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1. Introduction

Let E be an elliptic curve defined over Q. Let p be a prime number and let E[p] be the group of points of order p on E(Q),
where Q denotes an algebraic closure of Q. The action of the absolute Galois group GQ = Gal(Q/Q) on E[p] defines a mod
p Galois representation

ρE,p : GQ → Aut(E[p]) ∼= GL2(Fp).

LetQ(E[p]) be the number field generated by the coordinates of the points of E[p]. Therefore, theGalois extensionQ(E[p])/Q
has Galois group

Gal(Q(E[p])/Q) ∼= ρE,p(GQ).

For p = 2 it is known that ρE,2(GQ) can be determined in terms of the discriminant∆(E) and E(Q)[2], the points of order 2
defined over the rationals (cf. [20,19,21]):

ρE,2(GQ) ∼=


S3 if

√
∆(E) 6∈ Q and #E(Q)[2] = 1,

C3 if
√
∆(E) ∈ Q and #E(Q)[2] = 1,

C2 if
√
∆(E) 6∈ Q and #E(Q)[2] > 1,

{id} if
√
∆(E) ∈ Q and #E(Q)[2] > 1,

(1)

where we denote by Cn and Sn the cyclic group of order n and the symmetric group acting on n elements, respectively.
Note that GL2(F2) ∼= S3, the non-split Cartan subgroup of GL2(F2) is isomorphic to C3 and the conjugated Borel subgroup

of GL2(F2) is isomorphic to C2.
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An elliptic curve E defined over the rationals has always an integral short Weierstrass form (see [23]). That is, E has a
model of the form

E : Y 2 = X3 + AX + B, with A, B ∈ Z.

Then the discriminant of this model is∆(E) = −24(4A3 + 27B2). Any change of variables over the rationals preserving this
short form is of the type (x, y) = (u2x′, u3y′) with u ∈ Q, u 6= 0. Therefore, if E ′ is the curve obtained after such a change,
we have u12∆(E ′) = ∆(E). Then the squareness of the discriminant of E does not depend on the short model of E but on E
itself.
Our aim is finding if there is a relationship between the torsion group of E(Q) (noted E(Q)tors in what follows), the

discriminant of E and ρE,2(GQ).
Assume E is an elliptic curve which has a non-trivial torsion subgroup. Taking into account Mazur’s exhaustive

classification [16,17], the possible structures of E(Q)tors are Cn for n = 2 . . . 10, 12 and C2 × C2n for n = 1 . . . 4. The easiest
cases are those in which the order of E(Q)tors is even and they will be treated at Section 2.
The four remaining cases, E(Q)tors = Cn, with n = 3, 5, 7, 9 will be treated separately at Sections 4–7, respectively. In

these cases, thanks to (1), the squareness of∆(E) determines the image ofρE,2.Wewill prove that there are no elliptic curves
over the rationals with square discriminant and points of order 5, 7 and 9 respectively and we will give a parametrization
of the elliptic curves with square discriminant and a point of order 3.
Section 3 consists of the necessary background for elliptic curves with points of odd order.
Before stating themain theorems at the last section, wewill give a parametrization of all elliptic curves over the rationals

having square discriminant at Section 8. Some remarks on the case of trivial torsion will be given there too.
At Section 9, we will state the main theorems of this paper whose proofs will have been established by then.
Finally, in an Appendix, we give a complete parametrization of the integer solutions of the Diophantine equations

x2 + 3y2 = 4z3. These solutions will be needed at Sections 4 and 8.

2. The even case

Let E : Y 2 = F(X) = X3 + AX + B be an elliptic curve over Q such that E(Q)[2] has an even positive number of
points. Therefore, by (1), the squareness of∆(E) determines the image of the mod 2 Galois representation attached to E. By
definition∆(E) = 24(α1 − α2)2(α1 − α3)2(α2 − α3)2, where α1, α2, α3 are the roots of F(X). Then if E(Q)tors is non-cyclic
we have that α1, α2, α3 ∈ Q and∆(E) is a square overQ. Meanwhile, if E(Q)tors is cyclic then there is only a point of order 2
on E(Q) and therefore F(X) = (X−a)(X2+aX+b)where a, b ∈ Q satisfy A = b−a2, B = −ab and a2−4b is a non-square
over Q. Since∆(E) = 24∆(F)we have∆(E) = 24(a2 − 4b)(2a2 + b)2 is not a square in Q. This proves the following:

ρE,2(GQ) ∼=

{
C2 if #E(Q)[2] = 2,
{id} if #E(Q)[2] = 4.

3. Families of elliptic curves with a torsion point of odd order

In this section we are going to introduce the necessary background related to elliptic curves defined over the rationals
with a point of prescribed odd order. There are well-known rational parametrizations for the modular curve X1(N) with
N ∈ {3, 5, 7, 9} (see e.g. Kubert [15]). Therefore these parametrizations give us families of elliptic curves defined over Q
with a point of order N ∈ {3, 5, 7, 9}.
An old characterization of elliptic curves containing a rational point of order 3 is given by the Hessian form. Nevertheless

we are going to use a new one (cf. [12]) since this will fit better our purposes.
Let us introduce the construction given in [12]; every elliptic curve with a rational point of order 3 can be written in the

following form:

E3(α, β) : Y 2 = X3 + (27α4 + 6αβ)X + β2 − 27α6, α, β ∈ Z.

For the remaining cases that will be used below, an analogous expression can be achieved by means of the Tate normal
form [15]:

T (b, c) : Y 2 + (1− c)XY − bY = X3 − bX2, b, c ∈ Q∗.

Denote by En(α) the one-parameter family of curves having a rational point of order n. Then

E5(α) = T (α, α),

E7(α) = T (α2(α − 1), α(α − 1))),
E9(α) = T (α2(α − 1)(α(α − 1)+ 1), α2(α − 1)).
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Now we can take the above equations to a short Weierstrass form and find the parametric family containing all elliptic
curves with points of order 5, 7 and 9. The actual families are:

E5(α) : Y 2 = X3 − 27
(
α4 − 12α3 + 14α2 + 12α + 1

)
X + 54

(
α2 + 1

) (
α4 − 18α3 + 74α2 + 18α + 1

)
E7(α) : Y 2 = X3 − 27

(
α8 − 12α7 + 42α6 − 56α5 + 35α4 − 14α2 + 4α + 1

)
X + 54

(
α12 − 18α11

+ 117α10 − 354α9 + 570α8 − 486α7273α6 − 222α5 + 174α4 − 46α3 − 15α2 + 6α + 1
)

E9(α) : Y 2 = X3 − 27
(
α3 − 3α2 + 1 )( α9 − 9α8 + 27α7 − 48α6 + 54α5 − 45α4 + 27α3 − 9α2 + 1

)
X

+ 54
(
α18 − 18α17 + 135α16 − 570α15 + 1557α14 − 2970α13 + 4128α12 − 4230α11 + 3240α10

− 2032α9 + 1359α8 − 1080α7 + 735α6 − 306α5 + 27α4 + 42α3 − 18α2 + 1
)
.

Therefore, an elliptic curve E defined overQwith a rational point of order n = 3 (resp. n = 5, 7 or 9) isQ–isomorphic to
E3(α, β) (resp. En(α) for n = 5, 7 or 9) for some α, β ∈ Z (resp. α ∈ Q).
These kind of arguments have proved fruitful in the last years, as a number of results have appeared based on them

[1,11,13,14]. Now we can write the discriminant∆n for the above elliptic curves En, to obtain

∆3(α, β) = −24 · 33 · (5α3 + β)(9α3 + β)3

∆5(α) = 212 · 312 · α5(α2 − 11α − 1)
∆7(α) = 212 · 312 · α7(α − 1)7(α3 − 8α2 + 5α + 1)
∆9(α) = 212 · 312 · α9(α − 1)9(α2 − α + 1)3(α3 − 6α2 + 3α + 1).

In the following section we will study the rationality of the square root of the above discriminants to decide whether the
corresponding Galois group is C3 or S3.

4. The case n = 3

Elliptic curves with points of order three must yield a discriminant with the form ∆3(α, β) for some α, β ∈ Z. So, in
order to find an elliptic curve E having square discriminant we are bound to find integral solutions to the equation

ω2 = −3 · (5α3 + β)(9α3 + β).

Let us denote g = gcd(5α3 + β, 9α3 + β). This necessarily leads to

5α3 + β = ±gu2,±3gv2 and 9α3 + β = ∓3gv2,∓gu2, respectively

for some integers u and v. Solving the above Diophantine systems of equations is equivalent to finding the integer solutions
to

x2 + 3y2 = 4z3,

where (x, y, z) = (ug2, vg2,∓αg). Thus, for the first two systems we obtain that the elliptic curves E3(α, β) have square
discriminant for:

(α, β) =

(
∓
z
g
,±
x2 + 5z3

g3

)
, (2)

and for the last two systems we obtain

(α, β) =

(
∓
z
g
,±
3y2 + 5z3

g3

)
. (3)

In all those cases x, y, z ∈ Z satisfies x2 + 3y2 = 4z3. At the Appendix, we give parametrizations of all integer solutions
of the Diophantine equation x2+3y2 = 4z3 at Lemma 1 in terms of parameters (a, b, c, d). Then we can clear denominators
and obtain Q-isomorphic elliptic curves

E(i)(a, b, c, d) : Y 2 = P (i)(a, b, c, d)(X)

attached to the parametrization (i), for i = 1, 2, where:

P (1)(a, b, c, d)(X) = X3 − 9(c2 + cd+ d2)3(a2 + ab+ b2)(3a6c2 + 3a6cd+ a6d2 + 9a5bc2 − 3a5bcd
− 3a5bd2 − 30a4b2cd− 15a3b3c2 − 15a3b3cd+ 25a3b3d2 + 30a2b4cd+ 30a2b4d2 + 9ab5c2

+ 21ab5cd+ 9ab5d2 + 3b6c2 + 3b6cd+ b6d2)X
+ 9(c2 + cd+ d2)4(6a12c4 + 12a12c3d+ 12a12c2d2 + 6a12cd3 + a12d4 + 36a11bc4

+ 36a11bc3d+ 18a11bc2d2 − 6a11bcd3 − 6a11bd4 + 72a10b2c4 − 54a10b2c3d− 72a10b2c2d2

− 78a10b2cd3 − 18a10b2d4 + 30a9b3c4 − 318a9b3c3d− 102a9b3c2d2 − 132a9b3cd3 − 4a9b3d4
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− 81a8b4c4 − 378a8b4c3d+ 162a8b4c2d2 − 252a8b4cd3 + 45a8b4d4 − 108a7b5c4 − 108a7b5c3d
+ 108a7b5c2d2 − 576a7b5cd3 + 216a7b5d4 − 72a6b6c4 − 144a6b6c3d− 468a6b6c2d2

− 396a6b6cd3 + 600a6b6d4 − 108a5b7c4 − 324a5b7c3d− 216a5b7c2d2 + 684a5b7cd3

+ 900a5b7d4 − 81a4b8c4 + 54a4b8c3d+ 810a4b8c2d2 + 1386a4b8cd3 + 756a4b8d4 + 30a3b9c4

+ 438a3b9c3d+ 1032a3b9c2d2 + 1002a3b9cd3 + 374a3b9d4 + 72a2b10c4 + 342a2b10c3d
+ 522a2b10c2d2 + 384a2b10cd3 + 114a2b10d4 + 36ab11c4 + 108ab11c3d+ 126ab11c2d2

+ 78ab11cd3 + 18ab11d4 + 6b12c4 + 12b12c3d+ 12b12c2d2 + 6b12cd3 + b12d4)
P (2)(a, b, c, d)(X) = X3 − 3(c2 + cd+ d2)3(a2 + ab+ b2)(a6c2 + a6cd+ 7a6d2 + 3a5bc2 + 39a5bcd
+ 39a5bd2 + 60a4b2c2 + 150a4b2cd+ 60a4b2d2 + 115a3b3c2 + 115a3b3cd− 5a3b3d2 + 60a2b4c2

− 30a2b4cd− 30a2b4d2 + 3ab5c2 − 33ab5cd+ 3ab5d2 + b6c2 + b6cd+ 7b6d2)X
− (c2 + cd+ d2)4(2a12c4 + 4a12c3d− 24a12c2d2 − 26a12cd3 − 37a12d4 + 12a11bc4 − 156a11bc3d
− 414a11bc2d2 − 534a11bcd3 − 366a11bd4 − 228a10b2c4 − 1446a10b2c3d− 2880a10b2c2d2

− 3246a10b2cd3 − 1434a10b2d4 − 1250a9b3c4 − 5902a9b3c3d− 10758a9b3c2d2 − 9508a9b3cd3

− 2876a9b3d4 − 4059a8b4c4 − 16002a8b4c3d− 23382a8b4c2d2 − 14868a8b4cd3 − 2925a8b4d4

− 8604a7b5c4 − 25740a7b5c3d− 26676a7b5c2d2 − 10944a7b5cd3 − 936a7b5d4 − 11112a6b6c4

− 22224a6b6c3d− 13428a6b6c2d2 − 2316a6b6cd3 + 480a6b6d4 − 8604a5b7c4 − 8676a5b7c3d
− 1080a5b7c2d2 + 396a5b7cd3 + 468a5b7d4 − 4059a4b8c4 − 234a4b8c3d+ 270a4b8c2d2

− 126a4b8cd3 + 504a4b8d4 − 1250a3b9c4 + 902a3b9c3d− 552a3b9c2d2 + 698a3b9cd3 + 526a3b9d4

− 228a2b10c4 + 534a2b10c3d+ 90a2b10c2d2 + 912a2b10cd3 + 150a2b10d4 + 12ab11c4 + 204ab11c3d
+ 126ab11c2d2 + 222ab11cd3 − 78ab11d4 + 2b12c4 + 4b12c3d− 24b12c2d2 − 26b12cd3 − 37b12d4)

with the following discriminants

∆
(
E(1)

)
= 2436(c2 + cd+ d2)8(a3d+ 3a2bc + 3a2bd+ 3ab2c − b3d)6

× (2a3c + a3d+ 3a2bc − 3a2bd− 3ab2c − 6ab2d− 2b3c − b3d)2

∆
(
E(2)

)
= 2434(c2 + cd+ d2)8(a3d+ 3a2bc + 3a2bd+ 3ab2c − b3d)2

× (2a3c + a3d+ 3a2bc − 3a2bd− 3ab2c − 6ab2d− 2b3c − b3d)6.

Therefore we have proved the following result:

Proposition 1. Let E be an elliptic curve defined over Q with a rational point of order 3 such that
√
∆(E) ∈ Q . Then there exist

a, b, c, d ∈ Z such that E is Q-isomorphic to either E(1)(a, b, c, d) or E(2)(a, b, c, d).

5. The case n = 5

Let us have a look at the case n = 5. If we throw away quadratic factors in ∆5(α) we will find out that curves E with
points of order 5, for which

√
∆(E) ∈ Q are parametrized by the affine rational points of the elliptic curve

D5 : z2 = α(α2 − 11α − 1),

where the discriminant of the right-hand side polynomial is, remarkably, 53.
This is a well-known elliptic curve, in fact is Q-isogenous to the modular curve X0(20). The elliptic curveD5 is denoted

by 20A4 in Cremona’s tables [7] or 20C in Antwerp tables [3]. Looking on that tables, or using a computer algebra package
like SAGE or MAGMA ([24], [4] resp.), we check thatD5(Q) = {(0, 0)} ∪ {[0 : 1 : 0]} . Therefore the only affine rational point
is (0, 0), which implies α = 0. This precise value does not yield an elliptic curve, but a singular cubic on the family E5(α).
This proves the following result:

Proposition 2. Let E be an elliptic curve with C5 ⊂ E(Q)tors. Then
√
∆(E) /∈ Q.

6. The case n = 7

Move now to n = 7, where the analogous argument to the case n = 5 shows that curves with points of order seven for
which

√
∆(E) ∈ Q are parametrized by the affine rational points of the hyperelliptic curve

D7 : z2 = α(α − 1)(α3 − 8α2 + 5α + 1),

where, by the way, we have that the discriminant for the right-hand side polynomial is 74. We have now a hyperelliptic
curve of genus 2, a much harder nut to crack; but we are lucky. Using MAGMAwe obtain that the rank of the Jacobian of this
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genus 2 curve is 0, which makes it perfect for Chabauty’s algorithm [5]. This method computes the full list of points in the
Jacobian, then all rational points in the curve, which turn out to beD7(Q) = {(0, 0), (1, 0)} ∪ {[0 : 1 : 0]} . Again the affine
rational points annihilate the discriminant of E7(α) and hence we have proven the following result.

Proposition 3. Let E be an elliptic curve with E(Q)tors ∼= C7. Then
√
∆(E) /∈ Q.

7. The case n = 9

Finally, the case n = 9. This can also be dealt with in a similar way, but a little extra work is needed. Following the steps
as the above sections, the hyperelliptic curve parametrizing curves with E(Q)tors ∼= C9 and square discriminant is

D9 : z2 = α(α − 1)(α2 − α + 1)(α3 − 6α2 + 3α + 1) .

Lemma. D9(Q) = {(0, 0), (1, 0)} ∪ {[0 : 1 : 0]}.

Proof. Let u ∈ AutQ(D9) defined by

u(X, Y ) =
(
1

1− X
,

Y
(1− X)4

)
.

We have that u has order 3 and Riemann–Hurwitz formulae tell us that the quotient curve C/〈u〉 has genus 1. In fact this
curve is an elliptic curve defined over Q, since (0, 0) ∈ C(Q) and u is defined over Q. We will denote this elliptic curve by
E9. A Weierstrass equation for E9 is given by v2 = u3 − 27 and the quotient morphism is given by:

π : D9 −→ E9

(α, z) 7→ (u, v) =
(
α3 − 3α2 + 1
α(α − 1)

,
z(α2 − α + 1)
α2(α − 1)2

)
.

Using SAGE or MAGMAwe compute that E9 isQ-isogenous to themodular curve X0(36), and it is the elliptic curve denotes
by 36A3 in Cremona’s tables or 36C in Antwerp tables. The Mordell–Weil group of this elliptic curve is:

E9(Q) = {(3, 0), [0 : 1 : 0]} ∼= Z/2Z.

Now, to compute the set D9(Q) we just need to compute the preimages of the points of E9(Q) by the quotient morphism
that are defined over Q and then we obtain the desired result. �

Then we have proved the following result:

Proposition 4. Let E be an elliptic curve with E(Q)tors ∼= C9. Then
√
∆(E) /∈ Q.

8. The generic elliptic curve with square discriminant

Let E : Y 2 = X3 + AX + B be an elliptic curve with A, B ∈ Z. Let us study when the discriminant∆(E) is a square. This is
equivalent to looking for integer solutions to the Diophantine equation

4A3 + 27B2 = −C2.

Making the change of variables (x, y, z) = (C, 3B,−A) we obtain that the integer solutions of the generalized Fermat
equation x2 + 3y2 = 4z3 give us all the elliptic curves defined over the rationals with square discriminant. Lemma 1 from
the Appendix gives us a complete parametrization of the above Diophantine equation, which yields to the following elliptic
curve:

Ealt(a, b, c, d) : Y 2 = X3 − 34(c2 + cd+ d2)(a2 + ab+ b2)X
+ 35(c2 + cd+ d2)(a3d+ 3a2bc + 3a2bd+ 3ab2c − b3d)

which will be noted Y 2 = Palt(a, b, c, d)(X) from now on, with discriminant

∆(Ealt) = 24312(c2 + cd+ d2)2(2a3c + a3d+ 3a2bc − 3a2bd− 3ab2c − 6ab2d− 2b3c − b3d)2.

Propositions 2–4, together with Section 2, tell us that the above elliptic curve has torsion subgroup either trivial, C3 or non-
cyclic. Then we have proved the following result:

Proposition 5. Let E be an elliptic curve defined over Q such that
√
∆(E) ∈ Q. Then there exist a, b, c, d ∈ Z such that E is

Q-isomorphic to Ealt(a, b, c, d). Moreover, E(Q)tors is either trivial, non-cyclic or C3.
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Remark 1. Let P(X) be an irreducible polynomial with integer coefficients and degree 3 such that the cubic number field
attached to P(X) is cyclic. Then the elliptic curve E : Y 2 = P(X) satisfies E(Q)tors is either trivial or C3. For example, let be
Pm(X) = X3 +mX2 − (m+ 3)X + 1 ∈ Z[X],m ∈ Z and Em : Y 2 = Pm(X). The irreducible polynomial Pm(X) defines a cubic
fields Km that has been studied by several authors. This family has been called the simplest cubic field [22]. Its discriminant
satisfies ∆(Pm) = (m2 + 3m + 9)2, hence Km = Q(E[2]) is cyclic and therefore ρEm,2(GQ) ∼= Gal(Km/Q) = C3. Therefore
Em(Q)tors is trivial or C3, as claimed. Moreover, it has been proved [10] that ifm2 + 3m+ 9 is square-free, then Em(Q)tors is
trivial.
Remark 2. We have checked on the extended Cremona’s tables [8] of elliptic curves with conductor less than 130.000.
Among them, 452.724 curves have torsion subgroup either trivial or C3. At the table below appears the specific proportions
of curves according to their torsion group and the squareness of their discriminant:

E(Q)tors
√
∆(E) ∈ Q

√
∆(E) 6∈ Q

{O} 0.00383 0.9553
C3 0.00008 0.0408

9. Main theorems

To end up we will summarize our results in the following theorems.
Theorem 1. Let E be an elliptic curve defined over Q. Then
(1) If E(Q)tors is non-cyclic then

√
∆(E) ∈ Q.

(2) If E(Q)tors ∼= Cn for n = 2, 4, 5 . . . 10, 12 then
√
∆(E) 6∈ Q.

(3) E(Q)tors ∼= C3 and
√
∆(E) ∈ Q if and only if there exist a, b, c, d ∈ Z such that E isQ-isomorphic to either E(1)(a, b, c, d) or

E(2)(a, b, c, d) and the corresponding polynomial P (i)(a, b, c, d)) is irreducible.
(4) E(Q)tors is trivial and

√
∆(E) ∈ Q if and only if there exist a, b, c, d ∈ Z such that E is Q-isomorphic to Ealt(a, b, c, d) and

(a, b, c, d) /∈ S2, S3 where

S2 =
{
(a, b, c, d) ∈ Z4

∣∣∣ Palt(a, b, c, d)(X) has a root in Q
}

S3 =
{
(a, b, c, d) ∈ Z4

∣∣∣ ∃(α, β) ∈ Q2, such that Ψ3(a, b, c, d)(α) = 0 and Palt(a, b, c, d)(α) = β2
}
,

and Ψ3(a, b, c, d)(X) denotes, as customary, the 3-division polynomial attached to Ealt(a, b, c, d).
Theorem 2. Let E be an elliptic curve defined over Q. Then
(1) E(Q)tors is non-cyclic if and only if ρE,2(GQ) = {id}.
(2) E(Q)tors ∼= C2n if and only if ρE,2(GQ) ∼= C2.
(3) If E(Q)tors ∼= Cn for n = 5, 7, 9, then ρE,2(GQ) = GL2(F2).
(4) If E(Q)tors ∼= C3 thenρE,2(GQ) ∼= C3 if and only if there exist a, b, c, d ∈ Z such that E isQ-isomorphic to either E(1)(a, b, c, d)
or E(2)(a, b, c, d). Otherwise, ρE,2(GQ) = GL2(F2).

(5) If E(Q)tors is trivial then ρE,2(GQ) ∼= C3 if and only if there exist a, b, c, d ∈ Z such that E is Q-isomorphic to Ealt(a, b, c, d).
Otherwise, ρE,2(GQ) = GL2(F2).
The next table summarizes part of the main results of this paper:

E(Q)tors
√
∆(E) ∈ Q? ρE,2(GQ)

{O} Yes / No C3 / S3
C2 No C2
C3 Yes / No C3 / S3
C4 No C2
C5 No S3
C6 No C2
C7 No S3
C8 No C2
C9 No S3
C10 No C2
C12 No C2

C2 × C2 Yes {id}
C2 × C4 Yes {id}
C2 × C6 Yes {id}
C2 × C8 Yes {id}
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Appendix. The generalized Fermat equation x2 + 3y2 = 4z3

The generalized Fermat equation Axp + Byq = Czr , where A, B, C ∈ Z∗ and p, q, r ∈ Z>0, have been studied by several
people for the last decades, starting with the outstanding work on Diophantine equations due to Mordell [18]. After that the
main results are due to Darmon and Granville [9], who proved that the generalized Fermat equation has infinite primitive
solutions (i.e. gcd(x, y, z) = 1) in the case 1/p + 1/q + 1/r > 1. Then Beukers [2] gave parametrizations for the solutions
of this equation in the above case. Recently, Cohen [6] has studied this equation (calling it a Super-Fermat equation) and he
also has provided solutions for several cases. In particular, Cohen [6, Proposition 14.2.1(ii)] displays primitive solutions to
the equation we are interested in. However, we would like to have all integer solutions, not just the primitive ones. The
following parametrization was pointed out to us by Beukers:
Lemma 1. The integer solutions of the equation x2 + 3y2 = 4z3 are parametrized by the following family of four variables:

F :

x = (c
2
+ cd+ d2)(3a2b(c − d)+ a3(2c + d)− b3(2c + d)− 3ab2(c + 2d))

y = (c2 + cd+ d2)(3ab2c + a3d− b3d+ 3a2b(c + d))
z = (c2 + cd+ d2)(a2 + ab+ b2).

Proof. Let (x, y, z) be an integer solution of the equation x2+3y2 = 4z3. OverQ(
√
−3)we have (x+

√
−3y)(x−

√
−3y) =

4z3. We are going to work over the ring of algebraic integers of Q(
√
−3), noted O = Z[ρ] where ρ = (1 +

√
−3)/2. This

ring is a P.I.D., where it is easy to check that gcd(x+
√
−3y, x−

√
−3y) = r ∈ Z, for all x, y ∈ Z. Therefore x+

√
−3y = r ·µ,

x−
√
−3y = r · µ̄with µ ∈ O and gcd(µ, µ̄) = 1.

Let p 6= 3 be a non-inert prime dividing r . Thus p = αᾱ for some α ∈ O. Suppose that α dividesµ, then we have r = r ′p
and µ = αµ′ for some r ′ ∈ Z and µ′ ∈ O. In other words, x+

√
−3y = (r ′αᾱ)(αµ′). Therefore

4z3 = r2µµ̄ = (r ′)2p3µ′µ̄′,
that is, p divides z. Then we can remove all the primes as above obtaining 4w3 = s2γ γ̄ such that s, γ , γ̄ are pairwise
coprimes. This yields s = 2t3 and γ = β3 for some t ∈ Z and β ∈ O. Now collecting all the factors back we obtain

x+
√
−3y = 2(a+ bρ)3(c + dρ)(c2 + cd+ d2)

for some a, b, c, d ∈ Z. Its easy to check that z = NO((a+bρ)(c+dρ)), whereNO denotes the norm onO. In order to attach
the parametrization, we only have to expand the above expression and compute the coefficient of

√
−3 (corresponding to y)

and the part in Z (corresponding to x). �

References

[1] M.A. Bennett, P. Ingram, Torsion subgroups of elliptic curves in short Weierstrass form, Trans. Amer. Math. Soc. 357 (2005) 3325–3337.
[2] F. Beukers, The Diophantine equation Axp + Byq = Czr , Duke Math.J. 91 (1998) 61–88.
[3] B.J. Birch, W. Kuyk (Eds.), Modular Functions of One Variable IV, in: Lecture Notes in Mathematics, vol. 476, Springer-Verlag, 1975.
[4] J.J. Cannon, W. Bosma (Eds.), Handbook of Magma Functions, 2.14 ed., 2007.
[5] C. Chabauty, Sur les points rationnels des variétés algébriques dont l’irrégularité est supérieure á la dimension, C. R. Acad. Sci. Paris 212 (1941)
1022–1024.

[6] H. Cohen, Number Theory, vol. II: Analytic and Modern Tools, Springer, 2007.
[7] J.E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge University Press, 1992.
[8] J.E. Cremona, Elliptic curve data. Available on http://www.warwick.ac.uk/~masgaj/ftp/data/, 2006.
[9] H. Darmon, A. Granville, On the equation zm = F(x, y) and Axp + Byq = Czr , Bull. London Math. Soc. 27 (1995) 513–543.
[10] S. Duquesne, Integral points on elliptic curves defined by simplest cubic fields, Experiment. Math. 10 (1) (2001) 91–102.
[11] I. García–Selfa, M.A. Olalla, J.M. Tornero, Computing the rational torsion of an elliptic curve using Tate normal form, J. Number Theory 96 (2002) 76–88.
[12] I. García–Selfa, J.M. Tornero, A complete diophantine characterization of the rational torsion of an elliptic curve. Available at the arXiv as

math.NT/0703578.
[13] I. García–Selfa, J.M. Tornero, Thue equations and torsion groups of elliptic curves, J. Number Theory 129 (2009) 367–380.
[14] P. Ingram, Diophantine analysis and torsion on elliptic curves, Proc. Lond. Math. Soc. 94 (2007) 137–154.
[15] D.S. Kubert, Universal bounds on the torsion of elliptic curves, Proc. Lond. Math. Soc. 33 (2) (1976) 193–237.
[16] B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. 47 (1977) 33–186.
[17] B. Mazur, Rational isogenies of prime degree, Invent. Math. 44 (1978) 129–162.
[18] L.J. Mordell, Diophantine Equations, Academic Press, 1969.
[19] J.-P. Serre, Abelian `-Adic Representations and Elliptic Curves, W. A. Benjamin, Inc, 1968.
[20] J.-P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972) 259–331.
[21] J.-P. Serre, J. Tate, Good reduction of abelian varieties, Ann. of Math. 88 (1968) 492–517.
[22] D. Shanks, The simplest cubic number fields, Math. Comp. 28 (1974) 1137–1152.
[23] J.H. Silverman, The Arithmetic of Elliptic Curves, Springer, 1986.
[24] William Stein, et al. Sage: Open source mathematical software (Version 3.0), The Sage Group, 2008 http://www.sagemath.org.

http://www.warwick.ac.uk/~masgaj/ftp/data/
http://arxiv.org/math.NT/0703578
http://arxiv.org///www.sagemath.org

	Galois theory, discriminants and torsion subgroup of elliptic curves
	Introduction
	The even case
	Families of elliptic curves with a torsion point of odd order
	The case n=3
	The case n=5
	The case n=7
	The case n=9
	The generic elliptic curve with square discriminant
	Main theorems
	Acknowledgements
	The generalized Fermat equation x2+3y2=4z3
	References


