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Abstract

In order to understand the source and extent of the greater-than-classical information processing power of
quantum systems, one wants to characterize both classical and quantum mechanics as points in a broader
space of possible theories. One approach to doing this, pioneered by Abramsky and Coecke, is to abstract
the essential categorical features of classical and quantum mechanics that support various information-
theoretic constraints and possibilities, e.g., the impossibility of cloning in the latter, and the possibility of
teleportation in both. Another approach, pursued by the authors and various collaborators, is to begin
with a very conservative, and in a sense very concrete, generalization of classical probability theory – which
is still sufficient to encompass quantum theory – and to ask which “quantum” informational phenomena
can be reproduced in this much looser setting. In this paper, we review the progress to date in this second
programme, and offer some suggestions as to how to link it with the categorical semantics for quantum
processes offered by Abramsky and Coecke.
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1 Introduction

The advent of quantum information theory has been accompanied by a resurgence

of interest in the convex (or ordered linear spaces) framework for operational the-

ories, as researchers seek to understand the nature of information processing in
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increasingly abstract terms, both in order to illuminate the sources of the differ-

ence between the information processing power of quantum versus classical theory,

and because quantum information has occasioned renewed interest in foundational

aspects of quantum theory, often with the new twist that axioms or principles con-

cerning information processing are considered. A representative (but by no means

exhaustive) sample of work in this vein might include the work of Hardy [14,15],

D’Ariano [12], and Barrett [9].

At the same time, a fascinating and illuminating categorical approach to the

formulation of quantum physics has crystallized around the notions of compact

closed and dagger compact closed categories that exhibit key features of quantum

theory, but allow many other models as well. The main work along these lines has

been done by Abramsky and Coecke [2], by Selinger [19,20], and by Baez [3].

In [2], Abramsky and Coecke established that many of the most striking phe-

nomena associated with quantum information processing – notably, various forms

of teleportation – arise much more generally in any compact closed category, in-

cluding, for instance, the category of sets and relations. An important observation

here is that the unit and co-unit defining a dual object in such a category can be in-

terpreted as a teleportation protocol. On the other hand, working in the much more

concrete but structurally much looser convex framework (in which essentially arbi-

trary compact convex sets serve as abstract state spaces), our coauthors (Jonathan

Barrett and Matthew Leifer) and we have shown ([3]-[5]) that many of the same

phenomena – in particular, many aspects of entanglement, as well as no-cloning and

no-broadcasting theorems – are quite generic features of probabilistic models. In

this framework, the existence of a teleportation protocol is a nontrivial constraint,

moving one somewhat closer to quantum theory; but even so, one can construct

many models of teleportation – and even of deterministic teleportation – that are

neither classical nor quantum. An important observation here is that a teleportation

protocol is just a special case of conditioning.

This paper reviews work by ourselves and various collaborators, especially Jon

Barrett, Matt Leifer, Oscar Dahlsten, Leifer, and Ben Toner, on information pro-

cessing in the ordered linear spaces framework, and then proceeds to discuss how

this work may be related to broad project of describing information-processing

using categories of processes. The work reviewed shows that certain information-

processing properties which had sometimes been taken to be “peculiarly quantum,”

are actually common to all nonclassical theories in the framework. These include

the existence of information about states which cannot be obtained without dis-

turbing them, and generalizations of the quantum no-cloning and no-broadcasting

theorems.

The impossibility of bit commitment has been suggested (for example by Bras-

sard [11] and by Fuchs [13]) as a potential fundamental information-processing

principle, shared by classical and quantum mechanics, that might, in combination

with other principles, characterize quantum mechanics. The other principles pro-

posed by Brassard and by Fuchs are the possibility of secure secret key distribution,

which is intimately connected with no-cloning, no-broadcasting, and information-
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disturbance tradeoffs and which, as we shall see, rules out classical theory, and the

impossibility of instantaneous signaling between systems (which is built into the

notion of composite system used in our version of the ordered linear spaces frame-

work). We will also present some results on bit commitment in our framework,

to the effect that all nonclassical theories that lack entanglement permit exponen-

tially secure bit commitment, and some results on how the presence in a theory of

certain kinds of entangled states can defeat the bit commitment protocol we used

for the unentangled case. Closely related states can permit teleportation, another

information-processing task whose possibility helps distinguish between classes of

nonclassical theories in our framework. We summarize some of our recent work

with Barrett and Leifer on multipartite composite systems and teleportation in the

ordered linear spaces framework. In particular, we report necessary and sufficient

conditions for a composite of three systems to support a conclusive teleportation

protocol, and interesting sufficient conditions for deterministic teleportation.

We then make some first steps towards a category-theoretic formulation of our

results. The abstract state spaces that we consider naturally form a category; how-

ever, this is far from being compact closed. For one thing, the dual of an abstract

state space is usually not, in any natural way, another state space, but a different

sort of beast altogether. Nor are our categories generally monoidal: more typically,

they support a profusion of possible mechanisms for coupling systems, bounded by a

maximal (and maximally entangled) tensor product ⊗max, and a minimal (unentan-

gled) product ⊗min. On the other hand, there are various constructions by which

one can embed our category of state spaces in a larger category of processes having

a better behaved – in particular, monoidal and self-dual – structure. Moving in the

opposite direction, one can focus on restricted categories that are, in a sense (made

precise below) “closed under teleportation”: as it happens, the entangled state and

effect corresponding to a correction-free teleportation protocol are precisely the unit

and co-unit of a duality.

Rather than building categories of processes from (categories of) abstract state

spaces, one might start from the opposite direction, by treating categories of pro-

cesses axiomatically. A natural starting point for such an effort would be to consider

categories enriched over ordered linear spaces, or over abstract state spaces. This

paper ends with a sketch of this idea. We envision such categorical formulations as

a first step toward comparing the necessary and/or sufficient conditions for various

information processing protocols or informational properties of theories, obtained

in the convex framework, with properties such as compact closure, dagger com-

pact closure, non-cartesianity and so forth that have been used in the literature

on categorical descriptions of information processing. This section of the paper has

benefited from discussions with Abramsky, Armstrong, Coecke, and others and may

be viewed as describing work early-in-progress in collaboration with at least some

of them.
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2 Abstract State Spaces

By an abstract state space, we mean a pair (A, uA) where A is a finite-dimensional

ordered real vector space, with positive cone A+, and where uA : A → R is a

distinguished linear functional, called the order unit, that is strictly positive on

A+ \ {0}. A state is normalized iff uA(α) = 1. We write ΩA for the convex set

of normalized states in A+. By way of illustration, if A is the space R
X of real-

valued functions on a set X, ordered pointwise on X, with uA(f) =
∑

x∈X f(x),

then ΩA = Δ(X), the simplex of probability weights on X. If A is the space L(H)

of hermitian operators on a (finite-dimensional) complex Hilbert space H, with

the usual operator ordering, and if uA(a) = Tr(a), then ΩA is the set of density

operators on H. On any abstract state space A, there is a canonical norm (the base

norm) such that for α ∈ A+, ‖α‖ = uA(α). For R
X , this is just the norm on X; for

L(H), it is the trace norm.

Events (e.g., measurement outcomes) associated with an abstract state space A

are represented by effects, i.e., positive linear functionals a ∈ A∗, with 0 ≤ a ≤
uA in the dual ordering. Note that 0 and uA are, by definition, the least and

greatest effects. If α is a normalized state in A – that is, if uA(α) = 1 – then we

interpret a(α) as the probability that the event represented by the effect a will occur

if measured. Accordingly, a discrete observable on A is a list (a1, ..., an) of effects

with a1 + a2 + · · · + an = uA. We represent a physical process with initial state

space A and final state space B by a positive mapping τ : A → B such that, for all

α ∈ A+, uB(τ(α)) ≤ uA(α) – equivalently, τ is norm-contractive. We can regard

‖τ(α)‖ = uB(τ(α)) as the probability that the process represented by τ takes place

in initial state α; this event is represented by the effect uB ◦ τ on A.

It is important to note that, in the framework just outlined, the state space A

and its dual space A∗ have (in general) quite different structures: A is a cone-base

space, i.e., an ordered space with a preferred base, ΩA, for A+, while A∗ is an

order-unit space, i.e., an ordered space with a preferred element in its positive cone.

Indeed, the spaces A and A∗ are generally not even isomorphic as ordered spaces.

Where there exists a linear order-isomorphism (that is, a positive linear mapping

with positive inverse) between A and A∗, we shall say that A is weakly self-dual.

Where this isomorphism induces an inner product on A such that A+ = {b ∈
A|〈b, a〉 ≥ 0 ∀a ∈ A+}, we say that A is self-dual. Finite dimensional quantum and

classical state spaces are self-dual in this sense. A celebrated theorem of Vinberg

and Koecher [8,9] tells us that if A is an irreducible, finite-dimensional self-dual

state space, and if the group of affine automorphisms of A+ acts transitively on the

interior of A+, then the space ΩA of normalized states is affinely isomorphic to the

set of density operators on an n-dimensional Hilbert space, or to a ball, or to the

set of 3× 3 trace-one positive matrices over the octonions.

3 Composite Systems

For our purposes, it will be convenient to identify the tensor product, A⊗B, of two

state spaces with the space B(A∗, B∗) of bilinear forms on A∗×B∗, interpreting the
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pure tensor α⊗β of states α ∈ A, β ∈ B as the form given by (α⊗β)(f, g) = f(α)g(β)

where f ∈ A∗, g ∈ B∗. We call a form ω ∈ A ⊗ B positive iff ω(a, b) ≥ 0 for all

(a, b) ∈ A∗
+×B∗

+. If ω is positive and ω(uA, uB) = 1, then ω(a, b) can be interpreted

as a joint probability for effects a ∈ A∗ and b ∈ B∗. Conversely, one can show (see [4]

and [10]) that any assignment of joint probabilities consistent with a no-signalling

requirement must be bilinear. Thus, the most general model of a composite of A

and B consistent with such a requirement, is the space A⊗B, ordered by the cone

of all positive forms, and with order unit given by uA ⊗ uB : ω �→ ω(uA, uB). This

gives us an abstract state space, which we term the maximal tensor product of A

and B, and denote A ⊗max B. At the other extreme, we might wish to allow only

product states α ⊗ β, and mixtures of these, to count as bipartite (normalized)

states. This gives us the minimal tensor product, A ⊗min B. These coincide if A

and B are classical – that is, if ΩA and ΩB are simplices [11]; in general, however,

the maximal tensor product allows many more states than the minimal. A state in

ΩA⊗maxB not belonging to ΩA⊗minB is entangled.

More generally, we define a composite of A and B to be any state space AB

consisting of bilinear forms on A∗ × B∗, ordered by a cone AB+ of positive forms

containing every product state α ⊗ β, where α ∈ ΩA and β ∈ ΩB – equivalently,

AB is a composite iff A⊗minB ≤ AB ≤ A⊗maxB (where, for abstract state spaces

A and B, A ≤ B means that A is a subspace of B, that A+ ⊆ B+, and that uA
is the restriction of uB to A.) More generally still, a composite of n state spaces

A1, ..., An is a state space A of n-linear forms on A∗
1×· · ·×A∗

n, ordered by any cone

of positive forms containing all product states.

4 Information-disturbance tradeoffs

With Barrett and Leifer, we have shown (as described in [9]) that in nonclassical

theories, the only information that can be obtained about the state without dis-

turbing it is inherently classical information—information about which of a set of

irreducible direct summands of the state cone the state lies in. Call a positive map

T : A → A nondisturbing on state ω if T (ω) = cωω for some positive constant

cω that in principle could depend on the state. Say such a map is nondisturbing

if it is nondisturbing on all pure states. 4 Nevertheless, a norm-nonincreasing map

nondisturbing in this sense is precisely the type of map that can appear associated

with some measurement outcome in an operation that, averaged over measurement

outcomes, leaves the state unchanged.

A cone C in a vector space V is a direct sum of cones D and E if D and E

span disjoint (except for 0) subspaces of V , and every element of C is a positive

combination of vectors in D and E. A cone is irreducible if if it is not a nontrivial

direct sum of cones. Every finite-dimensional cone is uniquely expressible as a direct

sum C = ⊕iCi of irreducible cones Ci. Information about which of the summands

4 Of course if we condition on information obtained, this definition permits mixed states to be disturbed by
a nondisturbing map—that can be viewed as something like an inevitable “epistemic” disturbance associated
with obtaining information.
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a state is in should be thought of as “inherently classical” information about the

state.

Theorem 4.1 The nondisturbing maps on a cone that is a sum C = ⊕iCi of

irreducible Ci, are precisely the maps M =
∑

i ciidi, where idi is the identity operator

on the summand Vi and the zero operator elsewhere, and ci are arbitrary nonnegative

constants.

So for a nondisturbing map, cω can depend only on the irreducible component

a state is in. That is, the fact that a nondisturbing map has occurred can give us

no information about the state within an irreducible component: in other words,

as claimed, only inherently classical information is contained in the fact that a

nondisturbing map has occurred.

The existence of information that cannot be obtained without disturbance is

often taken to be the principle underlying the possibility of quantum key distribu-

tion, so the fact that it is generic in nonclassical theories in the framework leads

us (with Barrett and Leifer) to conjecture that secure key distribution, given an

authenticated public channel, is possible in all nonclassical models.

4.1 No-cloning and no-broadcasting theorems

The security of quantum key distribution is also often ascribed to the quantum

no-cloning or no-broadcasting theorem—certainly no-cloning is at least necessary

for security. A map T : A → A ⊗ A clones a state ω if T (ω) = ω ⊗ ω. A set S of

normalized states can be (deterministically) cloned if there is a single dynamically

allowed map T that clones every ω ∈ S.

No-cloning can be closely related to the information-disturbance principle, by

an argument introduced in the quantum context but that generalizes to our setting,

since if two non-identical states in the same irreducible component of a cone could be

cloned, we could—by, for instance, doing an informationally complete measurement

on the clone—obtain information about which state we have without disturbing it,

contradicting our information-disturbance theorem.

In quantum mechanics, only orthogonal sets of states—sets S such that for all

pairs ρ, σ ∈ S, ρσ = 0—can be cloned [6]. As a special case of this, in a classical

probability theory with a finite sample space, properly mixed states (distributions)

cannot be cloned. Because of this, and because it is natural to consider commuting

rather than mutually orthogonal sets of density matrices to be “classical subsets” of

the quantum states of a system, [6] introduced the notion of broadcasting in order

to better pick out classical subsets of the state spaces of quantum systems. A map

T : A → A⊗ A broadcasts a state ω if both marginals of T (ω) are equal to ω; thus

this notion allows correlation, or even entanglement, in the broadcast state. This is

to be contrasted with the mixed-state extension of the notion of cloning for which

we used the term “cloning” above, which produces a product state. Of course, the

notion of broadcasting also extends, in a different way, the notion of cloning pure

states, since it reduces to cloning on pure states. A set S of states is broadcastable

if there is a norm-preserving dynamical map T that broadcasts all the states in S
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(i.e. the same map broadcasts all the states).

The no-broadcasting theorem [6] asserts that it is precisely the mutually commut-

ing sets of quantum states that can be broadcast using completely positive maps.

Recently, with Barrett and Leifer we have shown [4].

Theorem 4.2 In an arbitrary convex operational theory in our framework, a set

S ⊆ Ω of states is broadcastable if, and only if, it is contained in a simplex Δ ⊆ Ω

whose vertices are distinguishable by a single measurement. For each positive map

B : V → V ⊗ V , the set of states it broadcasts is precisely such a simplex.

This combines Theorems 2 and 3 of [4]. It can be interpreted as saying that

broadcastable sets of states are classical sets of states—but the sort of classicality

involved is different from the inherent classicality of the information that can be

obtained without disturbance.

The proof of the theorem uses a generalized no-cloning theorem, also proved

in [4], to the effect that a set of states is clonable if, and only if, the states in it

are all distinguishable from each other simultaneously via a one-shot measurement.

Given this, proving Theorem 4.2 reduced to proving that a broadcastable set of

states is contained in (and the states broadcast by B are precisely) the convex hull

(necessarily a simplex) of a clonable set of states. The proof of the no-cloning re-

sult is essentially to show that if one can clone a set of states, one can distinguish

them by repeatedly cloning to create many independent copies, performing an in-

formationally complete measurement on each copy, and using the statistics of the

measurement results to identify the state. Conversely if one can distinguish the

states, one can clone them using a map that, conditional on distinguishing state ω,

prepares ω ⊗ ω. More precisely: for any ω there is a norm-nonincreasing positive

map Prepω that prepares ω, i.e. outputs ω no matter what normalized state goes

in. The cloning map is
∑

i Prepωi⊗ωi ◦ Ti, where {Ti} are a set of maps such that

the effects u ◦ Ti are a measurement distinguishing the ρi ∈ S; such a measurement

must exist by our assumption the ρi were one-shot distinguishable, and we assumed

as part of our general framework that every effect has at least one associated map

Ti. One immediately sees that this map that clones the ωi will also broadcast any

state in the convex hull of the ωi, giving us the easy direction of the generalized

no-broadcasting theorem.

5 Nonuniqueness of extremal decomposition, and bit
commitment in unentangled theories

Quantum theory has mixed states whose representation as a convex combination

of pure states is not unique. So do all nonclassical theories: uniqueness of the de-

composition of mixed states into pure states is an easy characterization–sometimes

used as a definition—of simplices (see, for example, the proof in [8]). While we are

not aware of any quantum information processing task whose possibility is directly

traced to the non-unique decomposability of mixed states into pure, this was cer-

tainly proposed as a possible basis for quantum bit commitment schemes, though (as
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shown in [10] for their proposed scheme, and in [18,17] for more elaborate schemes)

these schemes do not work because of entanglement.

In [7] it is shown that the existence of bit commitment protocols is universal

in nonclassical theories, provided that the tensor products used do not permit en-

tanglement. Consider a theory generated by a finite set Σ of “elementary” systems

modeled by finite-dimensional abstract state spaces, containing at least one non-

classical system, and closed under the minimal, or separable, tensor product, which

we write with the ordinary tensor product symbol ⊗.

The protocol. Let a system have a non-simplicial, convex, compact state space Ω

of dimension d, embedded as the base of a cone of unnormalized states in a vector

space V of dimension d + 1. The protocol uses a state μ that has two distinct

decompositions into finite disjoint sets {μ0
i }, {μ1

j} of exposed states, that is,

ω =

N0∑
i=1

p0iμ
0
i =

N1∑
j=1

p1jμ
1
j ,(1)

A state μb
i is exposed if there is a measurement outcome abi that has probability 1

when, and only when, the state is μb
i ; the protocol exists for all nonclassical systems

because, as we show, any non-simplicial convex set of affine dimension d always has

a state ω with two decompositions (as above), into disjoint set of states whose total

number N0 +N1 is d+1 (the disjointness and the bound on cardinality are used in

the proof of exponential security).

In the honest protocol, Alice first decides on a bit b ∈ {0, 1} to commit to. She

then draws n samples from pb, obtaining a string x = (x1, x2, . . . , xn). To commit,

she sends the state μb
x = μb

x1
⊗ μb

x2
⊗ . . .⊗ μb

xn
to Bob. To reveal the bit, she sends

b and x to Bob. Bob measures each subsystem of the state he has. On the k-th

subsystem, he performs a measurement, (which will depend on b) containing the

distinguishing effect for μb
xk

and rejects if the result is not the distinguishing effect.

If he obtains the appropriate distinguishing effect for every system, he accepts. The

protocol is perfectly sound (if Alice is honest, Bob never accuses her of cheating

and always obtains the correct bit), perfectly hiding (if Alice is honest, Bob cannot

gain any information about the bit until Alice reveals it), and has an exponentially

low probability of Alice’s successfully cheating.

6 Conditioning and teleportation protocols

If AB is a composite of state spaces A and B, we can define, for any normalized

state ω ∈ AB+ and any effect a ∈ A, both a marginal state ωA(−) = ω(−, uB) and a

conditional state ωB|a(b) = ω(a, b)/ωA(a) (with the usual proviso that if ωA(a) = 0,

the conditional state is also 0). We shall also refer to the partially evaluated state

ωB(a) := ω(a,−) as an un-normalized conditional state.

More generally, if A is a composite of state spaces A1, ..., An, with order-units

u1, ..., un, then for all subsets J ⊆ {1, ..., n}, and all a := (ai) ∈ Πi �∈JA∗
i , we can

define an un-normalized conditional state – that is, a partially evaluated state –

ωa
J , a |J |-linear form on Πj∈JA∗

j . We define the J-th subsystem to the the ordered
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space spanned by the cone generated by these conditional states, with order unit

uJ := ⊗j∈Juj . We call A a regular composite iff it is closed under taking products

of such multi-partite conditional states. All state spaces constructed from a single,

associative, bilinear product are regular, but one can also build regular composites

using “mixed” constructions. For instance, it is not difficult to show that A ⊗min

(B ⊗max C) is a regular composite of A,B and C. An example of a non-regular

composite is (A⊗min B)⊗max (C ⊗min D) where A,B,C and D are four copies of

a weakly self-dual, but non-classical, state space.

A state ω ∈ AB gives rise to a positive operator ω̂ : A∗ → B, given by ω̂(a)(b) =

ω(a, b). We can regard ω̂(a) as an “un-normalized” conditional state. As a partial

converse, any positive operator ψ : A∗ → B with ψ(uA) ∈ ΩB – that is, with

ψ∗(uB) := uB ◦ ψ = uA – corresponds to a state in the maximal tensor product

A ⊗max B. Dually, any effect f ∈ (AB)∗ yields an operator f̂ : A → B∗, given by

f̂(α)(β) = f(α ⊗ β); and any positive operator φ : A → B∗ with φ(α) ≤ uB for

all α ∈ ΩA – that is, with ‖φ‖ ≤ 1 – corresponds to an effect in (A ⊗min B)∗. We

have the following result (easily verified by checking that it holds for elementary

tensors):

Lemma 6.1 Let ABC be a regular composite. If f is an effect in (AB)∗ and ω is

a state in BC, then, for any α ∈ A,

(α⊗ ω)Bf = ‖ω̂ ◦ f̂(α)‖ω̂(f̂(α)).(2)

If ABC is in a state α ⊗ ω, with α unknown, then conditional on securing

measurement outcome f on A⊗B, the state of C is, up to normalization, a known

function of α. We call this remote evaluation. This is very like a teleportation

protocol. Indeed, suppose that C is a copy of A, and that η : A → C is a specified

isomorphism allowing us to match up states in the former with those in the latter:

Definition 6.2 With notation as above, (f, ω) is a (one-outcome, post-selected)

teleportation protocol iff there exists a positive, norm-contractive correction map

τ : C → C such that, for all α ∈ A, τ(α⊗ ω)Cf = η(α). 5

By Lemma 6.1, the un-normalized conditional state of α⊗ω is exactly ω̂(f̂(α)).

If we let μ := ω̂◦f̂ , the normalized conditional state can be written as μ(α)/u(μ(α)).

Thus, (f, ω) is a teleportation protocol iff there exists a norm-contractive mapping

τ with (τ ◦ μ)(α) = ‖μ(α)‖η for all α ∈ ΩA.

Theorem 6.3 With notation as above, (f, ω) is a teleportation protocol iff μ := ω̂◦f̂
is proportional to an isomorphism (A, uA) � (C, uC); in this case, the correction

τ : (C, uC) � (C, uC) is also an isomorphism.

Henceforth, we simply identify C with A, suppressing η. Note that if (f, ω) is

a teleportation protocol on a regular composite ABA of A, B and (a copy of) A,

then, as f lives in (AB)∗ ≤ (A ⊗min B)∗ and ω lives in BA ≤ B ⊗max C, one can

also regard (f, ω) as a teleportation protocol on A⊗min (B ⊗max A).

5 One could also allow protocols in which the correction has a nonzero probability to fail. For details, see
[5].
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Theorem 6.4 A⊗min(B⊗maxA) supports a conclusive teleportation protocol iff A1

is order-isomorphic to the range of a compression (a positive idempotent mapping)

P : A∗
2 → A1.

Corollary 6.5 If A can be teleported through a copy of itself, then A is weakly

self-dual.

In order to deterministically teleport an unknown state α ∈ A through B, we

need not just one entangled effect f , but an entire observable’s worth. Here, we

specialize to the case in which ABC = A⊗min (B ⊗max C):

Definition 6.6 A deterministic teleportation protocol for A through B consists of

an observable E = (f1, ..., fn) on A ⊗ B and a state ω in B ⊗ A, such that for all

i = 1, ..., n, the operator f̂i ◦ ω̂ is physically invertible.

The following result provides a sufficient condition (satisfied, e.g., by any state

space A with ΩA a regular polyhedron) for such a protocol to exist.

Theorem 6.7 Let A = B. Suppose that G is a finite group acting transitively on

the pure states of A, and let ω be a state such that ω̂ is a G-equivariant isomorphism.

For all g ∈ G, let fg ∈ (A⊗max A)
∗ correspond to the operator

f̂g =
1

|G| ω̂
−1 ◦ g.

Then E = {fg|g ∈ G} is an observable, and (E,ω) is a deterministic teleportation

protocol.

7 Categories of Abstract State Spaces

If an abstract state space and its dual “effect space” provide an abstract proba-

bilistic model, one should like to say that a probabilistic theory is a class of such

models, closed under appropriate operations. To make this systematic, one should

consider categories of state spaces. Let Asp denote the category whose objects are

finite-dimensional abstract state spaces (A, uA), and whose morphisms are norm-

contractive positive linear mappings. This category has a preferred object I = R,

ordered as usual, with uI = 1 and ΩI = {1}. For any A in Asp, there is a preferred

morphism, namely uA, from A to I. (Indeed, the mappings τ �→ uA ◦ τ define a

natural transformation Asp(−, A) → Asp(−, I).) We can model effect spaces, i.e.,

dual state spaces, by Hom sets Asp(A, I). However, as remarked above, there is no

natural internal duality for Asp; nor is Asp naturally a monoidal category, owing

to the the existence of two canonical tensor products ⊗max and ⊗min. These inter-

act in a way that will be familiar to linear-logicians, namely, for any state spaces

A, B and C, there is a canonical embedding

A⊗min (B ⊗max C) ≤ (A⊗min B)⊗max C.

Thus, we can regard (Asp,⊗min,⊗max) as a linearly distributive category [6]

(albeit without negation). As to duality, there are various constructions whereby

a useful self-duality can be supplied. Applied to Asp, these result in what may
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be regarded as categories of process spaces. To take the simplest case, consider the

category C2 = C ×C, i.e., the category whose objects are ordered pairs (A,B) of

state spaces in Asp, and in which

C2((A,B), (C,D)) = C(C,A)×C(B,D),

with composition defined in the obvious way. 6 The idea is that the pair (A,B)

represents a space of possible processes from A to B, and that a pair f : C → A,

g : B → D takes a process τ : A → B to the process g ◦ τ ◦ f . Indeed, the

functor (A,B) �→ C(A,B) endows C2 with exactly this interpretation. Thus, (A, I)

encodes A∗, while (I, A) encodes A. Thus, C2 allows us to consider state spaces

and effect spaces on an equal footing. Moreover, C2 has a natural self-duality, given

by (A,B)∗ = (B,A) and, for (f, g) ∈ C2((A,B), (C,D)),

(f, g)∗ = (g, f) ∈ C2((C,D)∗, (A,B)∗) = C2((D,C), (B,A)).

Where C is closed under both maximal and minimal tensor products (in particular,

for C = Asp), the category C2 has a natural symmetric monoidal structure given

by 7

(A,B)⊗ (C,D) = (A⊗min B,C ⊗max D).

Note that we then have the expected identity

((A,B)∗ ⊗ (C,D)∗)∗ = (A⊗max B,C ⊗min D).

Rather than enlarging the category Asp, one can also look within it for sub-

categories with a desirable structure. Let C be a subcategory of Asp. If A and B

are state spaces in C, let us agree that, as in Definition 6.2, a teleportation proto-

col for A through B consists of (i) a regular composite ABA ∈ C; and (ii) a pair

f ∈ C(AB, I), ω ∈ BA = C(I, BA) such that, for some correction τ ∈ C(A,A),

τ((f ⊗−)(−⊗ ω)) = idA.

We shall say that this protocol is correction free if τ can be taken to be the identity

morphism idA. This may look familiar. Recall that a dual for an object A in

a symmetric monoidal category (C,⊗) is an object B, together with morphisms

ηA : I → B ⊗ A (the unit) and εA : A ⊗ B → I (the co-unit) such that (here

identifying I ⊗ B and B ⊗ I with B, and suppressing the canonical association

morphism (A⊗B)⊗ C � A⊗ (B ⊗ C))

(idB ⊗ εA) ◦ (ηA ⊗ idB) = idB.

If C is a monoidal category of state spaces (that is, a sub-category of Asp equipped

with a symmetric, associative product A,B �→ AB), then η ∈ C(I, A⊗B) is simply

a positive, sub-normalized state in A ⊗ B, while εA ∈ C(A ⊗ B, I) is simply an

effect on A⊗B, and we see that this amounts to the definition of a correction-free

teleportation protocol in C.

The foregoing discussion suggest one way to make contact between the struc-

turally loose, but (so to say) ontologically rigid world of abstract state spaces, and

6 This is essentially the category Cd described in [16]
7 Another possibility for a category of processes would be to apply the Int [16] (or “GoI” [1]) construction
to Asp. We shall not pursue this here.
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the more highly structured but ontologically fluid categorical semantics of Abram-

sky and Coecke: begin with a particular category of abstract state spaces, and, from

this, construct, either by enlarging it or by paring it down, a theory having, at a

minimum, a sensible duality and monoidal structure.

It is also worth considering a different, more “top-down” approach: to proceed

axiomatically, by laying down at the outset a minimum of constraints on what could

count as a category of processes, and exploring the consequences of further require-

ments, e.g, that such a theory support teleportation, or that it not allow cloning,

or bit-commitment. Of course, this is very close to the approach of Abramsky and

Coecke and their collaborators; but we want to suggest that it may be fruitful to add

an extra structural ingredient at the outset – namely, convexity. This is naturally

captured by the notion of a category of processes enriched over ordered linear spaces.

In the operational framework, the set of states, the set of measurement outcomes,

the set of dynamics on a system or of dynamics turning one type of system into

another, are all compact convex sets determined by imposing natural normalization

conditions on convex cones of “un-normalized” states, outcomes, or dynamics, and

the convexity is motivated by saying that we should be able to prepare two states,

or perform two measurements, or implement two dynamics, conditional on the out-

come of some random event with some definite ascribed probabilities p and 1 − p,

such as the flip of a coin with known bias.

In other words, states, outcomes, and dynamics should belong to convex cones.

In a process-centred approach, we will represent states of a system A by morphisms

from a distinguished object, the “unit” (not to be confused with the “order unit”

associated with a system), measurement outcomes by morphisms from A to the

unit object, and dynamics on system A by morphisms from A to itself; dynamics

changing a system of type A to one of type B may be represented by morphisms

from A to B. The convexity requirement operationally motivated above will be

implemented in this framework by requiring all hom-sets in a category describing

an operational theory to be pointed, generating, closed convex cones; more formally,

by requiring a category describing an operational theory to be enriched over a certain

category of ordered linear spaces. This suggests the following

Definition 7.1 A convex operational category of processes is a category C enriched

over the category of finite-dimensional ordered real vector spaces, with a unit object

I, such that each object A is equipped with a distinguished morphism uA ∈ C(A, I).

In future work, this definition will be elucidated in more detail. We intend

it, and related categorical formulations of convex operational theories that we and

collaborators are embarked on, to enable the comparison of the categorical formu-

lation of information-processing centred around dagger compact closed categories,

with the convex operational formalism. In the convex formalism, we have been

concerned with obtaining necessary and/or sufficient conditions for the possibility

of particular kinds of information processing, such as the ones we have reviewed in

this paper. In some cases, it appears these conditions may be weaker than those

employed in existing categorical constructions. We hope that the project of cat-
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egorifying the convex approach (and convexifying the categorical approach!) may

shed more light on categorically formulated necessary and sufficient conditions for

various information-processing protocols (about which much, especially sufficient

conditions, is known already), in part by enabling us to abstract from some of the

more concrete content of the convex formalism while retaining some of its structural

looseness.
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