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It is shown that a Gibbs phenomenon occurs in the wavelet expansion of a func-
tion with a jump discontinuity at 0 for a wide class of wavelets. Additional results
are provided on the asymptotic behavior of the Gibbs splines and on methods to
remove the Gibbs phenomenon. � 1996 Academic Press, Inc.

1. Introduction

If Sn denotes the n th partial sum of the Fourier expansion of the 2-peri-
odic function defined by

F(x)={&1
1

for &1�x<0,
for 0�x<1,

(1.1)

then, of course, Sn(x) � 1 for all 0<x<1. However, there are sequences xn

of positive numbers converging to 0 such that Sn(xn) converges to a
number greater than 1. Indeed

lim
n � �

Sn(a�n)=
2
? |

?a

0

sin t
t

dt

so that

lim
n � �

Sn(1�n)=
2
? |

?

0

sin t
t

dt=1.17898. . .>1,

e.g., see [7, p. 43]. This fact was pointed out by Gibbs [8] in 1899; for the
history of this observation see [3]. A similar phenomenon exists in a
vicinity of any jump of a piecewise smooth periodic function F.

Recently, the question has arisen as to whether there exists a Gibbs
phenomenon for orthogonal wavelet expansions, see [11], [14], [15], and
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[16]. As a simple illustrative example, let us look at the Shannon scaling
function

,(x)=
sin(?x)

?x
. (1.2)

The corresponding multiresolution subspaces Vm , m # Z, of L2(R) consist
of those (entire) functions in L2(R) whose Fourier transforms vanish out-
side the interval (&2m?, 2m?). For a given f in L2(R), the orthogonal
projections Qm f of f onto the spaces Vm converge to f in the L2(R) norm
as m � �. They form partial sums of the wavelet expansion of f with
respect to the wavelet induced by , (see Section 2), and they are given by

(Qm f )(x)=|
�

&�

sin(2m?(x& y))
?(x& y)

f ( y) dy.

Let f be defined by

&1 for &1<x<0,

f (x)={1 for 0<x<1, (1.3)

0 otherwise.

Then we obtain

(Qm f )(2&ma)=|
a

&a

sin(?x)
?x

dx&|
a+2m

&a+2m

sin(?x)
?x

dx.

Thus

lim
m � �

(Qm f )(2&ma)=
2
? |

?a

0

sin t
t

dt.

This shows that there exists a Gibbs phenomenon in the sense that
(Qm f )(2&ma) converges to a number greater than 1 for certain positive a,
e.g., for a=1. This is just a Gibbs phenomenon for the Fourier transform,
analogous to the standard one for Fourier series.

It is known that there is no Gibbs phenomenon for the Haar wavelet.
However, for all other studied classes of wavelets a Gibbs phenomenon was
found. We now report on some of these results.

Richards [14] studied the Gibbs phenomenon for the expansion into
spline functions without directly referring to multiresolution theory. Let
T [k]

n be the 2-periodic spline of degree k&1 having knots j�n, j # Z, that
best approximates the 2-periodic function (1.1) in the norm of L2[&1, 1].
In [14] it is shown that the sequence T [k]

n (x�n), n=1, 2, ..., converges
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locally uniformly to a spline function S [k] of degree k&1 with knots at the
integers. Let us call this cardinal spline S [k] the Gibbs spline of degree
k&1. It is the best approximation in the L2 norm of the function defined
by h(x)=1 if x�0 and h(x)= &1 if x<0 by a cardinal spline of degree
k&1. If there is x>0 such that S [k](x)>1, then there exists a Gibbs
phenomenon in the spline approximation of F. In [14] the Gibbs splines
S[k], k�8, are computed numerically. It is shown that an overshoot is
always observed in these cases. Then the behavior of S[k] as k � � is
investigated. It is conjectured that

lim
k � �

S [k](x)=
2
? |

?x

0

sin t
t

dt

locally uniformly in x. The conjecture is proved for odd degree k&1 and
x # Z. The Gibbs splines S [k] will also appear in Section 4 of this paper in
connection with the best L2(R) approximation in multiresolution spaces
generated by spline functions. We will give a complete proof of the conjec-
ture of Richards, and we will also prove that, for every k, there exists x>0
such that S[k](x)>1. Our approach demonstrates the usefulness of multi-
resolution theory in spline approximation theory.

Kelly [11] studied the Gibbs phenomenon for expansions associated
with a multiresolution analysis of closed linear subspaces Vm , m # Z of
L2(R); see Section 2. The orthogonal projection Qm f of f # L2(R) onto Vm

is the best approximation of f in the norm of L2(R) by a function in Vm .
If m � �, then Qm f converges to f in the norm of L2(R). Kelly gave a
necessary and sufficient condition for the existence of the Gibbs
phenomenon in this situation in terms of a Gibbs function. This Gibbs
function generalizes the Gibbs splines S [k] of [14]. The Gibbs function can
be expressed in terms of the scaling function of the underlying multiresolu-
tion analysis. We restate and reprove Kelly's result in Section 3. This result
is then used in [11] to show that there exists the Gibbs phenomenon for
the expansion associated with the Daubechies wavelets with compact sup-
port. These wavelets were introduced in [5]. Kelly also considered the
Gibbs phenomenon at points different from zero and obtained approximate
values for the overshoot by numerical calculations.

Using Kelly's general result, Shim [15] showed that there also exists the
Gibbs phenomenon for the expansion into Meyer-type wavelets. Moreover,
Shim showed that the Gibbs phenomenon can be avoided if appropriate
summation methods are used. A similar observation is known from the
theory of Fourier series: there is no Gibbs phenomenon if Fourier series are
summed by the Feje� r method (Cesa� ro summability). Some of these results
are presented in Section 5.
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It should be noticed that all of the mentioned results on the existence of
the Gibbs phenomenon for certain families of wavelets use special proper-
ties of the wavelets under consideration that are not shared by other classes
of wavelets. It is natural to ask whether we can derive the existence of the
Gibbs phenomenon for wavelet expansions directly from the defining
properties of wavelets. This is in fact possible. We prove in Section 3: if the
scaling function is continuously differentiable and of sufficient decay at \�,
then there is a Gibbs phenomenon in the associated wavelet expansion.

2. Wavelet Expansions

The presentation in this paper is essentially self-contained so that knowl-
edge of wavelet theory is not required to understand it. Good references for
orthogonal wavelet theory are Chui [4, Ch. 5], Daubechies [6, Ch. 5] and
Walter [16, Ch. 3].

Let , be a scaling function, i.e., , : R � R is a square integrable function
having the properties:

1. the functions ,(x&n), n # Z, form an orthonormal system in
L2(R);

2. the multiresolution subspaces Vm , m # Z, of L2(R), defined as the
closed linear spans of the orthonormal systems ,m, n(x)=2m�2,(2mx&n),
n # Z, are nested: } } } /V&2/V&1/V0/V1/V2/ } } }

3. the union of the spaces Vm , m # Z, is dense in L2(R).

It should be noted that we consider only real-valued scaling functions
and that we do not make a priori assumptions on their smoothness or on
their decay at \�. By the first property, the orthogonal projection Qm f
of f # L2(R) onto Vm is given by

Qm f= :
n # Z

( f, ,m, n) ,m, n , (2.1)

where ( } , } ) denotes the scalar product in L2(R). Because of the second and
third property, the sequence Qm f converges to f in the L2(R) norm as
m � � for every f # L2(R). This sequence plays the role of the sequence of
partial sums of Fourier series in the classical theory.

Indeed, the quantity Qm f is a partial sum of the wavelet expansion
associated with the given scaling function. Let � be a corresponding
(mother) wavelet, i.e., a function in V1 such that the system �(x&n), n # Z,
forms an orthonormal basis of the orthogonal complement of V0 within
V1 . Then the system �m, n(x)=2m�2�(2mx&n), m, n # Z, is an orthonormal

77THE GIBBS PHENOMENON FOR WAVELETS
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basis of L2(R): every function f # L2(R) admits the L2(R)-convergent
wavelet expansion

f = :
m, n # Z

( f, �m, n) �m, n . (2.2)

Now Qm f is the partial sum

Qm f =:
n

:
k<m

( f, �k, n) �k, n .

However, as in many papers on wavelet theory, we will not use wavelets
directly.

If it is possible to interchange sum and integral in (2.1), we can write Qm

as an integral operator

(Qm f )(x)=|
�

&�
2mq(2mx, 2my) f ( y) dy, (2.3)

where the kernel q(x, y) is defined by

q(x, y)= :
n # Z

,(x&n) ,( y&n) for x, y # R. (2.4)

We collect some properties of q in the following lemma (compare with
[13, (6.2) on p. 33]).

Lemma 2.1. Let , be a continuous scaling function satisfying

|,(x)|�K(1+|x| )&; for x # R (2.5)

with constants K and ;>1. Then

(a) the kernel q(x, y) is continuous and satisfies the estimate

|q(x, y)|�L(1+|x& y| )-; for all x, y # R,

where L is a constant;

(b) every function in Vm is continuous;

(c) equation (2.3) holds for every f # L2(R), m # Z and x # R.

Proof. (a) By assumption, the defining series (2.4) for q converges
locally uniformly. Thus continuity of , implies continuity of q. For the
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proof of the estimate, we assume without loss of generality that |x+ y|�1
and x� y because q(x+1, y+1)=q(x, y)=q( y, x). If n�0 then

|x&n|= } x+ y
2

+
x& y

2
&n }� } x& y

2
&n }&1

2
,

and

| y&n|= }x+ y
2

&
x& y

2
&n }�x& y

2
+n&

1
2

�
x& y

2
&

1
2

.

Thus

(1+|x&n| )(1+|y&n| )� 1
4 (1+x& y)(1+|x& y&2n| ).

The same result holds for n<0 if we replace n by &n on the right hand
side. Using (2.4) and (2.5) we have shown that

|q(x, y)|�K 24;(1+x& y)&;

_\ :
n�0

(1+|x& y&2n| )&;+ :
n<0

(1+|x& y+2n| )&;+ .

Since ;>1 the sum �n # Z (1+|t&2n| )&; is bounded by a constant inde-
pendent of t # R. Therefore the above inequality implies (a).

(b) This follows from the fact that the expansion f =�n ( f, ,m, n) ,m, n

of every f # Vm is locally uniformly convergent.

(c) Without loss of generality we assume that m=0. Since

:
n
|

�

&�
|,(x&n) ,( y&n) f ( y)| dy�\|

�

&�
| f ( y)| 2 dy+

1�2

:
n

|,(x&n)|<�

we are permitted to interchange sum and integral in (2.1) yielding (2.3) for
almost all x. This equation then holds for all x because both sides represent
continuous functions of x. This is true for the left hand side by part (b),
and it holds for the right hand side by a well known theorem on the con-
tinuous parameter dependence of Lebesgue integrals in combination with
the estimate given in part (a). K

We will also need the following well known result. We include a proof
for the interest of completeness and because the method of proof (making
use of the second property of scaling functions) will also be useful to estab-
lish an important lemma in the next section.

79THE GIBBS PHENOMENON FOR WAVELETS
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Lemma 2.2. If , is a continuous scaling function satisfying (2.5) with
;>1, then

|
�

&�
q(x, y) dy=1 for all x # R. (2.6)

Proof. Let d=k�2n, k # Z, n # N, be a dyadic number. Then ,(2&mx+d )
belongs to V0 for all m�n. In fact, the second property of scaling functions
shows that ,(2&mx) is in V0 , and then ,(2&mx+d )=,(2&m(x+2m&nk))
is in V0 , too. Thus, by Lemma 2.1(c) and definition of Q0 ,

,(2&mx+d )=|
�

&�
q(x, y) ,(2&my+d ) dy.

Since q(x, y) is integrable with respect to y by Lemma 2.1(a) and , is
bounded, we obtain for m � � by the Lebesgue dominated convergence
theorem

,(d )=|
�

&�
q(x, y) ,(d ) dy.

Since there is a dyadic number d such that ,(d ){0 this yields the desired
result. K

3. The Gibbs Phenomenon for Wavelet Expansions

We first need a precise definition of what we mean by the Gibbs
phenomenon for wavelets.

Definition 3.1. Let f : R � R be a square integrable bounded function
with a jump discontinuity at 0, i.e., the limits f (0&)=lim0>x � 0 f (x) and
f (0+)=lim0<x � 0 f (x) exist and are different. We say that the wavelet
expansion of f with respect to a given scaling function , shows a Gibbs
phenomenon at the right hand side of 0 if there is a sequence 0<xm � 0
such that (Qm f )(xm) converges to a number greater than f (0+) if
f (0+)> f (0&) or to a number less than f (0+) if f (0+)< f (0&) as
m � �. Similarly, we speak of a Gibbs phenomenon at the left hand side
of 0 if there is a sequence 0>xm � 0 such that (Qm f )(xm) converges to a
number greater than f (0&) if f (0&)> f (0+) or to a number less than
f (0&) if f (0&)< f (0+) as m � �.

We remark that this definition refers only to the orthogonal projections
Qm onto the multiresolution spaces Vm but not directly to the scaling func-
tion ,. We also remark that in the above definition we tacitly assumed that

80 SHIM AND VOLKMER
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Qm f is a continuous function. Without such an assumption, Qm f could be
redefined arbitrarily on a null set without changing it as an element of
L2(R), and the sequence (Qm f )(xm) would be meaningless.

We further remark that (Qm f )(x&d )=(Qm g)(x) if g(x)= f (x&d) for
every dyadic number d=k�2n, k # Z, n # N and m�n. This follows from the
fact that h(x&2&m) is in Vm whenever h is in Vm . Therefore, the wavelet
expansion of f shows a Gibbs phenomenon at x=d (which is defined in an
obvious way) if and only if the wavelet expansion of g shows a Gibbs
phenomenon at x=0.

Let f be a function as in Definition 3.1, and let xm be any sequence of
positive numbers converging to 0. Then, under the assumption of
Lemma 2.1,

(Qm f )(xm)=|
�

&�
2mq(2mxm , 2my) f ( y) dy=|

�

&�
q(2mxm , t) f (2&mt) dt.

Define a function g by g(x)= f (x)& f (0&) if x<0 and g(x)=
f (x)& f (0+) if x�0, and set

=m=|
�

&�
q(2mxm , t) g(2&mt) dt.

Then, by Lemma 2.1(a),

|=m |�|
�

&�

L
(1+|2mxm&t| ) ; | g(2&mt)| dt

=|
�

&�

L
(1+|s| ) ; | g(2&ms+xm)| ds.

By the Lebesgue dominated convergence theorem, the second integral con-
verges to 0 as m � � because g is bounded and g(x) � 0 as 0{x � 0.
Hence there is a sequence =m converging to 0 such that

(Qm f )(xm)==m+ f (0&) |
0

&�
q(2mxm , t) dt+ f (0+) |

�

0
q(2mxm , t) dt.

Using Lemma 2.2 we can write this as

(Qm f )(xm)==m+ f (0&)+( f (0+)& f (0&))|
�

0
q(2mxm , t) dt. (3.1)

We use this identity to reprove the following theorem established in
[11].

81THE GIBBS PHENOMENON FOR WAVELETS
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Theorem 3.2. Let , be a continuous scaling function satisfying (2.5) with
;>1. Then the following statements are equivalent:

(a) there is a Gibbs phenomenon at the right hand side of 0 for the
wavelet expansion of at least one bounded square integrable function
f : R � R with a jump discontinuity at 0;

(b) there is a Gibbs phenomenon at the right hand side of 0 for the
wavelet expansion of all such f;

(c) there is an a>0 such that ��
0 q(a, t) dt>1.

Proof. (c) implies (c): Let a>0 be such that w : =��
0 q(a, t) dt>1. Let

f be a function as in Definition 3.1, and set xm=2&ma. Then, by (3.1),
(Qm f )(xm) � f (0&)(1&w)+ f (0+) w as m � �. Since w>1, the limit is
greater than f (0+) if f (0+)> f (0&) and less than f (0+) in the other
case. Thus (b) holds.

(b) trivially implies (a).
(a) implies (c): Let f be a function as given by (a), and let 0<xm � 0 be

such that (Qm f )(xm) converges to a number greater than f (0+) if
f (0+)> f (0&) or less than f (0+) otherwise. Then (3.1) shows that
��

0 q(2mxm , t) dt converges to a number greater than 1 as m � �. This
implies that there is m such that a : =2mxm satisfies ��

0 q(a, t) dt>1. K

Of course, there is a similar result for the Gibbs phenomenon at the left
hand side of 0 with (c) replaced by the condition that there is a<0 such
that ��

0 q(a, t) dt<0 (or �0
&� q(a, t) dt>1). Because of the equivalence of

(a) and (b) we can simply speak of a Gibbs phenomenon at the right (left)
hand side of zero.

If f is the function defined by (1.3), then we obtain

lim
m � �

(Qm f )(2&mx)=|
�

&�
q(x, y) h( y) dy (3.2)

where h is defined by

h(x)={1
&1

if x�0;
if x<0.

(3.3)

Let us call this limit the Gibbs function associated with the given scaling
function. It is a continuous function under the hypotheses of the theorem.

We will also need the difference r between h and the Gibbs function:

r(x)=h(x)&|
�

&�
q(x, y) h( y) dy. (3.4)

82 SHIM AND VOLKMER
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There is a Gibbs phenomenon at the right hand side of 0 if and only if
there exists a>0 such that r(a)<0, and at the left hand side of 0 if and
only if there exists a<0 such that r(a)>0.

We now use the above theorem to prove existence of the Gibbs
phenomenon for wavelet expansions. We first need two more lemmas.

Lemma 3.3. Let , be a continuous scaling function satisfying (2.5) with
;>1. Then there is a constant M such that |r(x)|�M(1+|x| )1&; for x # R.
If ;>3�2 then r # L2(R) and r is orthogonal to V0 .

Proof. By Lemma 2.2, we can write

r(x)={
2 |

0

&�
q(x, y) dy if x�0,

&2 |
�

0
q(x, y) dy if x<0.

Now Lemma 2.1(a) easily implies the first part of the statement of the
lemma. It is then clear that r # L2(R) if ;>3�2. Let f be any integrable
function in V0 . We multiply (3.4) by f and integrate to obtain

|
�

&�
r(x) f (x) dx=|

�

&�
f (x) h(x) dx&|

�

&�
|

�

&�
q(x, y) f (x) h( y) dy dx.

Using the Fubini theorem for the double integral and f ( y)=
��

&� q(x, y) f (x) dx, we obtain

|
�

&�
r(x) f (x) dx=|

�

&�
f (x) h(x) dx&|

�

&�
f ( y) h( y) dy=0.

This implies that r is orthogonal to all functions ,(x&n), n # Z. It follows
that r is orthogonal to V0 . K

Lemma 3.4. Let , be a continuous and bounded scaling function which is
differentiable at a dyadic number d and ,$(d ){0. Let g # L2(R) be
orthogonal to V0 , and let xg(x) be in L1([R]). Then ��

&� xg(x) dx=0.

Proof. The assumptions imply that g # L1(R). We first show that
��

&� g(x) dx=0. Let c=k�2n, k # Z, n # N, be a dyadic number. Then, as
we saw in the proof of Lemma 2.2, the function ,(2&mx+c) is in V0 for
every m�n. Therefore,

|
�

&�
,(2&mx+c) g(x) dx=0 for m�n. (3.5)
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Letting m � � and using the Lebesgue dominated convergence theorem
we find that ,(c) ��

&� g(x) dx=0. Since this is true for all dyadic numbers
c, we obtain ��

&� g(x) dx=0. Using (3.5) with c=d we can write

|
�

&�

,(2&mx+d )&,(d )
2&mx

xg(x) dx=0.

Since , is differentiable at d, we obtain for m � � using the dominated
convergence theorem again that ,$(d ) ��

&� xg(x) dx=0. Since ,$(d ){0
this implies the desired result. K

We can now prove the main theorem of this section.

Theorem 3.5. Let , be a continuous scaling function which is differen-
tiable at a dyadic number with nonvanishing derivative there, and which
satisfies (2.5) with ;>3. Then the corresponding wavelet expansion shows a
Gibbs phenomenon at the right hand side or left hand side of 0.

Proof. Since ;>3 Lemma 3.3 shows that the function g=r satisfies the
assumptions of Lemma 3.4. Hence

|
�

&�
xr(x) dx=0.

If we would have r(x)�0 for x>0 and r(x)�0 for x<0, then this would
imply that r(x)=0 almost everywhere. This is impossible because r&h is
continuous and h has a jump at x=0. Hence there is x>0 such that
r(x)<0 or there is x<0 such that r(x)>0. The remark after (3.4) now
implies that there is a Gibbs phenomenon at the right or left hand side
of 0. K

The inequality ;>3 appears to enter the assumptions only because of
our method of proof. It should be possible to weaken this condition.
However, the remaining assumptions cannot be entirely removed because
the Haar scaling function (the characteristic function of [0, 1)) has to be
excluded by the assumptions of the theorem.

The theorem only asserts that there is a Gibbs phenomenon at the
right or left hand side of zero. If f (&x) # V0 whenever f # V0 (e.g., this
is true for the scaling functions considered in the next two sections),
then, of course, the theorem yields that there is a Gibbs phenomenon on
both sides of 0.
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4. The Gibbs Phenomenon for Spline Wavelets

In this section we consider wavelets related to spline approximation. The
kth order cardinal B-spline N [k] is defined as the k-fold convolution
product of the characteristic function of the interval [0, 1] for k=2, 3, ...
(cf. [4, p. 17]). These functions are not scaling functions in the sense of
Section 2 because the first orthogonality condition is not satisfied. The
corresponding orthogonalized scaling function ,[k] (leading to wavelets
introduced by Battle [2] and Lemarie� [12]) is defined as the function
whose Fourier transform is given by

,� [k](|)=\1&e&i|

i| +
k

_k(|)&1�2, (4.1)

where

_k(|)=sin(|�2)2k :
n # Z

(|�2+n?)&2k; (4.2)

see [4, p. 216]. The space V0=V [k]
0 consists of all square integrable and

k&2 times continuously differentiable functions that agree with a poly-
nomial function of degree at most k&1 on each interval [n, n+1] for
n # Z.

The scaling function ,[k] satisfies (2.5) for all ;>0. Moreover,
f (&x) # V [k]

0 whenever f # V [k]
0 . Therefore, Theorem 3.5 yields that there is

a Gibbs phenomenon in the corresponding wavelet expansion at both sides
of 0 for all k=2, 3, ... In fact, in the case of spline wavelets we have the
following stronger result whose proof is even simpler than that of
Theorem 3.5.

Theorem 4.1. Let r be defined as in (3.4) with respect to the scaling
function ,[k]. Then there is 0<x<k such that r(x)<0, and there is
&k<y<0 such that r( y)>0. Consequently, the corresponding wavelet
expansion shows a Gibbs phenomenon at the left and right hand side of 0.

Proof. The k th order cardinal B-spline N [k] belongs to V [k]
0 , vanishes

outside the interval (0, k) and is positive in this interval. By Lemma 3.3, r
is orthogonal to N [k]. Hence r changes sign in (0, k) unless r is identically
zero in (0, k ). The latter is impossible because r(x) is positive for small
x>0 (the Gibbs function vanishes at 0 by symmetry). If we replace N [k]

by N [k](x+k), we see in the same way that r changes sign in (&k, 0),
too. K

Without using wavelet theory, the existence of the Gibbs phenomenon
was proved for k=2, ..., 8 and for k sufficiently large by Richards [14].
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Let S [k] be the Gibbs function associated with ,[k], i.e.,

S [k](x)=|
�

&�
q[k](x, y) h( y) dy, (4.3)

where q[k] is the kernel (2.4) corresponding to ,[k] and h is the function
defined by (3.3). Since T [k]

n =Qm F with n=2m and the 2-periodic function
F defined by (1.1), the function S [k] agrees with the Gibbs spline of order
k introduced by Richards [14, p. 338]. Richards [14, p. 335] conjectures
the following result.

Theorem 4.2. We have

lim
k � �

S [k](x)=
2
? |

?x

0

sin t
t

dt

locally uniformly in x.

The right hand side of this equation is just the Gibbs function for the
Shannon scaling function (see Section 1). In [14] the above result is
proved for integers x and for even k approaching infinity. The following
considerations will lead to a proof of Theorem 4.2. Our first task is to
prove some estimates for ,� [k].

Lemma 4.3. The following estimates hold for all | # R:

|,� [k](|)|�1, (4.4)

|,� [k](|)|� } sin(|�2)
|�2 }

k

(?�2)k, (4.5)

|,� [k](|)|�min(1, |?�||k). (4.6)

Proof. Because of the first property of scaling functions we know [4,
Thm. 3.23] that

:
n

|,� [k](|+2n?)| 2=1, (4.7)

so the first estimate is clear. By [4, p. 90], we have

_k(|)�_k(?) for all | # R.
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The definition of _k shows immediately that

_k(?)�(?�2)&2k,

so the second estimate follows. The third estimate follows from the first two
inequalities by noting that |sin(|�2)|�1. K

Lemma 4.4. The 2?-periodic functions

:
n

|,� [k](|+2n?)|

are uniformly bounded with respect to | # R and k�2. Moreover,

:
n{0

|,� [k](|+2n?)| � 0 as k � � for |||<?.

Proof. Let &?�|�?. Then, by (4.6),

:
n

|,� [k](|+2n?)|�1+ :
n{0 }

?
|+2n? }

k

.

Since the basis of the above power is �1, we obtain

:
n

|,� [k](|+2n?)|�1+ :
n{0

} ?
|+2n? }

2

�1+2 :
�

n=1

1
(2n&1)2 .

This proves the first part of the lemma. Let ||�?|�s<1. Then, by (4.6),

:
n{0

|,� [k](|+2n?)|� :
n{0

} ?
|+2n? }

k

�2 :
�

n=1

(2n&s)&k � 0 as k � �

which completes the proof. K

Lemma 4.5. The sequence of functions exp(i|k�2) ,� [k](|) converges to
the characteristic function /(&?, ?)(|) of the interval (&?, ?) pointwise a.e.
and in L2(R) as k � �.

Proof. If |||>?, the pointwise convergence follows from (4.6). If
|||<?, then, by (4.7) and Lemma 4.4,

0�1&|,� [k](|)| 2= :
n{0

|,� [k](|+2n?)| 2

� :
n{0

|,� [k](|+2n?)| � 0 as k � �.
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This implies |,� [k](|)| � 1 as k � �. Since |,� [k](|)|=exp(i|k�2) ,� [k](|),
this proves the pointwise convergence for |||<?. By (4.6), the sequence
|,� [k](|)| is uniformly dominated by a function in L2(R). Thus pointwise
convergence implies convergence in the L2(R) norm. K

For generalizations of the above lemma we refer to [1] and [9]. It
follows that

,[k](x+k�2) �
sin(?x)

?x
as k � �

in the L2(R) norm. We recognize the right hand side as the Shannon
scaling function.

We now turn to the investigation of the asymptotic behavior of the
kernel function q[k] as k � �. The Fourier transform of q[k](x, y) with
respect to y is given by

q̂[k](x, |)=,� [k](|) :
n

,[k](x&n) exp(&i|n).

If we use a well known identity related to the Poison summation formula
[10, p. 128], we obtain

q̂[k](x, |)=,� [k](|) :
n

,� [k](|+2n?) exp (&i(|+2n?) x). (4.8)

Applying the following lemma to (4.3), we can rewrite the Gibbs function
as

S [k](x)=
1
? |

�

&�

Im q̂[k](x, |)
|

d|. (4.9)

Lemma 4.6. Let f : R � R be such that f # L2(R) & L1(R) and
xf (x) # L1(R). Then

|
�

&�
f (x) h(x) dx=&

1
? |

�

&�

Im f� (|)
|

d|.

Proof. We have

Im f� (|)
|

=&|
�

&�

sin(x|)
|

f (x) dx.
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The assumptions guarantee that sin(x|) f (x)�| is integrable over
| # (&a, a), x # R, for every a>0. Therefore, by the Fubini theorem,

|
a

&a

Im f� (|)
|

d|=&|
�

&� \|
a

&a

sin(x|)
|

d|+ f (x) dx.

Letting a � �, the Lebesgue dominated convergence theorem yields the
stated result. K

Lemma 4.7. For every x # R, we have

q̂[k](x, |) � /(&?, ?)(|) exp(&i|x) as k � �

pointwise a.e. and in the L2(R) norm.

Proof. The pointwise convergence follows easily from (4.8) and Lem-
mas 4.4 and 4.5. We obtain convergence in the L2(R) norm because the
functions q̂[k](x, } ) are uniformly dominated by a function in L2(R), see
Lemmas 4.3 and 4.4. K

As a consequence we find that

q[k](x, y) �
sin(?( y&x))

?( y&x)
as k � �,

in the L2(R) norm for fixed x as functions of y.
We are now in a position to prove Theorem 4.2.

Proof of Theorem 4.2. It follows from (4.6) and Lemma 4.4 that

|q̂[k](x, |)|�L|?�|| k

where L is a constant independent of x, |, k. This implies that

|
|||�?

Im q̂[k](x, |)
|

d| � 0 as k � �

uniformly with respect to x # R. It remains to treat the integral in (4.9)
between the limits &?�|�?. We first consider only the terms with n{0
in (4.8). By (4.5), we have for n{0

|,� [k](|+2n?)|�
|sin(|�2)| k

||�2+n?|k \?
2+

k

�
|||

||�2+n?|k \?
2+

k

,

89THE GIBBS PHENOMENON FOR WAVELETS



F
ile

:6
40

J
29

17
17

.B
y:

B
V

.D
at

e:
20

:0
1:

96
.T

im
e:

17
:1

7
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

21
77

Si
gn

s:
11

15
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

where we estimated |sin(|�2)|k�||| |sin (|�2)| k&1�|||. For ||�?|�s�1
we obtain

},
� [k](|+2n?)

| }� 1
(2|n|&s)k.

This shows that the functions

:
n{0 }

,� [k](|+2n?)
| } , k�2,

are uniformly bounded for | # (&?, ?) and converge pointwise to 0 as
k � � in this interval. Hence its integrals over | # (&?, ?) converge to 0
as k � �. We have thus shown that

S [k](x)&
1
? |

?

&?
|,� [k](|)| 2 sin(|x)

|
d| � 0 as k � � (4.10)

uniformly with respect to x # R. We can now write

}|
?

&?
|,� [k](|)| 2 sin(|x)

|
d|&|

?

&?

sin(|x)
|

d|}
�|x| |

?

&?
(1&|,� [k](w)|2) d| � 0 (4.11)

as k � � locally uniformly with respect to x. We just used (4.4) and
Lemma 4.5. Now (4.10) and (4.11) imply Theorem 4.2. K

5. Approximation with Positive Kernels

In order to avoid the Gibbs phenomenon we can try to approximate a
function f by functions in Vm other than the orthogonal projections Qm f.
First we note that there is an obvious generalization of some of the ideas
in Sections 2 and 3. Let us call a function p : R2 � R an admissible kernel
if it has the following properties:

1. p is continuous;

2. there is a bounded function \ # L1(R) such that | p(x, y)|�
\(x&y) for all x, y # R ;

3. ��
&� p(x, y) dy=1 for all x # R.
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The integral operators

(P* f )(x)=|
�

&�
*p(*x, *y) f ( y) dy, *>0, (5.1)

then map functions f # L2(R) to continuous functions in L2(R). For
example, to show that P1 f # L2(R) we use the Schwarz inequality to
estimate

|(P1 f )(x)| 2�|
�

&�
| p(x, y)| dy |

�

&�
| p(x, y)| | f ( y)| 2 dy.

Thus

|
�

&�
|(P1 f )(x)| 2 dx�\|

�

&�
\(t) dt+

2

|
�

&�
| f ( y)| 2 dy<�.

In the notation of Section 2, we have Qm=P* for *=2m if p=q is
derived from a scaling function that satisfies the assumption of Lemma 2.1.
Moreover, if p(x, y)=u(x& y) is an admissible kernel of convolution type,
then the family *p(*x, *y), *>0, is a summability kernel in the sense of
[10, p. 124]. It is easy to show that (P* f )(x) converges locally uniformly
to f (x) for every bounded and continuous function f whenever p is an
admissible kernel; compare [10, ex. 10, p. 130].

Analogous to Definition 3.1, we define the Gibbs phenomenon for the
approximation of a function f with a jump discontinuity at 0 by P* f as
* � �. We verify that Theorem 3.2 remains valid in this case: there is a
Gibbs phenomenon at the right hand side of zero if and only if there is
a>0 such that ��

0 p(a, y) dy>1. In particular, we see that there is no
Gibbs phenomenon if the kernel p is positive (i.e., p(x, y)�0 for all
x, y # R). Indeed, if p is positive then 0���

0 p(a, y) dy�1 for all a # R. Our
goal is to find positive admissible kernels with the additional property that
P2m maps L2(R) into Vm , m # Z, for given multiresolution spaces Vm . Of
course, it is sufficient to verify this latter property for m=0.

As an example, we first consider the Shannon scaling function (1.2) with
corresponding (not admissible and not positive) kernel

q(x, y)=
sin(?(x&y))

?(x&y)
.

For *>0 and f # L2(R), we define

f*(x)=|
�

&�
*q(*x, *y) f ( y) dy.
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f* is the orthogonal projection of f onto the subspace of functions whose
Fourier transforms vanish outside (&*?, *?). If *=2m then Qmf = f* .
Analogous to the Feje� r method of summation of Fourier series, we
consider

(P* f )(x)=
1
*|

*

0
f+(x)d+=

1
* |

*

0
|

�

&�
+q(+x, +y) f ( y) dy d+.

Since +q(+x, +y) f ( y) is integrable over (+, y) # (0, *)_R, the Fubini
theorem leads to

(P* f )(x)=|
�

&�
*p(*x, *y) f ( y) dy,

where

p(x, y)=|
1

0
tq(tx, ty) dt.

The new kernel is given explicitly by

p(x, y)=|
1

0

sin(?t(x& y))
?(x& y)

dt=2 {sin(?(x&y)�2)
?(x&y) =

2

. (5.2)

We see that P* is a convolution operator P* f =u*V f where

u*(x)=*u(*x) and u(x)=2 {sin(?x�2)
?x =

2

. (5.3)

Theorem 5.1. The function p(x, y) of (5.2) is an admissible and positive
kernel for the Shannon system in the sense that P2m f # Vm for all f # L2(R)
and m # Z.

Proof. Clearly, p is admissible and positive. Let f # L2(R). In order to
show that P2m f # Vm it is sufficient to consider the case m=0. We note that
the Fourier transform of P1 f =uV f is the product of the Fourier transform
of f and a function that vanishes outside [&?, ?]. Since the Fourier trans-
forms of functions in V0 are exactly those functions that vanish outside this
interval, it follows that P1 f # V0 . K

We now construct a positive summability kernel for wavelets general-
izing those introduced by Meyer [13, p. 23]. We say that , is a scaling
function of Meyer-type if its Fourier transform ,� shares the following
properties:
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1. ,� # L2(R) vanishes outside the interval [&4?�3, 4?�3];

2. ,� (|)=1 for | # [&2?�3, 2?�3];

3. |,� (|)| 2+|,� (|+2?)| 2=1 for all | # [&4?�3, &2?�3];

4. ,� is real-valued and even.

It is easy to see that , is a real-valued even (entire) scaling function.
Therefore, Theorem 3.5 shows that we always have a Gibbs phenomenon
in the wavelet expansion using a wavelet of Meyer-type as soon as we can
take ;>3 in (2.5). However, this assumption is not necessary as was
shown in a different way in [15].

Theorem 5.2. Let , be a scaling function of Meyer-type, and let

u(x)=*u(*x) where u(x)=
1
4

, \x
4+

2

.

Then p(x, y)=u(x& y) is an admissible and positive kernel for the given ,,
i.e., P2m f # Vm for all f # L2(R) and m # Z.

Proof. Since ��
&� ,(x)2 dx=1, it follows that ��

&� u(x) dx=1 which
proves the first part of the statement. Let f # L2(R). In order to show that
P2m f belongs to Vm it is again sufficient to consider the case m=0.
Now the Fourier transform of P1 f =u V f is the product of the Fourier
transform of u and the Fourier transform of f. Since ,� vanishes out-
side [&4?�3, 4?�3], the Fourier transform of ,(x)2 vanishes outside
[&8?�3, 8?�3]. Then the Fourier transform of u and thus also the Fourier
transform of P1 f vanishes outside [&2?�3, 2?�3]. This already implies
that P1 f # V0 as is shown in the following simple lemma. K

Lemma 5.3. In the Meyer-type case, every function f # L2(R) whose
Fourier transform vanishes outside [&2?�3, 2?�3] belongs to V0 .

Proof. Let f be a function as given in the statement of the lemma. Let
F be the 2?-periodic extension of f� . Because of the first two properties of
,� for scaling functions of Meyer-type, we have f� =,� F. If we replace F by
its Fourier series and apply the inverse Fourier transform, we see that f is
a l 2 linear combination of the functions ,(x&n), n # Z. Hence f # V0 . K

We now show how to find a positive kernel for the spline approximation
considered in Section 4. We define

p[k](x, y)=:
n

N [k](x&n) N [k]( y&n), (5.4)
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where N [k] is the k th order cardinal B-spline. The series is locally
uniformly convergent and thus defines a continuous function.

Theorem 5.4. For every k=2, 3, ..., p[k](x, y) is an admissible and
positive kernel with the property that P2m f belongs to the spline multiresolu-
tion space V [k]

m for every f # L2(R) and m # Z.

Proof. The second property of an admissible kernel is satisfied trivially
because p[k](x, y) is bounded and vanishes for |x& y|�k. The third
property follows from the fact that �n N [k](x&n)=1 for all x (which
implies ��

&� N [k]( y) dy=1); see [4, Thm. 4.3 (vi)]. Thus p[k] is
admissible. It is positive because N [k](x)�0 for all x. Since N [k] # V [k]

0 ,
we see that the remaining part of the statement is true. K
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