clearly a and v are GL V -equivariant. We say that a flag f g FF

is h-stable if all its parts are, and let FF denote the subvariety of h-h

stable flags in FF, or equivalently the fixed point set of u acting on FF; ah

and v will denote the restrictions to FF of a and v, respectively. Weh h

Ž . Ž . U Ž .have im a s P V s D U h , and similarly im v s P V sh h jG 0 j h h
U Ž .D U h .jG 0 j

U Ž . y1Ž .For each h-stable hyperplane H g P V , the fiber v H of v ish h h

<isomorphic to the variety FF of h -stable flags in H. Indeed theHh < H
y y Ž .isomorphism is given by f ¬ f , where f s f ; ??? ; f s H is the0 ny1

flag obtained from f by omitting the last part f s V. Similarly, for eachn
Ž . y1Ž .h-stable line l g P V , the fiber a l is isomorphic to the variety FFh h hr l

of h -stable flags in Vrl; here the isomorphism will be written as f ¬ f x ,r l
x Ž .where f s f rl ; ??? ; f rl is the flag obtained from f by reducing1 n

modulo f s l all its parts except f . There will be no confusion if the1 0
same notations fy and f x are used when f is a flag in a vector space

Ž .other than V provided its dimension is non-zero ; this allows us in
particular to write for f g FF expressions such as fyy, f x x x , and fyx , ash

long as the total number of operations applied does not exceed n.
Moreover, the operations commute: fyx and f xy denote the same flag in
f rf . In general, one obtains in this manner from f g FF an h -stableny1 1 h f r fi j

flag in f rf , for some i G j, where h is the nilpotent endomorphism ofi j f r fi j

f rf induced by h.i j
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The sequences of types and of cotypes of the parts of f g FF define twoh

Ž .saturated decreasing chains in PP from l to 0 , that can be used to define
Ž . Ž .Young tableaux r f , q f g TT :h h l

< <ch r f s J h , J h , J h , . . . , 0 6Ž . Ž . Ž . Ž .Ž . Ž .Ž .f fh ny 1 ny2

ch q f s J h , J h , J h , . . . , 0 . 7Ž . Ž . Ž . Ž . Ž . Ž .Ž .h r f r f1 2

Ž .In other words, the subtableau of r f containing entries - i has shapeh

Ž < . Ž .J u , while the subtableau of q f containing entries - n y i hasf hi

Ž . U Ushape J u . If we define for each flag f g FF a dual flag f in V byr f i
U � U < Ž . 4 Ž . Ž U .Uf s f g V f f s 0 , then one readily verifies that q f s r fi nyi h h

Ž . Ž U .Uand r f s q f .h h

As was mentioned earlier, there is in general no direct relationship
between the type and cotype of the parts of f , and so there is no

Ž . Ž .one-to-one correspondence between r f and q f either. However, weh h

have again an exception if l is a rectangular partition. To describe the
relationship in this case, we introduce the involutive operation T ª T e on
TT for rectangular l: let the square t be the unique corner of l; thenl

whenever some square s F t has entry i in t, then the diametrically
e Žopposite square t y s has entry n s n y 1 y i in T this is essentially˜i

w x.the same as the operation P ¬ P of 9, Proposition 5.7 .

Ž . Ž .e2.1. PROPOSITION. If l is a rectangular partition, then q f s r f forh h

all f g FF .h

Ž . Ž n ny1 0. Ž . Ž n ny1Proof. Put ch r f s l , l , . . . , l and ch q f s m , m ,h h
0. i nyi. . . , m . Then each l determines m , as described in Proposition 1.3. or

Ž . iq1 i0 F i - n, the square with entry i in r f is l y l , which determinesh
ny i nyiy1 Ž . Ž .the square m y m containing n in q f ; therefore q f s˜i h h

eŽ .r f .h

We define for any Young tableau T of shape l

FF s f g FF N r f ; T 8Ž . Ž .� 4h , T h h

FF
U s f g FF N q f ; T . 9Ž . Ž .� 4h , T h h

u v Ž Ž . U Ž .If the square T lies in column j which implies that U h and U h arej j

. Ž . U Ž . Ž U . Ž .non-empty , then one has v FF : U h and a FF : U h . More-h, T j h , T j
U Ž . y1Ž . yover, for any H g U h the fiber FF l v H is isomorphic to FFj h , T h h < , TH

y Ž . U y1Ž .by f ¬ f , and for any l g U h the fiber FF l a l is isomorphic toj h , T h
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FF
U

y by f ¬ f x . It follows by induction that each of the sets FF andh , T h , Tr l

FF
U is non-empty and open in its closure. As T ranges over TT , the setsh, T l

FF partition FF into finitely many subsets, as do the sets FF
U .h, T h h , T

Ž . U2.2. PROPOSITION. 1 For each T g TT the sets FF and FF arel h , T h , T
irreducible.

defUŽ . Ž . Ž . Ž .2 dim FF s dim FF s n l sÝ il , independently of T gh, T h , T iG 0 i
TT .l

Ž . � < 43 The set of irreducible components of FF is equal to FF T g TTh h , T l
U� < 4and to FF T g TT .h , T l

< <Proof. We proceed by induction on n s l , and only prove the state-
U Žments for FF , as those for FF are entirely similar and follow byh, T h , T
.transition to the dual vector space . The case n s 0 is trivial, so assume

u v Ž . U Ž .n ) 0; let T g TT and let T be the square i, j . Since U h is irre-l j
ducible and an orbit for Z , it is already an orbit for the identityu

T Žcompound Z of Z in fact Z is always connected, but we do not wish tou u u
;y1. Ž . yinvoke that fact here . Using the isomorphism FF l v H ª FFh, T h h < , THU Ž . Tfor some H g U h , we may define a surjective morphism Z =j u

Ž y.yFF ª FF by z, f ¬ z ? f ; since the domain of this morphism ish < , T h , TH

irreducible by the induction hypothesis, so is its image, which establishes
Ž . Ž U Ž .. Ž U Ž ..1 . We have dim U h s dim W h y 1 s i, and so for any H gj j

U Ž . U Ž . Ž y.yU h we have dim FF s dim U h q dim FF s i q n sh T sj h , T j h < , TH
Ž . Ž . Ž . Ž . Ž .n l , proving 2 . Part 3 follows from 1 and 2 .

Ž .Remark. Part 3 gives two different natural parameterizations of the
irreducible components of FF by Young tableaux. The first one, based onh

Ž .the types of the parts of flags as it uses r , corresponds to the parameter-h

w x w xization used in 23 , but in 17, II.5.3 the other parameterization, based on
Ž .cotypes q , is effectively used. We choose to work primarily with theh

former parameterization, partly because it is somewhat simpler to use
restrictions than quotients, but mainly because this choice leads to a more
direct interpretation of the Robinson]Schensted algorithm. Note that our
choice does lead to a slightly illogical use of asterisks: FF has a fibrationh, T

U Ž . U Ž .over U h , while FF has one over U h .j h , T j

We close this section with an example, illustrating these parameteriza-
tions of the irreducible components of FF in the simplest non-trivial case,h

Ž .namely for the Jordan type l s 2, 1 . Then TT has two elements, namelyl

0 1 0 2XT s and T s ,
2 1
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Ž .and hence FF has two irreducible components, of dimension n l s 1. Toh

be specific, let us take

0 1 0
h s .0 0 0ž /0 0 0

² :Calling the standard basis vectors e , e , e we have ker h s e , e and0 1 2 0 2
² :im h s e , while h s 0 for j ) 1. There are two Z -orbits of h-stable0 j u

U Ž .hyperplanes, namely the set U h of all hyperplanes containing im h s0
² : ² : U Ž . �² :4e but not ker h s e , e , and the singleton U h s e , e . For0 0 2 1 0 2

U Ž . y1Ž .any H g U h the fiber v H consists of a single flag f , with f s0 h 1
² :H l ker h s e and of course f s H, so FF is isomorphic to the0 2 h , T

U Ž . ² : U Ž .affine line U h . On the other hand for H s e , e g U h we have0 0 2 1
<h s 0, whence an h-stable flag f with f s H can have an arbitraryH 2

Ž . y1Ž .element of P H as f , so in this case the fiber v H , which coincides1 h

with FF X , is a projective line. There is one element of FF X that lies in theh, T h , T
² : ² :closure of FF , namely the flag f with f s e and f s e , e .h, T 1 0 2 0 2

Therefore, the whole variety FF can be depicted as follows:h

XFFh , T

FFh , T

This illustration should be considered to lie in P = P , with the horizontal1 1
coordinate representing the choice of the hyperplane H s f , and the2
vertical coordinate representing the choice of the line f . By reasoning1
similar to that above, it can be seen that the fiber FF

U
X of the morphismh, T

a is the horizontal line including the point of crossing, and FF
U is theh h , T

Ž . Ž .remainder of the vertical line. So r f / q f for all flags f g FF ,h h h

except the flag represented by the crossing point of the lines, for which
X 0 2Ž . Ž .r f s q f s T s .h h 1

3. INTERPRETATION OF THE
¨SCHUTZENBERGER ALGORITHM

We shall now proceed to show that the two given parameterizations of
the irreducible components of FF are related by the involution S of TTh l

Ž .defined by the Schutzenberger evacuation algorithm. In fact we shall give¨
a more detailed description of the situation than this. We first recall the
following two kinds of configurations of four partitions that can occur
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w xwithin the doubly indexed family of partitions that was used in 9, 2.2 to
give a description of the Schutzenberger algorithm.¨

l mŽ .X3.1. DEFINITION. An arrangement of four partitions withm n

n $ m $ l and n $ m9 $ l is called
Ž . X Ž .5Ž .i a configuration of type S1 if m s m and m y n l y m ,
Ž . X Ž Xii a configuration of type S2 if m / m so that one has l s m j m

X.and n s m l m .

Ž .5Ž . X ŽNote that the condition m y n l y m implies m s m there are no
.other partitions between n and l , and that in the other case the two

X l mŽ .Xpartitions m, m are the only ones between n and l. It follows that if m n

is known to be of type S1 or S2, then either one of m or mX is uniquely
determined by the other three partitions. The relevance of these configu-
rations becomes clear when one considers for n $ m $ l the following
variety EE of partial flags, consisting of only a line and hyperplane part:h, m , n

U <EE s l , H g P V = P VŽ . Ž . Ž .� h hh , m , n

<J h s m n l : H n J h s n .Ž .Ž . 4H Hr l

3.2. LEMMA. Let n $ m $ l, and let mX be determined by the condition
l m XŽ . Ž .Xthat is of type S1 or S2. Then EE is irreducible, and J h s m form n h, m , n r l

Ž .l, H in a Z -stable dense open subset of EE .u h , m , n

Ž . Ž .Proof. Put l y m s i, j , m y n s r, c ; then EE consists of thoseh, m , n

Ž . U Ž . Ž < .pairs l, H with H g U h and l g U h , from which its irreducibilityHj c
l m XŽ . Ž .Xfollows. If j s c or i s r, then is of type S1, and J h s m ism n r l

l mŽ . Ž .Xforced by n $ J h $ l. If j / c and i / r, then is of type S2; if,m nr l

Ž < . Ž . Ž .moreover, c / j y 1, then U h s U h follows from Lemma 1.5 4 , soHc c
Ž . Ž . XJ h s l y r, c s m . In the final case that c s j y 1 and r ) i, we findr l

U Ž . Ž . Ž .for all H g U h , again using Lemma 1.5 4 , that U h sj c
Ž Ž .. Ž Ž .. Ž < . Ž Ž ..P W h _P W h ( P _P is dense and open in U h s P W h _Hc j r i c c

Ž Ž < .. Ž ..P W h ( P _P with P s B , so the subset of EE of pairsHj r iy1 y1 h , m , n

Ž . Ž . Ž .l, H for which l g U h is dense and open, and on this set J h s l yc r l
XŽ .r, c s m holds.

3.3. THEOREM. There is a dense open subset FF
X of FF , such that for allh h

X w i, j x Ž .f g FF the following holds: if for i q j F n one puts l s J h , thenh f r fny j i
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any configuration

lw i , j x lw i , jq1x

w iq1, j x w iq1, jq1xž /l l

is either of type S1 or of type S2.

Proof. It will suffice to find for each T g TT a dense open subset ofl

FF on which the stated condition holds. We use induction on n, withh, T
Ž w i, j x.n s 1 as the trivial starting case. Fix T g TT , and let the family ll iqjF n

Ž w0, 0x w0, 1x w0, nx.of partitions be defined by ch T s l , l , . . . , l , and by the
condition on configurations in the statement of the theorem; we shall show

Ž . w i, j xthat for appropriately chosen f g FF one has J h s l forh, T f r fny j i

Ž .i q j F n. Choose some H g v FF ; then by the induction hypothesish, T
applied to FF y, we have for f in a dense open subset of the fiberh < , TH

y1Ž . Ž . w i, j xFF l v H that all instances of J h s l with j ) 0 hold.h, T h f r fny j i

Ž . U Ž .Since v FF is equal to some Z -orbit U h , this property extends byh, T u c
the action of Z to a Z -stable dense open subset UU of FF . Byu u h , T

� Ž . 4construction UU is contained in f g FF N f , f g EE , which pro-h, T 1 ny1 h , m , n

Ž w1, 1x.jects onto EE with fibers that are all of dimension n l . It followsh, m , n

that UU meets the inverse image under this projection of the dense open
subset of EE described in Lemma 3.2. The intersection UU

X of UU withh, m , n

this inverse image is a Z -stable dense open subset of FF on which theu h , T
Ž . w1, 0x Ž X.additional property J h s l holds. Then a UU is a single Z -orbit,r f u1

X y1Ž . Ž X .and UU intersects each fiber a l for l g a UU densely; the image ofh

this intersection under f ¬ f x is a dense open subset of FF x . Theh , Tr l

proof can now be completed by applying the induction hypothesis to
xFF .h , Tr l

U3.4. COROLLARY. For all T g TT one has FF s FF .l h , T h , SŽT .

Proof. This follows immediately from the theorem, and the fact that
the family lw i, j x with the mentioned properties can be used to compute
Ž . Ž w x.S T cf. the proof of 9, Theorem 2.2.1 .

The proof given for this geometric interpretation uses a description of S
Žfrom which it obvious that S is an involution in fact one that was used to

.prove this fact combinatorially . However, even if we forget the proof, the
interpretation clearly implies that S is an involution, since f g FF

U ish, T

equivalent to f U g FF U , and f UU s f. In combination with Propositionh , T

Ž . e2.1, the corollary also implies that S T ; T for tableaux T of rectangu-
w xlar shape, as stated in 9, Corollary 5.7 ; in this case the geometric proof

Ž w xhas no purely combinatorial counterpart the proof given in 9 is based on
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the relationship of the Schutzenberger correspondence with the Robin-¨
.son]Schensted correspondence . There is on the other hand one combina-

torially obvious symmetry of S without any clear geometric meaning,
Žnamely the fact that it commutes with transposition a geometric interpre-

tation of this fact would require some operation that gives rise to transpo-
.sition of Jordan types . Nevertheless, this symmetry of S will be important

below, when we give geometric interpretations of the Robinson]Schensted
correspondence and its transpose.

4. INTERPRETATION OF JEU DE TAQUIN AND
LITTLEWOOD]RICHARDSON TABLEAUX

The deflation procedure used in the Schutzenberger algorithm is related¨
Ž .to the operation of jeu de taquin also known as glissement , which is

performed on skew tableaux. Jeu de taquin can be described completely in
w xterms of the deflation procedure 9, Sect. 5 , which allows us to deduce

from Theorem 3.3 an interpretation of jeu de taquin. That theorem does
not mention tableaux or their entries directly, however, but is stated in
terms of families of partitions, and for our interpretation, all that matters
about a skew tableau is the chain in PP associated to it. For convenience
we shall work directly with such chains, rather than with skew tableaux: we
define a skew chain of shape lrm to be a saturated decreasing chain in PP

from l to m. We denote the set of all skew chains of shape lrm by TT ;lr m

the set TT is in bijection with TT by P ¬ ch P.l lrB

We proceed to give a geometric interpretation to skew chains, in analogy
to the definition of FF for Young tableaux T. Let GGh be the variety ofh, T m
m-dimensional h-stable subspaces of V, and let FF Žm. be the set of h-stableh

partial flags in V with parts in dimensions m and higher, i.e., of chains
Ž . h Žm.f s f ; f ; ??? ; f s V with f g GG . For f g FF the part f ofm mq1 n i i h m

? @minimal dimension will be denoted by f , and we define the complete flag
Ž ? @ ? @.fs f r f ; ??? ; f r f g FF by reducing all parts of f modulom n hr ? f @

? @ Ž . Ž Ž . Ž < . Ž < ..f . We also define r f s J h , J h , . . . , J h g TT , wheref ? f @h l r mny 1

Ž < .m s J h , and put? f @

Žm. <FF s f g FF r f s K .Ž .� 4h , K h h

Ž .4.1. PROPOSITION. FF is an irreducible ¨ariety of dimension n l yh, K
Ž .n m , for e¨ery K g TT .lr m

Ž . Ž .Proof. The proof is entirely analogous to that of parts a and b of
Proposition 2.2, the only difference being that the induction starts at
< < < < < <l s m rather than at l s 0.
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For a Young tableau T g TT , let T denote its subtableau of entriesl - m
less than m; putting m s sh T , let T g TT denote the subchain- m G m lr m

Ž y .sh T , sh T , . . . , m of ch T corresponding to the remaining entries. If we
denote by T x ) i the result of applying the deflation procedure i times to

X Ž XT , then the relation K 2 K of glissement K is obtainable from K by
. w xinward jeu de taquin slides is defined in 9, Sect. 5 by restricting T and

T x ) i to skew subtableaux with the same set of entries. The corresponding
definition for skew chains is that T 2 T x ) i for i F m. We obtain fromG m G m
Theorem 3.3

4.2. COROLLARY. Let K g TT be a skew chain, and let P g TT be alr m n

Young tableau such that K 2 ch P. Then there is a dense open subset FF
X ofh, K

XŽ .FF such that r f s P for all f g FF .h, K hr h , K? f @

Proof. Since K 2 ch P, there exists a T g TT with K s T andl G m
x ) m ŽP ; T . Let p denote the natural projection FF ª FF which ish, T h , K

. X Ž X. Xclearly surjective , and take FF s p FF l FF , where FF is as in Theo-h, K h , T h h

Ž .rem 3.3; the conclusion of that theorem immediately implies r f s Phr ? f @Xfor f g FF .h, K

In this geometric interpretation, confluence of jeu de taquin is obvious:
P is uniquely determined by K. We now partition GGh according to the typem
and cotype of its elements: for m g PP , n g PP putm nym

h h <GG s X g GG N J h s m n J h s n ;Ž .Ž .� 4Xm , n m r X

furthermore, denote by TT 2 n the set of K g TT such that K 2 ch P forlr m lr m

some P g TT .n

Žm. h ? @4.3. THEOREM. Denote by p : FF ª GG the morphism gï en by f ¬ f .h m
Let m g PP and n g PP .m nym

Ž . 2 n Ž X . X1 If K g TT , then the image p FF of the set FF of Corollarylr m h , K h , K
4.2 is dense in an irreducible component of GGh of dimensionm, n

defŽ . Ž . Ž . Ž .n l; m, n s n l y n m y n n . Moreo¨er, any such component is so ob-
h 2 nŽ .tained as p FF l GG for at least one K g TT , and there are noh , K m , n lr m

components of higher dimension.
Ž . h2 The number of irreducible components of GG of dimensionm, n

Ž . ln l; m, n is equal to the Littlewood]Richardson coefficient c , andm, n

they can be explicitly parameterized by the Littlewood]Richardson tableaux of
shape lrm and weight n .

2 n hŽ . Ž .3 For K, L g TT , the irreducible components p FF l GG andlr m n , K m , n
n hŽ .p FF l GG of GG are equal if and only if K and L are dual equï alentn , L m , n m , n

w xin the sense of 2 .
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Limiting itself to what can be deduced from Corollary 4.2, the theorem
avoids any statement about possible irreducible components of GGh ofm, n

Ž .dimension less than n l; m, n . However, we shall show below that such
components do not exist, and so an accordingly simplified and strength-
ened form of the theorem does in fact hold.

Ž . y1Ž h .Proof. 1 It is clear that p GG : D FF , whose compo-m, n K g TT h , Klr m

Ž . Ž . y1Ž . hnents have dimension n l y n m , and the fiber p X at any X g GGm, n

Ž .is isomorphic to FF , whose components have dimension n n . Thereforehr X
any irreducible component C of GGh can have dimension at mostm, n

Ž . y1Ž .n l; m, n , and when it has this dimension, p C is dense in some union
Ž X . hof sets FF with K g TT . By Corollary 4.2 one has p FF : GGh, K lr m h , K m , n

whenever K g TT 2 n , from which the claims follow.lr m

Ž .2 Corollary 4.2 also implies that if K 2 ch P, then FF meets anyh, K
y1Ž . Ž X .fiber p X with X g p FF in the irreducible component of that fiberh, K

that corresponds to FF ; hence, fixing an arbitrary P g TT , the irre-h , P nr X
h Ž .ducible components of GG of dimension n l; m, n correspond bijectivelym, n

to the skew chains K g TT 2 n with K 2 ch P. The number of such K islr m

w Ž .x lknown to be independent of the choice of P 15, 3.7 and equal to cm, n

Žw Ž .x w x.15, 4.7 , see also 10, Theorem 5.2.5 . In fact there is a specific P g TTn

for which the Littlewood]Richardson tableaux T of shape lrm and
weight n correspond directly to the skew chains K g TT 2 n with K 2 ch P.lr m

To associate to a semistandard skew tableau T a skew chain K, one uses
the well-known process of standardization: to form the chain K of parti-
tions starting from l, the squares of T are removed by decreasing entries,
and among squares with equal entries from right to left. Jeu de taquin is
defined for semistandard tableaux in such a way that it commutes with this
standardization, and it preserves the property of being a
Littlewood]Richardson tableau. The indicated special tableau P g TT isn

such that ch P is the standardization of the tableau T of shape n in whichn

Žeach row i is filled with entries i T is the unique Littlewood]Richardsonn

.tableau of shape n , and it has weight n . Then K g TT is the standard-lr m

ization of a Littelwood]Richardson tableau T of weight n if and only if
K 2 ch P.

Ž . 2 n3 Define for K, L g TT the equivalence relation K ' L to meanlr m
h hŽ . Ž .p FF l GG s p FF l GG . We have established above that for anyh , K m , n h , L m , n

� 2 n < 4P g TT the jeu de taquin equivalence class K g TT K 2 ch P is a set ofn l r m

representatives for the classes for ' . As the members of such a jeu de
Žtaquin equivalence class are mutually dual inequivalent this is the easy

w x.part of 2, Theorem 2.13 , it will suffice to prove that K ' L implies the
dual equivalence of K and L. We shall establish this by finding a sequence
of jeu de taquin slides that transforms K and L respectively into K X, LX g
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Ž .TT , preserving equality of shapes at each step; being chains of Youngn rB
X X wtableaux of the same shape, K and L are dual equivalent 2, Corollary

x2.5 , which implies dual equivalence of K and L. Since K ' L, it is
X X X ? @ ? X @possible to choose partial flags f g FF and f g FF with f s f ; byh, K h , L

extending f and f X identically by suitably chosen parts in dimensions less
ˆ X̂ X ˆ X̂Ž . Ž .than m, one obtains flags f , f g FF such that T s r f and U s r fh h h

satisfy T s K, U s L, and T s U . Then for i F m the shapesG m G m - m - m
x ) i x ) i Ž . Ž .of the skew chains T and U are both equal to J h rJ hˆ ˆG m G m r f ? f @ r fi i

ˆ X̂Ž .since f s f , which gives the required sequence of slides transforming Ki i
X Xx ) m x ) mand L respectively into K s ch T and L s ch U .

The detailed statement of the theorem appears to be new. However, the
relation between GGh and Littlewood]Richardson coefficients was alreadym, n

w xindicated in 18, Theorem 4.4 . The setting there is in fact more general,
with a semi-simple linear algebraic group G replacing GL ; correspond-n

h X Ž .ingly, GG is replaced by a variety XX P of parabolic subgroups, andm, n A, B
Littlewood]Richardson coefficients by decomposition multiplicities for
representations induced from the Weyl group W X of a Levi factor of P to

Žthe Weyl group W of G. Our theorem corresponds only to maximal
parabolic P but can be extended easily so as to correspond to arbitrary

. hparabolic subgroups. The number of irreducible components of GG ofm, n

Ž .dimension n l; m, n appears in a somewhat disguised form, as a decom-
position multiplicity n for a permutation action of a groupA, B, f , c

Ž . Ž . X Ž .C A = C B on the set of irreducible components of XX P of thatG G A, B
Ž . Ž .dimension; for GL , the group C A = C B is always trivial, andn G G

Ž .n reduces to the number of components acted trivially upon.A, B, f , c

Another, rather weaker connection between the Littlewood]Richardson
w x Ž .rule and the geometry of FF was indicated in 21 . Its main theorem 4.2h

Ž .corresponds to our Corollary 4.2, but it is stated and proved in a
somewhat roundabout fashion in terms of permutations, whose link to
geometry is formed by Steinberg’s interpretation of the Robinson]Schen-

Ž .sted correspondence which will be discussed below . In fact, that theorem
itself involves no geometry at all, and it can be proved in a purely
combinatorial manner. Since only a fixed maximal parabolic subgroup P is
considered, no connection with the geometry of GGh is indicated; them, n

Littlewood]Richardson coefficients, which arise in relation to jeu de
taquin in the same way as above, are only given their traditional represen-
tation theoretic interpretation.

As we have seen, dual equivalence classes in TT 2 n are in bijection withlr m

Littlewood]Richardson tableaux of shape lrm and weight n . Once the
� 2 n <latter have all been determined, one can construct the set K g TTlr m

4K 2 ch P effectively, not just for the special tableau P indicated in the
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proof above, but for any given P g TT . Such a construction is given in then

w xproof of 10, Theorem 5.2.5 in terms of the Robinson]Schensted corre-
spondence for ‘‘pictures’’; we shall formulate it here without using pic-

Ž .tures. One associates to any skew chain K g TT a permutation w K bylr m

concatenating the rows of the skew tableau corresponding to K, taking
Ž .them in order from bottom to top. Call the two Young tableaux P, Q s

Ž Ž ..RS w K the P-symbol and Q-symbol of K ; then the P-symbol of K
Ž .characterizes its jeu de taquin equivalence class indeed K 2 ch P , and

the Q-symbol its dual equivalence class. Whenever cl ) 0, all tableaux inm, n

TT occur as the P-symbol of some K g TT 2 n , but not necessarily as an lr m

Q-symbol. The set of tableaux that do so occur is precisely the set
Ž .Q lrm, n of Q-symbols of Littlewood]Richardson tableaux of shape lrm

Žand weight n where the Q-symbol of a semi-standard skew tableau is
defined either as the Q-symbol of its standardization, or directly by
concatenating its rows and applying the version of the Schensted algorithm
that allows repeated entries; either way the Q-symbol is a standard

.tableau . One then has

< 2 n y1 <w K K g TT n K 2 ch P s RS P , Q Q g Q lrm , n ,� 4Ž . Ž . Ž .� 4lr m

from which the desired set of skew chains K is readily reconstructed.
Now as promised we shall rule out the possibility that GGh could havem, n

Ž .irreducible components of dimension less than n l; m, n , which implies in
particular that GGh s B whenever cl s 0. This requires an algebraicm, n m , n

construction that associates a Littlewood]Richardson tableau to any indi-
vidual element X g GGh . We essentially use the construction described inm, n

w x11, II 3 , but since our context is dual to the one considered there, we
shall present an adapted version of the construction and proof.

4.4. PROPOSITION. For any l, m, n g PP, the irreducible components of
GGh are precisely those described in Theorem 4.3, i.e., GGh has no irreduciblem, n m , n

Ž .components of dimension less than n l; m, n .

Proof. We shall construct for any X g GGh a tableau K g TT 2 n withm, n lr m
hŽ . Ž .X g p FF ; then X lies in the component p FF l GG , and theh, K h , K m , n

h yiŽ .proposition follows. Fix X g GG , and for i g N put X s h X andm, n i
i Ž < . Ž 0 n 0 .m s J h in particular m s m and m s l . By filling each skewX i

Ž iq1. Ž i.diagram Y m _Y m with entries i we obtain the transpose of a
t t t Žtableau T of shape l rm and weight n by Proposition 1.2, since

Ž . . ŽJ h s n ; we claim that T is a Littlewood]Richardson tableau i.e.,r X
.tT 2 T . Assuming this for the moment, the transposes K g TT andn lr m

ŽtP g TT of the standardizations of T and T satisfy K 2 P jeu de taquinn rB n

. 2 n Ž .commutes with transposition , so K g TT . To show that X g p FF , itlr m h , K

suffices to extend the sequence of subspaces X ; X ; ??? ; X by0 1 n 0
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interpolation to some f g FF . Now h acts as 0 on each of the quotienth, K
spaces X rX , so any choice of complete flags in those spaces leads to aiq1 i
f g FF Žm., which has moreover the property that all partitions mi occur inh

Ž .the chain r f ; we only need to show that it is possible to obtainh

Ž .r f s K. In fact, among the irreducible set of choices for f , a denseh

Ž .subset has r f s K ; this follows from the observation that for anyh
X � U Ž . < X4subspace V = im h, the projective space S s H g P V H = V meetsh

U Ž . Ž . Ž Ž < X..U h whenever the vertical strip Y l _Y J h meets column j, andVj

then of course the intersection is dense in S for the minimal such j.
It remains to show that T is a Littlewood]Richardson tableau. That T is

Ž iq1. Ž i.a semi-standard tableau means that each Y m _Y m is a vertical
Ž iq1. t Ž i. t Ž iq1. tstrip, or equivalently, m G m G m for i, c g N; this fol-c c cq1

Ž < . Ž < .lows from the easily verified inclusions W h = W h =X Xc ciq 1 i

Ž < .W h . The remaining conditions for T to be a Littlewood]Richard-Xcq1 iq1

son tableau can be formulated in several equivalent ways, but the following
Ž .will be practical here, in view of Proposition 1.1: denoting by T i, c the

Ž .number of entries i in the first c rows of T , one has T i q 1, c q 1 F
Ž . Ž Ž . . Ž .T i, c for i, c g N this implies T i, c s 0 when i G c . Now T i, c is the

difference between the number of squares in the first c columns of
Ž iq1. Ž i. c Ž < .c cY m and of Y m ; putting X s ker h s X l ker h , we there-Xi ii

Ž . c cfore have by Proposition 1.1 that T i, c s dim X y dim X siq1 i
Ž c c. y1Ž c. cq1dim X rX . Now for all i, c one has h X s X , whence hiq1 i i iq1

induces an injective map X cq1rX cq1 ª X c rX c, giving the requirediq2 iq1 iq1 i
Ž . Ž .inequality T i q 1, c q 1 F T i, c .

5. RELATIVE POSITIONS OF FLAGS

Besides the use mentioned above of the Robinson]Schensted algorithm
as a computational aid in dealing with classes of jeu de taquin equivalence
and dual equivalence, there is also a direct geometric interpretation, due
to Steinberg, of the correspondence defined by it. To formulate it, we need
to attach a geometric meaning to permutations; it will be based on the fact
that permutations of n parameterize the orbits for the diagonal action of
GL on FF = FF. This parameterization can be defined by associating ton

Ž X.each pair f , f of flags a permutation called the relatï e position of f and
X Ž X.f that will characterize the GL -orbit of f , f . By definition s g S isn n

the relative position of f and f X if there exists a basis e , . . . , e of V0 ny1
² : X ² :such that f s e , . . . , e and f s e , . . . , e for all i F n. Thei 0 iy1 i s s0 iy1

fact that there always exists a unique such s is the essence of Bruhat’s
lemma for GL , but it is useful to give here an explicit demonstration ofn
this fact. We shall use the auxiliary concept of a growth matrix.
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5.1. DEFINITION. A growth matrix of order n is a matrix A s
Ž .A with entries in N satisfyingi, j 0 F i, jF n

Ž .i A s A s 0 and A s A s i for 0 F i F n.i, 0 0, i i, n n, i

Ž . � 4 � 4ii A y A g 0, 1 and A y A g 0, 1 for 0 F i, j - n.iq1, j i, j i, jq1 i, j

Ž . Žiii A s A « A s A equivalently, A siq1, jq1 i, jq1 iq1, j i, j iq1, jq1

.A « A s A for 0 F i, j - n.iq1, j i, jq1 i, j

Ž .A growth matrix A s A corresponds bijectively to a permu-i, j 0 F i, jF n
Ž . Žtation s A g S , whose permutation matrix P given by P s dn i, j i, s Ž A. j

.for 0 F i, j - n is related to A by the equivalent relations

P s A y A y A q A for 0 F i , j - n ,i , j iq1, jq1 iq1, j i , jq1 i , j

A s P X X for 0 F i , j F n.Ý Ýi , j i , j
X X0Fi -i 0Fj -j

Ž X. Ž .Define p f , f s s A , where A is the growth matrix with A si, j

Ž X.dim f l f . From the definition it follows that if s is the relative positioni j
X Ž X.of f and f , then p f , f s s ; in particular s is unique. Conversely, for

Ž X.s s p f , f , a basis e , . . . , e witnessing the fact that s is the relative0 ny1
X y1 Žposition of f and f can be constructed: for each i put j s s so thati

.P s 1 and choose for e any vector in the complement of the subspacei, j i
X X X Žf l f within f l f by the construction of s this subspace is ai j iq1 jq1

X X .hyperplane, and equal to both f l f and f l f . As an example, ifiq1 j i jq1
X Ž . Ž X .f s f , then A s min i, j , whence p f , f is the identity permutation;i, j

at the other extreme, when f and f X are in general position one has
Ž . Ž X.A s max 0, i q j y n , whence p f , f s n, the order reversing permu-˜i, j

tation.

Remark. Besides the mentioned growth matrix A, growth matrices B,
Ž X . Ž Ž X ..C, and D can also be associated to f , f , with B s dim f r f l f ,i, j i i nyj

Ž X Ž X.. Ž Ž X ..C s dim f r f l f , and D s dim Vr f q f . Putting s si, j j nyi j i, j nyi nyj

Ž . Ž X. Ž . Ž .s A s p f , f , it can easily be verified that s B s s n, s C s ns ,˜ ˜
Ž . Ž Ž X .. Ž U XU .and s D s ns n. Since dim Vr f q f s dim f l f , the last˜ ˜ ny i nyj i j

case implies that the relative position of the dual flags is obtained by
Ž U XU . Ž X. Ž X .conjugation by n: p f , f s np f , f n. It is also obvious that p f , f˜ ˜ ˜

Ž X.y1s p f , f .

Remark. The Bruhat order F on S can be defined in terms of then
Ž . Ž X.associated growth matrices: if s s s A and s 9 s s A , then one has

s F s X if and only if A G AX for all i, j. It follows that for any s g S ,i, j i, j n

�Ž X. Ž X. 4 �Ž X. Ž X. 4the closure of f , f N p f , f s s in FF = FF is f , f N p f , f F s .
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6. INTERPRETATION OF THE
ROBINSON]SCHENSTED ALGORITHM

In this section we shall demonstrate the result, due to Steinberg, that for
a pair of flags generically chosen in irreducible components of FF parame-h

terized by a pair of standard Young tableaux, their relative position is
related to those tableaux by the Robinson]Schensted correspondence.
Like the interpretation of the Schutzenberger correspondence, this shall¨
be deduced from a more detailed statement that gives an interpretation of
all the partitions in the doubly indexed family describing the algorithm; in

w xthe current case that family is the one of 9, 3.2 . We recall the basic
configurations that can occur.

n mŽ .X6.1. DEFINITION. An arrangement of four partitions is calledm l

Ž . Xi a configuration of type RS1 if n s m s m $ l and m s l y 1,0 0

Ž . Xii a configuration of type RS2 if n $ m s m $ l, with m siq1
l y 1 and n s m y 1 for some i G 0,iq1 i i

Ž .iii a configuration of type RS3 if n $ m $ l, n $ m9 $ l, and
m / mX.

Ž . X Xiv a configuration of type RS0 if n s m U m s l or n s m U
m s l.

Ž w i, j x.6.2. DEFINITION. A family of partitions l , where i and j each
range over an interval of Z, is said to be of type RS if any configuration

lw i , j x lw i , jq1x

w iq1, j x w iq1, jq1xž /l l

is of one of the types RS0]RS3.

w xFamilies of type RS were used in the proof of 9, Theorem 3.2.1 to
Ž . Ž .relate a permutation s and the pair P, Q s RS s of tableaux com-

Ž .puted from it by the Robinson]Schensted algorithm. The pair P, Q
describes the partitions at the boundary of the family, while s describes
the places where a configuration of type RS1 occurs; specifying either of
these suffices to determine the entire family. More precisely, to a family
Ž w i, j x. w n, nxl of type RS with l s l, we associate tableaux P, Q g TT0 F i, jF n l

Ž w n, nx w ny1, nx w0, nx. Ž w n, nx w n, ny1xsuch that ch P s l , l , . . . , l and ch Q s l , l ,
w n, 0x. Ž .. . . , l , and a permutation s s s A where A is the growth matrix

< w i, j x <with A s l , which means that i s s if and only ifi, j j

lw i , j x lw i , jq1x

w iq1, j x w iq1, jq1xž /l l



MARC A. A. VAN LEEUWEN418

Žis of type RS1. In its relation to P, Q, and s , our family has its indices
w xinterchanged with respect to 9 ; it remains of type RS, and it still

Ž . Ž . .establishes the relation P, Q s RS s .

Ž . Ž .6.3. THEOREM. Let P, Q g TT , and s g S with P, Q s RS s . Forl n
Ž X. Ž < X .all f , f in a dense open subset of FF = FF , the family J h f l fh , P h , Q 0 F i, jF ni j

Ž X.is of type RS, and in particular p f , f s s .

6.4. LEMMA. Let m, mX $ l, and let n be determined by the condition that
n m UŽ . Ž . Ž < .X is of one of the types RS1]RS3. For any H g P V with J h sHm l 0 h 0
X � U Ž . < Ž < . 4m , there is a dense open subset of H g P V J h s m on whichHh

Ž < .J h s n holds.H l H 0

Proof. If m / mX the configuration is of type RS3, and it follows from
Ž < . XProposition 1.2 that one always has J h s n s m l m . AssumeH l H 0

X Ž .now that m s m , and let l y m s i, j , so that H ranges over the set
U Ž .U h , which has dimension i. If i s 0 the configuration is of type RS1j

U Ž . � 4and U h s H , so that for the unique choice H s H one hasj 0 0
Ž < . Ž < .J h s J h s m s n . Finally, if i ) 0, the configuration is of typeH l H H0

RS2. We claim that intersection with H defines a surjective morphism0
XU U� 4 < Ž .XU h _ H ª U h , where m y n s i y 1, j : the lemma thenŽ . Ž .Hj 0 j 0

U Ž .follows by taking for the dense open subset of U h the intersection ofj
U Ž . U Ž < .XU h with the inverse image of U h . To prove the claim, observeHj j 0

U Ž . U Ž < .that restriction to H defines a linear map W h ª W h sH0 j j 0
U Ž < . Ž .XW h , the surjectivity of which follows from Lemma 1.5 3 , or from aHj 0

dimension consideration.

UWe note that in the final case each of the fibers of the map U h _Ž .j
U U� 4 < Ž .XH ª U h meets U h , whence the restriction of that map toŽ .H0 j j0

U Ž . � 4U h _ H is still surjective. This means that in this case any partitionj 0

obtained from m by removing a corner in some column c ) jX can arise as
Ž < . U Ž .J h for some non-generic H g U h ; of course, by taking H s HH l H j 00

Ž < .one can obtain J h s m as well.H l H 0

Ž .The lemma can also be formulated as follows: with l y m s i, j and
X Ž X X. U Ž .m y n s i , j , one has for H in a dense subset of U h that H l H gj 0
U Ž < .XU h . It is not true in general, however, that as H traverses this subsetHj 0

U Ž . U Ž < .Xof U h , the values H l H traverse a dense subset of U h . TheHj 0 j 0

<reason for this is that within H equipped with h the subspace im h isH0 0

Ž .in no way special it is not fixed under automorphisms , yet H l H always0
Ž .contains it because both H and H do so . Although in some cases it can0

U Ž < .Xbe shown that all hyperplanes in U h contain im h, there are alsoHj 0

cases where this is not so. This circumstance makes the proof of Theorem



FLAG VARIETIES AND YOUNG TABLEAUX 419

6.3 more difficult than that of Theorem 3.3. There are no difficulties,
however, in extending the lemma as follows.

6.5. LEMMA. Fix an arbitrary flag f X g FF and P g TT ; for all f in a denseh l

Ž < X .open subset of FF , the subfamily of J h determined by j gf l fh , P 0 F i, jF ni j

� 4n y 1, n is of type RS.

Clearly only the hyperplane part H s f X of f X is relevant here. Theny1
<sequence of subspaces f l H forms a complete h -stable flag in H,Hi

Ž .except that one part is repeated. Denoting this flag without the repetition
by f l H, the lemma states that for generic f g FF one has f l H gh, P
FF X and f l H s f l H, where PX and i are found by applyingh < , P i iq1H

Ž .Schensted extraction reverse insertion to P, starting at the square
Ž < . Ž .l y J h recall that the entries of P start at 0 .H

Ž n 0. ŽProof. We apply induction on n. Put l , . . . , l s ch P so that
i Ž < .. i Ž < . X nl s J h , and m s J h . Applying Lemma 6.4 with m s m , m sf f l Hi i
ny1 Ž .l , and H s H, we get for f in a dense open subset UU of v FF0 ny1 h , P

that

mny1 lny1

n nž /m l

is of one of the types RS1]RS3. If it is of type RS1, then f s H for allny1
f g FF , so that mi s li for i - n, and the remaining configurationsh, P

mi li

iq1 iq1ž /m l

Ž .0 F i - n y 1 are of type RS0. Otherwise we fix any K g UU and con-
y1Ž .sider the fiber v K ; the remaining configurations are then taken care

<of by induction applied to h and K l H in place of h and H, respec-K

tively.

This lemma does not suffice as an induction step for the proof of
Theorem 6.3. The induction hypothesis will describe the generic relative
position of the pair formed by a flag in FF X and f Xy, but for reasonsh < , PH

indicated above, the set of flags f l H is not generally dense in FF X ,h < , PH

and it is conceivable that the generic relative position of f l H and f Xy is
Ž .different smaller in the Bruhat order . To dispel this possibility, we shall

ˆXshow that it is possible to write generic flags f g FF as f l H forh < , PH

ˆsome f g FF , where h is a nilpotent transformation of V other than h,ˆh, Pˆ
Ž . < <but with J h s l and h s h . To that end, we shall now consider theˆ ˆ H H

reverse process of restricting a nilpotent transformation to a hyperplane.
Let 0 F i F n and define the following vector bundle over FF :0 h , T

FF s f , ¨ g FF = V N ¨ g f .Ž .� 4h , T , i h , T i0 0
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Clearly FF is stable under the diagonal Z -action on FF = V. For anyh, T , i u h , T0

Ž .f , ¨ g FF we define in the n q 1-dimensional space V = k a nilpo-h, T , i0

ˆ Ž .tent transformation h and a flag f , as follows. Let e s 0 , 1 g V = k;ˆ V
ˆ< Ž .then h is determined by h s h and h e s ¨ , and f is defined byˆ ˆ ˆV

f if 0 F i F i ,i 0
f̂ si ½ ² :f [ e if i F i y 1 F n.iy1 0

ˆIt follows from ¨ g f that f is h-stable.ˆi0

Ž .6.6. LEMMA. Let T g TT and 0 F i F n. For all f , ¨ in a dense openl 0
ˆsubset of FF , the associated h and f satisfy the following property: withˆh, T , i0

i Ž < . i Ž < .n s J h and l s J h for 0 F i F n q 1, any configuration of theˆ ˆˆ f f l Vi i

form

li n i

iq1 iq1ž /l n

is of type RS0 if i - i , of type RS1 if i s i , and of type RS2 or RS3 if0 0
i ) i .0

nq1 i0q1 i0 0 ˆŽ .Proof. One has ch T s l , . . . , l s l , . . . , l , since f l V isi
f if i F i , and f otherwise. Then the unique sequence of partitions n i

i 0 iy1
for which the given conditions on configurations hold is readily con-

i Ž < .structed; we shall take this as the definition of n , and show that J h sˆˆ f i
i Ž .n holds for 0 F i F n q 1, provided f , ¨ is chosen in an appropriate set.

The statement for i - i is immediate. For the remaining statements we0
Ž . nq1shall apply induction on n fixing i , starting at n s i . Put n s n and0 0

Ž . Ž . Ž .let n y l s r, c ; then by Lemma 1.5 2 , the statement J h s n meansˆ
that c is the minimal value with ¨ g im h q ker h c. For n s i one has0
FF s FF = V, r s 0, and c s n t , which is the least value for whichh, T , i h , T 00 c Ž c .imh q ker h s V in fact ker h s V , so the subset of FF of pairsh, T , i0
Ž . Ž .f , ¨ for which J h s n is dense and open.ˆ

As preparation for the induction step, note that the statement of the
lemma implies that the smallest subspace of V, necessarily Z -stable,u

Ž . Ž .containing im h and all values ¨ for generic and hence for all f , ¨ g
FF , equals im h q ker h c. Now assume n ) i , and choose an arbitraryh, T , i 00

Ž . U Ž . Ž . Ž .hyperplane H g v FF . Defining v: FF ª P V by v f , ¨ s v f ,ˆ ˆh, T h , T , i0

it will suffice to show that the property in the lemma holds in a dense open
y1Ž . ysubset of v H ( FF , as one can then use the action of Z toˆ h < , T , i uH 0

extend this subset to one of FF . The induction hypothesis gives a denseh, T , i0
y1Ž . Ž < . iopen subset UU of v H on which J h s n for 0 F i F n; it remainsˆˆ ˆ f i

Ž . nto show that generically one also has J h s n . If n / l then this holdsˆ
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on all of UU by Proposition 1.2. Otherwise

ln n nž /l n

n n n Ž X.is of type RS2; let n y l s l y l s r y 1, c . By the induction hy-
� Ž . 4 Ž < .pothesis, the smallest subspace of H containing ¨ N f , ¨ g UU is im h H

Ž < .cX U Ž . cX

Xq ker h . Moreover, since H g U V this is equal to im h q ker hH c
Ž . Xby Lemma 1.5 3 , and since c s l is the largest part F c of l, it is alsor

c Ž .equal to im h q ker h . If c s 0 one has J h s n on all of UU; otherwiseˆ
�Ž . < cy14this holds on the open subset f , ¨ g UU ¨ f im h q ker h , which is

Ž Ž cy1. Žnon-empty since l s c implies dim im h q ker h - dim im h qr
c..ker h and therefore dense.

We have now collected all the ingredients necessary to proceed with an
inductive proof of Theorem 6.3.

Proof of Theorem 6.3. For n - 2 the theorem is obvious, so assume
Ž .n G 2; we shall prove that for any choice of H g v FF the familyh, Q

Ž < X . Ž X .J h is of type RS for f , f in a dense open subset off l f 0 F i, jF ni j

Ž . Ž y1Ž . . Xw H s FF = v H l FF . Let P and i be the result of applyingh, P h , Q 0
Schensted extraction to P starting at square lw n, nx y lw n, ny1x, so that
Ž X . Ž w n, ny1x w i0q1 , ny1x w i0 , ny1x w0, ny1x.ch P s l , . . . , l s l , . . . , l . Lemma 6.5 pro-

X Ž .vides a dense open subset UU of w H on which the configurations

lw Iy1, ny1x lw iy1, nx

w i , ny1x w i , nxž /l l

are all of the required types, which implies f l H g FF X . On the otherh < , PH

hand the induction hypothesis provides a dense open subset UU
Y of FF X

h < , PH

= FF y such that remaining configurationsh < , QH

lw iy1, jy1x lw iy1, j x

w i , jy1x w i , j xž /l l

Ž Xy. Y Žare of the required types whenever f l H, f g UU . Here the family of
Ž X y.partitions obtained for P , Q has been enlarged by duplicating each

w i0 , j x .l , to account for the fact that f l H s f l H. The set UU si i q10 0
�Ž X. X Ž Xy. Y4 Ž .f , f g UU N f l H, f g UU is open in w H , and it remains to show
that UU / B.

Y <The set UU and the dense open set of Lemma 6.6, applied with h forH

h and PX for T , both project to a dense open subset of FF X , and theh < , PH

intersection of these images is non-empty. For a choice of inverse images
of any point in the intersection, one finds a nilpotent transformation h ofˆ
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ˆ XŽ . < Ž .H = k with J h s l and h s h , and f , f g FF = FF withˆ ˆ H H h , P h , Qˆ ˆ
Ž < X . w i, j xJ h s l for all i, j. There exists a linear isomorphism g : H = kˆˆ f l fi j

ª V for which g (h s h( g, and by the transitive action of Z onˆ u
ˆ XŽ . Ž . Ž .v FF one can achieve that, moreover, g H s H; then g f , f g UU,h, Q

completing the proof.

Remark. Note that in the final argument we do not assume that g fixes
H pointwise; indeed, this may not be possible, since it would imply

Ž . Ž .im h s g im h s im h the latter identity follows from g (h s h( g , butˆ ˆ ˆ
the whole point of the construction of h was to avoid fixing im h to anyˆ ˆ
particular subspace of H.

7. INTERPRETATION OF THE TRANSPOSED
ROBINSON]SCHENSTED ALGORITHM

In this section we deduce, in close analogy to the pervious section, an
interpretation of the version of the Robinson]Schensted algorithm that is
defined using column insertion instead of row insertion and hence yields
transposes of the tableaux P and Q. We start with a statement that is dual

Ž .to Lemma 1.5 4 .

Ž . Ž .U U7.1. LEMMA. Let l g U h , and let i: Vrl ª V be the map inducedc
Ž U Ž ..by the canonical projection V ª Vrl. For j / c one has i W h sj r l

U Ž . Ž U Ž .. U Ž .W h , while i W h has codimension 1 in W h .j c r l c

Proof. Clearly i is injective, and the image of im h q ker h j under the
Ž . j Ž U Ž ..projection V ª Vrl is contained in im h q ker h , whence i W hr l r l j r l

U Ž .: W h . The lemma follows by dimension consideration.j

n mŽ .7.2. DEFINITION. For any arrangement of partitions of type RSik l

Ž .i s 0, . . . , 3 , the corresponding arrangement of transposed partitions

n t mt

t tž /k l

t Ž t tis called a configuration of type RS i the types RS 0 and RS 3 are identical
. Ž w i, j x.to types RS0 and RS3, respectively . If a family of partitions l is of

type RS, then the family of transposed partitions is said to be of type RSt.

7.3. LEMMA. Let m, mX $ l, and let n be determined by the condition that
n m t tŽ . Ž .X is of one of the types RS 1]RS 3. Then for any l g P V withm l h

Ž . X � U Ž . Ž < . 4J h s m , there is a dense open subset of H g P V N J h s m onHr l h

Ž .which J h s n holds.HrŽ l l H .
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Proof. If the configuration is of type RSt3, the conclusion follows
Ž .without the need to restrict to a dense subset by Proposition 1.2.

X Ž .Otherwise m s m , and we put l y m s r, c , so that H ranges over the
U Ž . Ž . Ž U Ž ..set U h of dimension r . By Lemma 7.1, the subspace i W h ofc c r l

U Ž . c U Ž .W h has codimension 1; therefore, while H = ker h for all H g U h ,c c
U Ž . yc Ž .there is a dense open subset UU of U h on which H W h l . If thec

t Ž . � 4configuration is of type RS 1 i.e., c s 0 , one has l l H s 0 for H g UU,
Ž .and therefore J h s m s n . Finally if c ) 0, so that the configu-HrŽ l l H .

ration is of type RSt2, it follows from H = ker h or l g im h that H = l;
Ž .c Ž .cy1for H g UU one has Hrl W ker h , but Hrl = ker h by applica-r l r l

U Ž . Ž .tion of Lemma 7.1 for j s c y 1, whence Hrl g U h . Then J hcy1 r l Hr l
Ž .differs from m s J h by a square in column c y 1 and is thereforer l

equal to n .

Note that the generic cases match those of Lemma 6.4, with all parti-
tions transposed, but the non-generic cases do not. We know of no
geometric explanation for the first fact, but the latter is no surprise, since
transposition reverses the dominance ordering on Jordan types that de-
scribes orbit closures.

Ž .7.4. LEMMA. Let l g P V . For all flags f in a dense open subset of FF ,h h
i Ž < . i Ž .the following holds: defining l s J h and m s J h for 0 F i F n,f f r l l fi i i

any configuration of the form

mi li

iq1 iq1ž /m l

is of one of the types RSt0]RSt3.

Proof. This follows from Lemma 7.3 just as Lemma 6.5 follows from
6.4.

Similarly to the situation for the interpretation of the ordinary Robin-
Ž .son]Schensted correspondence, the sequence of spaces f r l l f forms ai i

complete h -stable flag in Vrl with one part repeated. For genericr l
f g FF this flag lies in FF X and has part i repeated, where this time T X

h , T h , Tr l

and i can be found by applying the Schensted column extraction procedure
Ž .to T starting at square l y J h , but again the set of flags so obtained isr l

not generally dense in the indicated set. Here too the difficulty can be
Ž .resolved by a converse construction to in this case dividing out the line l.

ŽFor 0 F i F n and define the following Z -stable set a vector bundle0 u
.over FF :h, T

U <UFF s f , f g FF = V f : ker f .Ž .� 4h , T , i h , T i0 0
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Ž . UTo f , f g FF we associate in the n q 1-dimensional space V = k ah, T , i0

˜ Ž .nilpotent transformation h and a flag f , as follows. For ¨ , x g V = k put˜
Ž . Ž Ž . Ž .. � 4h ¨ , x s h ¨ , f ¨ and with l s 0 = k : V = k define˜

f if 0 F i F i ,i 0f̃ si ½ f [ l if i F i y 1 F n.iy1 0

˜ Ž .Since f : ker f, the flag f is h-stable. We identify V = k rl with V, so˜i0

˜that f rl ( f for i ) i .i iy1 0

Ž .7.5. LEMMA. Let T g TT , and 0 F i F n. For all f , f in a Z -stablel 0 u
˜Udense open subset of FF , the associated h and f satisfy the following: with˜h, T , i0

i Ž < . i Ž .n s J h and l s J h for 0 F i F n q 1, any configuration of˜˜ ˜f f rŽ l l f .i i i

the form

li n i

iq1 iq1ž /l n

is of type RSt0 if i - i , of type RSt1 if i s i , and of type RSt2 or RS3 if0 0
i ) i .0

Proof. The proof is analogous to that of Lemma 6.6, with variations as
follows. Let the families n i and li be determined by the requirements on

nq1 Ž . Ž .the configurations; put n s n and n y l s r, c . Since ker h rl (˜
Ž . � < Ž .ker h l ker f, the statement J h s n means that c s min j W h :˜ j

4 Ž .ker f , by Lemma 1.5 1 . In the starting case n s i of the induction this0
Ž . Uholds, as c s 0 and f , f g FF implies f s 0. For n ) i and H gh, T , n 0

Ž . Ž . Ž y < . y1Ž . Žv FF there is a surjection f , f ¬ f , f of the fiber v H with˜Hh , T
Ž . Ž .. ŽUyv f , f s v f onto the variety FF not an isomorphism, as in the˜ h < , T , iH 0

.proof of Lemma 6.6 . The induction hypothesis provides a dense open
y1Ž . n n

Uysubset of FF ; let UU : v H be its inverse image, and n y l s˜h < , T , iH 0

Ž X X. Ž < . Ž < . Ž < .Xr , c ; then W h s ker h l F ker f . In the interestingH H Hc Ž f , f .g UU

t n X Ž .Xcase RS 2 one has n s l and c s c q 1, whence W h strictly containsc
Ž < . Ž . Ž . Ž .X XW h by Lemma 1.5 4 , and W h  ker f for some f , f g UU.Hc c

� Ž . Ž . 4XTherefore f , f g UU N W h  ker f is dense in UU, and on this subsetc
� Ž . 4 Ž . Ž < .c s min j N W h : ker f , since W h s W h : ker f for allHj c c

y1Ž . Ž .f , f g v H .˜
Ž t t. Ž .7.6. THEOREM. Let P, Q g TT , and s g S with P , Q s RS s .l n

Ž X. UFor all f , f in a dense open subset of FF = FF , the familyh, P h , Q

Ž . t Ž X.XJ h is of type RS , and in particular p f , f n s s .˜f rŽ f l f . 0 F i, jF ni i ny j

Proof. The proof is analogous to that of Theorem 6.3, using Lemmas
7.4 and 7.5 instead of 6.5 and 6.6.



FLAG VARIETIES AND YOUNG TABLEAUX 425

Note that with the use of Theorem 3.3, the equivalence of the descrip-
Ž X .tions of the generic value of p f , f given in Theorems 6.3 and 7.6 follows

w xfrom the purely combinatorial statement 9, Theorem 4.1.1 . We have
preferred to give independent proofs of Theorems 6.3 and 7.6, thereby
giving a geometric explanation for the ‘‘witchcraft operating behind the

Ž w x.scenes’’ cf. 6, p. 60 of that combinatorial theorem.

REFERENCES

1. S. V. Fomin, Generalised Robinson]Schensted]Knuth correspondence, J. So¨iet Math.
Ž .41 1988 , 979]991.

2. M. D. Haiman, Dual equivalence with applications, including a conjecture of Proctor,
Ž .Discrete Math. 99 1992 , 79]113.

3. W. H. Hesselink, A classification of the nilpotent triangular matrices, Compositio Math.
Ž .55 1985 , 89]133.

4. J. E. Humphreys, ‘‘Linear Algebraic Groups,’’ Graduate Texts in Mathematics 21,
Springer-Verlag, BerlinrNew York, 1975.

5. D. E. Knuth, Permutations, matrices and generalized Young tableaux, Pacific J. Math. 34
Ž .1970 , 709]727.

6. D. E. Knuth, ‘‘The Art of Computer Programming, Vol. III, Sorting and Searching,’’ pp.
48]72, Addison-Wesley, Reading, MA, 1975.

7. M. A. A. van Leeuwen, ‘‘A Robinson]Schensted Algorithm in the Geometry of Flags for
Classical Groups,’’ Thesis, Rijksuniversiteit Utrecht, the Netherlands, 1989.

8. M. A. A. van Leeuwen, The Robinson]Schensted and Schutzenberger algorithms and¨
interpretations, in ‘‘Computational Aspects of Lie Group Representations and Related

Ž .Topics’’ A. M. Cohen, ed. , CWI Tract 84, Stichting Mathematisch Centrum, Amster-
dam, 1991.

9. M. A. A. van Leeuwen, The Robinson]Schensted and Schutzenberger algorithms, an¨
Ž .elementary approach, Electron. J. Combin. 3, No. 2 1996 , R15.

10. M. A. A. van Leeuwen, Tableau algorithms defined naturally for pictures, Discrete Math.
Ž .157 1996 , 321]362.

11. I. G. Macdonald, ‘‘Symmetric Functions and Hall Polynomials,’’ Oxford Mathematical
Monographs, Clarendon, Oxford, 1979.

12. G. de B. Robinson, On the representations of the symmetric group, Amer. J. Math. 60
Ž .1938 , 745]760.

13. C. Schensted, Longest increasing and decreasing subsequences, Canad. J. Math. 13
Ž .1961 , 179]191.

14. M. P. Schutzenberger, Quelques remarques sur une construction de Schensted, Math.¨
Ž .Scand. 12 1963 , 117]128.

15. M. P. Schutzenberger, La correspondance de Robinson, in ‘‘Combinatoire et Representa-¨ ´
Ž .tion du Groupe Symetrique’’ D. Foata, ed. , Lecture Notes in Mathematics, Vol. 579,´

Springer-Verlag, BerlinrNew York, 1976.
16. N. Spaltenstein, The fixed point set of a unipotent transformation on the flag manifold,

Ž .Proc. Konink. Nederl. Akad. Wetensch. Ser. A 79, No. 5 1976 , 452]458.
17. N. Spaltenstein, ‘‘Classes Unipotentes et Sous-groupes de Borel,’’ Lecture Notes in

Mathematics, Vol. 946, Springer-Verlag, BerlinrNew York, 1982.
18. T. A. Springer, A construction of representations of Weyl groups, In¨ent. Math. 44

Ž .1978 , 279]293.



MARC A. A. VAN LEEUWEN426

19. T. A. Springer, Geometric questions arising in the study of unipotent elements, in ‘‘The
Ž .Santa Cruz conference on Finite Groups,’’ Proc. Symp. Pure Math. 37 1980 .

20. T. A. Springer, Conjugacy classes in Algebraic Groups, in ‘‘Group Theory, Beijing,’’
Lecture Notes in Mathematics, Vol. 1185, Springer-Verlag, BerlinrNew York, 1984.

21. B. Srinivasan, A geometrical approach to the Littlewood]Richardson rule, J. Algebra 187
Ž .1997 , 227]235.

22. R. Steinberg, On the desingularisation of the unipotent variety, In¨entiones Math. 36
Ž .1976 , 209]224.

23. R. Steinberg, An occurrence of the Robinson]Schensted correspondence, J. Algebra 113
Ž .1988 , 523]528.


	0. INTRODUCTION
	1. NILPOTENT TRANSFORMATIONS
	2. FLAGS
	3. INTERPRETATION OF THE SCHUTZENBERGER ALGORITHM
	4. INTERPRETATION OF JEU DE TAQUIN AND LITTLEWOOD - RICHARDSON TABLEAUX
	5. RELATIVE POSITIONS OF FLAGS
	6. INTERPRETATION OF THE ROBINSON - SCHENSTED ALGORITHM
	7. INTERPRETATION OF THE TRANSPOSED ROBINSON - SCHENSTED ALGORITHM
	REFERENCES

