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1. INTRODUCTION

Nonparametric regression (NPR) has become an almost indispensable
tool in exploratory data analysis. In fact, a flexible estimation method is
sought, which does not suppose any assumption on the form of the func-
tion to describe the association between covariates and response variables.
With the nonparametric approach, such a function is determined only by
the data. This feature and the current increasing availability of computer
power and graphical tools, justify the great interest and popularity of these
methods.

The monographs of Eubank [8], Fan and Gijbels [12], Ha� rdle [16],
Hastie and Tibshirani [17], Mu� ller [21], Simonoff [30], Wahba [35],
and Wand and Jones [37] offer a good introduction and a wide variety of
specific applications of NPR to interesting examples with real data.

Let (X1 , Y1), ..., (Xn , Yn) be a set of independent random copies of
(X, Y), where X # Rd, Y # R are the covariates and the response variables,

Article No. MV981746

207
0047-259X�98 �25.00

Copyright � 1998 by Academic Press
All rights of reproduction in any form reserved.

* Supported by CICYT Grant PB91-0794.



having joint density fXY ( . , . ). We will denote by f ( . ) the marginal density
of X and the regression function by

m(x)=E(Y | X=x)=| y
fXY (x, y)

f (x)
dy.

The most popular estimators of m(x) are the multivariate kernel Nadaraya�
Watson estimator (Nadaraya [24] and Watson [38]), and the multivariate
Gasser�Mu� ller kernel estimator (Gasser and Mu� ller [15]), although other
approaches, like smoothing splines, have been widely used too. In all cases,
it is necessary to choose some parameters to determine the amount of
smoothing to insert in the estimator. For the practical application, efficient
choices of these parameters are needed.

We focus on multivariate local regression estimators (Cleveland [6],
Stone [31]), which have desirable properties, such as optimal rates of
convergence (Stone [31, 32]) and asymptotic minimax efficiency properties
among all possible linear estimators (Fan [9], Fan et al. [10]). These
procedures have advantages over other popular kernel methods (such as
the Nadaraya�Watson and Gasser�Mu� ller methods) because the asymptotic
mean squared error (AMSE) is automatically adjusted and the ``boundary
effect'' is hidden; so it does not require modifications at the boundary (Fan
and Gijbels [11] showed that the asymptotic bias and variance near the
boundary of the support of f have the same order as in the interior points).
These benefits are even greater in the multivariate case, where the boundary
problem is more severe. Moreover, this procedure has the ability of design
adaptation, and it adapts to both fixed and random designs (see Fan and
Gijbels [12] for an extended discussion about these points.)

Local regression smoothers estimate m(x) using a weighted least-squares
regression with weights based on a kernel function. We will study the problem
of linear fit,

Min =TW=, where =i=Yi&:&;T (Xi&x), i=1, ..., n, (1.1)

with a matrix W=diag[KH(X1&x), ..., KH(Xn&x)], where KH(u)=
det(H)&1 K(H &1u), K is a d-variate nonnegative kernel function, and the
bandwidth matrix H is a d_d positive definite matrix, but not necessarily
symmetric, which depends on n and possibly on x.

The above problem of optimization has a solution for :,

m̂(x)=:̂=eT
1 (XTWX)&1 XTWY, (1.2)

where e1 is the projection vector on the first component, the ith row of X
is (1, (Xi&x)T), and Y=(Y1 , ..., Yn)T.
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The analysis with a matrix Hn of bandwidth leads not only to the intro-
duction of a different amount of smoothing, but, moreover, it permits us to
carry out rotations such that the weights determined by the kernel have
ellipsoidal contours with a certain orientation (their axes are not necessarily
in the same direction as the coordinate axes). The advantages of getting a
full matrix of smoothing parameters have been emphasized in some
contexts by Wand and Jones [36] and Ruppert and Wand [26]. In the
former, a general exposition concerning the good behavior of this kind of
estimators is given.

The main purpose is to show the asymptotic behavior of a sequence of
processes with multivariate time, which are related to the choice of local
smoothing parameters. As consequence, the asymptotic distribution of
estimators with local bandwidth matrix constructed from the data are
studied.

The proposed method is applicable whenever a bandwidth matrix mini-
mizing the asymptotic mean squared error (AMSE) exists, although such
a matrix might not exist, as we will discuss later. At points where opposite
sign curvatures in different directions (not necessarily the axes directions)
are present, we must change our attention to bandwidths which asymptoti-
cally cause the dominating bias to vanish due to the ``curvature'' of the
regression function.

Results of weak convergence of bandwidth processes to a Gaussian limit
process have been introduced in the literature with the aim of showing that
there exist data-adaptive bandwidth choices in different contexts which are
asymptotically efficient (see Abramson [1] and Krieger and Pickands [18]
for the case of univariate density estimation, Mu� ller and Stadtmu� ller [23]
for the estimation of a regression function in a univariate fixed design,
Mack and Mu� ller [20] for the multivariate Nadaraya�Watson estimator
with only one bandwidth parameter, Mu� ller and Prewitt [22] for the multi-
variate convolution kernel estimator with a vector bandwidth in a fixed
design). In this work, in the context of multivariate local regression
smoothers, a functional limit theorem for matrix bandwidth processes is
obtained, and its tightness is shown.

The above expression (1.2) for m̂(x) as a product of matrices, prevents
a development of the error process, similar to that of Mack and Mu� ller [20],
based on a linearization of the ratio estimator. Therefore, we have found
alternative expressions of such an estimator as a ratio of determinants and
it allows us to split the error process into convergent processes.

This paper is organized as follows: In Section 2, we present specific represen-
tation and preliminary results, and then we discuss the optimal bandwidth
matrix choice. Section 3 is devoted to the derivation of the weak convergence
of matrix bandwidth processes. Auxiliary results and proofs are given in
Section 4.
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2. BANDWIDTH MATRIX CHOICE IN LOCAL
LINEAR ESTIMATION

The expression (1.2) is adequate when analyzing the asymptotic condi-
tional bias and variance of the estimator (Ruppert and Wand [26]), but
other characteristics are awkwardly obtained from it.

In the next theorem, we give an alternative formulation to (1.2), which
presents the estimator as a ratio of two statistics similar to the Nadaraya�
Watson estimator.

Let X(i)(u) be a matrix having vector u in the i th column and all others
the same as X. Let j be a subset of size (d+1) taken from [1, ..., n], and
let Xj be the respective submatrix of X with row indices given by j. By
using the Binet�Cauchy expansion (Noble [25]) for the determinant of the
product of matrices we obtain:

Theorem 2.1. Suppose that XT
j Wj Xj is not singular for a j. Then

:̂=m̂n(x)=
� j det(XT

j Wj X
(1)
j (Yj ))

� j det(XT
j Wj Xj )

, (2.1)

where �j means summation over all subsets of size (d+1).

From (2.1) we can see m̂n(x) as a weighted average of locally least
squares estimator obtained only with (d+1) observations. Let m̂j (x) be
one of these. Then, it is straightforward from (2.1) that

:̂=m̂n(x)=:
j

wj (x) m̂j (x),

with

wj (x)=
det(XT

j WjXj )

det(XTWX)

and m̂j (x)=0 if det(XT
j WjXj )=0.

Estimator (2.1) is linear in the observations Y1 , ..., Yn and the following
expression is useful too. It follows from elementary properties of expansion
of a determinant by rows and from Y=�i Yiei , where ei is a n-vector with
a 1 in its i coordinate and 0's elsewhere:

m̂n(x)=
det(XTWX(1)(Y))

det(XTWX)
= :

n

i=1

Yi det(XTWX(1)(e i))
det(XTWX)

= :
n

i=1

Yi win(x). (2.2)
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It is easy to see that

:
n

i=1

win(x)=1

and

:
n

i=1

aT (Xi&x) win(x)=0 \a # Rd.

Both properties show that win(x) is a sequence of conditional second-
order weights, and involve estimators which are unbiased for linear functions
m(x) (see Ruppert and Wand [26]). This is desirable in estimating at points
near the boundary of support of f and points with a very asymmetric design
(see Fan and Gijbels [12]).

The estimation of regression function derivatives is also possible with
this representation, if we want to estimate m( j)(x)=�m(x)��xj , j=1, ..., d,
then

m̂( j)(x)=
det(XTWX( j+1)(Y))

det(XTWX)
, j=1, ..., d.

The main arguments could be adapted to cover similar results for these
first derivative estimators.

Next, we give the following set of assumptions. Some results in Section 2
could be obtained with weaker conditions; however, they will be necessary
in order to derive the main theorem in Section 3.

Concerning the kernel,

(W.1) K( . ) is a bounded, nonnegative, compactly supported kernel.

(W.2) K( . ) is a spherically symmetric kernel or a product of symmetric
univariate kernels (in both situations, all odd order moments of K vanish).

(W.3) The first partial derivatives of K( . ) exist and are bounded.

Some formulas involving auxiliary results are simplified if we assume that K
is a multivariate probability density function with mean equal to zero and
covariance matrix +2Id , with Id the d_d identity matrix, and +2=� u2

1K(u) du.
Further, we denote +4=� u4

i K(u) du, i=1, ..., d, and +22=� u2
i u2

j K(u) du,
i, j=1, ..., d, and i{ j.

Concerning the density function:

(D.1) f is bounded and continuous at x, and f (x)>0.

(D.2) All mixed partial derivatives of f at x exist up to second order,
with the second partial derivatives continuous at x.
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Concerning the regression function and other related functions:

(R.1) The function g( . )= f ( . ) m( . )=� y fXY ( . , y) dy exists and is
continuous at x.

(R.2) s2( . ) f ( . )=� y2fXY ( . , y) dy exists and is continuous at x.

(R.3) All mixed partial derivatives of m( . ) and s2( . ) at x exist up to
the second order, with the second partials continuous at x.

(R.4) The functions :k( . ) f ( . )=� | y| k fXY ( . , y) dy exist and are
continuous at x (k�1).

Concerning the bandwidth matrix: The matrix sequence Hn is such that
(n det Hn)&1 and each entry of Hn tend to zero as n � �, with Hn

nonsingular. Moreover,

(H.1) Hn=hnA, with hn � 0 and nhd
n � �, as n � � and matrix A

is such that det A=1 for all n. (This condition allows us separate size and
shape in Hn .)

(H.2) Hn=n&1�(d+4)H, with H a nonsingular definite positive matrix.

Let R(K) be � K2(u) du, _2(x)=Var(Y | X=x)>0, and Hm(x) be the
Hessian matrix of mixed second partials of m(x). Using (2.2), expressions
of conditional bias and variance of m̂n(x) are derived and they are equal
to those obtained by Ruppert and Wand [26]. Let x be a fixed element in
the interior of the support of f. Assume that (W.1)�(W.2), (D.1)�(D.2),
(R.1)�(R.3), and (H.1) hold. Then

E[m̂n(x)&m(x) | X1 , ..., Xn]= 1
2 trace[H T

n Hm(x) Hn]+op(trace(H T
n Hn))

(2.3)

and

Var[m̂n(x)&m(x) | X1 , ..., Xn]

=n&1(det Hn)&1 [R(K)� f (x)] _2(x)[1+op(1)]. (2.4)

Both leading terms are combined to give the asymptotic conditional
mean-squared error (AMSE):

AMSE(m̂n(x) | X1 , ..., Xn)

=n&1(det Hn)&1 [R(K)� f (x)] _2(x)+ 1
4 trace2 [H T

n Hm(x) Hn], (2.5)

and this value does not depend on the sample X1 , ..., Xn .
The choice of the bandwidth matrix is crucial for the behavior of the

estimator. This matrix can be the same at every point when we take the
estimation or otherwise we can adapt it to each point.

212 CRISTO� BAL AND ALCALA�



There are many ways of constructing adaptive estimates of the func-
tion m(x). The most interesting consists of taking the matrix Hn=Hn(x),
a function of the point x where the regression function is to be estimated.
Other possibilities can be to take a different matrix Hn(Xi) for each point
in the sample or to take a variable matrix Hn such that there are at least
k sample observations falling into a neighborhood of x.

On analyzing the AMSE, new situations can be seen because of the
multivariate character of the problem. The leading bias term

Bn(x)= 1
2 trace(H T

n Hm(x) Hn) (2.6)

has a geometric interpretation. It is a combination of some entries of Hm(x),
i.e., of the curvature of m(x) at x in the different directions of space. In the
univariate setting, the bias is controlled entirely by the only bandwidth
parameter, while in the multivariate setting we can sometimes compensate
some curvatures with others, and so the leading term of the asymptotic bias
can be cancelled.

This characteristic has been commented on in the context of density
estimation by Terrell and Scott [34]. Mu� ller and Prewitt [22] analyze its
use in the regression estimation for the particular case of variable smoothing
in directions parallel to coordinate axes.

In order to minimize the asymptotic bias, we will consider three different
situations depending on the eigenvalues of the matrix Hm(x):

v Case I. Hm(x) is positive or negative definite. Then, there is not a
matrix Hn such that (2.6) vanishes. The solution which minimizes (2.5) is
given in the next lemma.

Lemma 2.1. Let x be a point in the interior of the support of f ( . ), such
that Hm(x) is positive or negative definite. Assume that (W.1)�(W.2), (D.1)�(D.2),
(R.1)�(R.3), and (H.1) hold. Then, the matrix Hn minimizing AMSE in (2.5)
is

Hn(x)=n&1�d+4 {_2(x) R(K)
df (x) =

1�d+4

(det Hm(x))1�2(4+d ) O(x) 1+(x)&1�2,

(2.7)

where 1+(x) is a diagonal matrix of eigenvalues (in absolute value) and
O(x) is the matrix of eigenvectors of Hm(x). The optimal value of AMSE is

AMSE*(x)=n&4�(d+4)(det Hm(x))2�(4+d )

_{_2(x) R(K)
f (x) =

4�d+4

{d
4

+1= d d�d+4.
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v Case II. Hm(x) has both positive and negative eigenvalues. Then,
the regression function has positive curvatures in some directions and
negative in others; i.e., m( . ) is saddle-shaped at x. We can choose a matrix
Hn such that (2.6) vanishes.

Lemma 2.2. Assume that Hm(x) has both positive and negative eigen-
values and the other conditions of Lemma 2.1 hold. It is possible to construct
a matrix Hn so that the asymptotic conditional bias is oP(n&2�(d+4)). One
such matrix is

Hn(x)=n&1�d+4 {_2(x) R(K)
df (x) =

1�d+4

(det Hm(x))1�2(4+d ) O(x) 1*(x)1�2,

(2.8)

where 1*(x) is a full rank diagonal matrix with trace 1*(x) 1(x)=0. Here,
1(x) is the diagonal matrix of eigenvalues of Hm(x).

We can see the action of Hn first as a rotation of coordinate axes
around x, so that the new axes agree with the directions of curvatures of
a different sign, and then, a suitable scaling, so that the new parametriza-
tion of the regression function verifies a Laplacian equation.

v Case III. Hm(x) is semidefinite with at least one zero eigenvalue.
Then, Hm(x) is nonfull rank. The asymptotic bias corresponds with one of
a problem with a smaller dimension than d, and the contribution of these
points to the bias is of a lower order than in Case I.

In density estimation the situation is similar to this, but it is less interest-
ing because usually one needs a more accurate density estimation near the
modes, i.e., in points falling in Case I. In these areas, the adapted smoothing
does not improve the order of convergence of MSE in relation to the use
of an optimal matrix Hn in a global sense. However, saddle points of the
regression function are generally quite interesting for estimating m(x).

The Nadaraya�Watson estimator allows us to insert a matrix Hn in a
similar analysis, too. But the expressions of the asymptotic bias make the
discussion of the feasible cases complicated and confusing.

We must note that the matrices proposed in (2.7) and (2.8) could be
right-handedly multiplied by an orthogonal matrix G without a change in
the AMSE stated by Lemmas 2.1 and 2.2. Then, we can simply consider a
symmetric bandwidth matrix (e.g., we take G=O(x)T), and this choice
may reduce the number of parameters to be estimated in practice. The
rotation produced by G means a new change in the coordinate system in
order to present the estimation, so it usually seems more convenient to
return to the original coordinate system with G=O(x)T.
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Before finishing this section, we give a result for the asymptotic distribu-
tion of error m̂n(x)&m(x). Let the following functions be:

B(x)=
1
2

trace[H THm(x) H],

S(x)=R(K)
_2(x)

(det H) f (x)
.

Theorem 2.2. Let x be a point under conditions of Lemma 2.1 and
suppose that Hn w�n n&1�d+4H, with H a full rank and definite positive
matrix. Then,

sup
z # R }P(n2�(d+4)(m̂n(x)&m(x))�z)&8 \z&B(x)

S 1�2(x) + } w�
n

0,

where 8( . ) is the standard normal distribution function. So

n2�(d+4)(m̂n(x)&m(x)) w�
L N(B(x), S(x)).

This result is a consequence of a more general result established by
Battacharya and Mu� ller [2] for asymptotic behavior of functionals of data
averages.

3. CONVERGENCE OF THE ERROR PROCESS

For the study of convergence of the error process we will only consider
bandwidth matrices of the form Hn=n&1�(d+4)H, according to (H.2).
Matrix H belongs to H, a compact of Gl(R, d ), the space of d_d regular
matrices. There is a bijection between such a space and an open set on Rd 2

(in relation to the corresponding vector space topology), through the
vectorization operator vec( . ), and so we can see H as a compact on Rd 2

.
The space of matrices is endowed with the Frobenius norm (&H&2=
trace(HTH)=vec(H)T vec(H)) which becomes the Euclidean norm on the
corresponding vectorizations.

The numerator and the denominator in (2.1) are symmetric statistics in
the observations, and they are associated with some functionals of the
density and regression functions, as is later shown. We will often use the
property of symmetry in the observations to simplify some proofs in a
similar way to what happens with U-statistics (Serfling [29]). In fact, they
are U-statistics with a varying kernel depending on n. If we denote
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Un(x; Hn)#\\ n
d+1+ (d+1)! (det Hn)2+

&1

:
j

(det(XT
j X (1)

j (Y j )) det Wj ),

Vn(x; Hn)#\\ n
d+1+ (d+1)! (det Hn)2+

&1

:
j

(det(XT
j Xj ) det Wj ),

the estimator (2.1) becomes

m̂n(x)=
Un(x; Hn)
Vn(x; Hn)

.

Until further notice, to abbreviate, we will write m̂n(H), Un(H), Vn(H),
instead of m̂n(x; Hn), Un(x; Hn), Vn(x; Hn) and A, B will denote matrices
in H.

The error process is

Rn(H)=n2�(d+4)(m̂n(H)&m(x)), H # H. (3.1)

The main theorem is the weak convergence of this stochastic process
indexed by the bandwidth matrix.

Theorem 3.1. Assume (W.1)�(W.3), (D.1)�(D.2), and (R.1)�(R.4).
Then

Rn(H) O R(H),

where R( . ) is a multivariate Gaussian process with multivariate index, which
is characterized by

E(R(H))= 1
2 trace[HTHm(x) H]

and

Cov(R(A), R(B))=
_2(x)

f (x) det A det B | K(A&1u) K(B&1u) du.

These results are of greater interest when we want to work with a
bandwidth matrix H* # H, optimal as (2.7) or (2.8), since H* depends
upon unknown parameters as Hm(x), _2(x), or f (x), and it cannot be used
However, we can get consistent estimates of these parameters and construct
a matrix H� *(x) (e.g., by plug-in methods) such that m̂n(x; H� n*) is as
efficient as m̂n(x; Hn*); that is,

n2�(d+4)[m̂n(x; H� n*)&m̂n(x; Hn*)] w�
P

0.
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Similar results using weak convergence are given in Krieger and Pickards
[18] and Abramson [1] in estimating a density and in Mack and Mu� ller
[20] and Mu� ller and Prewitt [22] in estimating a regression function.

If x belongs to Case I and with the various hypotheses carried out on
f ( . ), m( . ), and the kernel function, it holds that the optimum rate for the
AMSE is of n&4�(d+4), and this rate can be reached by using matrices of the
Hn=n&1�(d+4)H form. So Lemma 2.2 indicates how H should be taken so
that the AMSE constant can be mimimized.

If x is in Case II and we do not add stronger conditions on m( . )
and f ( . ), there will exist no H that mimimizes this AMSE constant, but it
still makes sense to consider matrices of the Hn=n&1�(d+4)H form that
verify B(x)=0.

If we demand that the bandwidth matrix should be symmetric, there
exists only one matrix that will mimimize the ANISE constant in points x
of Case I. However, there are multiple choices of H which cancel the
dominant term of asymptotic bias for points x of Case II.

The tightness of the process given in (3.1) and the existence of consistent
estimators of the unknown values allows us to obtain efficient estimators of
mn(x; n&1�(d+4)H*). As corollary of the main result, we have

Corollary 3.1. Let H* be in H and suppose that a sequence [H� n*]n /H

of data-driven bandwidth matrices exists such that H� n* w�
P H*, as n � �,

then

n2�(d+4)(m̂n(x; n&1�(d+4)H� n*)&m(x; n&1�(d+4)H*)) w�
L

N(B*(x), S*(x))

with

B*(x)=
1
2

trace[H*THm(x) H*],

S*(x)=R(K)
_2(x)

(det H*) f (x)
.

Consistent estimators for Hm(x) are obtained using a local quadratic or
cubic smoother (see Fan and Gijbels [12] or Ruppert and Wand [26]). For
density estimation in a multivariate context see Scott [27] and for consistent
variance estimation we can use estimators similar to those proposed by Mu� ller
and Prewitt [22] or an estimator based on a normalized weighted residual
sum of squares (see Fan and Gijbels [12] and Fan and Yao [13]).

We start the analysis by decomposing the error process,

Rn(H)=
1

f d+1(x)
[�n(H)+Yn(H)]&

m̂n(H)
f d+1(x)

[`n(H)+Zn(H)],
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where

�n(H)=n2�(d+4)[EUn(H)&m(x) f d+1(x)],

`n(H)=n2�(d+4)[EVn(H)& f d+1(x)],

Yn(H)=n2�(d+4)[Un(H)&EUn(H)],

Zn(H)=n2�(d+4)[Vn(H)&EVn(H)].

We will obtain first, the Gaussian limit process of Yn(H), Zn(H), and
later, the Gaussian limit process of Rn(H). The mode of convergence is the
weak convergence in C(H), the space of continuous functions on H, with
the supremum norm.

Uniform Convergence of Nonstochastic Elements

Lemma 3.1. Assume that (W.1)�(W.3) hold.

(i) If (D.2) is satisfied, then

sup
H # H

|`n(H)&`(H)| w�
n

0, as n � �,

with

`(H)= 1
2 f (x)d (1++4+(d&1) +22) trace(HTHf (x) H)

&f (x)d&1 trace(HTDf (x) DT
f (x) H),

where Df (x) is the vector of first-order partial derivatives of f at point x.

(ii) Moreover, if (R.3) is satisfied, then

sup
H # H

|�n(H)&�(H)| w�
n

0, as n � �,

with

�(H)= 1
2 f d+1(x) trace(HTHm(x) H)

+m(x) f d (x)[ 1
2 (1++4+(d&1) +22)] trace(HTHf (x) H)

&m(x) f (x)d&1 trace(H TDf (x) DT
f (x) H).

Note. It is straightforward that

�(H)&m(x) `(H)= 1
2 f d+1(x) trace[HTHm(x) H].
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Asymptotic Normality of Yn(H0) and Zn(H0) at a Single Matrix H0 # H

The functional weak convergence of these processes is shown if we prove
the convergence of the finite-dimensional distributions and the tightness of
the processes. First, we will establish auxiliary results to obtain these finite-
dimensional distributions. Then, we will check the tightness by means of
results derived from Bickel and Wichura [3].

Let us define the following constants depending upon the kernel,

d1K=| K2(u) du,

d2K= :
d

i=1
| u2

i K2(u) du+ :
d

i, j=1
| u2

i u2
j K2(u) du,

dK=d1K+d2K .

Lemma 3.2. Assume that (W.1)�(W.2) and (D.1)�(D.2) hold. Then

(i) Zn(H0) w�
L

N \0,
f 2d+1(x)
det H0

dK + .

(ii) Moreover, if (R.1)�(R.4) are satisfied, then

Yn(H0) w�
L

N \0,
f 2d+1(x)
det H0

[s2(x) d1K+m2(x) d2K]+ .

Note. (i) The asymptotic covariance between Zn(H0) and Yn(H0) is

Cov(Zn(H0), Yn(H0)) w�
n f 2d+1(x) m(x)

det H0

dK , as n � �.

(ii) If m̂n(H0) w�
P m(x), it is straightforward that

Rn(H0) w�
L

N \1
2

trace(H T
0 Hm(x) H0);

_2(x)
f (x) det H0

d1K+ ,

with _2(x)=s2(x)&m2(x)=Var(Y | X=x).

Covariances of the Auxiliary Processes

To avoid a more complicated notation, we turn any d-vector into other
(d+1)-vector by adding a 0-component equal to 1.
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Lemma 3.3. Assume that (W.1)�(W.3) and (D.1) hold. For A, B # H,

Cov(Zn(A), Zn(B))=
f 2d+1(x)

det A det B
:

d+1

i, j=1
| (A&1u)2

i&1 (B&1u)2
j&1

_K(A&1u) K(B&1u) du+o(1).

Lemma 3.4. Assume that (W.1)�(W.3), (D.1), (R.1), and (R.2) hold.
For A, B # H,

Cov(Yn(A), Yn(B))=
f 2d+1(x)

det A det B
:

d+1

p, q=1

cpq(x)

_| (A&1u)2
p&1 (B&1u)2

q&1 K(A&1u) K(B&1u) du+o(1),

with

cpq(x)={s2(x),
m(x)2,

if p=q=1,
otherwise.

Lemma 3.5. Assume that (W.1)�(W.3), (D.1), and (R.1) hold. For A, B # H,

Cov(Yn(A), Zn(B))=
f 2d+1(x) m(x)

det A det B
:

d+1

i, j=1
| (A&1u)2

i&1 (B&1u)2
j&1

_K(A&1u) K(B&1u) du+o(1).

Weak Convergence of the Auxiliary Processes

In order to prove the weak convergence of these processes, we will verify
their tightness. For this purpose we need to establish bounds on the moments
at the blocks (see Bickel and Wichura [3] for a definition of block).

Let us denote with Hi, j (t) # H, a matrix having t in the (i, j) entry. Assume
that s, t are real numbers such that Hi, j (t+*(s&t)) # H \* # [0, 1]. Different
constants are denoted by C0 , C1 , .... By using the projection of the statistics
and applying the mean value theorem for vectorial functions, we have:

Lemma 3.6. Assume that (W.1)�(W.3), (D.1), (R.1), and (R.4) hold.
Then:

(i) E( |Yn(Hi, j (t))&Yn(Hi, j (s))| p)�C0 |s&t| p,

(ii) E( |Zn(Hi, j (t))&Zn(Hi, j (s))| p)�C1 |s&t| p.

This lemma is crucial for proving the condition on the moments from
which we will derive the tightness.
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Let B=>d
i=1 >d

j=1 (s ij , tij] and D=>d
i=1 >d

j=1 (uij , vij] be two blocks
in Gl(R, d) with +(B)>0, +(D)>0. The increment of a process ,n (expressing
Yn or Zn) around B is defined as in Bickel and Wichura (1971):

,n(B)=:
i, j

:
$i, j=0, 1

(&1)d2&�i, j $ij

_,n(s11+$11(t11&s11), ..., sdd+$dd (tdd&sdd)).

Lemma 3.7. Assume that (W.1)�(W.3), (D.1), (R.1), and (R.2) hold. Then:

E( |,n(B)|d2
|,n(D)| d2

)�C2+(B) +(D)

for a constant C2>0 which does not depend on B, D (,n denote either Yn

or Zn).

From the convergence of finite-dimensional distributions and the condition
on the moments, we have

Lemma 3.8. Assume that (W.1)�(W.3), (D.1), and (R.1)�(R.2) hold.
Then, the sequences [Yn(H), H # H] and [Zn(H), H # H] of random elements
of C(H) are tight.

Lemma 3.9. Assume that (W.1)�(W.3), (D.1)�(D.2) hold. Then, we have:

(i) Zn(H) O Z(H),

where Z( . ) is a multivariate Gaussian process with multivariate index, mean
zero and covariance:

Cov(Z(A), Z(B))

=
f 2d+1(x)

det A det B
:

d+1

i, j=1
| (A&1u)2

i&1 (B&1u)2
j&1 K(A&1u) K(B&1u) du.

(ii) Moreover, if (R.1)�(R.4) are satisfied, we have:

Yn(H) O Y(H),

where Y( . ) is a multivariate Gaussian process with multivariate time, mean
zero and covariance:

Cov(Y(A), Y(B))

=
f 2d+1(x)

det A det B
:

d+1

p, q=1

cpq(x) | (A&1u)2
p&1 (B&1u)2

q&1 K(A&1u) K(B&1u) du,
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with

cpq(x)={s2(x),
m2(x),

if p=q=1,
otherwise.

To finish complementary lemmas, we need to prove uniform convergence
in probability of the factor cn(H)=m̂n(H)� f d+1(x) arising in the decom-
position of Rn(H), towards the limit c(x)=m(x)� f d+1(x).

Lemma 3.10. Assume (W.1)�(W.2), (D.1)�(D.2), and (R.1)�(R.3). Then:

m̂n(H) w�
P m(x), as n � �, uniformly in H.

4. AUXILIARY RESULTS AND PROOFS

Results Involving Matrices

Let X be a (n_p)-matrix, and s be a subset of [1, ..., n]. If Xs denotes
the submatrix of X obtained from the rows of s, we have:

Lemma 4.1 (Binet�Cauchy expansion). Let X and Z be two (n_p)-
matrices (n� p). Then:

(i) det(XTZ)=�s( p) (det Xs)(det Zs)

(ii) det(XTZ)=( n&r
r& p) �s(r) det(X T

s Zs); for any r� p, where �s(r)

means summation over all subsets of size r.

Proof. (See Noble [25, p. 226] and Farebrother [14] for the use of this
expansion in regression context). K

Proof of Theorem 2.1. It suffices to apply Lemma 4.1 to the numerator
and to the denominator of :̂. Consequently,

det XTWX=:
j

det XT
j Wj Xj

det XTWX (1)(Y)=:
j

det XT
j WjX

(1)
j (Y j ),

where �j means summation over all subsets of size (d+1) taken from
[1, ..., n]. K
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Results Involving the Optimal Choice of Hn

Proof of Lemma 2.1. To optimize the AMSE we must find a matrix A
minimizing:

trace2 (ATHm(x) A), (4.1)

that is, minimizing the absolute value of the trace of ATHm(x) A. Therefore,
without loss of generality, we may suppose that Hm(x) is positive definite.

The rest of the proof is similar to that of Proposition 6 in Terrell and
Scott [34], and it follows the optimal value of hn ,

hn(x)=n&1�(d+4) { _2(x) R(K)
d(det Hm(x))2�d f (x)=

1�(d+4)

,

and the optimal choice of A, which is any matrix satisfying

AAT=aH&1
m (x) with a=det Hm(x)1�d.

One possible choice of A is

A=a1�2O(x) 1(x)&1�2,

where O(x) is an orthogonal matrix whose columns are eigenvectors and
1(x) is a diagonal matrix of the eigenvalues of Hm(x). K

Proof of Lemma 2.2. In this situation it holds that for any n a matrix
A exists such that trace (ATHm(x) A)=0. Therefore, the leading term in the
conditional bias is of a smaller order.

There are many possible choices of matrix A. One of the most simple is

A=a1O(x) 1 1�2
1 (x),

where 11(x) is a diagonal matrix such that trace(11(x) 1(x))=0 and
constant a1 is such that det A=1.

Let us suppose that there are l negative and d&l positive eigenvalues. If
* is a negative one, then the corresponding element of 11 will be (&*)&1�l,
and if } is a positive one, then the corresponding element of 11 will be
(})&1�(d&l). K

Moments of Random Determinants

To find moments associated with some determinants, we will use a represen-
tation allowing us to interchange the order between the expectation and the
determinant operators. If X is a squared ( p_p)-matrix and X? denotes this
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matrix when we permute the rows of X through the permutation ?, it easily
follows that

det(X TX)=:
?

det[(X?)T Diag(X?)], (4.2)

where �? means summation over all permutations of (1, ..., p) and Diag(X)
denotes the diagonal matrix having only diagonal elements of X. This last
identity is obtained by writing

det X=:
?

(&1)_(?) det(Diag(X?)),

where _(?) is the parity of permutation ?.
Now if X is a (n_p) data matrix in a random design, whose rows are

independent, and s is a subset of indices of size p, it follows that (X?(s))
T

Diag(X?(s)) is a ( p_p)-matrix whose columns are independent, and we can
interchange the expectation and the determinant operators; that is,

E(det[(X?(s))
T Diag(X?(s))])=det[E[(X?(s))

T Diag(X?(s))]].

Un(x; Hn) and Vn(x; Hn) as U-Statistics

Let us define the following matrices, associated with the exact expecta-
tion of the statistics Un(x; Hn) and Vn(x; Hn),

91(x; Hn)=|
R d _1

u& [m(x+Hn u), uT ] K(u) f (x+Hn u) du,

92(x; Hn)=|
R d _1

u& [1, uT ] K(u) f (x+Hn u) du.

Suppose (W.1)�(W.2), (D.1)�(D.2), and (R.1)�(R.3) hold. A Taylor series
expansions of the functions m( . ) and f ( . ), stand the diagonal expansion for
the determinant of the sum of two matrices (see Searle [28]) gives us

det 92(x; Hn)

= f (x)d+1+ f (x)d [ 1
2 (+4+(d&1) +22+1) trace(H T

n Hf (x) Hn)]

& f (x)d&1 trace(HnDT
f (x) Df (x) H T

n )+o(trace(HnJH T
n )) (4.3)

det 91(x; Hn)

=m(x) f (x)d+1+ f (x)d+1 1
2 trace(H T

n Hm(x) Hn)

+m(x) f (x)d [ 1
2 (+4+(d&1) +22+1) trace(H T

n Hf (x) Hn)]

&m(x) f (x)d&1 trace(H T
n Df (x) DT

f (x) Hn)+o(trace(H T
n JHn)).

(4.4)
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Let j be a subset of (d+1) different indices. When i # j, it is easily shown
that

E(det XT
j W jXj | X i)=d ! (det Hn)2 KH(Xi&x) :

d+1

p=1

det 9 ( p)
2 ((zi)p zi)

with

zi=_ 1
H &1

n (Xi&x)& (4.5)

and, providing there is no confusion, we denote

det 9 ( p)
2 (Xi)#det 9 ( p)

2 ((zi)p zi).

In a similar way, we have

E(det XT
j W jX

(1)
j (Yj ) | Yi , Xi)

=d ! (det Hn)2 KH(Xi&x) det 9 (1)
1 (Yizi)

+d ! (det Hn)2 KH(Xi&x) :
d+1

p=2

det 9 ( p)
1 ((zi)p z i), (4.6)

where zi is defined as (4.5). Providing there is no confusion, we denote,

det 9 ( p)
1 (Xi , Y i)#{det 9 (1)

1 (Yizi),
det 9 ( p)

1 ((zi)p zi),
if p=1,
if p{1.

Lemma 4.2. If the corresponding expectations are assumed to exist, the
Ha� jek projections of the statistics Vn(x; Hn) and Un(x; Hn) are given by

(i) V� n(x)&det 92(x; Hn)=
1
n

:
n

i=1

:
d+1

p=1

[KH(X i&x) det 9 ( p)
2 (Xi)

&det 92(x; Hn)]. (4.7)

(ii) U� n(x)&det 91(x; Hn)=
1
n

:
n

i=1

:
d+1

p=1

[KH(X i&x) det 9 ( p)
1 (Yi , Xi)

&det 91(x; Hn)]. (4.8)

Proof. Let i be a fixed index from [1, ..., n]. There are ( n&1
d ) subsets of

size (d+1) that include the index i. Moreover, from (d+1)! ordered tuples
associated to one of these subsets, there are d! of these, so that i is fixed
in a position p. Then, using (4.6), we obtain the following expression of the
conditional expectation of Un , given Xi :
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E(Un(x; Hn) | Xi)=
\n&1

d + d !

\ n
d+1+ (d+1)!

:
d+1

p=1

[KH(Xi&x) det 9 ( p)
2 (Xi)]

+
\n&1

d+1+ (d+1)!

\ n
d+1+ (d+1)!

det 92(x; Hn).

By adding up when i varies, we have the first required result. The second
is derived with the same arguments, by replacing 9 ( p)

2 (Xi) with 9 (q)
1 (Xi , Yi)

and 92(x; Hn) with 91(x; Hn). K

As we have mentioned earlier, Un and Vn are symmetric statistics whose
kernels depend on n through Hn . The following lemma is a consequence of
this, and its proof is very similar to that of Lemmas A and B in Serfling
[29, pp. 185�186].

Lemma 4.3. If the corresponding moments of order r (r�2) are assumed
to exist, we have

E(Un(x)&E(Un(x)))r=O((n det Hn)&[(1�2)(r+1)]), (4.9)

where [ . ] denotes the integer part. If the symmetric statistic is degenerate up
to the order c (see Serfling [29] for the definition), then

E(Un(x)&E(Un(x)))r=O((n det Hn)&[(1�2)(rc+1)]).

Corollary 4.1. If the corresponding moments are assumed to exist we
have

E(Un(x)&U� n(x)))r=O((n det Hn)&r).

Proof. Showing that Un(x)&U� n(x) is a symmetric statistic degenerate
up to the order 2, is straightforward. From the previous Lemma 4.3, it
follows that

E(Un(x)&U� n(x)))r=O((n det Hn)&[(1�2)(2r+1)])=O((n det Hn)&r). K

Asymptotic Normality

Let 9k, ( p, i)(x; Hn) (k=1, 2) be the cofactor associated to the ( p, i)
element of matrix 9k(x; Hn) (k=1, 2).
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We will denote, for now:

Bn=(n det Hn)1�2 E(V� n& f (x)d+1)

=(n det Hn)1�2 (det 92(x; Hn)& f (x)d+1) (4.10)

and

Sn=Var[(nhd
n)1�2 (V� n& f (x)d+1)]

=hd
n Var {KH(X&x) :

d+1

p=1

det 9 ( p)
2 (X)= . (4.11)

Lemma 4.4. Assume (W.1)�(W.2), (D.1), and (H.2) hold. Then

sup
z # R }Pr[(n det Hn)1�2 (V� n& f (x)d+1)�z]&8 \z&Bn

S 1�2
n + }=o(1).

Proof. We will apply the Berry�Essen inequality to the following random
variables,

Zi= :
d+1

p=1

[KH(X i&x)&det 9 ( p)
2 (Xi) det 92(x; Hn)], i=1, ..., n,

which are independent, with zero mean and a common distribution function.
For a detailed proof, see Cristo� bal and Alcala� [7]. K

If we consider approximations to Bn and Sn , by using Lemma 4.2 of
Cao [5], we can obtain the following corollary. Thus, we consider:

B(x)=(det H)1�2 { f (x)d

2
(+4+(d&1) +22+1) trace(HTHf (x) H)=

&(det H)1�2 f (x)d&1 trace(HTDf (x) DT
f (x) H)

and

S(x)=dK f 2d+1(x).

Corollary 4.2. Assume (W.1)�(W.2), (D.1)�(D.2), and (H.2) hold. Then

sup
z # R }Pr[(n det Hn)1�2 (V� n& f (x)d+1)�z]&8 \z&B(x)

S(x)1�2 + }=o(1).

Proof. We must bound the order between Bn and B(x) as well as
between Sn and S(x). From the assumption (D.2) and (H.2), some more
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detailed expansions of det 92(x; Hn) are followed, and we can obtain the
order of the different traces of the minors of the matrix. Thus, we have

Bn=B(x)+o(1). (4.12)

For the variance, we must reason on the cofactors of 92(x), and a little
basic algebra gives us:

det 92( p, q)(x)={ f (x)d+O(h2
n)

O(hn)
if it is a principal cofactor,
if it is a nonprincipal cofactor.

From these approximations and the symmetry of K2(u), we obtain the
order in the difference

Sn&S(x)= f (x)2d+1 dK+o(1)&hd
n( f (x)2(d+1)+o(1))& f (x)2d+1 dK

=o(1). (4.13)

Finally, from (4.12) and (4.13), Lemma 2.4 of Cao [5], and using the
triangular inequality, we obtain

sup
z # R }Pr[(n det Hn)1�2 (U� n& f (x)d+1)�z]&8 \z&B(x)

S(x)1�2 + }=o(1). K

From the projection of the statistic Un(x; Hn), we have similar results.
We will suppose that all functions arising are bounded. Let us define

Bn=(n det Hn)1�2 E(U� n&m(x) f (x)d+1)

=(nhd
n)1�2 (det 91(x; Hn)&m(x) f (x)d+1).

Observe that the different det 9 ( p)
1 (Xi , Yi) only contain those values of Yi

associated to the first column (i.e., p=1). The term associated to variance
is

Sn=Var[(nhd
n)1�2 (U� n&m(x) f (x)d+1)]

=hd
n Var {KH(X&x) :

d+1

p=1

det 9 ( p)
1 (Y, X)= .

Lemma 4.5. Assume (W.1)�(W.2), (D.1)�(D.2), (R.1), (R.2), (R.4), and
(H.2) hold. Then

sup
z # R }Pr[(n det Hn)1�2 (U� n&m(x) f (x)d+1)�z]&8 \z&Bn

S 1�2
n + }=o(1).
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Proof. The proof is similar to that of Lemma 4.6; by applying the
Berry�Essen inequality to variables,

Zi=KH(Xi&x) :
d+1

p=1

det 9 ( p)
1 (Yi , Xi)&(d+1) det 91(x; Hn), i=1, ..., n,

which are independent with zero mean and common distribution function. K

If we consider only the leading terms of Bn and Sn , we obtain a similar
result. Now, these terms are:

B(x)= f (x)d+1 (det H)1�2 1
2 trace(HTHm(x) H)

+m(x) f (x)d (det H)1�2 [ 1
2 (+4+(d&1) +22+1) trace(HTHf (x) H)]

&m(x) f (x)d&1 (det H)1�2 trace(HTDf (x) Df (x)T H)

and

S(x)= f 2d+1(x)[s2(x) d1K+m2(x) d2K].

Corollary 4.3. Assume (W.1)�(W.2), (D.1)�(D.2), and (R.1)�(R.4) hold.
Then

sup
z # R }P[(n det Hn)1�2 (U� n&m(x) f (x)d+1)�z]&8 \z&B(x)

S(x)1�2 + }=o(1).

Proof. Similar to the proof of Corollary 4.4. K

Other Proofs of Lemmas and Theorems

Proof of Lemma 3.1. Remember that Hn=n&1�(d+4)H, with H # H. Let
Bn* be a block matrix, with block elements

B*n, 11= 1
2 trace(H T

n Hf (x) Hn),

B*n, 12=H T
n Df (x),

B*n, 21=B*T
n, 12 ,

B*n, 22=| uuT (uTH T
n Hf (x) Hnu) K(u) du,

and we define 9 2*(x; Hn)= f (x) Id+1+Bn*.
The diagonal expansion (see Searle [28]) leads us to write det( f (x) Id+1+A)

as

:
d+1

k=0

f (x)d+1&k tracek (A),
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where A is (d+1)_(d+1) matrix and tracek(A) denotes the sum of the
principal minors of order k (trace0(A)=1 and traced+1(A)=det(A)).

Using this diagonal expansion, it is easy to see that

n2�(d+4)[ f (x)d trace1 (Bn*)

+ f (x)d&1 trace2 (Bn*)]&`(H) ww�
n � �

0, uniformly in H,

and that n2�(d+4) tracek (Bn*) ww�
n � �

0, (k�3) uniformly in H, and then

n2�(d+4) det 9 2*(x; Hn)&n2�(d+4)f (x)d+1&`(H) ww�
n � �

0, uniformly in H.

Let Bn=92(x: Hn)& f (x) Id+1 be the matrix with the remaining terms
of the Taylor expansion up to order two of 92(x; Hn). The second
derivatives continuity implies that

n2�(d+4)[trace1 (Bn)&trace1 (Bn*)] ww�
n � �

0, uniformly in H,

and

n2�(d+4)[trace2 (Bn)&trace2 (Bn*)] ww�
n � �

0, uniformly in H,

and, as before, n2�(d+4) tracek (Bn) ww�
n � �

0, k�3, uniformly in H and,
therefore,

n2�(d+4)[det 92(x; Hn)&det 92*(x; Hn)] ww�
n � �

0, uniformly in H,

from part (i) of the lemma follows.
Proof of (ii) is similar to part (i). K

Proof of Lemma 3.2. It follows from Lemma 4.3 and Corollaries 4.1,
4.2, and 4.3. K

Proof of Lemma 3.3. We can simplify by analyzing the Ha� jek projection,
i.e., Z� (A)=n2�(d+4)[E(V� n(A)&EV� n(A))], since

E(Vn(A) Vn(B))=E(V� n(A) V� n(B))+o(n&4�(d+4)).

As in this process we have sums of random variables i.i.d., the covariance
in it is easily found:

Cov(Z� n(A), Z� n(B))

=
1

det A det B | :
d+1

p, q=1

det 9 ( p)
2 (A&1u) det 9 (q)

2 (B&1u)

_K(A&1u) K(B&1u) f (x+n&1�(d+4)u) du

&n&d�(d+4) det 92(x; A) det 92(x; B).
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The second term on the right-hand side is of order o(1) and the principal
cofactors of diagonal elements are dominant over the determinants in the
first term. We can write them as f d (x)+o(1), and they do not depend on
A and B. So, the result follows. K

Proof of Lemma 3.4. According to the above discussion, it is sufficient
to find the asymptotic covariance between the elements of the Ha� jek
projection. As the functions arising are continuous and bounded, we have

Cov(Y� n(A), Y� n(B))

=
1

det A det B | | :
d+1

p, q=1

det 9 ( p)
1 (A&1u, v) det 9 (q)

1 (B&1u, v)

_K(A&1u) K(B&1u) fXY (x+n&1�(d+4), u, v) du dv

&n&d�(d+4) det 91(x; A) det 91(x; B).

Remember that the variable Y only appears in the case p=1. So, if
p=q=1, after we apply the Fubini theorem, function s2(x+n&1�(d+4)u) is
in the first term on the right-hand side. If either p=1 or q=1 (but not
both), the corresponding function is m(x+n&1�(d+4)u). As these functions
are continuous, the expansion of det 91(x; Hn) by the principal cofactors
complete the proof. K

Proof of Lemma 3.5. Again, it is sufficient to find the covariance
between the Ha� jek projections of Yn(A) and Zn(B). The same as in
Lemmas 3.3 and 3.4, we have

Cov(Y� n(A), Z� n(B))

=
1

det A det B | | :
d+1

p, q=1

det 9 ( p)
1 (A&1u, v) det 9 (q)

2 (B&1u)

_K(A&1u) K(B&1u) fXY (x+n&1�(d+4)u, v) du dv

&n&d�(d+4) det 91(x; A) det 92(x; B).

Applying the Fubinni theorem and analyzing case p=1, the result follows.
K

Proof of Lemma 3.6. First, we will prove (ii). From the connection
between matrices and vectors of Rd2

through the vec( . ) operator (H ij (u)t

vec(Hij (u))), and the application of mean value theorem for vector func-
tions, there exists a % # (0, 1) such that
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Vn(Hnij (t))&Vn(Hnij (s))

=dVn(Hnij (t+%(s&t); n&1�(d+4)(t&s) Eij), (4.14)

where Eij denotes the elemental matrix with a 1 in the (i, j) entry and zeros
elsewhere, and the differential operator is denoted by ``d.'' We study the
differential in (4.14) for any matrix H:

dVn(H; dH)=
1

n(n&1) } } } (n&d)
:
j

(det XT
j Xj ) d \det Wj (H)

(det H)2 + . (4.15)

Applying basic differential matricial calculus (Magnus and Neudecker [19]),
we can see that

d \det Wj (H)
(det H)2 +=&{(d+3)

det W j (H)
(det H)2 trace(H&1dH)

+ :
d+1

i=1

det W (i)
j (H)

(det H)2 = , (4.16)

where the matrix W (i)
j (H) is a diagonal matrix agreeing with Wj (H) except

in the i th diagonal element, which is `K (H; H&1(Xj i
&x)), instead of

KH(Xj i
&x), where `K (H; u) is

`K (H; u)=trace(uDT
K(u) H &1dH)(det H)&1

with DK (u) denoting the gradient vector of K(u). Note that the statistic in
(4.16) is still symmetric in the observations, which allows us to use the
results involving such statistics.

In our case (if t% denotes point t+%(s&t), and Hnij(t%)=n&1�(d+4)Hij (t%),
with Hij (t%) # H and dH=n&1�(d+4)(t&s) Eij), it follows that

trace(H &1
n dHn)=h ij

nn&1�(d+4)(s&t)=hij (s&t) (4.17)

with hij
n and hij denoting the (i, j) entry of the matrices H &1

nij (t%) and H &1
ij (t%).

Moreover, we have

`K (Hnij (t%); u)=(det Hnij (t%))&1 ujDT
K (u) h (i)(s&t), (4.18)

where h(i) denotes the ith column of H ij (t%).
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By using (4.17) and (4.18), the differential (4.16) can be expressed as

(s&t)
1

(det Hnij (t%))2 w~ j (Hnij (t%))

and recall that w~ j is a symmetric statistic.
Under the assumptions concerning the kernel and its first-order

derivatives (K.3), we can assure that the p th moments of the obtained
symmetric statistic exist.

Lemma 4.3 implies that

E( |dVn(H ij (t%))&E(dVn(H ij (t%)))| p)=O(n[&2�(d+4)] p).

From the above expressions, it follows that

E( |Zn(H i, j (t))&Zn(Hi, j (s))| p)

=|s&t| p n2p�(d+4)E( |dVn(Hij (t%))&E(dVn(Hij (t%)))| p)

=|s&t| p O(1).

The same reasoning is applied to the first part of lemma, since the differential
associated to process Un does not depend on the observations Y1 , ..., Yn and
agrees with the differential given. K

Proof of Lemma 3.7. In view of the Cauchy�Schwarz inequality, it is
sufficient to prove that

E( |,n(B)|2p)�C2+2(B) for p=d 2.

Let (i, j) be any pair of fixed indices associated to an entry of the matrices
of parameters. Then, using the definition of block and the cr -inequality, we can
bound the above moment by

E( |,n(B)|2p)�C1 :
2 p&1&2

l=0

E |,n(Bl (tij))&,n(Bl (sij))|2p,

where Bl denotes any 2 p&1 matrices in the definition of block, whose
elements are spq+$pq(tpq&spq), except the (i, j) element, which is either tij

or sij .
Applying Lemma 3.6 to each term in the above summation, it follows

that a constant exists such as

E( |,n(B)|2p)�C2 |tij&s ij |
2p,
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which is obtained for any pair (i, j) of indices given, Then, we have

E( |,n(B)|2p)�C2 min
(i, j)

|t ij&sij |
2p�C2+2(B). K

Proof of Lemma 3.8. As function K( . ) is continuous, these processes
belong to C(H).

For a fixed value H0 # H, from the asymptotic normality and Theorem 6.2
of Billingsley [4], the tightness of processes Yn(H0) and Zn(H0) holds. The
condition in the moments of these processes, given in Lemma 3.7, imply the
tightness of Yn( . ) and Zn( . ) (see Theorem 3 of Bickel and Wichura [3]).

K

Proof of Lemma 3.9. Lemma 3.8 shows the tightness of these processes.
The convergence of the finite-dimensional distributions to the corresponding
limits are followed from Lemmas 3.2, 3.3, and 3.4 and the Cramer�Wold
device. It is straightforward that the limit distributions agree with the
corresponding finite-dimensional distributions of Y( . ) and Z( . ). K

Proof of Lemma 3.10. By the continuous mapping theorem (see Theorem 5.1
of Billingsley [4] and Corollary 1) and the weak convergence of the processes
Zn(H) and Yn(H), we have

sup
H # H

|Zn(H)| w�
L

sup
H # H

|Z(H)|

and

sup
H # H

|Yn(H)| w�
L

sup
H # H

|Y(H)|.

Hence, applying Slutsky's theorem:

sup
H # H

|Vn(H)&E(Vn(H))|=n&2�(d+4) sup
H # H

|Zn(H)| w�
P

0, as n � �.

A similar reasoning can be applied to uniform convergence of Un(H). Finally,
combining these results with Lemma 3.1, we complete the proof. K

Proof of Theorem 3.1. First, observe that

cn(H) Zn(H) O c(x) Z(H),

with cn(H)=m̂n(H)�f d+1(x). The last result follows from the equicon-
tinuity in probability of m̂n(H) and the same arguments as Mu� ller and
Prewitt [22, p. 181] adapted to the metric space of regular matrices with
the Frobenius norm.
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Combining this result with Yn(H) O Y(H), the weak convergence of
[Rn(H)] on C(H) is derived. The expectation and the covariance structure
of the limiting process are derived from Lemmas 3.1, 3.3, 3.4, and 3.5 and
Slutsky's theorem. K
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