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Abstract

We consider asymptotics of ratios of random characteristic polynomials associated with orthogonal
polynomial ensembles. Under some natural conditions on the measure in the definition of the orthogonal
polynomial ensemble we establish a universality limit for these ratios.
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1. Introduction

1.1. Formulation of the problem

In this article, we consider orthogonal polynomial ensembles of nparticles on R. Such
ensembles are described by a positive Borel measure µ with finite moments, and the associated
distribution function for the particles {x1, . . . , xn} of the form

dPµ,n(x) =
1

Zn
∆n(x)2

n
i=1

dµ(xi ).
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Here Zn is the normalization constant,

Zn =


. . .


∆n(x)2

n
i=1

dµ(xi ),

and

∆n(x) =


n≥i> j≥1

(xi − x j )

is the Vandermonde determinant. For symmetric functions f (x) = f (x1, . . . , xn) of the x ′

i s,

⟨ f (x)⟩µ ≡
1

Zn


. . .


f (x)∆n(x)2

n
i=1

dµ(xi )

denotes the average of f with respect to dPµ,n(x).
Given a set of n points, {x1, . . . , xn}, let

D{x1,...,xn}
n (α) =

n
i=1

(α − xi ),

considered as a polynomial in α ∈ C. When the xi ’s are chosen to be the random particle
locations for an orthogonal polynomial ensemble, this becomes a random polynomial which we
denote simply by Dn(α). By extension from the random matrix case (see below), Dn(α) is known
as the characteristic polynomial for the orthogonal polynomial ensemble.

The goal of the present paper is to study the large n asymptotics of the averages
Dn(α1) . . . Dn(αk)

Dn(β1) . . . Dn(βk)


µ

. (1.1)

In particular, we focus on the bulk of the support for measures µ, and aim to establish universality
of the scaling limit of averages (1.1) under mild assumptions on µ. Our main result says roughly
that for µ locally absolutely continuous with a bounded Radon–Nikodym derivative, universality
for the reproducing kernel implies universality for (1.1). It should be emphasized that aside for
the existence of moments, we make no global assumptions on µ. In particular, we do not assume
that µ is globally absolutely continuous or that supp(µ) is compact.

1.2. Motivation and remarks on related works

In the case when dµ(x) = e−V (x)dx one can interpret the particles in the definition of the
orthogonal polynomial ensembles as eigenvalues of a random Hermitian matrix taken from
a Unitary Ensemble of Random Matrix Theory (RMT). The most well studied case is that
of V (x) = x2, called the Gaussian Unitary Ensemble. In this context random characteristic
polynomials are indeed the characteristic polynomials of a random Hermitian matrix.

Averages of characteristic polynomials of random matrices are basic objects of interest in
RMT, and were first considered by Andreev and Simons [1], Brezin and Hikami [7] and Keating
and Snaith [13]. In particular, such averages are used to make predictions about zeros of the
Riemann-zeta function on the critical line (see, for example, Keating and Snaith [13], Conrey
et al. [8], the survey article by Keating and Snaith [14], and references therein). Averages (1.1) are
related to certain important distribution functions studied in physics of quantum chaotic systems.
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Two examples involve the curvature distribution of energy levels of a chaotic system and the
statistics of the local Green functions, in particular, the joint distribution of local density of
states; see Andreev and Simons [1] and references therein. Many other uses are described, for
example, in Brezin [6].

For averages (1.1) a number of algebraic and asymptotic results is available in the literature.
Papers by Baik et al. [3], Fyodorov and Strahov [12] and Borodin and Strahov [4] give explicit
determinantal representations for (1.1). These representations can be used for the asymptotic
analysis as n → ∞. In particular, the asymptotics of (1.1) were investigated in Strahov and
Fyodorov [12] in the case when dµ(x) = e−V (x)dx , and V (x) is an even polynomial. Strahov
and Fyodorov [12] deal with the asymptotic in the bulk of the spectrum. Vanlessen [23] shows
that for certain class of unitary ensembles of Hermitian matrices, averages (1.1) have universal
asymptotic behavior at the origin of the spectrum. The asymptotic analysis in [12], and in [23] is
based on the reformulation of an orthogonal polynomial problem as a Riemann–Hilbert problem
by Fokas et al. [11]. The Riemann–Hilbert problem is then analyzed asymptotically using the
noncommutative steepest–descent method introduced by Deift and Zhou; see Deift [9] and
references therein.

In recent years, it has become evident that orthogonal polynomial ensembles play a role in
probabilistic models other than RMT as well (see, for example, the survey paper by König [15]).
As the relevant measures in these models are not necessarily of the form e−V (x)dx , it is
of interest to study the problem of universality limits for basic quantities of interest for a
broader class of measures. Lubinsky’s universality theorems regarding bulk universality for
the reproducing kernel (see Lubinsky [17, Theorem 1.1], and [16, Theorem 1.1], and also
Findley [10], Simon [19], Totik [22] and Avila et al. [2] for extensions of Lubinsky’s results
and methods) are important steps in this direction. Our goal in this paper is to establish the
corresponding universality limits for averages (1.1) in the bulk of the support of µ.

1.3. Description of the main result

For n = 0, 1, 2, . . . we introduce the orthonormal polynomials associated with µ,

pn(x) = γn xn
+ · · · , γn > 0.

The orthonormality conditions are
p j (x)pk(x)dµ(x) = δ jk .

The nth reproducing kernel (also known as the Christoffel–Darboux kernel) for µ is

Kn(x, y) =

n−1
k=0

pk(x)pk(y).

If dµ(t) = w(t)dt in a neighborhood of x , we also define the normalized kernel to beKn(x, y) = w(x)Kn(x, y).

The Christoffel–Darboux formula enables one to rewrite Kn(x, y) as

Kn(x, y) =
γn−1

γn

pn(x)pn−1(y) − pn−1(x)pn(y)

x − y
. (1.2)
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The reproducing kernel plays a special role in the theory of orthogonal polynomial ensembles.
This is because the correlation functions for the orthogonal polynomial ensemble can be
expressed as determinants of a matrix whose entries are given by values of the reproducing
kernel (see, for example, Deift [9]).

We say Kn has a universal limit at x , if for any a, b ∈ C we have

lim
n→∞

Kn


x +

aKn(x,x)
, x +

bKn(x,x)


Kn(x, x)

=
sin π(a − b)

π(a − b)
= S(a, b). (1.3)

We say Kn has a uniform universal limit at x , if the limit in (1.3) is uniform for a, b in compact
subsets of C.

Two approaches introduced recently by Lubinsky [17,18,16] make it possible to establish
universality for Kn under relatively mild conditions on µ. These approaches were further
extended and generalized by Findley [10], Simon [19], Totik [22] and Avila et al. [2]. A typical
result is:

Theorem 1.1. Let µ be a probability measure on R with compact support that is regular in the
sense of Stahl and Totik [20]. Suppose x ∈ supp(µ) has a neighborhood, J , such that µ is
absolutely continuous in J : dµ(t) = w(t)dt for t ∈ J . Assume further, that w is positive and
continuous at x. Then uniformly for a, b in compact subsets of the complex plane, we have

lim
n→∞

Kn


x +

aKn(x,x)
, x +

bKn(x,x)


Kn(x, x)

= S(a, b). (1.4)

In other words, Kn has a uniform universal limit at x.

Remarks. (a) Theorem 1.1 implies universality in the bulk for the m-point correlation function
for the orthogonal polynomial ensemble (see Lubinsky [18, Section 1]).

(b) The Theorem follows, for example, from [16, Theorem 1.1] combined with remark (e) there.
The result was obtained previously, however, by both Simon [19] and Totik [22], using a
modification of Lubinsky’s approach from [17].

(c) The requirement of continuity can be relaxed to a Lebesgue point type condition, assuming
boundedness and uniform positivity of w in a neighborhood of x . This is Theorem 1.2 of [16].

(d) Avila et al. [2], using a modification of the approach of [16], obtain universality for certain
measures whose support is a positive Lebesgue measure Cantor set.

(e) While it seems that local absolute continuity of µ is almost sufficient for universality at x , it
is certainly not necessary: Breuer [5] has recently shown there are purely singular measures
such that universality holds uniformly for x in an interval (and a, b ∈ R). Of course, Kn(x, x)

cannot be defined for purely singular measures, so the statement needs to be slightly modified
(see [5] for details).

In this paper we prove an analogue of Theorem 1.1 for averages (1.1). Here is our main result.

Theorem 1.2. Let µ be a probability measure on R with finite moments. Let x ∈ supp(µ) be
such that:

(i) There exists an interval, J , with x ∈ J such that µ is absolutely continuous in J :
dµ(t) = w(t)dt for t ∈ J . Moreover, w ∈ L∞(J, dt).
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(ii) w(x) > 0 and x is a Lebesgue point of w, by which we mean that

lim
r→0+

1
r

 x+r

x−r
|w(t) − w(x)|dt = 0.

(iii) Kn has a uniform universal limit at x.

Under these assumptions, for any pairwise distinct αi ’s and β j ’s, such that α1, . . . , αk ∈ R,
β1, . . . , βk ∈ C \ R

lim
n→∞


k

j=1

Dn


x +

α jKn(x,x)


Dn


x +

β jKn(x,x)


µ

= (−1)
k(k+1)

2
∆2k(β, α)

∆k(β)2∆k(α)2 det

W(βi , α j )

k
i, j=1 ,

where

∆2k(β, α) = ∆k(β)∆k(α)
k

i, j=1
(αi − β j ),

and

W(β, α) =
1

β − α
+


+∞

−∞

sin(π(s − α))ds

π(s − α)(s − β)
.

As an immediate corollary of Theorems 1.1 and 1.2, we obtain

Corollary 1.3. Let µ be a probability measure on R with compact support that is regular in
the sense of Stahl and Totik. Suppose x ∈ supp(µ) has a neighborhood, J , such that µ is
absolutely continuous in J : dµ(t) = w(t)dt for t ∈ J , with w bounded in J . Assume further,
that w is positive and continuous at x. Then for any pairwise distinct αi ’s and β j ’s, such that
α1, . . . , αk ∈ R, β1, . . . , βk ∈ C \ R

lim
n→∞


k

j=1

Dn


x +

α jKn(x,x)


Dn


x +

β jKn(x,x)


µ

= (−1)
k(k+1)

2
∆2k(β, α)

∆k(β)2∆k(α)2 det

W(βi , α j )

k
i, j=1 ,

Remarks. (a) The function W(β, α) can be rewritten as

W(β, α) =


eiπ(β−α)

β − α
, Im β > 0,

e−iπ(β−α)

β − α
, Im β < 0.

The formula above can be obtained from that of Theorem 1.2 by contour integration.
(b) If dµ(y) = const e−V (y)dy, and V (y) is an even polynomial, then Theorem 1.2 reduces to

the result obtained in Strahov and Fyodorov [21, Section 2.4].
(c) Note that the assumptions of Theorem 1.2 do not include compact support of µ. The theorem

essentially says that for any measure with finite moments, local absolute continuity combined
with a uniform universal limit for Kn at x imply uniform limits for averages (1.1) at x .

(d) As explained in remark (e) after Theorem 1.1, there are purely singular measures for which
Kn has universal limits. As the absolute continuity of µ around x is essential to the proof of
Theorem 1.2 we, unfortunately, have nothing to say about this case.
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The rest of the paper is devoted to the proof of Theorem 1.2. Namely, in Section 2 we present a
useful algebraic formula for averages (1.1) (Theorem 2.1). This formula reduces the investigation
of asymptotics of (1.1) to that of the Cauchy transform of the reproducing kernel,

Kn(t, α)dµ(t)

t − β
.

Theorem 3.1 establishes universality for the Cauchy transform of the reproducing kernel.
Theorem 1.2 (which is the main result of this work) is then a simple corollary of Theorem 2.1,
and of Theorem 3.1.

2. A formula for ratios of characteristic polynomials

Theorem 2.1. Let 1 ≤ k ≤ n, and assume that α1, . . . , αk, β1, . . . , βk are pairwise distinct
complex numbers. Moreover, assume that Im(β j ) ≠ 0 for j = 1, . . . , k. Then we have

k
j=1

Dn(α j )

Dn(β j )


µ

= (−1)
k(k+1)

2
∆2k(β, α)

∆k(β)2∆k(α)2 det

Wn(βi , α j )

k
i, j=1 ,

where the two-point function Wn(β, α) is defined by

Wn(β, α) =
1

β − α
+


Kn(t, α)dµ(t)

t − β
.

Proof. A formula of two-point function type for the average of ratios of characteristic
polynomials was obtained by Baik et al. [3, Section III]. Theorem 3.3 in [3] gives

k
j=1

Dn(α j )

Dn(β j )


µ

= (−1)
k(k−1)

2 γ k
n−1

∆2k(β, α)

∆k(β)2∆k(α)2 det
 Wn(βi , α j )

k
i, j=1 ,

where

Wn(β, α) =

hn(β)πn−1(α) −hn−1(β)πn(α)

β − α
.

In the formulas above πl(α) is the lth monic orthogonal polynomial associated with µ, the
functionhl(β) is the Cauchy transform of πl(α),

hl(β) =
1

2π i


πl(t)dµ(t)

t − β
,

and γn−1 = −2π iγ 2
n−1.

Clearly, the formula for the average of ratios of characteristic polynomials can be rewritten as
k

j=1

Dn(α j )

Dn(β j )


µ

= (−1)
k(k+1)

2
∆2k(β, α)

∆k(β)2∆k(α)2 det

Wn(βi , α j )

k
i, j=1 ,

where

Wn(β, α) =
γn−1

γn

hn(β)pn−1(α) − hn−1(β)pn(α)

β − α
,
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and where

hl(β) =


pl(t)dµ(t)

t − β
.

To obtain the formula for Wn(β, α) stated in the Theorem we note that

γn−1

γn

hn(β)pn−1(α) − hn−1(β)pn(α)

β − α

=
γn−1

γn

1
β − α


pn(t)dµ(t)

t − β


pn−1(α) −


pn−1(t)dµ(t)

t − β


pn(α)


=

1
β − α


t − α

t − β
Kn(t, α)dµ(t)

=
1

β − α
+


Kn(t, α)dµ(t)

t − β
,

where in the second equality we have used formula (1.2), and in the third equality we have used
the reproducing property of Kn . �

3. Universality for the Cauchy transform of the reproducing kernel

Theorem 3.1. Let x ∈ supp(µ) be such that conditions (i)–(iii) of Theorem 1.2 are satisfied.
Then for any α ∈ R, β ∈ C \ R

lim
n→∞

1Kn(x, x)

 Kn


x +

αKn(x,x)
, t


t − x −
βKn(x,x)

dµ(t) =


+∞

−∞

S(α, s)

s − β
ds,

where

S(α, s) =
sin π(α − s)

π(α − s)
.

Remark. In case of the Chebyshev weight for example,

dµ(y) = w(y)dy, w(y) =
1

1 − y2
, y ∈ (−1, 1),

Theorem 3.1 can be checked by direct computations. These computations are similar to those
of [18, Section 2], for the reproducing kernel associated with the Chebyshev weight.

Theorem 3.1 follows from the following

Lemma 3.2. Fix α ∈ R and β ∈ C\R. Under the conditions of Theorem 1.2, for any M ≥ 2|β|,

lim sup
n→∞

 1Kn(x, x)

 Kn


x +

αKn(x,x)
, t


t − x −
βKn(x,x)

dµ(t) −

 S(α, s)

s − β
ds


≤


R\[−M,M]

S(α, s)

s − β
ds

+ 8


∥w∥J

w(0)M
, (3.1)

where ∥w∥J is the essential supremum of w on J .
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Proof of Theorem 3.1 assuming Lemma 3.2. Fix α ∈ R and β ∈ C \ R. As M → ∞ the
right-hand side of inequality (3.1) goes to zero. This is because

S(α, s)

s − β
=

sin(π(s − α))

π(s − α)(s − β)

is integrable so its tail goes to zero. Since M is arbitrary, we get the limit relation in
Theorem 3.1. �

Proof of Lemma 3.2. By shifting the measure, we can assume that x = 0, which we henceforth
do for ease of notation. Fix α ∈ R and β ∈ C \ R, and fix M ≥ 2|β|. Write 1Kn(0, 0)

 Kn


αKn(0,0)

, t


t −
βKn(0,0)

dµ(t) −

 S(α, s)

s − β
ds


≤

 1Kn(0, 0)

 Kn


αKn(0,0)

, t


t −
βKn(0,0)

dµ(t) −

 M

−M

S(α, s)

s − β
ds

+


R\[−M,M]

S(α, s)

s − β
ds

 .
To prove the Lemma, it is enough to show that

lim sup
n→∞

 1Kn(0, 0)

 Kn


αKn(0,0)

, t


t −
βKn(0,0)

dµ(t) −

 M

−M

S(α, s)

s − β
ds

 ≤ 8


∥w∥J

w(0)M
. (3.2)

Let In =


−

MKn(0,0)
, MKn(0,0)


, and write 1Kn(0, 0)

 Kn


αKn(0,0)

, t


t −
βKn(0,0)

dµ(t) −

 M

−M

S(α, s)

s − β
ds


≤

 1Kn(0, 0)


In

Kn


αKn(0,0)

, t


t −
βKn(0,0)

dµ(t) −

 M

−M

S(α, s)

s − β
ds


+

 1Kn(0, 0)


R\In

Kn


aKn(0,0)

, t


t −
βKn(0,0)

dµ(t)

 .
Consider first the first term in the right-hand side of the inequality above, 1Kn(0, 0)


In

Kn


αKn(0,0)

, t


t −
βKn(0,0)

dµ(t) −

 M

−M

S(α, s)

s − β
ds

 .
Since 0 is not a pure point of µ, it follows that Kn(0, 0) → ∞. Thus, for sufficiently large n,
In ⊆ J . We can therefore write 1Kn(0, 0)


In

Kn


αKn(0,0)

, t


t −
βKn(0,0)

dµ(t) −

 M

−M

S(α, s)

s − β
ds
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=

 1Kn(0, 0)


In

Kn


aKn(0,0)

, t


w(t)dt

t −
βKn(0,0)

−

 M

−M

S(α, s)

s − β
ds

 ,
and by transformation of variables t =

sKn(0,0)
we get 1Kn(0, 0)


In

Kn


αKn(0,0)

, t


w(t)dt

t −
βKn(0,0)

−

 M

−M

S(α, s)

s − β
ds


=


 M

−M

1
s − β

Kn


αKn(0,0)

, sKn(0,0)


w


sKn(0,0)


Kn(0, 0)w(0)

− S(α, s)

 ds

 .
The right-hand side of the equality above goes to zero as n → ∞. This follows since Kn has a
uniform universal limit at 0, since w is essentially bounded on J and since 0 is a Lebesgue point
of w (note that |s − β| ≥ |Im(β)| > 0).

It remains to show that the inequality

lim sup
n→∞

 1Kn(0, 0)


R\In

Kn


αKn(0,0)

, t


t −
βKn(0,0)

dµ(t)

 ≤ 8


∥w∥J

w(0)M
. (3.3)

holds. First, by the Cauchy–Schwarz inequality we obtain 1Kn(0, 0)


R\In

Kn


αKn(0,0)

, t


t −
βKn(0,0)

dµ(t)


≤

 1Kn(0, 0)




R\In

dµ(t)
t −

βKn(0,0)

2


1/2 

R
Kn


αKn(0, 0)

, t

2

dµ(t)

1/2

.

Second, the above inequality, and the reproducing property of the kernel imply 1Kn(0, 0)


R\In

Kn


αKn(0,0)

, t


t −
βKn(0,0)

dµ(t)


≤


Kn


αKn(0,0)

, αKn(0,0)

1/2

w(0)Kn(0, 0)




R\In

dµ(t)
t −

βKn(0,0)

2


1/2

.

Note that for sufficiently large n,
Kn


αKn(0,0)

, αKn(0,0)

1/2

w(0)Kn(0, 0)

 ≤
2

w(0)Kn(0, 0)1/2 ,



812 J. Breuer, E. Strahov / Journal of Approximation Theory 164 (2012) 803–814

by assumption (iii) in the statement of Theorem 1.2. Thus we get, for sufficiently large n, 1Kn(0, 0)


R\In

Kn


αKn(0,0)

, t


t −
βKn(0,0)

dµ(t)


≤

2

w(0)Kn(0, 0)1/2


R\In

dµ(t)
t −

βKn(0,0)

2


1/2

. (3.4)

We are left with estimating
R\In

dµ(t)
t −

βKn(0,0)

2 .

First note that, since M ≥ 2|β|, we get for every t with |t | ≥
MKn(0,0)

,t −
βKn(0, 0)

 ≥
t

2
.

Therefore,
R\In

dµ(t)
t −

βKn(0,0)

2 ≤


R\In

4dµ(t)

t2 .

Now we split the integral in the right-hand side of the inequality above. Let Hn =

−

MKn(0,0)1/3
,

MKn(0,0)1/3


, and again note that for sufficiently large n, Hn ⊆ J . Clearly, In ⊆ Hn , so we can

write

R \ In = (R \ Hn) ∪ (Hn \ In) .

We split the integral accordingly,
R\In

4dµ(t)

t2

 =


R\Hn

4dµ(t)

t2 +


Hn\In

4dµ(t)

t2


=


R\Hn

4dµ(t)

t2 +


Hn\In

4w(t)dt

t2


≤


R\Hn

4dµ(t)

t2

+ 4∥w∥J ·


Hn\In

dt

t2

 ,
where we have used the fact that Hn ⊆ J to write dµ(t) = w(t)dt there. The proof of Lemma 3.2
is almost complete. For the first integral on the left, note that for t ∉ Hn , t2

≥
M2Kn(0,0)2/3 .

Therefore, we have (taking into account that µ is a probability measure)
R\Hn

4dµ(t)

t2

 ≤ 4
Kn(0, 0)2/3

M2


dµ(t) = 4

Kn(0, 0)2/3

M2 .
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For the second integral, integration of 1
t2 gives (recall the definition of In)

4∥w∥J ·


Hn\In

dt

t2

 ≤ 4∥w∥J ·


R\In

dt

t2 = 8∥w∥J

Kn(0, 0)

M
.

Plugging these estimates into (3.4), we see 1Kn(0, 0)


R\In

Kn


αKn(0,0)

, t


t −
βKn(0,0)

dµ(t)


≤

8

w(0)Kn(0, 0)1/2

 Kn(0, 0)2/3

M2 + ∥w∥J

Kn(0, 0)

M

1/2

=
8

√
w(0)


1

M2Kn(0, 0)1/3
+ ∥w∥J

1
M

1/2

(3.5)

which immediately shows that

lim sup
n→∞

 1Kn(0, 0)


R\In

Kn


αKn(0,0)

, t


t −
βKn(0,0)

dµ(t)

 ≤ 8


∥w∥J

w(0)M
. �
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