
Artificial Intelligence 191–192 (2012) 42–60

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector
Contents lists available at SciVerse ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

On minimal constraint networks ✩

Georg Gottlob

Department of Computer Science and Oxford Man Institute, University of Oxford, Oxford OX1 3QD, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 May 2012
Received in revised form 26 July 2012
Accepted 28 July 2012
Available online 31 July 2012

Keywords:
Constraints
Minimal network
Complexity
Join decomposition
Structure identification
Database theory
Knowledge compilation

In a minimal binary constraint network, every tuple of a constraint relation can be
extended to a solution. The tractability or intractability of computing a solution to
such a minimal network was a long standing open question. Dechter conjectured this
computation problem to be NP-hard. We prove this conjecture. We also prove a conjecture
by Dechter and Pearl stating that for k � 2 it is NP-hard to decide whether a single
constraint can be decomposed into an equivalent k-ary constraint network. We show
that this holds even in case of bi-valued constraints where k � 3, which proves another
conjecture of Dechter and Pearl. Finally, we establish the tractability frontier for this
problem with respect to the domain cardinality and the parameter k.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

This paper deals with problems related to minimal constraint networks. First, the complexity of computing a solution to
a minimal network is determined. Then, the problems of recognizing network minimality and network-decomposability are
studied.

1.1. Minimal constraint networks

In his seminal 1974 paper [26], Montanari introduced the concept of a minimal constraint network. Roughly, a minimal
network is a constraint network where each partial instantiation corresponding to a tuple of a constraint relation can be
extended to a solution. Each arbitrary binary network N having variables {X1, . . . , Xv} can be transformed into an equivalent
binary minimal network M(N) by computing the set sol(N) of all solutions to N and creating for 1 � i < j � v a constraint
ci j whose scope is (Xi, X j) and whose constraint relation consists of the projection of sol(N) to (Xi, X j), and for 1 � i � v
a unary constraint ci whose scope is (Xi) and whose constraint relation is the projection of sol(N) over (Xi). The minimal
network M(N) is unique, and its solutions are exactly those of the original network, i.e., sol(N) = sol(M(N)).

An example of a binary constraint network N is given in Fig. 1(a). This network has four variables X1, . . . , X4 which,
for simplicity, all range over the same numerical domain {1,2,3,4,5}. Its solution, sol(N), which is the join of all relations
of N , is shown in Fig. 1(b). The minimal network M(N) is shown in Fig. 1(c).

Obviously, M(N), which can be regarded as an optimally pruned version of N , is hard to compute. But computing M(N)

may result in a quite useful knowledge compilation [21,5]. In fact, with M(N) at hand, we can answer a number of queries

✩ This paper is a significantly extended version of a paper with the same title presented at the 17th International Conference on Principles and Practice
of Constraint Programming (Gottlob, 2011, [17]). The present paper contains new results in addition to those of Gottlob (2011) [17]. Possible future updates
will be made available on CORR at http://arxiv.org/abs/1103.1604.

E-mail address: georg.gottlob@cs.ox.ac.uk.
0004-3702/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.artint.2012.07.006

https://core.ac.uk/display/82500651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.artint.2012.07.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
http://arxiv.org/abs/1103.1604
mailto:georg.gottlob@cs.ox.ac.uk
http://dx.doi.org/10.1016/j.artint.2012.07.006

G. Gottlob / Artificial Intelligence 191–192 (2012) 42–60 43
Fig. 1. A binary constraint network N , it solution sol(N), and its minimal network M(N).

in polynomial time that would otherwise be NP-hard. Typically, these are queries that involve one or two variables only,
for example, the queries “is there a solution for which X4 � 3?” or “does N have a solution for which X2 < X1?” are affirmatively
answered by a simple lookup in the relevant tables of M(N). For the latter query, for example, one just has to look into
the first relation table of M(N), whose tuple 〈2,1〉 constitutes a witness. In contrast, in our example, the query “is there
a solution for which X1 < X4?” is immediately recognized to have a negative answer, as the fourth relation of M(N) has
no tuple witnessing this inequality. An example of a slightly more involved non-Boolean two-variable query that can be
polynomially answered using M(N) is: “what is the maximal value of X2 such that X4 is minimum over all solutions?”. Again, one
can just “read off” the answer from the single relation of M(N) whose variables are those of the query. In our example in
Fig. 1, it is the penultimate relation of M(N), that can be easily used to deduce that the answer is 2.

1.2. Computing solutions to minimal constraint networks

In applications such as computer-supported interactive product configuration, such queries arise frequently, but it would
be useful to be able to exhibit at the same time a full solution together with the query answer, that is, an assignment of
values to all variables witnessing this answer. However, it was even unclear whether the following problem is tractable:
Given a non-empty minimal network M(N), compute an arbitrary solution to it. Gaur [11] formulated this as an open
problem. He showed that a stronger version of the problem, where solutions restricted by specific value assignments to a
pair of variables are sought, is NP-hard, but speculated that finding arbitrary solutions could be tractable. However, since the
introduction of minimal networks in 1974, no one came up with a polynomial-time algorithm for this task. This led Dechter
to conjecture that this problem is hard [8]. Note that this problem deviates in two ways from classical decision problems:
First, it is a search problem rather than a decision problem, and second, it is a promise problem, where it is “promised” that

44 G. Gottlob / Artificial Intelligence 191–192 (2012) 42–60
the input networks, which constitute our problem instances, are indeed minimal – a promise whose verification is itself
NP-hard (see Section 4.1). We therefore have to clarify what NP-hardness means, when referring to such problems. The
simplest and probably cleanest definition is the following: The problem is NP-hard if any polynomial algorithms solving it
would imply the existence of a polynomial-time algorithm for NP-hard decision problems, and would thus imply P = NP. In
the light of this, Dechter’s conjecture reads as follows:

Conjecture 1.1. (See Dechter [8].) Unless P = NP, computing a single solution to a non-empty minimal constraint network cannot be
done in polynomial time.

While the problem has interested a number of researchers, it has not been solved until recently. Some progress was made
by Bessiere in 2006. In his well-known handbook article “Constraint Propagation” [4], he used results of Cros [6] to show
that no backtrack-free algorithm for computing a solution from a minimal network can exist unless the Polynomial Hierarchy
collapses to its second level (more precisely, unless Σ

p
2 = Π

p
2). However, this does not mean that the problem is intractable.

A backtrack-free algorithm according to Bessiere must be able to recognize each partial assignment that is extensible to
a solution. In a sense, such an algorithm, even if it computes only one solution, must have the potential to compute all
solutions just by changing the choices of the variable-instantiations made at the different steps. In more colloquial terms,
backtrack-free algorithms according to Bessiere must be fair to all solutions. Bessiere’s result does not preclude the existence
of a less general algorithm that computes just one solution, while being unable to recognize all partial assignments, and
thus being unfair to some solutions.

The simple example in Fig. 1, by the way, shows that the following naïve backtrack-free strategy is doomed to fail: Pick
an arbitrary tuple from the first relation of M(N), expand it by a suitable tuple of the second relation, and so on. In fact,
if we just picked the first tuple 〈1,1〉 of the first relation, we could combine it with the first tuple 〈1,1〉 of the second
relation and obtain the partial instantiation X1 = X2 = X3 = 1. However, this partial instantiation is not part of a solution,
as it cannot be expanded to match any tuple of the third relation. While this naïve strategy fails, one may still imagine the
existence of a more sophisticated backtrack-free strategy, that pre-computes in polynomial time some helpful data structure
before embarking on choices. However, as we show in this paper, such a strategy cannot exist unless NP = P.

In the first part of this paper, we prove Dechter’s conjecture by showing that every polynomial-time search algorithm A
that computes a single solution to a minimal network can be transformed into a polynomial-time decision algorithm A∗
for the classical satisfiability problem 3SAT. The proof is carried-out in Section 3. We first show that each SAT instance can
be transformed in polynomial time into an equivalent one that is highly symmetric (Section 3.1). Such symmetric instances,
which we call k-supersymmetric, are then polynomially reduced to the problem of computing a solution to a minimal binary
constraint network (Section 3.2). We further consider the case of bounded domains, that is, when the input instances are
such that the cardinality of the overall domain of all values that may appear in the constraint relation is bounded by some
fixed constant c. By a simple modification of the proof of the general case, it is easily seen that even in the bounded domain
case, the problem of computing a single solution remains NP-hard (Section 3.3).

Our hardness results for computing relations can be reformulated in terms of database theory. Every constraint net-
work N can be seen as a relational database instance, where each constraint of N corresponds to a single relation instance.
The set sol(N) of all solutions to a binary constraint network (or database instance) N is identical to the relation obtained
by performing the natural join of all relation instances of N . The minimal network M(N) is then a lossless decomposition
of sol(N) according to the join dependency ∗[S], where S is the schema of M(N). Our main hardness result thus implies
that it is coNP-hard to recover an arbitrary single tuple of a relation instance R (called a universal relation) from its lossless
decomposition according to a given single join dependency, when only this decomposition is given. Lossless decompositions
and universal relations have been studied for many decades, and they were recently related to hidden variable models in
quantum mechanics [1,2].

1.3. Minimality checking and structure identification

In Section 4.1, we generalize and slightly strengthen a result by Gaur [11] by showing that it is NP-hard to determine
whether a k-ary network is minimal, even in case of bounded domains.

In Section 4.2, we study the complexity of checking whether a network N consisting of a single constraint relation
(typically of arity � k) can be represented by an equivalent k-ary constraint network. Note that this is precisely the case
iff there exists a k-ary minimal network M equivalent to N , i.e., one such that sol(M) = sol(N). Dechter and Pearl [9]
regarded this problem as a relevant complexity problem of structure identification for relational data, i.e., of checking whether
an element of a general class of objects (in this case, data relations) belongs to a structurally simpler subclass (in this case,
k-decomposable relations). This problem is equivalent to the database problem of testing whether a given instance of a data
relation satisfies a specific join dependency. Dechter and Pearl conjectured that the problem is NP-hard for k � 2. We prove
this conjecture by showing the problem to be coNP-complete for each k � 2.

A special case considered in [9] is the one of bi-valued constraints, that is, constraints over the Boolean domain. For bi-
valued constraints, the above structure identification problem is equivalent to testing whether a Boolean formula represented
by the explicit list of all its models is equivalent to a k-CNF. For k = 2 this problem is known to be tractable (see [7,11]).
Dechter and Pearl [9] conjectured it to be NP-hard for every fixed k > 2. In Section 4.3 we prove this conjecture and show

G. Gottlob / Artificial Intelligence 191–192 (2012) 42–60 45
that deciding whether bi-valued relations are k-decomposable is coNP-complete for each fixed k > 2. Moreover, we show in
Section 4.4 that the representability of tri-valued constraints (and more generally r-valued constraints for r � 3) as a k-ary
network is coNP-hard for each fixed k � 2. Put together, our results allow us to trace the precise tractability frontier for the
problem of relational structure identification in terms of the domain cardinality and the parameter k. This is visualized in
Fig. 3 in Section 4.4.

The paper is concluded in Section 5 by a brief discussion of the practical significance of our main result, a proposal for
the enhancement of minimal networks, and some hints at possible future research.

2. Preliminaries and basic definitions

While most of the definitions in this section are adapted from the standard literature on constraint satisfaction, in
particular [8,4], we sometimes use a slightly different notation which is more convenient for our purposes.

Constraints, networks, and solutions We assume a totally ordered infinite set (X,≺) of variables. For Xi, X j ∈ X, Xi ≺ X j
means that Xi is smaller than X j according to the “≺” ordering. We assume that all variables of constraint networks are
from this set. A k-ary constraint c is a pair (scope(c), rel(c)). The scope scope(c) of c is a sequence (Xi1 , Xi2 , . . . , Xik) of k
distinct variables from X, where Xi1 ≺ Xi2 ≺ · · · ≺ Xik , and where each variable Xi j has an associated finite domain dom(Xi j).
The relation rel(c) of c is a subset of the Cartesian product dom(Xi1) × dom(Xi2) × · · · × dom(Xik). The set {Xi1 , . . . , Xik } of
all variables occurring in scope(c) is denoted by var(c). Given that each set of variables is totally ordered by ≺, we shall
identify each set U of variables, whenever convenient, with the list �U of its elements ordered according to ≺. We thus
may write scope(c) = U instead of scope(c) = �U . More generally, since the concepts of lists of distinct elements and ordered
sets coincide, we may use set-theoretic notation to express facts about such lists. For example, if s denotes a scope, we
may write Xi ∈ s to express that Xi is a variable in this scope. If, moreover, U denotes a list (or even an unordered set) of
variables, we may write s ⊆ U to say that each variable of s is also an element of U , and so on.

A constraint network N consists of a finite set var(N) = {X1, . . . , Xv} of variables with associated domains dom(Xi) for
1 � i � v , and a set of constraints cons(N) = {c1, . . . , cm}, where for 1 � i � m, var(ci) ⊆ var(N).

If U ⊆ var(N) is a set of variables, then dom(U) = ⋃
X∈U dom(X). The domain dom(N) of a constraint network N is

defined by dom(N) = dom(var(N)). The schema of N is the set schema(N) = {scope(c) | c ∈ cons(N)} of all scopes of the
constraints of N . If S is a schema, then var(S) denotes the set of all variables in the scopes of S . In particular, if S is the
schema of network N , we have var(S) = var(N). We call N binary (k-ary) if arity(c) � 2 (arity(c) � k) for each constraint
c ∈ cons(N).

Let N be a constraint network. An instantiation mapping for a set of variables W ⊆ var(N) is a mapping θ : W −→
dom(W), such that for each X ∈ var(N), θ(X) ∈ dom(X). We call θ(W) an instantiation of W . An instantiation of a proper
subset W of var(N) is called a partial instantiation while an instantiation of var(N) is called a full instantiation (also total
instantiation). A constraint c of N is satisfied by an instantiation mapping θ : W −→ dom(W) if whenever var(c) ⊆ W ,
then θ(scope(c)) ∈ rel(c). An instantiation mapping θ : W −→ dom(W) is consistent if it is satisfied by all constraints. By
abuse of terminology, if θ is understood and is consistent, then we may also say that θ(W) is consistent. A solution to a
constraint network N is a consistent full instantiation for N . The set of all solutions of N is denoted by sol(N). N is solvable
iff sol(N)
= ∅. Whenever useful, we will identify the solution set sol(N) with a single constraint whose scope is var(N)

and whose relation consists of all tuples in sol(N). We assume without loss of generality, that for each set of variables
W ⊆ var(N) of a constraint network, there exists at most one constraint c such that var(c) = W . (In fact, if there are two
or more constraints with exactly the same variables in the scope, an equivalent single constraint can always be obtained by
intersecting the constraint relations.)

Complete networks The complete schema SU
k over a set of variables U denotes the schema consisting of all non-empty

constraint scopes of arity at most k contained in U . For example, if U = {X1, X2}, then SU
k = {(X1), (X2), (X1, X2)}. If the

set of variables U is understood, we will write Sk instead of SU
k . A k-ary constraint network N is complete, if its schema

is Svar(N)

k . For each fixed constant k, each k-ary constraint network N can be transformed by a trivial polynomial reduction
into an equivalent complete k-ary network N+ with sol(N) = sol(N+). In fact, if � � k, then for each (ordered) set of variables
W = {Xi1 , . . . , Xi�} that is in no scope of N , we may just add the trivial constraint �W with scope(�W) = (Xi1 , . . . , Xi�) and
rel(�W) = dom(Xi1)×dom(Xi2)×· · ·×dom(Xi�). For this reason, we may, whenever useful, restrict our attention to complete
networks. Some authors, such as Montanari [26] who studies binary networks, assume by definition that all networks are
complete, others, such as Dechter [8] make this assumption implicitly.

Intersections of networks, containment, and projections Let N1 and N2 be two constraint networks defined over the same
schema S (that is, the same set S of constraint scopes). The intersection M = N1 ∩ N2 of N1 and N2 is the network having
var(M) = var(N1) = var(N2), and having a constraint cs , for each s ∈ S , such that scope(cs) = s and rel(cs) = rel(cs

1) ∩ rel(cs
2),

where c1 and c2 are the constraints having scope s of N1 and N2, respectively. The intersection of arbitrary families of
constraint networks defined over the same schema is defined in a similar way. For two networks N1 and N2 over the same
schema S , we say that c1 is contained in c2, and write N1 ⊆ N2, if for each s ∈ S , and for c1 ∈ cons(N1) and c2 ∈ cons(N2)

46 G. Gottlob / Artificial Intelligence 191–192 (2012) 42–60
with scope(c1) = scope(c2) = s, rel(c1) ⊆ rel(c2). If c is a constraint over a set of variables W = {X1, . . . , Xv} and V ⊆ W ,
then the projection ΠV (c) is the constraint whose scope is V , and whose relation is the projection over V of rel(c). Let c
be a constraint and S a schema consisting of one or more scopes contained in scope(c), then ΠS(c) = {Πs(c) | s ∈ S}.

Minimal networks Let c be a constraint with var(c) = U . The projection ΠSU
k
(c) will henceforth just denote by ΠSk (c). Thus

ΠSk (c) is the constraint network obtained by projecting c over all scopes in the schema SU
k (simply denoted by Sk), i.e.,

over all non-empty ordered lists of at most k variables from var(c). In particular, the constraints of ΠS2 (c) are precisely all
ΠW (c) such that W ⊆ var(c) is a unary or binary scope.

It was first observed in [26] that for each binary constraint network N , there is a unique binary minimal network M(N)

that consists of the intersection of all binary networks N ′ over schema S2 for which sol(N ′) = sol(N). Minimality here is
with respect to the above defined “⊆”-relation among binary networks. More generally, for each k-ary network N there is a
unique k-ary minimal network Mk(N) that is the intersection of all k-ary networks N ′ over schema Sk for which sol(N ′) =
sol(N). (For the special case k = 2 we have M2(N) = M(N).) The following is well known [26,27,8,4,19] and easy to see:

• Mk(N) = ΠSk (sol(N)).
• Mk(N) ⊆ N ′ for all k-ary networks N ′ with sol(N ′) = sol(N).

• A k-ary network N is satisfiable (i.e., has at least one solution) iff Mk(N) is non-empty.
• A k-ary network N is minimal iff ΠSk (sol(N)) = N .
• A k-ary network N is minimal iff Mk(N) = N .
• A network N over schema Sk is minimal iff there exists a universal relation ρ for N , that is, a single constraint ρ such

that N = ΠSk (ρ). In this case N is said to be join consistent (see [19]).

It is obvious that for k � 2, Mk(N) is hard to compute. In fact, just deciding whether for a network N , Mk(N) is the empty
network is coNP-complete, because this decision problem is equivalent to deciding whether N has no solution. (Recall that
deciding whether a network N has a solution is NP-complete [23].) In this paper, however, we are not primarily interested
in computing Mk(N), but in computing a single solution, in case Mk(N) has already been computed and is known.

Graph-theoretic characterization of minimal networks An n-partite graph is a graph whose vertices can be partitioned into n
disjoint sets so that no two vertices from the same set are adjacent. It is well known (see, e.g., [31]) that each binary con-
straint network N on n variables can be represented as an n-partite graph G N . The vertices of G N are possible instantiations
of the variables by their corresponding domain values. Thus, for each variable Xi and possible domain value a ∈ dom(Xi),
there is a vertex Xa

i . Two vertices Xa
i and Xb

j are connected by an edge in G N iff the relation of the constraint cN
ij with

scope (Xi, Y j) contains the tuple (a,b).1 Gaur [11] gave the following nice characterization of minimal networks: A solv-
able2 complete binary constraint network N on n variables is minimal iff each edge of N is part of a clique of size n of G N .
Note that by definition of G N as an n-partite graph, there cannot be any clique in G N with more than n vertices, and thus
the cliques of n vertices are precisely the maximum cliques of G N .

Satisfiability problems An instance C of the satisfiability (SAT) problem is a conjunction of clauses (often just written as a set
of clauses), each of which consists of a disjunction (often written as set) of literals, i.e., of positive or negated propositional
variables. Propositional variables are also called (propositional) atoms. If α is a set of clauses or a single clause, then we
denote by propvar(α) the set of all propositional variables occurring in α.

A 3SAT instance is a SAT instance each clause of which is a disjunction of at most three literals. 3SAT is the problem of
deciding whether a 3SAT instance is satisfiable.

3. NP-hardness of computing minimal network solutions

To show that computing a single solution to a minimal network is NP-hard, we will do exactly the contrary of what
people – or automatic constraint solvers – usually do whilst solving a constraint network or a SAT instance. While everybody
aims at breaking symmetries, we will actually introduce additional symmetry into a 3SAT instance and its corresponding
constraint network representation. This will be achieved by the Symmetry Lemma to be proved in the next section.

3.1. The Symmetry Lemma

The following lemma shows that, for each fixed k � 1, one can transform an arbitrary 3SAT instance C in polynomial
time into a satisfiability-equivalent highly symmetric SAT instance C∗ such that, whenever C (and thus C∗) is satisfiable,
each truth value assignment to any k variables of C∗ can be extended to a truth value assignment satisfying C∗ . Before
stating the lemma, let us formally define this notion of symmetry, which we refer to as supersymmetry.

1 We disregard unary relations of N here; in fact, each unary relation of a constraint network can be eliminated by appropriately restricting the domain
of its scope variable.

2 We here refer to solvability according to our definition; Gaur uses a different definition of this term.

G. Gottlob / Artificial Intelligence 191–192 (2012) 42–60 47
Definition 3.1. For k � 1, a SAT instance C is k-supersymmetric if C is either unsatisfiable or if for each set of k propositional
variables {p1, . . . , pk} ⊆ propvar(C) and for each arbitrary truth value assignment η to {p1, . . . , pk}, there exists a satisfying
truth value assignment τ for C that extends η. A SAT instance that is 2-supersymmetric is also called supersymmetric.

Assume k < k′ . By the above definition, if a SAT instance C is k′-supersymmetric, then C is also k-supersymmetric.
However, a k-supersymmetric SAT instance C is not necessarily also k′-supersymmetric.

Lemma 3.1 (Symmetry Lemma). For each fixed integer k � 1, there is a polynomial-time transformation T that transforms each 3SAT
instance C into a k-supersymmetric SAT instance C∗ such that C is satisfiable iff C∗ is satisfiable.

We illustrate the proof of Lemma 3.1 by an example. A full proof is given in Appendix A.

Proof. (Illustration by Example) Consider the 3SAT instance C = C1 ∧ C2 ∧ C3, where

C1 = p ∨ ¬q ∨ r

C2 = ¬p ∨ ¬q

C3 = q

Clearly, the above 3SAT instance C , while satisfiable, is not even 1-supersymmetric, and therefore, a fortiori, not
k-supersymmetric for any k � 1. To see this, observe that the partial truth value assignment assigning false to q always
falsifies clause C3, and can thus not be extended to a satisfying truth value assignment for C . In the sequel, we illustrate
how C can be transformed by a polynomial-time transformation T into a satisfiable supersymmetric SAT instance C∗ = T (C).
To this aim we introduce to each propositional variable v of C a set New(v) of five new propositional variables. In particular,
we have

New(p) = {p1, p2, p3, p4, p5},
New(q) = {q1,q2,q3,q4,q5}, and

New(r) = {r1, r2, r3, r4, r5}.
We now create C∗ from C by taking the conjunction of all clauses obtained by replacing in each clause of C each positive

literal v in all possible ways by the disjunction vi ∨ v j ∨ vk of three elements vi, v j, vk ∈ New(v), and by replacing each
negative literal ¬v in all possible ways by the disjunction ¬vi ∨ ¬v j ∨ ¬vk , where vi, v j, vk are elements of New(v). Each
clause is thus replaced by a multitude of other clauses that are all taken in conjunction. In particular, in our example,
clause C1 will actually be replaced by the conjunction of the following 1000 clauses C1

1 . . . C1000
1 :

C1
1 : p1 ∨ p2 ∨ p3 ∨ ¬q1 ∨ ¬q2 ∨ ¬q3 ∨ r1 ∨ r2 ∨ r3;

C2
1 : p1 ∨ p2 ∨ p3 ∨ ¬q1 ∨ ¬q2 ∨ ¬q3 ∨ r1 ∨ r2 ∨ r4;

C3
1 : p1 ∨ p2 ∨ p3 ∨ ¬q1 ∨ ¬q2 ∨ ¬q3 ∨ r1 ∨ r2 ∨ r5;

. .

C10
1 : p1 ∨ p2 ∨ p3 ∨ ¬q1 ∨ ¬q2 ∨ ¬q3 ∨ r3 ∨ r4 ∨ r5;

C11
1 : p1 ∨ p2 ∨ p3 ∨ ¬q1 ∨ ¬q2 ∨ ¬q4 ∨ r1 ∨ r2 ∨ r3;

. .

C1000
1 : p3 ∨ p4 ∨ p5 ∨ ¬q3 ∨ ¬q4 ∨ ¬q5 ∨ r3 ∨ r4 ∨ r5.

Similarly, clause C2 = ¬p ∨ ¬q is replaced by the following 100 clauses C1
2 . . . C100

2 :

C1
2 : ¬p1 ∨ ¬p2 ∨ ¬p3 ∨ ¬q1 ∨ ¬q2 ∨ ¬q3;

C1
2 : ¬p1 ∨ ¬p2 ∨ ¬p3 ∨ ¬q1 ∨ ¬q2 ∨ ¬q4;

.

C100
2 : ¬p3 ∨ ¬p4 ∨ ¬p5 ∨ ¬q3 ∨ ¬q4 ∨ ¬q5.

Finally, clause C3 = p is replaced by the following 10 clauses C1
3, . . . , C10

3 :

C1
3 : q1 ∨ q2 ∨ q3;

C2
3 : q1 ∨ q2 ∨ q4;

.

C10: q ∨ q ∨ q .
3 3 4 5

48 G. Gottlob / Artificial Intelligence 191–192 (2012) 42–60
The SAT instance C∗ = T (C) then consists of the conjunction of all these clauses:

C∗ = C1
1 ∧ · · · ∧ C1000

1 ∧ C1
2 ∧ · · · ∧ C100

2 ∧ C1
3 ∧ · · · ∧ C10

3 .

We claim – and formally prove in Appendix A – that the above transformation from a 3SAT instance C to a SAT in-
stance C∗ satisfies the following two key facts:

Fact 1: C∗ is satisfiable iff C is satisfiable (in our example, C∗ is thus satisfiable). In fact, each satisfiable truth value assignment τ
to the propositional variables of C can be transformed to a satisfying truth value assignment τ ∗ to C∗ as follows: If
τ (v) = true, then let τ ∗ assign true to at least three propositional variables in New(v), and false to all others, and if
τ (v) = false, then let τ ∗ assign false to at least three propositional variables in New(v), and true to all others. In our
example, for instance, consider the truth value assignment τ satisfying C , where τ (p) = false and τ (q) = τ (r) = true.
This truth value assignment satisfies r and therefore C1. The assignment τ ∗ to C∗ thus assigns true to at least three
atoms from New(r) = {r1, r2, r3, r4, r5}, assume, for example to {r1, r4, r5}. But each 3-element subset of New(r) has a
non-empty intersection with each other non-empty three element subset of New(r), and thus with the set of atoms
of each and every clause C i

1 ∈ {C1
1, . . . , C1000

1 }. Therefore, each such clause C i
1 is satisfied. For example, C1

1 has an r1 in
common with the set {r1, r4, r5}, and so must be satisfied by τ ∗ for τ ∗(r1) = true. A similar argument holds for negative
literals. Applying the same type of reasoning to all clauses Ci of C , given that each such Ci has at least one literal
satisfied by τ , all clauses C j

i of C∗ are satisfied by τ ∗ . In summary, τ ∗ satisfies C∗ . Vice versa, we show in the full proof
that if C∗ is satisfiable, then so must be C .

Fact 2: C∗ is supersymmetric. Intuitively, this is due to the great choice of truth value assignments to the propositional
variables in New(v), when constructing a satisfying assignment τ ∗ for C∗ , as above, from an assignment τ for C .
Imagine, for illustration, we’d like to construct a truth value assignment τ ∗ satisfying our example-instance C∗ , such that
τ ∗(p1) = true and τ ∗(q3) = false. Note that no truth value assignment to instance C can actually satisfy p or falsify q.
Notwithstanding, we are able to find an appropriate τ ∗ with the desired properties. We start with an arbitrary satisfying
truth value assignment τ to C , for example, the one where τ (p) = false and τ (q) = τ (r) = true. To construct τ ∗ , let us
first define τ ∗ on the elements of New(p) = {p1, . . . , p5}. According to the construction rules for τ ∗ in the previous
paragraph, given that τ (p) = false, τ ∗ must assign false to at least three elements of New(p), but not necessarily to
all elements of New(p). This leaves us the freedom of assigning true to p1. So, we can, for example, assign false to
p2, p3, p4, and p5, and true to p1. Similarly, given that τ (q) = true, τ ∗ must assign true to at least three elements
of New(q), which can be done while fulfilling at the same time our requirement that τ ∗(q3) = false. For example, let
τ ∗(q1) = τ ∗(q2) = τ ∗(q5) = true and τ ∗(q3) = τ ∗(q4) = false. Finally, the only requirement regarding the truth values
assigned by τ ∗ to the elements of New(r) is that at least three of these propositional variables be assigned true. Thus,
for example, let τ ∗(r1) = τ ∗(r2) = · · · = τ ∗(r5) = true. In summary, it is easy to see (and actually follows from Fact 1)
that the truth value assignment τ ∗ constructed this way satisfies C∗ . Moreover, τ ∗ extends the initially given partial
truth value assignment τ ∗(p1) = true and τ ∗(q3) = false. More generally, for every pair v, w of propositional variables
of C∗ , and for every truth value assignment η to {v, w}, one can construct a truth value assignment τ ∗ that extends η
and satisfies C∗ . This shows that C∗ is 2-supersymmetric, i.e., supersymmetric.

As easily seen, the transformation from an arbitrary 3SAT instance C to the corresponding C∗ is polynomial-time com-
putable. Together with Facts 1 and 2, this informally proves the Symmetry Lemma for k = 2. For k > 2, the proof is
analogous. �
Remark. The concept of supersymmetry is somewhat related to the notions of quadrangle and subquadrangle defined in [30]
and further discussed in [20]. A quadrangle is a single constraint c that is satisfied for all value assignments that assign any
arbitrary value from dom(X) to each variable X in scope(c). Thus, the constraint relation rel(c) of a quadrangle c simply
consists of a Cartesian product of domains. An n-ary constraint c is a subquadrangle if each projection of c to n − 1 or
fewer variables from scope(c) is a quadrangle. Generalizing this notion, we define a k-subquadrangle to be a constraint, all
of whose projections to k variables are quadrangles. In this context, Lemma 3.1 may be reformulated as follows: For each
k � 1, every satisfiable 3SAT instance C can be transformed to a satisfiable SAT instance C∗ whose solution relation sol(C∗)
is a k-subquadrangle.

3.2. Intractability of computing solutions

The Symmetry Lemma is used for proving our main intractability result.

Theorem 3.1. For each fixed constant k � 2, unless NP = P, computing a single solution from a minimal k-ary constraint network N
cannot be done in polynomial time. The problem remains intractable even if the cardinality of each variable-domain is bounded by a
fixed constant.

Proof. We first prove the theorem for k = 2. Assume A is an algorithm that computes in time p(n), where p is some
polynomial, a solution A(N) to each non-empty minimal binary constraint network N of size n. We will construct a
polynomial-time 3SAT-solver A∗ from A. The theorem then follows.

G. Gottlob / Artificial Intelligence 191–192 (2012) 42–60 49
Let us first define a simple transformation S from SAT instances to equivalent binary constraint networks. S transforms
conjunctions K = K1 ∧ · · · ∧ Kr of at least two clauses into binary constraint networks S(K) = NK as follows. The set of
variables var(NK) is defined by var(NK) = {K1, . . . , Kr}. For each variable Ki of NK , the domain dom(Ki) consists exactly
of all literals appearing in Ki . For each distinct pair of clauses (Ki, K j), i < j, there is a constraint ci j having scope(ci j) =
(Ki, K j) and rel(ci j) = (dom(Ki)×dom(K j))−{(p, p), (p, p) | p ∈ propvar(K)}. Moreover, for each variable Ki there is a unary
constraint ci whose scope contains the single variable Ki , such that rel(ci) = dom(Ki). It is easy to see that K is satisfiable
iff NK is solvable. Basically, NK is solvable, iff we can pick one literal per clause such that the set of all picked literals
contains no atom together with its negation. But this is just equivalent to the satisfiability of K . The transformation S is
clearly polynomial-time computable.

Now consider constraint networks NC∗ = S(C∗), where C∗ is obtained via transformation T as in Lemma 3.1 from some
3SAT instance C , i.e., C∗ = T (C). In a precise sense, NC∗ inherits the high symmetry present in C∗ . In fact, if C∗ is satisfiable,
then, by Lemma 3.1, for every pair �1, �2 of non-contradictory literals, there is a satisfying assignment that makes both
literals true. Thus, if C∗ (and thus C) is satisfiable, for every constraint ci j , we may pick each pair (�1, �2) in rel(ci j) as part
of a solution, and thus no such pair is useless. Moreover, if C∗ is satisfiable, then, clearly, each value in the relations of each
unary constraint ci is part of a solution. It follows that if C∗ – and thus C – is satisfiable, then M(NC∗) = NC∗ , which means
that NC∗ is minimal. We thus have:

(∗) If C is satisfiable then NC∗ is non-empty and minimal.

We are now ready for specifying our 3SAT-solver A∗ that works in polynomial time, and hence witnesses NP = P. Algo-
rithm A∗ is also illustrated by the flowchart in Fig. 2. The input of A∗ is a 3SAT input instance C . We here assume without
loss of generality that C has at least two clauses. A∗ works as follows:

1. Apply transformation T to C and get C∗ := T (C).
Note: C∗ is supersymmetric and C∗ is satisfiable iff C is.

2. Apply transformation S to C∗ and get NC∗ := S(C∗).
Note: NC∗ solvable ⇔ C∗ satisfiable ⇔ C satisfiable.

3. Run A on input NC∗ for p(|NC∗ |) steps; denote by w the output at this point.
Note: If C (and thus C∗) is satisfiable, then NC∗ is a solvable minimal network, and thus w is a solution to NC∗ ; otherwise NC∗ is
unsolvable, and w is the empty string or any string other than a solution to NC∗ .

4. Check if w is a solution to NC∗ .
5. If w is not a solution to NC∗ then output “C unsatisfiable” and stop.

Note: In fact, if w is not a solution to NC∗ then NC∗ is either empty or non-minimal. By the contrapositive of Fact (∗), C must then
be unsatisfiable.

6. If w is a solution to NC∗ then output “C satisfiable” and stop.
Note: If w is a solution, then NC∗ is solvable, and thus C∗ and C are satisfiable.

Each step of A∗ requires polynomial time only. The polynomial runtime of step 3 depends parametrically on the fixed
polynomial p. A∗ is thus a polynomial-time 3SAT solver. The theorem for k = 2 follows.

Fig. 2. Flowchart of the 3SAT-solver A∗ .

50 G. Gottlob / Artificial Intelligence 191–192 (2012) 42–60
Note that C∗ , as constructed in the proof of Theorem 3.1, is a 9SAT instance, hence the cardinality of the domain of each
variable of NC∗ is bounded by 9.

For k > 2, the proof is analogous, the main change being that the transformation S now creates an �-ary constraint cL
for each (ordered) set L of � � k clauses from C . The resulting constraint network NC∗ = S(C∗), where C∗ is as constructed
in Lemma 3.1 then does the job. �
3.3. The case of bounded domains

Theorem 3.1 states that the problem of computing a solution from a non-empty minimal binary network is intractable
even in case the cardinalities of the domains of all variables are bounded by a constant. However, if we take the total
domain dom(N), which is the set of all literals of C∗ , its cardinality is unbounded. This notwithstanding, the following
simple corollary to Theorem 3.1 shows that even in case |dom(N)| is bounded, computing a single solution from a minimal
network N is hard.

Corollary 3.1. For each fixed k � 2, unless NP = P, computing a single solution from a minimal k-ary constraint network N cannot be
done in polynomial time, even in case |dom(N)| is bounded by a constant.

Proof. We prove the result for k = 2; for higher values of k, the proof is totally analogous. The key fact we exploit here is
that each variable Ka of NC∗ in the proof of Theorem 3.1 has a domain of exactly nine elements, corresponding to the nine
literals occurring in clause Ka of C∗ . We “standardize” these domains by simply renaming the nine literals for each variable
by the numbers 1 to 9. We thus get an equivalent minimal constraint network with a total domain of cardinality 9. �
4. Minimal network recognition and structure identification

In this section we first deal with the complexity of recognizing whether a k-ary network M is the minimal network of a
k-ary network N (Section 4.1). We then study the problem of deciding whether a k-ary network M is the minimal network
of a single constraint (Section 4.2).

4.1. Minimal network recognition

An algorithmic problem of obvious relevance is recognizing whether a given network is minimal. Using the graph-
theoretic characterization of minimal networks described in Section 2, Gaur [11] has shown the following for binary
networks:

Proposition 4.1. (See Gaur [11].) Deciding whether a complete binary network N is minimal is NP-complete under Turing reduc-
tions.

We generalize Gaur’s result to the k-ary case and slightly strengthen it by showing NP-completeness under the standard
notion of polynomial-time many-one reductions:

Theorem 4.1. For each k � 2, deciding whether a complete k-ary network N is minimal is NP-complete, even in case of bounded
domain sizes.

Proof. Membership in NP is easily seen: We just need to guess a candidate solution st from sol(N) for each of the polyno-
mially many tuples t of each constraint c of N , and check in polynomial time that st is effectively a solution and that the
projection of st over scope(c) yields t . For proving hardness, revisit the proof of Theorem 3.1. For each k � 2, from a 3SAT
instance C , we there construct in polynomial time a highly symmetric k-ary network with bounded domain sizes NC∗ , such
that NC∗ is minimal (i.e., Mk(NC∗) = NC∗) iff C is satisfiable. This is clearly a standard many-one reduction from 3SAT to
network minimality. �

A result in database theory similar to Theorem 4.1 was shown in [19], where it was proven that determining whether
a set of database relations is join consistent (i.e., admits a universal relation) is NP-complete. This was actually proven for
sets of binary relations, however not over schema Sk . Here we showed that this also holds for complete k-ary networks, i.e.,
for sets of relations over the specific schemas Sk , for each k � 2.

4.2. Structure identification and k-representability

This section as well as Sections 4.3 and 4.4 are dedicated to the problem of representing single constraints (or single-
constraint networks) through equivalent k-ary minimal networks. By a slight abuse of terminology, when there is no danger
of confusion, we will often identify a single-constraint network {ρ} with its unique constraint ρ , and for tuples t of the
relation rel(ρ) of the constraint ρ , we may write t ∈ ρ instead of t ∈ rel(ρ).

G. Gottlob / Artificial Intelligence 191–192 (2012) 42–60 51
Definition 4.1. A complete k-ary network M is a minimal k-ary network of ρ iff

1. sol(M) = ρ , and
2. every tuple occurring in some constraint r of M is the projection of some tuple t of ρ over scope(r).

We say that a constraint relation ρ is k-representable if there exists a (not necessarily complete) k-ary constraint net-
work M such that sol(M) = ρ . The following proposition seems to be well known and follows very easily from Definition 4.1
anyway.

Proposition 4.2. Let ρ be a constraint. The following three statements are equivalent:

1. ρ has a minimal k-ary network;
2. sol(ΠSk (ρ)) = ρ;
3. ρ is k-representable.

Note that the equivalence of ρ being k-representable and of ρ admitting a minimal k-ary network emphasizes the
importance and usefulness of minimal networks. In a sense this equivalence means that the minimal k-ary network of ρ , if
it exists, already represents all k-ary networks that are equivalent to ρ .

The complexity of deciding whether a minimal k-ary network for a relation ρ exists has been stated as an open prob-
lem by Dechter and Pearl in [9]. More precisely, Dechter and Pearl consider the equivalent problem of deciding whether
sol(ΠSk (ρ)) = ρ holds, and refer to this problem as a problem of structure identification in relational data [9]. The idea is to
identify the class of relations ρ that have the structural property of being equivalent to the k-ary network ΠSk (ρ), and thus,
of being k-representable. Dechter and Pearl formulated the following conjecture:

Conjecture 4.1. (See Dechter and Pearl [9].) For each fixed positive integer k � 2, deciding whether sol(ΠSk (ρ)) = ρ is NP-hard.3

As already observed by Dechter and Pearl in [9], there is a close relationship between the k-representability of constraint
relations and a relevant database problem. Let us briefly digress on this. It is common knowledge that a single constraint ρ
can be identified with a data relation in the context of relational databases (cf. [8]). The decomposition of relations plays
an important role in the database area, in particular in the context of normalization [24]. It consists of decomposing a
relation ρ without loss of information into smaller relations whose natural join yields precisely ρ . If ρ is a concrete data
relation (i.e., a relational instance), and S is a family of subsets (subschemas) of the schema of ρ , then the decomposition
of ρ over S consists of the projection ΠS = {Πs(ρ) | s ∈ S} of ρ over all schemes in S . This decomposition is lossless iff the
natural join of all Πs(ρ) yields precisely ρ , or, equivalently, iff ρ satisfies the join dependency ∗[S]. We can thus reformulate
the concept of k-decomposability in terms of database theory as follows: A relation ρ is k-decomposable iff it satisfies the
join dependency ∗[Sk], i.e., iff the decomposition of ρ into schema Sk is lossless. The following complexity result was shown
as early as 1981 in [25].4

Proposition 4.3. (See Maier, Sagiv, and Yannakakis [25].) Given a relation ρ and a family S of subsets of the schema of ρ , it is coNP-
complete to determine whether ρ satisfies the join dependency ∗[S], or equivalently, whether the decomposition of ρ into schema S is
lossless.

Proposition 4.3 is weaker than Conjecture 4.1 and does not by itself imply it, nor so does its proof given in [25]. In
fact, Conjecture 4.1 speaks about the very specific sets Sk for k � 2, which are neither mentioned in Proposition 4.3
nor used in its proof. Actually, the NP-hardness proof in [25] transforms 3SAT into the problem of checking a join de-
pendency ∗[S] over schema S = (S1, . . . , Sm+1), where one of the relation schemas, namely Sm+1 is of unbounded arity
(depending on the input 3SAT instance), while the others are of arity 4. To prove Conjecture 4.1, that refers to the spe-
cific schema Sk in which all relations have arity at most k, we thus needed to develop a new and independent hardness
argument.

Theorem 4.2. For each fixed integer k � 2, deciding for a single constraint ρ whether sol(ΠSk (ρ)) = ρ , that is, whether ρ is
k-decomposable, is coNP-complete.

3 Actually, the conjecture stated in [9] is somewhat weaker: Given a relation ρ and an integer k, deciding whether sol(ΠSk (ρ)) = ρ is NP-hard. Thus k
is not fixed and is part of the input instance. However, from the context and use of this conjecture in [9] it is clear that Dechter and Pearl actually intend
NP-hardness for each fixed k � 2.

4 As mentioned by Dechter and Pearl [9], Jeff Ullman has proved this result, too. In fact, Ullman, on a request by Judea Pearl, while not aware of the
specific result in [25], has produced a totally independent proof in 1991, and sent it as a private communication to Pearl. The result is also implicit in
Moshe Vardi’s 1981 PhD thesis.

52 G. Gottlob / Artificial Intelligence 191–192 (2012) 42–60
Proof. We show that deciding whether sol(ΠSk (ρ))
= ρ is NP-complete.
Membership. Membership in NP already follows from Proposition 4.3, but we give a short proof of it here for sake of self-

containment. Clearly, ρ ⊆ sol(ΠSk (ρ)). Thus sol(ΠSk (ρ))
= ρ iff the containment is proper, which means that there exists a
tuple t0 in sol(ΠSk (ρ)) not contained in ρ . One can guess such a tuple t0 in polynomial time and check in polynomial time
that for each � � k, each �-tuple of variables Xi1 , . . . , Xi� of var(ρ), the projection of t0 to (Xi1 , . . . , Xi�) is indeed a tuple of
the corresponding constraint of Sk . Thus determining whether sol(ΠSk (ρ))
= ρ is in NP.

Hardness. We first show hardness for the binary case, that is, the case where k = 2. We use the NP-hard problem
3COL of deciding whether a graph G = (V , E) with set of vertices V = {v1, . . . , vn} and edge set E is 3-colorable. Let G
be given as input instance. We assume without loss of generality that G has at least three vertices. Let r, g , b be three
data values standing for the three colors red, green, and blue, respectively. Let N3COL be the constraint network defined
as follows. The set of variables var(N3COL) = {X1, . . . , Xn}. The schema S+

2 of N3COL consists of all exactly binary scopes
(Xi, X j) where Xi ≺ X j , and dom(Xi) = {r, g,b} for 1 � i � n. Moreover, for all 1 � i < j � n, the constraint ci j with schema
(Xi, X j) has the following constraint relation rel(ci j) = ri j : if (i, j) ∈ E , then ri j is the set of pairs representing all legal
vertex colorings, i.e., ri j = {(r, g), (g, r), (r,b), (b, r), (g,b), (b, g)}; otherwise ri j = {r, g,b}2. N3COL is thus a straightforward
encoding of 3COL over schema S+

2 , and obviously G is 3-colorable iff sol(N3COL)
= ∅. Thus, deciding whether sol(N3COL)
= ∅
is NP-hard.

We construct from N3COL a single constraint ρ with schema {X1, . . . , Xn} as follows. The domain dom(ρ) contains the
color constants r, g , and b, as well as special “tuple identifiers” to be detailed below. For each constraint ci j of N3COL, and
for each tuple (a,b) ∈ ri j , ρ contains a tuple t whose Xi and X j values are a and b, respectively, and whose X� value, for
all 1 � � � n, �
= i, �
= j, is a constant dt

i j , different from all values used in other tuples, whose purpose is to act as a tuple
identifier. This concludes the description of the transformation from a 3COL instance G = (V , E) to a constraint network
N3COL and further to a constraint ρ . Clearly, this transformation is feasible in polynomial time. We claim the following:

Claim. sol(ΠS2 (ρ))
= ρ iff sol(N3COL)
= ∅ (and thus iff G is 3-colorable).

This claim clearly implies the NP-hardness of deciding sol(ΠSk (ρ))
= ρ . Let us prove that the claim holds.
We start with the if direction. Assume sol(N3COL)
= ∅. Then G = (V , E) is 3-colorable and hence there exists a function

f : V −→ {r, g,b} such that for each edge 〈vi, v j〉 ∈ E , f (vi)
= f (v j). Let t be the tuple defined by ∀1 � i � n, t[Xi] = f (vi).
Then, by definition of t and ρ , for each 1 � i < j � n, t[Xi, X j] ∈ ΠXi ,X j (ρ) and fort each 1 � i � n, t[Xi] ∈ ΠXi (ρ). Therefore,
t ∈ sol(ΠS2 (ρ)). However, t /∈ ρ , because each tuple of ρ , unlike t , has some tuple identifiers as components. It thus follows
that sol(ΠS2 (ρ))
= ρ .

Let us now show the only-if direction of the claim. Assume sol(ΠS2 (ρ))
= ρ . Given that, as already noted, ρ ⊆
sol(ΠS2 (ρ)), there must exist a tuple t0 ∈ sol(ΠS2 (ρ)) such that t0 /∈ ρ . We show that t0 can contain values from {r, g,b}
only, and must, moreover, be a solution to N3COL. Assume a tuple identifier d = dt

i j occurs as a component of t0. By con-
struction of ρ , d occurs in precisely one single tuple t of ρ . It follows that each relation of ΠS2 (ρ) has at most one tuple
containing d, and therefore the join of all relations of ΠS2 (ρ) contains a single tuple only in which d occurs as data value,
namely t itself. Therefore, t0 = t , and hence t0 ∈ ρ , which contradicts our assumption that t0 /∈ ρ . We have thus shown that
t0 cannot contain any tuple identifier at all, and can be made of “color elements” from {r, g,b} only. However, by definition
of ρ , each tuple ti j ∈ {r, g,b}2 occurring in a relation with schema (Xi, X j) of ΠS2 (ρ) also occurs in the corresponding
relation of N3COL, and vice versa. Thus sol(ΠS2 (ρ))
= ρ iff sol(N3COL)
= ∅ iff G is 3-colorable, which proves our claim.

For each fixed k > 2 we can apply exactly the same line of reasoning. We define Nk
kCOL as the complete network on

variables {X1, . . . , Xn} of all k-ary correct “coloring” constraints, where the relation with schema Xi1 , . . . , Xik expresses the
correct colorings of vertices vi1 , . . . , vik of graph G . We then define ρ in a similar way as for k = 2: each k-tuple of a
relation of Nk

kCOL is extended by use of (possibly multiple occurrences of) a tuple identifier to an n-tuple of ρ . Given that
k is fixed, ρ can be constructed in polynomial time, and so ΠSk (ρ). It is readily seen that each tuple of sol(ΠSk (ρ)) that
contains a tuple identifier is already present in ρ because for each tuple identifier value d, each relation of ΠSk (ρ) contains
at most one tuple involving d. Hence, any tuple in sol(ΠSk (ρ)) − ρ involves values from {r, g,b} only, and is a solution to
Nk

kCOL and thus a valid 3-coloring of G . �
4.3. The case of bi-valued relations

Let us now turn our attention to bi-valued relations ρ , that is, relations ρ over a binary domain. As explained in Sec-
tion 3.2 of [9], such bi-valued relations are of special interest, as that they correspond to Boolean formulas. For example,
a 3CNF can be seen as a bi-valued constraint network of ternary relations, and a single bi-valued relation ρ corresponds to
a DNF. The problem of structure identification in the bi-valued case thus corresponds to relevant identification and learn-
ability questions about Boolean formulas; we refer the reader to [9] for details. In this context, it would be interesting
to know whether, or for which parameter k, Theorem 4.2 carries over to the bi-valued case. While the coNP-membership
clearly applies to the special case of a bi-valued ρ , the hardness part of that proof uses a multiple-valued relation ρ and
does not allow us to derive a hardness result for the bi-valued case. In fact, the relations ρ constructed in the proof of The-

G. Gottlob / Artificial Intelligence 191–192 (2012) 42–60 53
orem 4.2 from arbitrary 3COL instances are not bi-valued and actually have unbounded domains dom(ρ) containing |ρ| + 3
elements5: the “color constants” r, g , b, and the |ρ| tuple identifiers dt

i, j .
As noted in [7,11], for k = 2 and bi-valued domains, the problem of deciding whether sol(ΠSk (ρ)) = ρ is tractable.

It can actually be reduced to 2SAT. But what about for values k � 3? Dechter and Pearl made the following conjecture
(Conjecture 3.27 in [9]):

Conjecture 4.2. (See Dechter and Pearl [9].) For each fixed positive integer k � 3, deciding for a bi-valued relation ρ whether
sol(ΠSk (ρ)) = ρ is NP-hard.6

We are able to confirm this conjecture.

Theorem 4.3. For each fixed integer k � 3, deciding for a single bi-valued constraint ρ whether sol(ΠSk (ρ)) = ρ , that is, whether ρ
is k-decomposable, is coNP-complete.

The rather involved proof of this theorem is given in Appendix B. The hardness part is similar in spirit to the one of
Theorem 4.2, except for two important changes that are due to the requirement of a two-valued domain. First we encode
3SAT rather than 3COL, in order to achieve a binary domain. However, there is still the problem of the tuple identifiers (the
values dt

i, j in the proof of Theorem 4.2). They are values from an unbounded domain. We therefore use a specific bit-vector
encoding that allows us to represent tuple identifiers in binary format. This is, however, not totally trivial. The difficulty lies
in the fact that in the relations of the projection ΠSk (ρ) we do no longer have full bit vectors at our disposal, but only
k-bit projections of such bit vectors. Sophisticated coding tricks are used for coping with this problem, and for obtaining a
correct reduction.

Theorem 4.3 has a corollary, which we here formulate in the terminology of Dechter and Pearl [9].

Corollary 4.1. For fixed k � 3, the class of k-CNFs is not identifiable relative to all CNFs (unless P = NP).

The above means the following. If a CNF φ (or, more generally, a Boolean function φ) is given by the set of all its
models (i.e., by a bi-valued relation, each tuple of which corresponds to a model), then it is NP-hard to decide whether φ is
equivalent to a k-CNF. We refer the reader to [9] for a more detailed account of k-CNF identification and its equivalence to
the problem of whether a bi-valued relation ρ is k-decomposable. To conclude this topic, let us note that the representation
of a Boolean function φ by the explicit set of all its models, i.e., by all satisfying truth value assignments, is also known as
the onset of φ [32]. The above corollary thus states that, for fixed k � 3, it is NP-hard to decide whether a Boolean function
specified by its onset is equivalent to a k-CNF.7

4.4. Further strengthening and tractability frontier

The technique used to prove Theorem 4.3 can be used to strengthen Theorem 4.2, and to show that it actually also holds
for tri-valued constraints ρ .

Theorem 4.4. For each fixed integer k � 2, deciding for a single tri-valued constraint ρ whether sol(ΠSk (ρ)) = ρ , that is, whether ρ
is k-decomposable, is coNP-complete.

The proof of this theorem is given in Appendix C. We there use a transformation from 3COL from a graph G = (V , E)

as described in the proof of Theorem 4.2 by applying, in addition, similar vectorization techniques as in the proof of Theo-
rem 4.3.

The above result, together with Theorem 4.3, and with the fact that the 2-representability of binary networks is feasible
in polynomial time (see [7]), and with the facts that the 0-representability and 1-representability of each network and
the k-representability of 1-valued networks are trivially tractable, gives us the following precise characterization of the
tractability of deciding whether sol(ΠSk (ρ)) = ρ:

Theorem 4.5. For the class of i-valued relations ρ , deciding sol(ΠSk (ρ)) = ρ is tractable iff i = 1 or (i = 2 and k � 2). In all other
cases, the problem is coNP-complete.

Fig. 3 illustrates this tractability frontier.

5 Here |ρ| = |rel(ρ)| designates the number of tuples in the constraint relation of the constraint ρ .
6 Note that in [9], the parameter k is not explicitly required to be fixed, however, from the context it is clear that the present stronger version of the

conjecture was actually intended. Moreover, Conjecture 3.27 in [9] was formulated in terms of k-CNFs rather than in a purely relational setting. To avoid
additional definitions and terminology, we have restated an equivalent relational formulation here. In particular, we have replaced the term M(ΓSk (ρ)) in
the original formulation by the equivalent term sol(ΠSk (ρ)).

7 While we have not found this result in the literature on Boolean functions, we cannot totally exclude that it has been independently derived, maybe in
a different context or using a different formalism.

54 G. Gottlob / Artificial Intelligence 191–192 (2012) 42–60
Fig. 3. Tractability Frontier for the k-decomposability of i-valued relations ρ .

5. Summary, discussion, and future research

In this paper we have tackled and solved long standing complexity problems related to minimal constraint networks:

• We solved an open problem posed by Gaur [11] in 1995, and later by Dechter [8], by proving Dechter’s conjecture and
showing that computing a solution to a minimal constraint network is NP-hard.

• We proved a conjecture on structure identification in relational data made in 1992 by Dechter and Pearl [9]. In par-
ticular, we showed that for k � 2, it is coNP-complete to decide whether for a single constraint (or data relation) ρ ,
sol(ΠSk (ρ)) = ρ , and thus whether ρ is k-decomposable.

• We also proved a refined conjecture of Dechter and Pearl [9], showing that the above problem remains coNP-hard even
if ρ is a bi-valued constraint, in case k � 3. A consequence of this is the NP-hardness of identifying k-CNFs relative to
the class of all CNFs (when represented by the explicit enumeration of their models).

• We finally proved that deciding whether sol(ΠSk (ρ)) = ρ is coNP-complete for tri-valued relations and k � 2. Together
with our other results on structure identification, this allowed us to trace the precise tractability frontier for this prob-
lem.

We wish to make clear that our hardness result about computing solutions to minimal networks does not mean that we
think minimal networks are useless. To the contrary, we are convinced that network minimality is a most desirable property
when a solution space needs to be efficiently represented for applications such as computer-supported configuration [10].
For example, a user interactively configuring a PC constrains a relatively small number of variables, say, by specifying a
maximum price, a minimum CPU clock rate, and the desired hard disk type and capacity. The user then wants to quickly
know whether a solution exists, and if so, wants to see it. For a k-ary minimal constraint network, the satisfiability of
queries involving k variables only can be decided in polynomial time. However, our Theorem 3.1 states that, unless NP = P,
in case the query is satisfiable, there is no way to witness the satisfiability by a complete solution (in our example, by
exhibiting a completely configured PC satisfying the user requests).

Our Theorem 3.1 thus unveils a certain deficiency of minimal networks, namely, the failure of being able to exhibit full
solutions. However, we have a strikingly simple proposal for redressing this deficiency. Rather than just storing �-tuples
(where � � k) in a k-ary minimal network Mk(N), we may store a full solution t+ with each �-tuple, where t+ coincides
with t on the � variables of t . Call this extended minimal network M+

k (N). Complexity-wise, M+
k (N) is not harder to obtain

than Mk(N). Moreover, in practical terms, given that the known algorithms for computing Mk(N) from N require to check
for each �-tuple t whether it occurs in some solution t+ , why not just memorize t+ on the fly for each “good” tuple t?
Note also that the size of M+

k (N) is still polynomial, and at most by a factor |var(N)| larger than the size of Mk(N). One
may even go further and store not just a single solution, but the K best solutions (according to some predefined preference
ordering) whose values coincide with those of t with each tuple t of Mk(N). This allows one to answer top K queries with at
most k variables in polynomial time, once Mk(N) has been compiled. An example would be: show me the 5 cheapest laptops
fulfilling φ, where φ constrains k variables only.

For practical applications it is not always optimal to consider the complete schemas Sk as defined here. In the conference
version [17] of this paper, Sk was defined to contain only all exactly k-ary relations over a given set of variables, rather than
all at most k-ary relations. It is easy to see that the relations with scopes of fewer than k variables are redundant and can
indeed be omitted (they can always be obtained via projections from the exactly k-ary relations). The only reason why we
used the complete schemas in the present journal version is that we wanted to use exactly the same definition as in the
standard references [26,8]. However, yet more liberal definitions are possible. For example, Lecoutre [22] defines a constraint
network N over an arbitrary schema S to be minimal if N = ΠS (sol(N)). Clearly, all our complexity bounds carry over to
this more liberal setting: the lower bounds are directly inherited, as all instances in our settings are also instances of the
more liberal setting, and the upper bounds are obtained by a trivial adaptation of the proofs of our existing upper bounds.

An interesting problem for future research is the following. We may issue queries of the following form against M+
k (N):

SELECT A SOLUTION WHERE φ. Here φ is some Boolean combination on constraints on the variables of N . Queries,
where φ is a simple combination of range restrictions on k variables can be answered in polynomial time. But there are
much more complicated queries that can be answered efficiently, for example, queries that involve aggregate functions
and/or re-use of quantified variables. It would thus be nice and useful to identify very large classes of queries to M+

k (N) for
which a single solution – if it exists – can be found in polynomial time.

Another relevant research problem is related to the projection ΠS∗ (sol(N)) of the solution sol(N) of a (not necessarily
binary) constraint network N to a user-defined schema S∗ , and to the further use of the schema S∗ for distributed constraint

G. Gottlob / Artificial Intelligence 191–192 (2012) 42–60 55
solving. The projection of the solution space to specific sets of variables is used in the context of system configuration,
when a system is jointly configured by a number of engineers, each having access to a projection of the solution space
only [33]. The problem of computing a solution ΠS∗ (sol(N)) is generally NP-hard, and remains NP-hard in many special
cases, e.g. if N is binary and, at the same time S∗ = S2 (see Theorem 3.1). We would like to investigate relevant restrictions
that make this problem tractable. For some restrictions, this is already known. For example, if S∗ has bounded hypertree
width [16,15,3], then this problem becomes tractable. If S∗ has bounded hinge width, then computing a solution can even
be done in a backtrack-free manner, see Section 3 of [18]. Note that bounded hinge width is a stronger restriction than
bounded hypertree width; for a comparison of these and other hypergraph restrictions, see [14]. Other decompositions that
lead to backtrack solution search are the world-set decompositions discussed in [28] and further generalized in [29]. These
decompositions are based on Cartesian products rather than on joins, therefore, computing solutions is easier than with
project-join decompositions.

There is also the problem of computing the desired projections without computing the possibly very large relation sol(N),
and, as a special case, computing the minimal constraint network M(N) from a given network N . More formally, we would
like to compute ΠS∗ (sol(N)) from N in polynomial space as efficiently as possible, assuming the relations of S∗ are all of
bounded arity. There are already promising approaches to this problem in the literature. In [12,13], conflict-driven answer
set programming (ASP) techniques are used for this task. In [33], projections of sol(N) are computed via a SAT solver, and
it is shown that this method is feasible for large datasets stemming from the automotive industry. However, we expect that
a structural analysis of the original network N and of the desired projection schema S∗ could further help to speed up this
computation.

Acknowledgements

This research was originally stimulated by discussions on various aspects of constraint solving and pruning with Donald
Knuth, to whom this paper is dedicated with my warmest congratulations on his 75th birthday.

Work funded by EPSRC Grant EP/G055114/1 “Constraint Satisfaction for Configuration: Logical Fundamentals, Algorithms,
and Complexity”. The author is a James Martin Senior Research Fellow. He thanks V. Bárány, C. Bessiere, D. Cohen, R. Dechter,
D. Gaur, J. Petke, M. Vardi, M. Yannakakis, S. Živný, and the referees of both the conference and the journal version for useful
comments and/or pointers to earlier work.

Appendix A. Proof of the Symmetry Lemma

Lemma 3.1 (Symmetry Lemma). For each fixed integer k � 1, there is a polynomial-time transformation T that transforms each 3SAT
instance C into a k-supersymmetric instance C∗ such that C is satisfiable iff C∗ is satisfiable.

Proof. We first prove the lemma for k = 2. Consider the given 3SAT instance C . Create for each propositional variable
p ∈ propvar(C) a set New(p) = {p1, p2, p3, p4, p5} of fresh propositional variables. Let Disj+(p) be the set of all disjunctions
of three distinct positive atoms from New(p) and let Disj−(p) be the set of all disjunctions of three distinct negative literals
corresponding to atoms in New(p). Thus, for example (p2 ∨ p4 ∨ p5) ∈ Disj+(p) and (p1 ∨ p4 ∨ p5) ∈ Disj−(p). Note that
Disj+(p) and Disj−(p) each have exactly

(5
3

) = 10 elements (we do not distinguish between syntactic variants of equivalent
clauses containing the same literals).

Consider the following transformation T , which eliminates all original literals from C , yielding C∗:

Function T:
BEGIN C ′ := C .
WHILE propvar(C) ∩ propvar(C ′)
= ∅ DO

{pick any p ∈ propvar(C) ∩ propvar(C ′); C ′ := elim(C ′, p)};
Output(C ′)
END.

Here elim(C ′, p) is obtained from C ′ and p as follows:

FOR each clause K of C ′ in which p occurs positively or negatively DO

BEGIN
let δ be the disjunction of all literals in K different from p and from ¬p8;
if p occurs positively in K , replace K in C ′ by the conjunction Γ +(K) of all clauses of the form α∨δ, where α ∈ Disj+(p);
if p occurs negatively in K , replace K in C ′ by the conjunction Γ −(K) of all clauses of the form α ∨ δ, where
α ∈ Disj−(p);
END.

8 An empty δ is equal to false, and it is understood that α ∨ false is simply α.

56 G. Gottlob / Artificial Intelligence 191–192 (2012) 42–60
Let C∗ = T (C) be the final result of T . C∗ contains no original variable from propvar(C). Note that C∗ can be computed

in polynomial time from C . In fact, note that every clause of three literals of C gives rise to exactly
(5

3

)3 = 103 = 1000
clauses of 9 literals each in C∗ . While computing C∗ from C , we can thus replace each three-literal clause of C at once and
independently by the corresponding 1000 clauses. Similar direct replacements (but with fewer result clauses) are, of course,
possible for two-literal and one-literal clauses of C . Assuming appropriate data structures, the transformation from C to C∗
can thus actually be done in linear time.

We now need to prove (1) that C∗ is satisfiable iff C is and (2) that C∗ is 2-supersymmetric.

Fact 1: C∗ is satisfiable iff C is. We will actually prove more than we need here. In fact, our proof of Fact 1 below also
shows that a satisfying assignment to C can be transformed into many satisfying assignments to C∗ . We will use this,
when we come to prove supersymmetry in Fact 2. We prove Fact 1 by showing that, when at each step of algorithm T , C ′ is
transformed into its next value C ′′ = elim(C ′, p), then C ′ and C ′′ are satisfaction-equivalent. Fact 1 then follows by induction.
Assume C ′ is satisfied via a truth value assignment τ ′ . Then let τ ′′ be any truth value assignment to the propositional
variables of C ′′ with the following properties:

• for each propositional variable q of C ′′ different from p, τ ′′(q) = τ ′(q),
• if τ ′(p) = true, then at least 3 of the variables in New(p) are set true by τ ′′ , and
• if τ ′(p) = false, then at most two of the variables in New(p) are set true by τ ′′ (and at least three are thus set false).

By definition of C ′′ , τ ′′ must satisfy C ′′ . In fact, assume first τ ′(p) = true. Let K be a clause of C in which p occurs positively.
Then, given that at least three variables in New(p) are set true by τ ′′ , each element of Disj+(p) must have at least one atom
made true by τ ′′ , and thus each of the clauses of Γ +(K) of C ′′ evaluates to true via τ ′′ . All other clauses of C ′′ stem from
clauses of C ′ that were made true by literals corresponding to an atom q different from p. But, by definition of τ , these
literals keep their truth values, and hence make the clauses true. In summary, all clauses of C ′′ are satisfied by τ ′′ . In a very
similar way it is shown that τ ′′ satisfies C ′′ if, τ ′(p) = false.

Vice versa, assume some truth value assignment τ ′′ satisfies C ′′ . Then it is not hard to see that C ′ must be satisfied
by the truth value assignment τ ′ to C ′ defined as follows: If a majority (i.e. 3 or more) of the five atoms in New(p) are
made true via τ ′′ , then let τ ′(p) = true, otherwise let τ ′(p) = false; moreover, for all propositional variables q /∈ New(p), let
τ ′(q) = τ ′′(q).

To see that τ ′ satisfies C ′ , consider first the case that three or more of the propositional variables of New(p) are assigned
true by τ ′′ . Note that all clauses of C ′ that neither contain p nor p are trivially satisfied by τ ′ , as τ ′ and τ ′′ coincide on
their atoms. Now let us consider any clause K of C ′ in which p occurs positively. Then the only clauses that contain positive
occurrences of elements of New(p) of C ′′ are the sets Γ +(K). If τ ′′ is such that it makes at least three of the five atoms
in New(p) true, then any clause in Γ +(K) is made true by atoms of New(p). Thus when replacing these atoms by p and
assigning p true, the resulting clause K remains true. Now consider a clause K = p ∨ δ of C ′ in which p occurs negatively.
The only clauses containing negative New(p)-literals in C ′′ are, by definition of C ′′ , those in Γ −(K). Recall we assumed that
τ ′′ satisfies at least three distinct atoms from New(p). Let three of these satisfied atoms be pi , p j , and pk . By definition,
Γ −(K) contains a clause of the form pi ∨ p j ∨ pk ∨ δ. Given that this clause is satisfied by τ ′′ , but τ ′′ falsifies pi ∨ p j ∨ pk ,
δ is satisfied by τ ′′ , and since δ contains no New(p)-literals, δ is also satisfied by τ ′ . Therefore, K = p ∨ δ is satisfied by τ ′ .
This concludes the case where three or more of the propositional variables of New(p) are assigned true by τ ′′ . The case
where three or more of the propositional variables of New(p) are assigned false by τ ′′ is completely symmetric, and can
thus be settled in a totally similar way. �
Fact 2: Proof that C∗ is 2-supersymmetric. Assume C∗ is satisfiable by some truth value assignment η. Then C is satisfiable
by some truth value assignment τ , and thus C∗ is satisfiable by some truth value assignment τ ∗ constructed inductively
as described in the proof of Fact 1. Let us have a closer look at the inductive construction used to obtain τ ∗ in Fact 1.
For any initially fixed pair of propositional variables pi,q j ∈ propvar(C∗), where 1 � i, j � 5, the construction of τ ∗ gives
us a very large degree of freedom for choosing τ ∗ . Actually, the construction is so general, that it allows us to let pi , q j
take on any arbitrary truth value assignment among of the four possible joint truth value assignments. In fact, however
we choose the truth value assignments for two among the variables in {p1, . . . , p5,q1, . . . ,q5}, there is always enough
flexibility for assigning the remaining variables in this set some truth values that ensure that the majority of variables
has the truth value required by the proof of Fact 1 for representing the original truth value of p via τ ′ . (This holds even
in case p and q are one and the same variable, and we thus want to force two elements from {p1, . . . , p5} to take on
some truth values, see the second example below.) Let us give two examples that illustrate the two characteristic cases
to consider. First, assume p and q are distinct and τ satisfies p and falsifies q. We would like to construct, for example,
a truth value assignment τ ∗ that falsifies p2 and simultaneously satisfies q4. In constructing τ ∗ , the only requirements
on New(p) and New(q) are that more than three variables from New(p) need to be satisfied by τ ∗ , but no more than
two from New(q) need to be satisfied by τ ∗ . For instance, we may then set τ ∗(p1) = τ ∗(p3) = τ ∗(p4) = τ ∗(p5) = true
and τ ∗(p2) = false and τ ∗(q1) = τ ∗(q2) = τ ∗(q3) = τ ∗(q5) = false and τ ∗(q4) = true. This achieves the desired truth value
assignment to p2 and q4. An extension to a full satisfying truth value assignment τ ∗ for C∗ is guaranteed. Now, as a

G. Gottlob / Artificial Intelligence 191–192 (2012) 42–60 57
second example, assume that τ (p) = false, but we would like τ (p1) and τ (p2) to be simultaneously true in a truth value
assignment satisfying C∗ . Note that in this case, the only requirement on New(p) in the construction of τ ∗ is that at most
two atoms from New(p) must be assigned true. Here we have a single option only: set τ ∗(p1) = τ ∗(p2) = true and τ ∗(p3) =
τ ∗(p4) = τ ∗(p5) = false. This option works perfectly, and assigns the desired truth values to p1 and p2. In summary, C∗ is
2-supersymmetric. �

The proof for k > 2 is totally analogous, except for the following modifications:

• Instead of creating for each propositional variable p ∈ propvar(C) a set
New(p) = {p1, p2, . . . , p5} of five new variables, we now create a set
New(p) = {p1, p2, . . . , p2k+1} of 2k + 1 new propositional variables.

• The set Disj+(p) is now defined as the set of all disjunctions of k + 1 positive atoms from New(p). Similarly, Disj−(p) is
now defined as the set of all disjunctions of k + 1 negative literals obtained by negating atoms from New(p).

• We replace the numbers 2 and 3 by k and k + 1, respectively.

• We note that now each three-literal clause of C is replaced no longer by
(5

3

)3
clauses but by

(2k+1
k+1

)3
clauses.

• We note that the resulting clause set C∗ is now a 3(k + 1)-SAT instance.

It is easy to see that the proofs of Fact 1 and Fact 2 above go through with these modifications.
Finally, let us recall that any 2-supersymmetric SAT instance is trivially also 1-supersymmetric, which settles the theorem

for k = 1. �
Appendix B. Proof of Theorem 4.3

Theorem 4.3. For each fixed integer k � 3, deciding for a single bi-valued constraint ρ whether sol(ΠSk (ρ)) = ρ , that is, whether ρ
is k-decomposable, is coNP-complete.

Proof. It suffices to show coNP-hardness, as membership in coNP already follows from Theorem 4.2. We first prove coNP-
hardness for the case k = 3.

Consider a non-empty 3SAT instance C = {C1, . . . , Cm} over a set propvar(C) = {p1, . . . , pn} of propositional variables,
where each Ci is a clause containing precisely 3 literals whose corresponding atoms are mutually distinct.

Let us first define two numbers r0 and r from C , whose meaning and use will become clear later on. Let r0 denote
the number of 3-element sets {pa, pb, pc} of mutually distinct propositional variables pa, pb, pc ∈ propvar(C) that do not all
three jointly appear in any clause of C . Note that r0 � 8

(n
3

)
. Let, moreover, r = 7m + r0. Clearly, r is polynomially bounded

in the size of C , as r � 7m + 8
(n

3

)
.

We construct in polynomial time a bi-valued constraint ρ of r elements, such that sol(ΠSk (ρ))
= ρ iff C is satisfiable.
The scope scope(ρ) of ρ contains for each pi ∈ propvar(C) a list of r + 1 variables X0

i , X1
i , . . . , Xr

i . Intuitively, in each tuple t
of rel(ρ), for each 1 � i � n, the values assigned to the variables X0

i , X1
i , . . . , Xr

i either shall encode a truth value assignment
to pi , in which case all variables of this list will be assigned the same value, zero or one, or these values shall encode a
tuple identifier for the tuple in which they occur. A tuple identifier for the sth tuple of rel(ρ) assigns the value zero to
all X j

i where j � s and the value one to all X j
i where j � s. This will be made more formal below.

The constraint relation rel(ρ) consists of two groups of tuples:

Clause-induced tuples These are 7m tuples, namely, seven for each clause Ch , 1 � h � m. These tuples are numbered
from 1 to 7m. Each of these tuples describes one of the 7 legal truth value assignments (out of 8 possible) to the
three propositional variables of a clause Ch ∈ C . For each clause Ch , 1 � h � m, and each truth value assignment
τ j ∈ propvar(Ch) −→ {0,1}, among all 7 permitted truth value assignments to the propositional variables of Ch , where

1 � j � 7, rel(ρ) contains precisely one tuple t j
h , whose components are described as follows. For each pi ∈ propvar(Ch),

t j
h[X0

i] = t j
h[X1

i] = t j
h[X2

i] = · · · = t j
h[Xr

i] = τ j(pi). Moreover, for each pi ∈ propvar(C) − propvar(Ch), t j
h[X0

i] = 0, and the

assignments to X1
i . . . Xr

i jointly constitute a unique tuple identifier that exclusively appears in the tuple t j
h , and that

encodes the tuple number s of the tuple t j
h (namely s = 7(h − 1)+ j) in a very simple way: It assigns 0 to all X s′

i where

0 � s′ < s and 1 to all variables X s′
i where s � s′ � r.

Auxiliary tuples These are no more than 8
(n

3

)
tuples: one for each 3-element set {pa, pb, pc} of mutually distinct propo-

sitional variables pa, pb, pc ∈ propvar(C) that do not all three jointly appear in any clause of C . These auxiliary tuples
are numbered from 7m + 1 to r, where r � 7m + 8

(n
3

)
is the total number of tuples in ρ . Essentially, the eight auxiliary

tuples associated with the above sets {pa, pb, pc} each encode one of the eight truth value assignments σ1, . . . , σ8 to
the propositional variables pa , pb , and pc . These tuples thus do not encode effective constraints, as they reflect any
arbitrary truth value assignment pa , pb , and pc , but they will be needed for technical reasons. More formally, for each
set S = {pa, pb, pc} as above, and each truth value assignment σ to {pa, pb, pc}, rel(ρ) contains a tuple tσ , whose
S

58 G. Gottlob / Artificial Intelligence 191–192 (2012) 42–60
components are described as follows. For each pi ∈ S , tσS [X0
i] = tσS [X1

i] = tσs [X2
i] = · · · = tσS [Xr

i] = σ(pi). Moreover, for
each pi ∈ propvar(C) − S , tσS [X0

i] = 0, and the assignments to X1
i . . . Xr

i , just as before, jointly constitute a unique tuple
identifier that exclusively appears in the tuple tσS , and that encodes the tuple number s of the tuple tσS by assigning 0

to all X s′
i where s′ < s and 1 to all variables X s′

i where s′ � s.

This concludes the definition of ρ .

Claim. sol(ΠS3 (ρ))
= ρ iff C is satisfiable.

We first prove the if-part of the claim. Assume C is satisfiable. Thus there exists a truth value assignment τ to propvar(C)

satisfying C . We show that sol(ΠS3 (ρ)) then must contain the tuple t /∈ rel(ρ) defined as follows. For each 1 � i � n, t[X0
i] =

t[X1
i] = t[X2

i] = · · · = t[Xr
i] = τ (pi). To see this, it suffices to observe that the projection t[S] of t to any set S = {Xu

a , X v
b , X w

c }
of three distinct variables from scope(ρ) is contained in the corresponding relation ΠS(ρ) of ΠS3 (ρ).

In fact, if the atoms pa , pb and pc jointly occur in a clause Ch of C , then, the tuple t′ in rel(ρ) induced by Ch for
truth value assignment τ [pa, pb, pc] coincides in its S-components with the tuple t , in other terms, t′[S] = t[S]. Hence
t[S] is contained in the relation ΠS (ρ) of ΠS3 (ρ). Moreover, in case pa , pb and pc do not jointly occur in a clause of C ,
then there must exist an auxiliary tuple t′ such that t′[S] = t[S], and thus, again, t[S] is contained in the relation ΠS (ρ)

of ΠS3 (ρ). In summary, t is contained in the join of the exactly ternary relations of ΠS3 (ρ). As is easily verified, the
binary and unary relations of ΠS3 (ρ) are weaker than the ternary ones, and actually redundant; the join of all constraints
with precisely three variables is in fact equal to sol(ΠS3 (ρ)). It follows that t is contained in the join of ΠS3 (ρ), which
is sol(ΠS3 (ρ)). However, t is not in rel(ρ) because t does not contain any tuple identifier, whereas each tuple of rel(ρ)

does.
It now remains to show that, whenever sol(ΠS3 (ρ)) contains a tuple t /∈ rel(ρ), then t corresponds to a satisfying truth

value assignment for C , and C is thus satisfiable. Let t be such a tuple. We first show that for each 1 � i � n and each
1 � v � r and 1 � w � r it must hold that t[X v

i] = t[X w
i], thus all bits of t[X0

i , X1
i , . . . , Xr

i] must be equal. We prove this by
showing that this bit-vector cannot have two consecutive bits of different value.

• Assume that for some 0 < � � r, t[X�−1
i] = 0 while t[X�

i] = 1. By construction, rel(ρ) contains only a single tuple t′ for

which t′[X�−1
i] = 0 but t′[X�

i] = 1, namely the tuple numbered �. Therefore, in each relation rel(c) of any constraint c of

ΠS3 (ρ) where scope(c) contains X�−1
i , X�

i and any other variable Xu
j , there is thus a single tuple fc having fc[X�−1

i] = 0

and fc[X�
i] = 1. It follows that sol(ΠS3 (ρ)) contains a unique tuple whose X�−1

i -value is zero and whose X�
i -value is

one, namely the tuple t′ . Therefore t = t′ , which contradicts our assumption that t /∈ rel(ρ).
• Assume that for some 0 < � � r, t[X�−1

i] = 1 while t[X�
i] = 0. Observe that, by construction, rel(ρ) does not contain a

single tuple t′ for which t′[X�−1
i] = 1 while t′[X�

i] = 0. In fact, rel(ρ) was carefully constructed so that the bit values in
the sequences t′[X0

i , X1
i , . . . , Xr

i] never decrease in any of its tuples. Therefore, in no relation rel(c) of any constraint c

of ΠS3 (ρ) where scope(c) contains X�−1
i , X�

i and any other variable Xu
j , there is thus a tuple f having f [X�−1

i] = 1 and

f [X�
i] = 0. It follows that the join sol(ΠS3 (ρ)) contains no tuple whose X�−1

i -value is one and whose X�
i -value is zero.

Contradiction.

We have thus established that for 1 � i � n, all bits of t[X0
i , X1

i , . . . , Xr
i] must be equal. Let τ be the truth value assignment

that for 1 � i � n associates to each pi the truth value t[X0
i] = t[X1

i] = · · · = t[Xr
i]. Let Ch be any clause of C . Let the atoms

of Ch be pa , pb and pc . Define

X(a) := X0
a if τ (pa) = 1 and X(a) := Xr

a if τ (pa) = 0;
X(b) := X0

b if τ (pb) = 1 and X(b) := Xr
b if τ (pb) = 0;

X(c) := X0
c if τ (pc) = 1 and X(c) := Xr

c, if τ (pc) = 0.

Consider the constraint q of ΠS3 (ρ) having 〈X(a), X(b), X(c)〉 as scope. This constraint must have a tuple tq =
〈τ (pa), τ (pb), τ (pc)〉, which is obviously identical to t[X(a), X(b), X(c)]. There is, therefore, a tuple t′ ∈ rel(ρ) such that

t′[X(a), X(b), X(c)] = 〈
τ (pa), τ (pb), τ (pc)

〉
.

Given the specific values and positions of X(a) , X(b) , and X(c) in t′ , it is easily seen that the tuple t′ must belong to the group
of clause-induced tuples, and more specifically, t′ is induced by precisely clause Ch and truth value assignment τ [pa, pb, pc].
To see this, let us first recall that in our encoding of a tuple identifier the first bit (i.e., bit 0) is always 0 and the last bit
(i.e., bit r) is always 1, which is never the case for the encoding of a truth value. Now consider τ (pa). If τ (pa) = 0, then
t(X(a)) = t′(X(a)) = t′(Xr

a) = 0. If X(a) = Xr
a were part of a tuple identifier, then t[X(a)], which is identical to t[Xr

a], could
never have value zero, because, bit r of a tuple identifier is always 1. Therefore, X(a) must be part of a (representation
of a) truth value assignment. Similarly, if τ (pa) = 1, then t(X(a)) = t′(X(a)) = t′(X0

a) = 1. If X(a) = X0
a were part of a tuple

G. Gottlob / Artificial Intelligence 191–192 (2012) 42–60 59
identifier, t[X(a)] could never have value one, because all tuple identifiers have value zero at their bit position of index zero.
Therefore, again, X(a) must be part of a (representation of a) truth value assignment. Exactly the same reasoning applies
to X(b) and X(c) . In summary, t′ is a tuple of ρ that exactly describes truth value assignment τ restricted to the three
propositional variables pa , pb , and pc . Given that these propositional variables jointly occur in clause Ch , t′ is a clause-
induced tuple, and τ is a “legal” truth value assignment that satisfies Ch . Given that Ch was an arbitrary clause of C ,
τ satisfies all clauses of C , and thus C is satisfiable. We are done for k = 3. The proof is easily modified to hold for any
larger fixed value k. It suffices, for example, to start with kSAT instead of 3SAT. The proof goes through with the obvious
adjustments to the numeric parameters. �
Appendix C. Proof of Theorem 4.4

Theorem 4.4. For each fixed integer k � 2, deciding for a single tri-valued constraint ρ whether sol(ΠSk (ρ)) = ρ , that is, whether ρ
is k-decomposable, is coNP-complete.

Proof. For all constants k, the membership in coNP of our decision problem is already covered by (the upper bound in)
Theorem 4.2. Moreover, the coNP-hardness for k � 3 is already proven in Theorem 4.3, as bi-valued relations are trivially
also k-valued relations (where the additional k − 2 values appear in the domains but not in the actual constraint relations).
Thus, what remains to be done is to prove coNP-hardness for k = 2.

We use a transformation from 3COL from a graph G = (V , E) as described in the proof of Theorem 4.2 by applying
similar vectorization techniques as in the proof of Theorem 4.3. In particular, consider the relation ρ obtained from the
3-colorability network N3COL in the hardness part of the proof of Theorem 4.2, and let s = |ρ| be the cardinality of ρ .
Rather than transforming N3COL (and thus the graph G) to ρ , we will transform it to a tri-valued constraint ρ∗ of the same
cardinality s, that closely resembles ρ . To this aim, for 1 � i � n, every scope variable Xi of N3COL (and thus of ρ) is replaced
by a block of s + 1 variables X0

i , . . . , X s
i , which either encodes a color from {r, g,b}, or a tuple identifier. We here use the

following encoding:

• Color red is encoded as a block consisting of s + 1 consecutive positions having value r.
• Color green is encoded as a block consisting of s + 1 consecutive positions having value g .
• Color blue is encoded by a leading b (as an assignment to X0

i) followed by a block containing s consecutive positions
having value r.

• The tuple identifier for tuple number d is a block of length s + 1 starting with a sequence of one or more r elements,
having a b in the position corresponding to Xd

i , followed by g elements. In other terms, this tuple identifier is a
sequence of length s + 1 of the form r, . . . , r,b, g, . . . , g , whose d + 1st component is b.

The new relation ρ∗ thus has dom(ρ∗) = {r, g,b} and

scope
(
ρ∗) = (

X0
1, X1

1, . . . , Xs
1, X0

2, X1
2, . . . , Xs

2, . . . , X0
n , X1

n , . . . , Xs
n

)
.

Claim. G is 3-colorable iff sol(ΠS2 (ρ
∗)) − rel(ρ∗) is non-empty.

The if-part is not hard to see from our construction. In fact, each correct graph coloring τ gives rise to a tuple t in
sol(ΠS2 (ρ

∗)) − rel(ρ∗) whose vectorized component t[X0
i , . . . , X s

i] representing vertex vi consists of the encoding of the
color τ (vi).

Let us now prove the only-if part. Assume there exists a tuple t in sol(ΠS2 (ρ
∗)) − rel(ρ∗). We can show by similar

arguments as in the proof of Theorem 4.3 that G must be 3-colorable. This is shown by the following successively derived
facts:

1. Tuple t can never have value b in an X j
i -component with j
= 0. In fact, if it had a b assigned to a variable X�

i with �
= 0,
this assignment would occur in a single tuple t′ of rel(ρ∗) only. Therefore in each relation rel(c) of any constraint c of
ΠS2 (ρ

∗) where scope(c) contains X�
i would contain a single tuple having X�

i = b. But this means that the join of all
relations ΠS2 (ρ

∗) contains a single tuple having X�
i = b, namely t′ itself. But would imply t = t′ ∈ rel(ρ∗) which is a

contradiction.
2. No pair of consecutive values of any block t[X1

i , . . . , X s
i], for 1 � i � n can coincide with rg or gr. In fact, by construction,

neither rg or gr occur as consecutive values in two consecutive columns labeled X�
i , X�+1

i , of rel(ρ∗), where � � 1.

Therefore, no relation rel(c) of any constraint c of ΠS2 (ρ
∗), whose scope is X�

i , X�+1
i , where �� 1, contains tuple rg or

tuple gr. It follows that the join sol(ΠS2 (ρ
∗)) cannot contain any tuple having rg or tuple gr in consecutive components

corresponding to the variables (attributes) X�
i , X�+1

i , where � � 1. Given that t ∈ sol(ΠS2 (ρ
∗)), the same follows for

tuple t .
3. For each 1 � i � n, the block t[X1

i , . . . , X s
i] is made entirely of the same value, namely, either r or g . This follows

immediately from the above Facts 1 and 2.

60 G. Gottlob / Artificial Intelligence 191–192 (2012) 42–60
4. For 1 � i � n, each block of values t[X0
i , . . . , X s

i] precisely encodes one of the colors red, green, or blue, according to our
encoding scheme. To show this, it is sufficient to show that for 1 � i � n, if t[X1

i] = r then t[X0
i] ∈ {r,b}, and if t[X1

i] = g
then t[X0

i] = g . This is shown just in the same way as Fact 2 above. By construction of ρ∗ , the same property holds
for each tuple of ρ∗ , and thus for all the constraints with scope {X0

i , X1
i } of ΠS2 (ρ

∗). Therefore, the property must also
hold for each tuple of the join sol(ΠS2 (ρ

∗)) of ΠS2 (ρ
∗), and thus, in particular, for t .

5. For each edge 〈va, vb〉 ∈ E , the blocks t[X0
a , . . . , X s

a] and t[X0
b , . . . , X s

b] represent different colors. To show this, define
X(a) := X s

a if X0
a = r and X(a) := X0

a otherwise. Similarly, define X(b) := X s
b if X0

b = r and X(b) := X0
b otherwise. Let

q be the constraint of ΠS2 (ρ
∗) with scope(q) = {X(a), X(b)}. Clearly t[X(a), X(b)] = q[X(a), X(b)]. Thus there is a tuple

t′ ∈ rel(ρ∗) such that t[X(a), X(b)] = t′[X(a), X(b)]. However, due to the particular value-position combinations, neither
t′[X(a)] nor t′[X(b)] can be part of a tuple identifier, and they thus jointly represent a legal coloring of the edge 〈va, vb〉
of G . Since this is true for all edges 〈va, vb〉 of G , all edges of G are correctly colored by the coloring expressed by
tuple t .

Therefore, G is 3-colorable. This concludes the proof of the only-if part of our claim, and thus the proof of our theorem. �
References

[1] Samson Abramsky, Relational databases and Bell’s theorem, submitted for publication.
[2] Samson Abramsky, Relational hidden variables and non-locality, Studia Logica, in press.
[3] Isolde Adler, Georg Gottlob, Martin Grohe, Hypertree width and related hypergraph invariants, European J. Combin. 28 (8) (2007) 2167–2181.
[4] Christian Bessiere, Constraint propagation, in: F. Rossi, P. van Beek, T. Walsh (Eds.), Handbook of Constraint Programming, Chapter 3, 2006.
[5] Marco Cadoli, Francesco M. Donini, A survey on knowledge compilation, AI Commun. 10 (3–4) (1997) 137–150.
[6] Hervé Cros, Compréhension et apprentissage dans les résaux de contraintes, PhD thesis, Université de Montpellier, 2003, cited in [4], currently unavail-

able.
[7] Rina Dechter, From local to global consistency, Artificial Intelligence 55 (1) (1992) 87–108.
[8] Rina Dechter, Constraint Processing, Morgan Kaufmann, 2003.
[9] Rina Dechter, Judea Pearl, Structure identification in relational data, Artificial Intelligence 58 (1992) 237–270.

[10] Gerhard Fleischanderl, Gerhard Friedrich, Alois Haselböck, Herwig Schreiner, Markus Stumptner, Configuring large systems using generative constraint
satisfaction, IEEE Intell. Syst. 13 (4) (1998) 59–68.

[11] Daya Ram Gaur, Algorithmic complexity of some constraint satisfaction problems, Master of Science (MSc) Thesis, Simon Fraser University, April 1995,
currently available at http://summit.sfu.ca/system/files/iritems1/6666/b17427204.pdf.

[12] Martin Gebser, Benjamin Kaufmann, André Neumann, Torsten Schaub, Conflict-driven answer set enumeration, in: Chitta Baral, Gerhard Brewka, John S.
Schlipf (Eds.), LPNMR, in: Lecture Notes in Comput. Sci., vol. 4483, Springer, 2007, pp. 136–148.

[13] Martin Gebser, Benjamin Kaufmann, Torsten Schaub, Solution enumeration for projected boolean search problems, in: Willem Jan van Hoeve, John N.
Hooker (Eds.), CPAIOR, in: Lecture Notes in Comput. Sci., vol. 5547, Springer, 2009, pp. 71–86.

[14] Georg Gottlob, Nicola Leone, Francesco Scarcello, A comparison of structural CSP decomposition methods, Artificial Intelligence 124 (2) (2000) 243–282.
[15] Georg Gottlob, Nicola Leone, Francesco Scarcello, Hypertree decompositions: A survey, in: Jiri Sgall, Ales Pultr, Petr Kolman (Eds.), MFCS, in: Lecture

Notes in Comput. Sci., vol. 2136, Springer, 2001, pp. 37–57.
[16] Georg Gottlob, Nicola Leone, Francesco Scarcello, Hypertree decompositions and tractable queries, J. Comput. System Sci. 64 (3) (2002) 579–627.
[17] Georg Gottlob, On minimal constraint networks, in: Jimmy Ho-Man Lee (Ed.), CP, in: Lecture Notes in Comput. Sci., vol. 6876, Springer, 2011, pp. 325–

339.
[18] Marc Gyssens, Peter Jeavons, David A. Cohen, Decomposing constraint satisfaction problems using database techniques, Artificial Intelligence 66 (1)

(1994) 57–89.
[19] Peter Honeyman, Richard E. Ladner, Mihalis Yannakakis, Testing the universal instance assumption, Inform. Process. Lett. 10 (1) (1980) 14–19.
[20] Chris Houghton, David A. Cohen, Solution equivalent subquadrangle reformulations of constraint satisfaction problems, in: Peter van Beek (Ed.), CP, in:

Lecture Notes in Comput. Sci., vol. 3709, Springer, 2005, p. 851.
[21] Henry A. Kautz, Bart Selman, A general framework for knowledge compilation, in: Harold Boley, Michael M. Richter (Eds.), PDK, in: Lecture Notes in

Comput. Sci., vol. 567, Springer, 1991, pp. 287–300.
[22] Christophe Lecoutre, Constraint Networks – Techniques and Algorithms, John Wiley and Sons, 2009.
[23] Alan Mackworth, Eugene Freuder, The complexity of some polynomial network consistency algorithms for constraint satisfaction problems, Artificial

Intelligence 25 (1) (1985) 65–74.
[24] David Maier, The Theory of Relational Databases, Computer Science Press, 1983.
[25] David Maier, Yehoshua Sagiv, Mihalis Yannakakis, On the complexity of testing implications of functional and join dependencies, J. ACM 28 (4) (1981)

680–695.
[26] Ugo Montanari, Networks of constraints: Fundamental properties and applications to picture processing, Inform. Sci. 7 (1974) 95–132.
[27] Ugo Montanari, Francesca Rossi, Fundamental properties of networks of constraints: A new formulation, in: L. Kanal, V. Kumar (Eds.), Search in Artificial

Intelligence, 1988, pp. 426–449.
[28] Dan Olteanu, Christoph Koch, Lyublena Antova, World-set decompositions: Expressiveness and efficient algorithms, Theoret. Comput. Sci. 403 (2–3)

(2008) 265–284.
[29] Dan Olteanu, Jakub Zavodny, Factorised representations of query results, in: Proc. International Conference on Database Theory ICDT 2012, Berlin,

Germany, March 26–30, 2012.
[30] Robert Rodošek, A new approach on solving 3-satisfiability, in: Jacques Calmet, John Campbell, Jochen Pfalzgraf (Eds.), Artificial Intelligence and Sym-

bolic Mathematical Computation, in: Lecture Notes in Comput. Sci., vol. 1138, Springer, Berlin, Heidelberg, 1996, pp. 197–212.
[31] Edward Tsang, Foundations of Constraint Satisfaction, Academic Press, 1993.
[32] Christopher Umans, Tiziano Villa, Alberto L. Sangiovanni-Vincentelli, Complexity of two-level logic minimization, IEEE Trans. Comput.-Aided Des. Integr.

Circuits Syst. 25 (7) (2006) 1230–1246.
[33] Alexey Voronov, Knut Åkesson, Fredrik Ekstedt, Enumeration of valid partial configurations, in: K. Shchekotykhin, D. Jannach, M. Zanker (Eds.), Pro-

ceedings IJCAI 2011 Workshop on Configuration, Barcelona, Spain, July 16, 2011, in: CEUR Workshop Proc., vol. 755, 2011, paper 04, available at
http://ceur-ws.org/Vol-755/paper04.pdf.

http://summit.sfu.ca/system/files/iritems1/6666/b17427204.pdf
http://ceur-ws.org/Vol-755/paper04.pdf

	On minimal constraint networks
	1 Introduction
	1.1 Minimal constraint networks
	1.2 Computing solutions to minimal constraint networks
	1.3 Minimality checking and structure identiﬁcation

	2 Preliminaries and basic deﬁnitions
	3 NP-hardness of computing minimal network solutions
	3.1 The Symmetry Lemma
	3.2 Intractability of computing solutions
	3.3 The case of bounded domains

	4 Minimal network recognition and structure identiﬁcation
	4.1 Minimal network recognition
	4.2 Structure identiﬁcation and k-representability
	4.3 The case of bi-valued relations
	4.4 Further strengthening and tractability frontier

	5 Summary, discussion, and future research
	Acknowledgements
	Appendix A Proof of the Symmetry Lemma
	Appendix B Proof of Theorem 4.3
	Appendix C Proof of Theorem 4.4
	References

