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Effects of endothelin on hemodynamics, prostaglandins, blood coagu-
lation and renal function. The interaction of the endogenous vasocon-
strictors endothelin (ET), angiotensin II (Ang II)and catecholamines with
the kallikrein-kinin-, prostaglandin and renin-aldosterone systems in the
pathogenesis of acute renal failure (ARF) is still to be defined. In 18
anesthesized pigs the influence of i.v. bolus applications of ET (2 pg/kg),
Ang 11(10 igfkg) and norepinephrine (NE; 20 jig/kg) on hemodynamics,
plasmatic coagulation and fibrinolysis system, prostaglandins and renal
function was studied. ET induced a biphasic change in blood pressure,
starting with an initial short-lasting reduction followed by a long-lasting
elevation of systolic and diastolic blood pressure. Endothelin bolus
resulted in a significant increase of 6-keto-PGF1a, PGEZ and TXB2
plasma levels (P < 0.05 against preinjection values), whereas prostaglan-
dins remained unchanged in the Ang II and NE groups. There was a
distinct correlation between the plasma ET and 6-keto-PGF1a levels (r =
0.82). In contrast to Ang II or NE, ET induced a shortening of the
activated partial thromboplastin time (aPTI) and increase of antithrom-
bin III levels (ATIII), fibrin monomers (FM), prekallikrein (PKK) and
factor VIII activity at the beginning. Finally a pronounced decrease of
ATIII, FM and PKK occurred, indicating a consumptive coagulopathy. At
the end of the experiment, elevated plasma renin activity and pCO2,
significantly decreased creatinine clearance, blood pH, P°2, base excess,
HC03, oxygen saturation (P < 0.01), a distinct glomerular proteinuria,
and a final anuria were observated. These results reveal that ET activates
the plasmatic coagulation system and induces an ARF accompanied by
impairment of pulmonary function. Its coagulation activating and renal
vasoconstrictive effects may be important pathophysiological factors,
especially when the counteractive release of vasodilatatory and antiaggre-
gatory prostacyclin or NO is impaired.

There is evidence that the endothelium is a highly active
endocrine organ system playing an important role in the patho-
genesis of renal disease because of its strategic anatomical posi-
tion between the circulating blood and vascular smooth muscle,
juxtaglomerular and mesangial cells.

In addition to the relaxing factors prostacyclin and NO (nitric
oxide), the endothelium synthesizes and releases vasoconstrictive
substances, including products derived from arachidonic acid
metabolism and the recently discovered peptide endothelin. The
endothelin (ET) family consists of three structurally and pharma-
cologically separate isopeptides [1]. Endothelin-1 is a 21-amino
acid peptide arising by proteolytic processing of specific prohor-
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mones, in particular, via a preproendothelin and the 39-amino
acid big endothelin. Several endothelin converting enzymes
(ETCE), phosphoramidon-sensitive membrane-bound neutral
metalloproteinase, pepstatin-sensitive zytosolic acid proteinases,
and a newly discovered pepstatin-sensitive aspartyl protease are
described as cleaving big endothelin to form the mature endothe-
un-i [2—7]. According to previous studies ET is known to have a
vasoconstrictive potency in the kidney vasculature bed about five
times that of Ang II. ET substantially reduces renal blood flow,
glomerular filtration rate and urine volume as a result of increased
renal vascular resistance and mesangial cell contraction [8—12].
Significantly raised ET plasma levels in patients with acute and
chronic renal failure may argue in favor of its potential involve-
ment in renal disease [81. As hypercoagulability and diminished
fibrinolysis have been described in acute renal failure, these
experiments were designed to study the interaction of ET with the
coagulation and fibrinolysis system and its effects on prostaglan-
dins in comparison with Ang II and norepinephrine.

Methods

Eighteen female domestic Goettingen bred pigs (body wt 32.4
2.3 kg) were fasted 12 hours before the experiment, and water

was available ad libitum. The pigs were premedicated with ket-
amine (20 mg/kg, i.m.; Bayer AG, Leverkusen, Germany) and
atropine (0,02 mg/kg, i.m.; Hoechst, Frankfurt, Germany), and
anaesthesized with sodium pentobarbital (20 mg/kg, i.v. followed
by 2.5 mg/kg/hr, i.v.). After induction of sceletal muscle paralysis
with pancuronium (0.5 mg/kg/hr, i.v.; Organon, Eppeiheim, Ger-
many), the animals were ventilated by a positive pressure respi-
rator (adjusted to body wt). The right a. carotis interna was
connected to a transducer system for the analysis of blood
pressure and heart rate. The experiment was initiated after a 60
minute period of stable hemodynamics. Three consecutive 20-
minute blood samples for measurements of baseline levels were
collected from a polyethylene catheter, inserted subcutaneously in
the right vena iugularis interna. Sixty, 120, 180 and 240 minutes
after the start of the experiments the animals received a bolus of
2 jig ET-1/kg (group 1; N = 6), 10 jig Ang 11/kg (both Bachem,
Heidelberg, Germany) (group 2; N 6) or 20 jig NE/kg (group 3;
N = 6), all dissolved in 20 ml 0.9% NaCl via a catheter placed in
the right v. subclavia. Urine volume, electrolytes and blood gas
analysis (ABL 300, Radiometer, Krefeld, Germany) were per-
formed hourly. Zero, 10, 30 and 60 minutes after each bolus
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Table 1. Maximal prostaglandin values

ET Angil NE

PGF1a 1116.8a 336.8 151.7 34.1 121.2 36.0
PGE2 262.0 95.1 73.5 5.0 83.5 5.2
TXB2 1191.8 126.6 360.5 42.4 304.7 18.5

ap < 0.05

application 10 ml venous blood samples were collected for
determinations of serum electrolytes, plasma osmolality, plasma-
renin activity (PRA), plasma concentrations of prostaglandin E2
(PGE2), the prostacyclin derivate 6-keto-PGF1a, the thrombox-
ane derivate B2 (TXB2), endothelin-1, serum creatinine and
coagulation parameters. Isotonic saline infusions of 2 ml/min via
each of the three catheters maintained constant standards
throughout the experiment and the catheters were kept open
since no anticoagulant was administered. Serum and urine elec-
trolytes were measured using a flame photometer, plasma osmo-
lality by means of a micro-osmometer, and PRA by a radioimmu-
noassay [131. Plasma concentrations of ET were measured using a
1251-endothelin assay system; prostaglandin plasma levels (all
assays supplied by Amersham, Braunschweig, Germany) [8, 14—
16] and coagulation parameters were measured as described
elsewhere [17—24]. Proteinuria was investigated by a nephelome-
ter analyzer (Behringwerke, Marburg, Germany).

Statistical analyses were performed using the statistical analytic
system (SAS Institute Inc., Cary, NC, USA). Normal distribution
of the variables were tested by the Shapiro-Wilk test. If normal
distribution appeared then the paired comparisons t-test was
used; if not, then the Wilcoxon matched pairs rank test was
applied. Significance was P < 0.01 at the arterial blood gas
analysis (BGA) and P < 0.05 at the other parameters.

Results

The ET effect was characterized by a biphasic change in blood
pressure (BP). Within the first 25 seconds after i.v. bolus injection
ET produced an initial short-lasting reduction of systolic and
diastolic BP from 102 4.3/72.8 4.0 mm Hg down to a
minimum of 89 5.1/65.4 4.3 mm Hg, and a heart rate
elevation from an average baseline of 68.3 3.1 to 92.2 5.8
beats/mm. The hypotensive phase was rapidly followed by a
gradual and long-lasting increase in systolic and diastolic BP. The
rise of systolic BP was comparable in the three groups (Maximum:
ET, 229 13.2; Ang II, 226.2 10.7; NE, 225.8 19.9 mm Hg)
without significant differences, only diastolic BP was significantly
higher in group 1 and did not reach baseline values again
(Maximum: ET, 160,2 7.8; Ang II, 133.5 5.6; NE, 122.7 6.1
mm Hg). Systolic and diastolic BP remained significantly elevated
up to 40 minutes after the ET bolus injection (P < 0.05), whereas
they returned to the baseline after an average of five minutes in
the Ang II group and three minutes in the NE group. The Ang II
and NE groups showed a short-lasting heart rate elevation (75.5
3.6/66.8 7.5 to 114.8 3.9/101.7 5.4 beats/mm), and the ET
group showed a transient decrease in HR after bolus application
(68.3 3.1 to 58.0 3.6 beats/mi. ET plasma values rose from
33.1 1.3 up to 75.7 12.2 pg/mI 10 minutes after the first and
up to 192 63.9 pg/ml after the fourth ET bolus. In contrast, Ang
II and NE did not cause any alterations of plasma ET values (Ang
II, 34.4 2.4; NE, 36.9 0.6 pg/mI).

ET application induced elevations of all the plasma prosta-

Table 2. Renin, ng/ml/hr

Baseline End of experiment

ET 2.20 0.063 7.98a 1.10
Ang II 2.93 0.970 1.35 0.44
NE 2.37 0.770 1.97 0.29

P < 0.05

Table 3. Creatinine clearance, ml/min

Baseline End of experiment

ET 114.3 11.2 0.Oa 0.0
Ang II 110.2 8.7 97.7 6.8
NE 108.8 10.1 98.3 11.7

ap < 0.05

glandin levels measured, resulting in a significant elevation of
6-keto-PGF1a, PGE2 and TXB2 (P < 0.05). In the other groups
the prostaglandins remained unaltered (Table 1). There was a
distinct correlation between the plasma ET and 6-keto-PGF1a
levels (r 0.828).

PRA was found to be significantly elevated after the ET (P <
0.05) and decreased as expected after Ang II administration
(Table 2). Creatinine clearance was significantly diminished after
ET application (Table 3). Serum electrolytes and plasma osmo-
lality did not change significantly in any group during the exper-
iments.

In contrast to pigs given a bolus of Ang II or NE, ET induced
an activation of the plasmatic coagulation system. A shortening of
the aPTF was found within the first 10 minutes after the bolus
injection (17.1 0.1 down to 16.0 0.7 seconds, correlation with
ET plasma levels r = 0.89). Baseline values were reached after 30
minutes (Fig. 1). Factor VIII activity increased significantly after
the first three bolus injections from an average of 87.7 10.4 to
100.0 8.9% (P < 0.05; Fig. 2). Thirty minutes afterwards the
activity dropped again to the baseline values. However, after the
third bolus factor VIII activity remained elevated. Fibrin mono-
mers were augmented 10 and 30 minutes after the first two
boluses (254.7 6.1 to a maximum of 275 8.7 zmE; P < 0.05;
Fig. 3) and fell significantly after the third injection (218.8 14.0).
NE and Ang II did not alter factor VIII activity or fibrin
monomers. Prekallikrein and more pronounced ATIII values
initially increased (from 192.3 18.2/108.0 3.6% to 217.0
12.3/123.0 12.2%; P < 0.05), but decreased significantly after
the third and the second ET boluses, respectively (to 177.7
21.5/95.0 2.8%; P < 0.05; Figs. 4 and 5).

The urine volume was significantly reduced after each ET bolus,
resulting in a final anuria (P < 0.05; Table 4).

At the end of the experiments blood pH (Table 5), P°2 (128.1
9.4 to 82.3 15.4 mm Hg), oxygen saturation (98.5 1.1 to

87.0 5.1%), standard bicarbonate (Table 6) and base excess
significantly decreased (3.5 1.1 to —12.9 4.69 mvol/liter); a
marked elevation of pCO2 was registered (P <0.01; Table 7). NE
caused a slight fall of base excess (3.0 0.7 to 0.8 0.6 mvol/liter)
and standard bicarbonate (Table 6), whereas all other parameters
remained unchanged. Additionally, 32.0 7.4 ml ascites and a
marked glomerular proteinuria (750.7 89.4 mg/liter) were
found in the ET group.
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Fig. 2. Factor VIII. Symbols are: (A) bolus; (U)
endothelin; (+) angiotensin II; (*)
norepinephrine. (x) P < 0.05.

Discussion

The study compared the effects of the endogenous vasoconstric-
tors endothelin-1, angiotensin II and norepinephrine on hemody-
namics, prostaglandins, coagulation and renal function in swine.

Although BP was elevated after the administration of the three
different peptides, the hemodynamic biphasic profile caused by
ET was different [25, 26]. The initial hypotension and tachycardia
could be caused by stimulation of atrial extension receptors
accompanied with an increased ANP release. Another explana-
tion could be a compensatory release of prostacyclin [27] or of
NO. When ET was infused intravenously in rats, its pressor
activity was strongly limited by the release of prostacyclin and
EDRF [28]. Indeed, in isolated preparations, ET induced a
release of prostacyclin and NO, which can reverse contraction of
the mesenteric artery induced by ET [291. In pithed or chemically
denervated rats, a single intravenous injection of ET elevated the
blood pressure for more than one hour. In contrast to this
prolonged hypertensive activity, rapid elimination of endothelins
from the bloodstream has been observed in rats; over 60%
disappeared after one minute, with high uptake in the lung,
kidney, and liver [30—341. The present experiments clearly dem-
onstrate that, in contrast to Ang II and NE, ET induces the

release of vasodilatatory prostaglandins, such as the prostacyclin
derivative 6-keto-PGF1 a as well as POE2. Since pretreatment with
indomethacin, an inhibitor of prostaglandin synthesis, caused a
prolongation and enhancement of endothelin-induced hyperten-
sion without an initial blood pressure decrease [351, the concom-
itant release of endogenous vasodilatators might have prevented a
further elevation of blood pressure. This may be of pathophysio-
logical importance when release of 6-keto-PGF1a is impaired and
ET is increased, as it is in hypertension or advanced atheroscle-
rosis [8, 36, 37].

Thus, its vasoconstrictive effect is modified by the sympathic!
parasympathic reaction, its own pharmacokinetics and the release
of counteractive endothelial hormones.

In animal experiments intravenously infused ET preferentially
affected the renal circulation. As a result of the increased vascular
resistance and contraction of mesangial cells, the glomerular
filtration rate and urine volume were substantially reduced [9—11],
resulting in a marked glomerular proteinuria and a final anuria as
signs of an ET induced ARF. These findings correspond with the
metabolic acidosis presenting a decreased base excess, blood pH
and standard bicarbonate as a consequence of impaired renal acid
elimination and base generation.
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Fig. 3. Soluble fibrin monomers. Symbols are:
(A) bolus; (•) endothelin; (+) angiotensin II;
(*) norepinephrine. (X) P < 0.05.
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(•) endothelin; (+) angiotensin II; (—*—)
norepinephrine. (*) P < 0.05.

A positive correlation between ET and creatinine plasma values
in patients with chronic renal failure [38] and high ET plasma
levels in patients with acute renal failure were observed [39]. In
patients with liver cirrhosis and ascites a negative correlation
between ET levels and creatinine clearance was described [40].
Proteinuria was also seen in rats [41] and may serve as an
explanation for the observated ascites combined with ET-induced
portal hypertension.

In the present study ET enhanced renin release, indicating that
the peptide takes part in the regulation of the release of systemic
vasoactive hormones. ET also increases renin release in anaesthe-
sized dogs, but inhibits the release of renin from isolated kidney
preparations [42, 43]. The enhanced renin release in vivo may be
due to the increase in arterial resistance opposing the direct
inhibitory action of ET on the renin-angiotensin system [44].
Alternatively, ET may activate renin by releasing prostacyclin—
one of the most potent activators of renin release—or via
decreasing delivery of sodium to the macula densa, which is
consistent with its action on GFR and proximal tubule reabsorb-
tion as GFR and proximal tubule reabsorbtion decreases [2, 8, 36,
45]. Beyond that, the finding that NO inhibits renin production in
canine renal cortical slices supports the hypothesis that ET may
function physiologically to antagonize the effects of NO [2, 45, 46].

The renal effects of ET may be brought about either by a direct
vasoconstrictor effect or by synergism with other vasoactive sub-
stances. It is of cardinal importance that damage or flow pertu-
bations of cell membranes of the endothelial lining of blood
vessels cause an increased production of prostaglandins and NO.
However, smooth muscle cells underlying the endothelial lining
also synthesize prostacyclin. This mechanism is thought to be held
in reserve to reinforce local production of NO and prostacyclin
and vasodilatation when cell damage to the endothelial lining
occurs [47]. The observed elevations of thromboxane values can
be explained by its enhanced release from platelets due to
thrombin induced activation of platelet aggregation because ET
itself does not affect platelet function [48—50]. Only in spontane-
ously hypertensive rats (SHR), but not in normotensive animals,
the reduction of endothelin-induced contraction of aortic rings by
dazoxiben, an inhibitor of thromboxane synthase, and SQ-29,548,
an antagonist of thromboxane A2 receptors, was endothelium-
dependent. These findings suggest that endothelium-derived
thromboxane contributes to vasoconstriction evoked by endothe-
lin only in SHR [51]. In addition to that, solutroban, a selective
thromboxane A2 receptor antagonist, failed to reduce mesenteric
vasoconstrictor responses to endothelin [52]. The observated
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0 50 100 150 200 250 Fig. S. Antithrombin III. Symbols are: (A)
bolus; (U) endothelin; (—i-—) angiotensin II; (*)

Time, minutes norepinephrine. (x) P C 0.05.

Table 4. Urine volume, mi/hr

Baseline End of experiment

FT
Ang II
NE

93.3 5.5
91.7 9.0
79.2 12.4

0.oa 0.0
29.2a 11.7
50.0 9.6

ap < 0.05

Table S. Blood pH

Baseline End of experiment

FT
Ang II
NE

7.430 0.028
7.441 0.038
7.437 0.047

7.09? 0,103
7.434 0.044
7.424 0.042

ap < 0.01

enhanced thromboxane release is not regarded as pathophysi-
ologically important in the FT-induced renal hypoperfusion and
hypoflitration status [53], since the reduction of renal blood flow
evoked by endothelin-1 is not mediated by the secondary release
of thromboxane, as evidenced by the lack of effect by an appro-
priate thromboxane receptor antagonist [541. The diminution of
glomerular filtration during endothelin infusion was not preserved
by selective thromboxane antagonism but by cyclooxygenase inhi-
bition, indicating other cyclooxygenase products, possibly PGF2a,
play a key role in sustaining ET-induced renal vasoconstriction
[55]. Thus, locally, especially in the kidney, the endothelium-
supported balance of vasoconstrictive FT and vasodilatatory
prostaglandins regulates vasotonia [51, 56] as well as coagulation
and fibrinolysis activity.

Another striking result of the experiments was the alteration of
the coagulation system after FT administration. ET induced a
state of hypercoagulability with shortening of aPT'F, elevation of
factor VIII activity and fibrin monomers, and finally, a consump-
tion of ATIII levels.

The factor VIII elevation after the third FT bolus did not
correlate with ET plasma levels as well as before, and reached
higher levels without any transient decline to the baseline, indi-
cating endothelial damage resulting in FT-induced ARF. The
decrease of ATIII values at the end of the experiment could be

Table 6. Standard bicarbonate, mmol/iiter

Baseline End of experiment

FT 27.9 0.5 12.0 2.7
Ang II 27.0 0.3 27.1 1.1
NE 27.3 0.5 24.7a 0.9

ap <0.01

Table 7. PCO2, mm Hg

Baseline End of experiment

FT 39.4 4.6 56.9d 6.6
Ang II 38.2 4.6 38.9 3.4
NE 37.5 4.1 36.3 1.8

3p <0.01

due to a consumption by the beginning dissiminated intravascular
coagulation since elevated plasma ET levels in patients with
disseminated intravascular coagulation (DIC) are reported [57].
The decline of fibrin monomers and prekallikrein values after the
third ET bolus might be interpretated as a development of a status
of hyperfibrinolysis. This may be explained by a direct effect of ET
on fibrinolysis or the consequence of a fibrinolysis activation by
the starting DIC. ET could primarily cause an enhanced thrombin
release resulting in an elevation of factor VIII activity and fibrin
monomers and compensatory ATIII formation.

Hypercoagulability and platelet hyperactivity may be associated
with increased ET production what may sustain and promote the
activation of the coagulation cascade because thrombin has been
shown to result in an augmented ET production [45, 58—61].
Additionally, plasma levels of both thrombin-antithrombin III
complex and beta-thromboglobulin are correlated with the plasma
FT level in acute myocardial infarction [621. However, after the
start of DIC and formation of fibrin monomer complexes local
factors, most likely of endothelial origin, determine the deposition
of a fibrin thrombus in the kidney, especially in the glomeruli
[63—66]. Furthermore, thrombin induces vasoconstriction and
reduction of renal blood flow apart from intraglomerular throm-
bosis [67, 68] that may be explained by FT release.

The results give evidence that FT can activate the coagulation
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process. The imbalance of PGI2/NO and ET may promote
vascular occlusion and cardiovascular complications in hyperten-
sive, diabetic and atherosclerotic blood vessels [69—72]. In this
situation an additional effect on the coagulation system can bring
the hemostatic balance to a prethrombotic state. Especially pa-
tients with impaired fibrinolysis, as shown in some hypertensives
and advanced atherosclerosis, are endangered by hypercoagula-
bility and microthrombosis [22, 73].

In summary, when endothelial damage with a loss of compen-
satory secretion of prostaglandins and NO occurs ET may lead to
a status of renal hypoperfusion, hypofiltration and intrarenal
thrombus formation, as it is in acute renal failure.
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