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ABSTRACT 

In this paper we describe some geometrical properties of the Weierstrass scheme of locally trivial 
hyperelliptic fibrations. 

1. INTRODUCTION 

In this introduction suppose K is a field of  characteristic 0. 
Starting point of  the research on which we report in this paper was a discussion 

between the second author and Emilia Mezzetti, concerning the solution of  Mezzetti 
and Portelli to the following problem: 

Question 1. Fix a point p ~ p2 and a reduced cubic curve C c p2 such that p ~t C. 
Let L be a line through p. Suppose C C? L consists of  three distinct points, say PL, 1, 

PL,2, PL,3. 
For which pairs (C, p) does an enumeration of  the elements in C fq L = 

{PL,], PL,2, PL,3} exist, such that for almost all lines L through p the cross-ratio 

of  p, PL,1, PL,2 and PL,3 is independent of  L? 

The answer to this question is: 

Theorem 2. (C, p) has the above mentioned property if and only i f  one of  the 
following holds: 
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(1) C is the union o f  three lines passing through one point and p is a point 
outside C. 

(2) C is the union o f  a non-singular conic Q and a line L, not tangent to the conic, 
and p is the polar point o f  L with respect to Q. 

(3) C is a cuspidal cubic, and p is the intersection point o f  the flex line o f  C and 
the tangent line at the cusp. 

(4) C is a smooth elliptic curve with j-invariant O, and p is the intersection point 

of  the tangent lines at three collinear flexes. 

One can prove this in several ways. One strategy, using the theory o f  elliptic 

surfaces, is explained in Remark  12. We give also another p roof  o f  this theorem, 
which applies to a generalized setting. Indeed, there is no reason to restrict to cubic 

curves, or to assume p ¢ C. We consider pairs (C, p)  with deg(C) - mul tp(C)  = 

d ~> 3, such that p is not on a line contained in C, with the property that for every 
two lines L and M through p such that #(C - {p}) n L = #(C - {p}) N M = d, we 

can write (C - {p}) N L = {Pi . . . . .  Pd} and (C - {p}) n M = {ql . . . . .  qd} in such a 
way that the lines piqi are concurrent. I f  (C, p)  has this property then we say that 
(C, p) has constant moduli. 

The main result is the following: 

T h e o r e m  3. Fix p ~ p2. Suppose C is a reduced plane curve of  degree d + m, with 
m the multiplicity of  C at p. Suppose no line throughp is contained in C. Then the 

following are equivalent: 

(1) 
(2) 

The pair (C, p) has constant moduli. 
There exists an automorphism (if  m = O) or a birational automorphism (if  
m > O) ~o o f P  2 and a homogenouspolynomial H ~ K[Y, Z] o f  degree n, such 
that ¢p(p) = [1 : 0 : 0], almost every line through p is mapped to a line through 

[1 : 0 : O] and the closure o f  g(C) is the zero-set o f  

d/k (d-1)/k 
H(xkzn-k-oltH(Y,Z)) or X H (xkzn-k--°ltH(Y'Z))' 
t = l  t = l  

where k is an integer dividing either d or d - 1, and olt ~ K for every index t. 

The equations for (C, p)  give the following: 

Coro l l a ry  4. With notation as above, i f (C,  p) has constant moduli then for some 
positive integer k, the group G, with 

Z Z Z Z 
× or G = k Z ×  

is a subgroup o f  Aut(C). 
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To every pair (C, p) as in the hypotheses of  Theorem 3 we can associate a surface 

fibered in hyperelliptic curves of  genus either (d - 1)/2 or (d - 2)/2. This will be 
explained explicitly in Remark 12, in the case of  curves of  degree 3. Basically, we 

take for almost every line L through p the double cover of  L ramified at L N C or at 

L n (C - {p}), depending on whether d is even or odd. The pair (C, p) has constant 
moduli if  and only if the associated family of  hyperelliptic curves is locally trivial. 

In fact, it is true (see Proposition 14) that every surface with a hyperelliptic 
fibration over p1, admitting either a two-section invariant under the hyperelliptic 
involution or a section, is birational to the surface associated to some pair (C, p). 
As a consequence, Theorem 3 provides a local form for locally trivial families of  
hyperelliptic curves. 

2. PROOF OF THE THEOREM 

In this section we prove Theorem 3. 
We always follow the convention that the curve C has degree d + m, where m ) 0 

is the multiplicity of  C at p. Moreover, we assume that d > 2 and char(K) > d or 

char(K) = 0. 

Definition 5. Let L and M be distinct lines through p; let A C L and B C M be 
two sets o fk  points. These two sets have the same moduli if  there is an isomorphism 
L -+ M mapping A to B and fixing L n M. 

We say that the pair (C, p) has constant moduli i f  for almost all lines L and M 
through p the sets (C - {p}) n M and (C - {p}) n L have the same moduli. 

Two sets of  collinear points A, B (not on the same line) have the same moduli i f  
and only if  one can write A = {Pl . . . . .  pk} and B = {ql . . . . .  qk} in such a way that 

all lines Piqi (with pi 5~ qi) have a common intersection point. The reader can easily 
verify this, e.g., by choosing coordinates on the lines containing A, respectively, B. 

L e m m a  6. Suppose (C, p) has constant moduli. Suppose L is a line such that 

S = (C - {p}) N L consists o fdpoints .  Then the d tangent lines o f  C at thepoints 

in S are concurrent. 

Proof. Write S = {pl . . . . .  Pd}. For almost every line M through p, we can write 
(C - {p}) n M = {q~ . . . . .  qd} in such a way that the piqi are concurrent. Moving M 
to L shows that the d tangent lines pass through a unique point. [] 

L e m m a  7. Suppose that (C, p) has constant moduli. 

Suppose ~ is a line through p such that n = #(C - {p}) n ~ < d. Then n = 0 or 

n = l .  

Proof. Take a line /x through p intersecting C - {p} in exactly d points. By a 
limit position argument as in the proof  of  Lemma 6, there exist lines e l  . . . . .  gd 

connecting all the points in (C - {p}) n /z  with the points in (C - {p}) N e, such 
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that £1 . . . . .  £d have a common intersection point. Since (C - {p}) • £ has less than 
d points, the common intersection point lies on £, hence (C - {p}) ~ £ is empty or 
consists of  one point. [] 

We describe next some reduction steps. 

R e m a r k  8. Let C be a reduced plane curve. Fix some p 6 p2, not on a line 

contained in C. 
Without loss of  generality we may assume that p = [ 1  : 0 :0 ] .  I f  we set Z = 1 

then an affine equation of  C is of  the form 

d 

Z fk(Y)Xk = O. 
k = 0  

After multiplying this equation by (fd) a-1 and replacing x by x/fa we may assume 
that fd = 1. Then replacing x by x - l f d _ l  allows us to assume that fa-1 = 0. 

Both substitutions define birational automorphisms of  p2. The first map may not 
be defined on lines L: aY = bZ such that (C.L)p > multp(C). The second map 

may not be defined on the line Z = 0. Almost all lines through p are mapped to 
lines through p. Note that it can happen that, as a result of  these substitutions, C 
acquires a line through p as a component, possibly with multiplicity. In this case we 
choose to discard this component, because lines through p are not relevant for the 
property of  having constant moduli. I f  we discard after each birational map these 
lines through p then both maps are defined on a dense open subset of  C. 

I f  p ¢ C, then both birational maps are isomorphisms. 

Note that these substitutions do not alter d, but can change the value of  m. Also 
the singularities of  C can change. The reason why we study the above type of 
equation is that surfaces with an hyperelliptic fibration are usually written in the 
following form, which is a higher-degree analogue of  the Weierstrass form: 

Z 2 = X d -F f d - 2 ( y ) x  d - 2  - ' b " "  -I- fo(Y). 

In view of  the preceding remark, from now on we assume p = [1 : 0 : 0] and C is 

a reduced curve of  degree d -I- m, such that C is the zero-set of  

(*) 
d - 2  

G(X, Y, Z) = z m x  d -I'- ~ Fd+m-k(Y, Z)X k, 
k - 0  

with Fh a homogeneous form of  degree h in Y and Z, and Z { G. 

Definition 9. Suppose that (C, p) has constant moduli. A special line of  C is a line 
£ through p, such that (C - {p}) n L has one element. This point is called a special 
point. 

Suppose £ is a non-special line through p. Then we denote by Te the intersection 
point of  all tangent lines to C at points in (C - {p}) n £. 
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Proposition 10. Suppose (C, p) has constant moduli. Then 

T := {Te I g line through p and#(C - {p}) N e = d} 

is a point or a line. 

Proof. Fix a general line L of  the form Y = yoZ. From Lemma 6 it follows that 
the lines tangent to C at the points in (C - {p}) n L have a common intersection 
point q. Possibly after an automorphism of  the form Y ~ Y + cZ, we may assume 

that q = [Y : ~ : 1], hence for every point [x0 : y0 : 1] 6 C(~')  n L we have 

OG OG x 
0x-(Xo, Yo, 1)(xo - 2) ÷ -8-y-( o, Y0, 1)(yo - y) = 0. 

This gives rise to a polynomial in xo of  positive degree, with the same zeros as 
G(xo, Yo, 1) considered as polynomial in xo. Comparing the two highest coefficients 
shows that 2 = 0, so T is contained in a line. Since there is a dominant map from 
p1 to T, we obtain that T is either a single point or the whole line X = 0. [] 

R e m a r k  11. Suppose (C, p) has constant moduli. Then Theorem 3 implies that all 

special points are contained in T. 

This yields a geometrical construction for finding the center p of  the pencil, once 
the curve C is known. I f  the curve C is non-singular outside {p}, the line T is a 
line on which d + m flex points lie. Moreover, the tangent lines at those d flexes 
intersect C with multiplicity d, and have a common point, which is the point p. 

Proof of Theorem 3. (1) ~ (2). By Remark 8 we may assume that the equation of  
C is of  the form (.) .  Suppose first that C does not contain the line T • X = 0. 

From the proof  of  Proposition 10 we obtain for almost all Y0 ~ K the relation 

0G x OG(x, yo, 1)(x - 2) + yo, 1)(yo- ~) =dG(x,  yo, 1). 
o x  W ( ' 

Comparing coefficients gives 2 = 0 and 

O Fm+h . , 
(yo - : ? ) ~ t y 0  1) = hFm+h(YO, 1), 

for all integers h such that 2 ~< h ~< d. This implies that 

[ O Fm+h ~ -1  
hFm+h(YO, Z)~---5-~tYO, Z) ) 

is independent of  the index h, provided ~ (yo, z) is different from 0. 
Let n := gcd{h I Fm+h (Y, Z) ~ 0}. From the above it follows that for all h, j such 

that Fm+h, Fm+j ~ 0 we have 

7 m ( j - h )  17h F J + h  ~ Ch,j ~ ~ m + j '  
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hence there exists a homogenous  polynomial  H(Y, Z) of  degree n(m + d)/d such 

that Fm+h(y, 1) = )~h/nHh/"(y, 1) i f  n divides h and 2 ~< h ~< d and Fm+h = 0 
otherwise. Thus 

d/n 
G := Z)~t(H(Y, z))t(xn)d/n-tz (d-tn)m/d 

t----O 

= do 1-](x"z°m/d - tmr, z) )  
t 

m 

for some ott c K. 

In the case that C contains T, consider C - T. This curve has constant moduli,  

and hence has an equation o f  the above form. Multiplying this equation with the 

equation for T gives an equation as in (2). 

(2) ~ (1). Suppose C is o f  the form 

HFt=O, Ft(X,Y,Z):=xnznm/d-cgtH(Y,Z). 
t 

Denote by Ct the curve o f  equation Ft = 0, and define a : [X : Y : Z] ~ [(nX : 

Y : Z], (n a primitive nth root o f  unity. 

Fix some t and two lines £1, £2 through [1 : 0 : 0] both intersecting Ct in n distinct 

points. Let L n be a line connecting one point o f  £1 n C and one point o f  £2 n C. 

Pose Lk = ak(Ln) for k = 1 . . . . .  n - 1. Then L1 .... .  Ln are lines connecting the 

points in C N £1 with those in C N £2. Note that L1 n . . .  n L n is one point, lying on 

the line X ----- 0. 

The morph ism [X : Y : Z] ~ [~~t+l/Ott X : Y : Z] maps  Ct to Ct+l, maps Lk 
to a line connecting a point o f  Ct+l N £1 with a point o f  Ct+l N £2 and fixes the 
common  intersection point o f  the Li. 

I f  C is o f  the form X I-It Ft = 0, then C is the union o f  the line X = 0 and a 
curve C I o f  equation [It Ft = 0. We already know that the pair ( C ,  p = [1 : 0 : 0]) 
satisfies condition (1). Then the claim follows from the fact that the lines connecting 

the intersections o f  C ~ with two general lines o f  the pencil with center p intersect 

always at a point on X = 0. [] 

We are ready to prove Theorem 2. 

P r o o f  of  T h e o r e m  2. We are in the case d = 3, m -- 0. We know that (C, p)  has 
constant moduli  i f  and only if  there exists an automorphism o f  p2 mapping p to 

[1 : 0:  0] and C to the zero-set o f  a polynomial  o f  the form 

X3+F3(Y,Z), X(X2+F2(Y,Z)) or X(X+FI(Y,Z))(X+XFI(Y,Z)) 

with Fi (Y, Z) a non-zero homogenous polynomial  o f  degree i. 
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In all three cases, if  Fi = 0 defines one point in p1, then C is the union of  three 
concurrent lines. If  F2 = 0 defines two distinct points in p1 then X ( X  2 + F2(Y, Z)) 
is the union of  a conic and a line, and p is the polar point of  L with respect to C. 

If/73 = 0 defines two distinct points in p1 then X 3 + F3(Y, Z) is a cuspidal cubic 

and p the intersection point of  the tangent line at the cusp and the flex line of  C. 
I f  F3 = 0 defines three distinct points in p1 then X 3 + F3 (Y, Z) is a smooth elliptic 

curve with j-invariant 0, and p is the intersection point of the tangent lines at three 
collinear flexes. [] 

Remark  12. Let C be a cubic curve and p be a point not on C. Let X1 be the 
blow-up of p2 in p. Denote by E the exceptional divisor. Fix some fiber F of  the 
ruling of  X1. Let X2 be the surface obtained from X1 by blowing it up along E A F 
and contracting the strict transform of  F. Note that X2 is the second Hirzebruch 
surface (see [1, V.4]). Let D be the union of  the strict transforms of C and E on X2. 
Consider the double cover Y of  X2 ramified along D. The surface Y is a rational 
elliptic surface. Then we have that (C, p) has constant moduti if and only if  the 
j-invariants of  all non-singular fibers of  Y -+ P~ coincide. 

In the above process we have to choose a fiber F. We may assume that 
F intersects the strict transform of  C in three distinct points. After fixing the 
morphism X1 --+ p1, we may assume that F lies above the point [1 : 0]. Then Y 
has an affine equation of  the form 

y2 = x  3 + f l ( t )x  2 + f2(t)x + f3(t) 

with degfi- ~< i. After substituting x = x' - l f l ( t )  we may assume that f l  = 0. 
Since F intersects C in three distinct points we have 3 deg(f2) + 2 deg(f3) = 6. 

It is known [2, Section III.1] that the fibers of the elliptic fibration on Y have 
constant j-invariant if  and only if f23 = c f  2, c c K or fz f3 = 0. This gives another 
proof of  Theorem 2. 

The equation given in Theorem 3 has the following geometric interpretations in 
the case d = 4, m = 0: 

Corollary 13. Suppose d = 4, m = O. Then (C, p) has constant moduli i f  and only 
i f  one o f  the following holds: 

(1) C is the union of  four concurrent lines. 
(2) C is the union o f  two conics C i. Then the tangent lines o f  C1 and C 2 at the 

intersection points have to coincide, and p is the common polar point. 

(3) C is the union o f  a cubic E and a line L. Then E is either cuspidal or smooth 
with j ( E )  = O, and L is the line passing through the flex and the cusp or the 
line passing through three flexes. 

(4) C is a cyclic cover o f  p1 of  degree 4 ramified in 4 points, and p is the 
intersection point o f  the tangents at C at the four ramification points. 

(5) C is irreducible, has two 4-flexes and a tacnode and all these points are 
collinear. The intersection point o f  the tangent line at the tacnode and two 
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(6) 

flex lines o f  the 4-flexes is p. The normalization o f  C is an elliptic curve with 
j-invariant 1728. 
C is irreducible and has a triplepoint o f  the form y3 = x 4 and a 4-flex. The 

point p is the intersection point o f  the tangent line at the triple point and the 
4-flex line. The normalization o f  C has genus O. 

We prove now the assertion of  the Introduction about the equivalence of  consider- 
ing pairs (C, p) with constant moduli and locally trivial hyperelliptic fibrations over 
p1 admitting a section or a two-section invariant under the hyperelliptic involution. 

Proposition 14. Suppose we have a family o f  hyperelliptic curves ~r : Y -+ p1, to- 
gether with a section a : pl  __> y, or a two-section invariant under the hyperelliptic 
involution. 

Then we can construct a pair (C, p) such that its associated surface (as in the 
Introduction) is YI 

Proof. Suppose we have a family of  hyperelliptic curves rr:Y --+ p1, together 
with a section ~ :p1 __~ y,  such that cr(P 1) A n ' - l ( t )  is a Weierstrass point of 
7r-l(t) for almost all t. Let Y be the surface obtained from Y by contracting all 
components of  fibers not intersecting a (p1). Consider the quotient X = Y/(t), with 
t the hyperelliptic involution on all fibers. Then X is a ruled surface. Let C be the 
image of  the fixed locus of  the hyperelliptic involution minus the image of o-(p1). 
Since X is a ruled surface we can construct a rational map 7* : X - - .  pa such that 
the ruling induces a pencil of  lines through the point p, with {p} = ~r(o'(p1)). Then 
we take C to be the closure of  ~p(C). 

If the section is not a Weierstrass point for almost all t, then the section and 
its conjugate form a two-section invariant under the hyperelliptic involution. The 
reasoning above can easily be adapted to the case of  an invariant two-section. [] 

Remark  15. Theorem 3 gives an indication of  how locally trivial families of  
hyperelliptic curves degenerate. If  the 2g + 2 Weierstrass points {P1 . . . . .  P2g+z} are 
in 'general' position, then there is locally a unique way to degenerate this family. (In 
the case of  elliptic curves this result is known and formulated as follows: Suppose 
rr : X -+ C is an elliptic surface with constant j-invariant different from 0, 1728 
then all singular fibers are of  type I~.) 

If  

{~0 E Aut(P 1) I ~o({P1 . . . . .  P2g+2}) ---- {P1 . . . . .  P2g+2}} 

has more than one element then the position of  the Weierstrass points (i.e., the 
moduli of  the hyperelliptic curve) does not determine the degeneration locally, as 
we have already seen in the case of elliptic surfaces with constant j-invariant 0 and 
1728. 

Moreover, it seems that one has to add one global combinatorial condition to 
describe all configurations of degenerations possible in a complete family. (In the 
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ease o f  elliptic curves, the sum o f  the Euler  numbers  o f  the singular  fibers equals 

12(pg(X) + 1).) 
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