
Theoretical Computer Science 8 (1979) 189-201.
@ North-Holland Publishing Company

THE COMPLEXITY OF COMPUTING THE PERMANENT

L.G. VALIANT
Computer Science Department, University of Edinburgh, Edinburgh EH9 3J2, Scotland

Communicated by M.S. Paterson
Received October 1977

Ati&. It is shown that the permanent function of (0, I)-matrices is a complete problem for the
class of counting problems associated with nondeterministic polynomial time computations.
Related counting problems are also considered. The reductions used are characterized by their
nontrivial use of arithmetic.

1. Introduction

Let A be an n x n, matrix. The permanent of A is defined as

Perm A = C n Ai,-
0 i=l

where the summation is over the n! permutations of (1,2, . . . , n). It is the same as
the determinant except that all the terms have positive sign. Despite this similarity,
while there are efficient algorithms for computing the determinant all known
methods for evaluating the permanent take exponential time. This discrepancy is
annoyingly obvious even for small matrices, and has been noted repeatedly in the
literature since the last century [IS]. Several attempts have been made to determine
whether the permanent could be reduced to the determinant via some simple
matrix transformation. The results have always been negative, except in certain
special cases [12,X3,16).

The aim of this paper is to explain the apparent intractability of the permanent by
showing that it is “complete” as far as counting problems. The results can be
summarized informally as follows:

Theorem 1. The complexity of computing the permanent of n x n (0, 1)-matrices is
NP-hard [3,11] and, in fact, of at least as great difficulty (to within a polynomial
factor) as that of counting the number of accepting computations of any nondeter-
ministic polynomial time Turing machine.

189

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82500417?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

190 L.G. Valiant

Theorem 2. For any integer K that is not an exact power of two the complexity of
computing the permanent of a (0, I)-matrix mod K is UP-hard [24] (i.e. a poly-
nomial time algorithm for it would imply that any single-valued function that can be
checked fast can also be evaluated fast).

Theorem 3. For any integer k the permanent of an integer matrix mod 2k can be
computed in O(n 4k-3) steps if k 2 2 (and Q(n ‘S81) steps if k = 1 since the permanent

and determinant are equal mod 2).

To express Theorem 1 precisely we define the class #P of all problems
computed by nondeterministic polynomial time Turing machines that have the
additional facility of outputting the iiumber of accepting computations. (N.B. This
class is essentially equivalent to the polynomial time “probabilistic” TMs of Gill [4]
and the “threshold” TMs of Simon [191). For IVP-complete problems counting the
number of “solutions” (e.g. for satisfiability of propositional formulae we would
count the number of satisfying assignments) is usually “# P-complete” for trivial
reasons. This is also the case for some polynomial computable problems that can be
related to an NP-complete one in some direct fashion. The permanent function is a
more surprising member of the # P-complete class since the natural correspon-
dence is with counting sets of distinct representatives (or equivalently perfect
matchings in bipartite graphs) and for these the naturally related detection prob-
lems are polynomial time computable [5, lo].

On a more general level we establish a framework for classifying counting
problems and define a hierarchy for this purpose. Examples of problems that one
ma;’ attenrct to classify are Le graph-enumeration problems [6]. An example of the
immediate consequences of our results is the following: If R is a polynomial
computable predicate, then the number of Ybelled n-node graphs having property
R can be expressed “explicitly” as the permanent of a matrix that can be computed
in time polynomial in n. Unfortunately the best method known for evaluating the
permanent of an n x n matrix takes 2n+o(‘ogn) steps [17, p. 26).

We do not know of any pair of functions, other than the permanent and
determinant, for which the explicit algebraic expressions are so similar, and yet the
computational complexities are apparently so different. With this example we can
understand better the difficulties that beset certain approaches to proving lower
bounds on the co.splexity of unrestricted arithmetic (and Boolean) computtitions.
An optimistic hope, thqt is fulfilled in certain restricted cases [181, is that lower
bounds can be proved by assigning complexity measures to intermediate results
according to syntactic criteria on their expressions. Clearly any such measure that
could SO distinguish P from NP would have to distinguish pairs of expressions that
resemble each other as closely as the permanent and determinant.

The complexity of computing the permanent 191

2. The complex*;y of counting

For most non-deterministic algorithms each accepting computation corresponds
in a natural way to a “solution” to the problem. It has been widely observed (e.g.
[S, 19,231) that for almost all pairs of NP-complete problems there exist poly-
nomial transformations between them that preserve the number of solutions. These
problems are therefore equivalent not only as far as the existence of solutions but
also as far as the problem of counting the solutions.

Definition 2.1. A counting Turing machine is a standard nondeterministic TM with
an auxiliary output device that (magically) prints in binary notation on a special
tape the number of accepting computations induced by the input. It has (worst-
case) time-complexity f(n) if the longest accepting computation induced by the set
of all inputs of size n takes f(n) steps (when the TM is regarded as a standard
nondeterministic machine with no auxiliary device).

Definition 2.2. # P is the class of functions that can be computed by counting TMs
of polynomial time complexity.

We denote the class of functions computed by deterministic polynomial time
TMs by FP, and the class of predicates by P or DP. For convenience we shall often
identify a class of machines with the class of functions it computes. It will be
assumed that objects are represented in some standard economical manner as
words over an alphabet C (say (0, 1)). 1x1 will denote the size of x if ;! is a set, and its
length if x is a string. A function f : C* x C* (or a relation R c 2’ x 25*) is poZy -
nomiul bounded iff there is a polynomial p such that for all x If(x)1 <p(lx() (or such

that W, Y)*IYkPW*
The notion of reduction used is one by oracles, in a similar sense to Cook [3]

except that the oracles cannot only be predicates but also arbitrary polynomial
bounded functions. An oracle TM is a TM with a query tape, an answer tape, and
some working tapes. To consult the oracle the TM prints a word on the query tape
and, on going into a special query state an answer is returned in unit time on the
answer tape, and a special answer state entered. An oracle TM is said to be in DP
(or FP, or NP, or # P, etc.) iff for all polynomial bounded oracles it behaves like a
machine in P (or FP, or NP, or # P, etc.).

If a is a class of oracle-TMs and xtan appropriate function for it (i.e. polynomial
bounded in the present contex;j then we denote the class of function (or predicates)
that can be computed by oracle-TMs from cy with oracles for x by cyx. A problem y
is # P-hard iff # PC FP’. It ,is # P-complete iff # P G FPy and y E # P.

The following notation is useful for unifying the necessary concepts with those
from [3, 11, 141. Let lY = {N, # , D, .F)+{P}. Each element of r will denote 8
complexity class defined inductively starting from DP, NP, FP or # P: (i) If cy E r

192 L.G. Valiant

and Z E(N, # i D, F}, then Zcu = I JxEa ZP’. (ii) If ay E r is a class of predicates,
then co-a is the class of complements of elements of a.

Clearly any occurrence of D or P in cy E r 1s redundant except if it is the first
letter. No other equivalences among the defined classes are known however. In
the polynomial hierarchy [11, 14, 2 1] cp, # and A: respectively become N’P,
co-Nip and DN’-‘P. The # symbols define a potentially infinite tree-hierarchy of
classes which collapses if # P G FP. (N.B. FP G #P). However, we know of only
such trivial containments as the following which hold for all ar.

In general a problem x is QL -hard via @ iff IY 5 ox, and is LY -complete via /3 iff in
addition x E ar. We assume throughout -that p is P or FP as appropriate. In this
paper we are concerned mainly with # P-completeness. We shall also observe that
there are natural problems complete in # NP, and also that certain well-known
problems occur lower in the N- ;15t -P hierarchy than is immediately apparent.

For NP-complete problems proving # P-completeness for their natural counter-
parts is usually easy. Finding related polynomial time problems for which counting
is still # P-complete is also easy. As an artificial example consider a Boolean
conjunctive normal form formula E Finding an assignment that makes F false is
trivial, yet counting them is # P-complete. As a better example consider a mono-
tone Boolean formula. Detecting the existence of a satisfying assignment is trivial.
However, since any F can be rewritten, without changing the number of solutions
as G A 1H (where G, H are monotone), counting the solutions of G A H and of G
would give the number of solutions of F. The rewriting consists of replacing each
unnegated variable xi in F by new variable yi, and each negated variable 2i by Zig
and conjoining F with

A (yiV.Zi)Al V (Yihfih
i i

A nondeterministic Turing machine is unambiguous [24] if for any input there is
at most one accepting computation. UP is the class of predicates computed by
unambiguous polynomial time TMs. The significance of the question P := ? UP is
that a positive answer would imply that the problems of checking and evaluating
are polynomially related for all single-valued functions [24]. There are some
probfems (e.g. computing the prime decomposition of an integer) for which this is
currently conjectured by some not to be true. Theorem 2 can be interpreted
therefore either as giving evidence of intrsctability in a circumstance where VP-
hardness is in doubt, or alternatively as a possible route to a powerful positive
result. In particular, a fast algorithm for computing permanents mod 3 would imply
that such schemes for cryptography as those proposed in [26] are nonexistent.

It is relevant to observe that among #P-complete problems several finer dis-
tinctions can be made. A problem is P-enumerable if all the solutions can be listed

The complexity of computing the permanent 193

in time p(n) s N where N is the number of so’rutions found and p(n) some poly-
nomial in the input size. While matchings in bipartite graphs and satisfying assign-
ments in monotone circuits are p-enumerable, WP-complete problems will not be in
general unless P = UP. Another distinction involves defining # KP to be # p but
with arithmetic modulo K. Our results show that the permanent mod K is #&
complete if K is not a power of 2, but is polynomial time computable otherwise.

The main reduction used is the following:

Lemma 3.1. There is a function f E FP from propositional formulae in conjunctive

.

normal form to matrices with entries from {-l,O, 1,2,3} such that

VF Perm(f (F)) = 4?(F) l s(F)

where t(F) denotes “twice the number of occurrences of litetals in F, minus the
number of clauses in F”, and s(F) is the number of assignments that satisfy F.

To prove # P-hardness for the permanent of general integer matrices we need
only the following additional fact.

Lemma 3.2* There is a function g E FP that maps an arbitrary NP TM _w and an
icrput x for it to a proposition01 formula in 3-conjunctive normal form such that the
number of satisfying assignments of g(M, x) is equal to the number of accepting
computations of M on x. .

Proof. By a modification of Cook’s construction [3] using the idea of [2]. See [19]
or [25).

To obtain results for (0, I)-matrices we also need the following:

Lemma 3.3. There is a transformation h, computable il: time polynomial in m and
the order of the matrix, that maps matrices with elements from the set (0, 1, . . a , ml to
(0, 1).matrices such that

VA Perm A = Perm h(A).

Before proving Lemmas 3.1 and 3.3 we observe that Theorems 1 and 2
ioll~ irom them.

194 L.G. Valiant

Proposition 3.4. For some positive constant d the problem of computing the
permanent mod r, given an n x n (0, I)-matrix and a positive integer r <dn log2 n, is
P-hard.

Proof. If C is an integer matrix in which no entry is larger than p in magnitude

then IPerm Cl d $’ l n ! To compute Perm C it is sufficient to compute its value
mod pi for each pi in some set {PI, . e . , pI} of distinct prime numbers whose
product exceeds’ 2~’ l n! .For some constant d’ it is always sufficient that each
pi < d’n{logz pn) [7, p. 3421. But by Lemma 3.3, for each pi, C mod pi can be
transformed in polynomial ti.r,e into a (0, &matrix with the same permanent. The
result therefore follows from Lemmas 3.1 and 3.2.

Theorem 1. Computing the permanent of a (0, 1)-matrix is #P-complete.

Proof. Proposition 3.4 implies that the problem is #P-hard. That it also belongs to
P is immediate.

Theorem 2. For any fixed positive integer K that is not an exact power of two,
computing the permanent mod K of (0, Q-matrices is UP-hard.

Proof. From Lemmas 3.1 and 3.2 given any UP machine M and an input x the
permanent of the matrix f(g(M, x)) will equal either 4r(F’ or zero according to
whether M accepts x. Hence Perm f(g(M, x)) will be divisible by K if and only if M
does not accept x.

Proof of Lemma 3.1. Any n x n matrix A can be regarded as the adjacency matrix
of an n-node weighted directed graph G where Aij gives the weight of the edge
from node i to node j. Each additive term in Perm A corresponds to the product of
the weights of the edges in some set of node-disjoint directed cycles that cover all
the nodes of G (called “cycle covers” for short). To prove our result we exhibit a
function f s.rch that in the graph associated with f(F) the cycle covers that cor-
respond to satisfying assignments of F will each contribute 4”” to the permanent,
whlile the contributions of all the “spurious” cycle covers will cancel each other out.

Let F=C1~C2/\-‘./\Cr where ci = (Yil V Yi2 V yi3) with yij E

{Xl, fl, x2,22, l l l
, x,,,, X,,J. (N.B. This assumption of 3-form is not essential.) We

construct the graph G = f(F) by superposing the following structures: a track Tk for
each variable xk, an interchange Ri for each clause Ci, and, for each literal yi,i such
that yi,i is xk or &, a junction Ji,k at which Ri and Tk meet. Interchanges also have
internal junctions of the same structure as junctions. The construction of the tracks
and interchanges is taken from a proof in [231 which itself is adapted from one in
[9]. We describe them in Fig. 1 by an example fragment. ‘& and R3 are shown for

The complexity of computing the permanent 195

Ts:

Fig. 1. A track and an interchange.

the case where C3 = (~2 v X’S v x,), and where xs occurs in C2 and Cs, and Z5 in C3.
We assume that all the edges outside junctions or internal junctions are weighted

one.
The crucial part of the construction is the structure of the junctions. The

junctions and internal junctions are all identical four-node weighted digraphs
corresponding to the following 4 >r: 4 matrix X.

j0 1 -1 -11

196 L.G. Valiant

Each one has external connections only via nodes
Denoting by X(r; 6) the matrix X with rows

following properties of X can be verified:
(i) Perm X = 0

1 and 4 and not via 2 or 3.
y and columns S removed, the

(ii) Perm X(1 ; 1) = 0
(iii) Perm X(4; 4) = 0
(iv) PermX(1,4; 1,4)=0
(v) Perm X(1 ; 4) = Perm X(4; 1) = nonzero constant (=4)

[N.R. The given X is about the simplest possible among all matrices with properties
(i)-(v) if {1,4} is taken to denote an arbitrary pair of indices, and any nonzero
constant is allowed in (v). This can be seen from the following easily proved facts:

(a) any such matrix has to be at least 4x4, and if it is 4x4 then (b) it is not
symmetric and (cj at least two entries are greater than one in magnitude. Also (d)
rio matrix can have the same set of properties for the determinant, and hence if it
has them for the permanent the constant in (v) must be even.]

Let a route in the graph f(F) be the set of all cycle covers that have the same set
of edges outside the junctions. A route is good if every junction and internal
junction is entered exactly once the left exactly once and at the opposite end.
Routes may fail to be good either because (a) some junction or internal junction is
not entered and left, or (b) because it is entered and left at the same end, or (c)
because it is entered twice and left twice. By virtue of conditions (i) for (a), (ii) and
(iii) for (b) and (iv) f or c an route that is not good contributes zero to the () y
permanent. Condition (v) ensures that any good route contributes exactly 4@!

It is clear that in any track Tk of any good route either all junctions on the left are
“picked up” by the track and all the ones on the right by interchanges, or vice versa
(corresponding to xk and & respectively). The interchanges are so constructed that
any route can pick up any subset of them, except for the whole set itself. Further-
more it can do so in exactly one way for each subset. Thus if for some Ri at least
one of the junctions is picked up by the tracks, then all the remaining ones will be
picked up by Ri in the unique good route available.

Using the obvious correspondence between good routes and assignments of truth
values, we conclude that there is a one-one correspondence between good routes in
the graph, each of which contributes 4r(F) to the permanent, and satisfying assign-
ment of F. The result follows.

Proof of Lemma 3.3. To obtain h(A) we replace each edge of weight k > 1 in A by
a subgraph. The subgraph is illustrated in Fig. 2 for the case k = 5. It replaces an
edge of weight 5 from node x to node y. All the other nodes shown are new
a.dditions to A.

Now if (x, y) is not covered by a cycle in A then there is just one way to cover the
corresponding new nodes in h(A). On the other hand, if (x, y) is covered by a cycle
in A, then so must be also the chain of these edges from x to y in 12(A). Then there

The complexity of computing the permanent 197

xl

Fig. 2.

are five ways of covering the remainder, each corresponding to the inclusion of a
different self -loop.

To obtain our main positive result we generalise the Gaussian elimination
technique.

Theorem 3. Let k be any positive integer and let Qk (n) be the number of bitwise
operations required to evaluate the permanent mod 2”, for n x n integer matrices.
Then Qk(n)= O(n4k-3) for k 2 2 and Q&l)= O(n2*81).

Proof. The proof is by induction on matrices of the two types shown in Fig. 3.
Fh(n) and G,(n) are the complexities of evaluating the permanent of the first and
second types respectively. We shall assume arithmetic mod 2k throughout.

To evauate the permanent of a matrix of the second type we scan the columns
from left to right for i = 1, . . . , n -g. For each value of i, for every set of i of the
first i +g rows, we compute the permanent of the submatrix formed by these rows
and the first i columns Since, for each i, there are fewer than ng such submatrices,
we have fewer than n* values to compute at each stage. Each vaPue at stage i is the
sum of some of the values at stage i - 1. Furthermore, each value at stage i - 1
influences at most g + 1 values at stage i (corresponding to the possible choices of
rows omitted at stage i - 1 but used at stage i). Hence the total complexity is
O(n’+‘). The task is completed in the same fashion for the last g columns, giving
G,(n) = O(n”‘).

198 L,.G. Valiant

A MPG of the 1st Type

Row, = Row2

1

ROW~I, -I = Rowzh

B

A Matrix of the 2nd Type

All zero

,;l
Fig. 3.

To evaluate the permanent of a matrix of the first kind we perform “elimination”
on it to give a matrix of the second kind, plus n’! matrices of the firs” kind with h
increased by one.

The elimination is based on the fact that if by adding row i to row j in an integer
matrix A we obtain A’, then

Berm A’ = Pi:rm A + Perm A”

The complexity of computing the permanent 199

where A” is the same as A but with row j replaced by row i. A” must then have two
equal rows and hence Perm A”= Wmod 2). (Note that &(n) = 0 for a similar
reason: the permanent of any matrix with k dis:o; +nt pairs of equal rows is a multiple
of 2?)

We can therefore reduce the (n - 2h)x n submatrix B (i.e. the bottom n - 2h

rows) so that Ril becomes zero for i > j and hence the overall matrix becomes of the
second type. The reduction consists of computing O(n*) linear combinations of
pairs of rows in the manner of standard Gaussian elimination except that now we
get an additive term of the first kind (with h increased by one) at each step. As pivot
we always choose from among the elements of the relevant submatrix one that is
odd, or if no odd element exists, then one that has the fewest factors of two. This
ensures that we can work in arithmetic mod 2’. Hence we have

and

Fk(n)= 0.

Solving this gives Fe(n) = 0(n4k-3) for all k 2 2. (The case k = 1 gives 0(n3)
Gaussian elimination, which can be improved to O(n**“‘) [22]).

4. Remarks

For many predicates in P the corresponding counting problem is in FP. This is
evident, for example, for problems with a dynamic programming flavour. More
interesting examples are spanning trees in graphs, and Eulerian paths in diagraphs,
either of which can be counted by evaluating appropriate determinants [6].

For many other easily computed predicates the counting problem is # P-
complete. This is true for satisfiability even in the very restricted case of monotone
CNF formulae with two disjuncts per conjunct. (A collection of such complete
problems appears in [25].) Note that good proofs of #P-completeness appear to be
characterized by the necessity for nontrivial arithmetic.

Isomorphism of graphs has a seemingly intermediate position: R. Mathon has
recently observed that counting isomorphic embeddings belongs to FNP, and hence
that the full power of counting (i.e. #P) is not apparently required.

The above result is relevant in classifying enumeration problems [6]: Let x E NP
and consider the problem C’. l “given a graph G count the number of subgraphs
with property x that are distinct under relabellinga”. Many natural enumeration
problems are of this flavour for the special case that G is the complete graph.

Fact. C, E F # NP.

200 LG. Valiant

Proof, Run a # PL machine M of which each nondeterministic branch performs the
following: guess a subgraph G’, test it for x’, and if this is true then run a nondeter-
ministic computation with g accepting branches for

g = h-‘(mod p)

where h is the number of automorphisms of G’ and p is a computed prime number
larger than the expected answer. Finding p and h can be done within FNP [27].

As a final remark we note that the following problem NSAT can be easily shown
to be complete in # NP: A propositional formula F can be regarded as being
nondeterministic if its variables are partitioned into set X and Y. A solution to the
NSAT problem is an assignment of values to the elements of X for which there
exists an assignment of values to Y that together satisfy F. The counting problem
for NSAT is that of counting the number of such solutions.

References

PI

Pl

[31

WI

:51
Fl
PI

PI

191
WI

WI

WI

WI

WI

[15]

WI
P71
WI

A.V. Aho, J.E. Hopcroft and J.Q. Ullman, The L?esign and Analysis of Computer @Wthns
(Addison-Wesley, Reading, MA, 1974).
M. Bauer, D. Brand, M. Fischer, A. Meyer and M. Paterson, A note on disjunctive form
tautologies, SIGACT News 52 (1973) 17-20.
S.A. Cook, The complexity of theorem proving procedures, Proc. 3rd ACM Symp. on Theory of
Computing (1971) 151-158.
J. Gill, Computational complexity of probabilistic Turing machines, Proc. 6th ACM Symp. on
Theory of Computing (1974) 91-95.
M. Hall Jr., An algorithm for distinct representatives, Am. Mat/r. Monthly 63 (1956) 716-717.
F. Hararv and E.M. Palmer, Graphical Enumeration (Academic Press, New York, 1973).
G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers (Oxford University Press,
4th Ed., 1960).
J. Hartmanis and L. Berman, On Isomorphisms and density of NP and other complete sets, plot.
8th ACM Symp. on Theory of Computing (1976) 30-40.
P.P. Herrmann, On reducibility among combinatorial problems, MAC TR- 113, MIT (1973).
J.E. Hopcroft and R.M. Karp, An n”* algorithm for maximum matchings in bipartite graphs,
SIAM J. Comput. 2 (1973) 225-23 1.
R.M. Karp, Reducibility among combinatorial problems, in: R.E. Miller and J.W. Thatcher, Eds.,
Complexity of Computer Computations (Plenum Press, New York, 1972).
C.H.C. Little, A characterization of convertible (0, l)-matrices, J. Combin. Theory 18 (B; (1975)
187-208.
M. Marcus and H. Mint, On the relation between the determinant and the permanent, Illinois J.
Math. 5 (1961) 376-381.
A.R. Meyer and L.J. Stochmeyer, The equivalence problem for regular expressions with squaring
requires exponential space, Proc. 13th Cymp. on Switching and Automata Theory (1972) 125-129.
T. Muir, On a class of permanent symrzetric functions, Proc. Roy. Sot. Edinburgh 11 (1882)
409-418.
G. Polya, Aufgabe 424, Arch. Math. Phys. (3) 2,‘) (1913) 27.
H.J. Ryser, Combinatorial Mathematics, Carus Mhth. Monograph no. 14 (1963).
C.P. Schnorr, A lower bound on the number of ,-dditions in monotone computations, Theor.
Comput. Sci. 2 (1976) 305-315.

The complexity of computing the permanent 201

[19] J. Simon, On some central problems in computational complexity, Ph.D. Thesis, TR75-224,
Cornell Univ. (1975).

[2O] J. Simon, On the difference between one and many, Proc. 4th Colloq. on Au:omata, Languages and
Programmkg, Turku, 1977.

[21] L.J. Stockmeyer, The polynomial-time hierarchy, Theoret. Comput. Sci. 3 (1977) l-22.
[22] V. Strassen, Gaussian elimination is not optimal, Numer. Math. 13 (1969) 354-356.
[23] L.G. Valiant, A polynomial reduction of satisfiability to Hamiltonian circuits that preserves the

number of solutions, Manuscript, Univ. of Leeds (1974).
[24) L.G. Valiant, The relative complexity of checking and evaluating, Itzformation Processing Lett. 5(l)

(1976) 20-23.
[25] L.G. Valiant, The complexity of enumeration and reliability problems, SIAMJ. Comput. (to appear).
[26] W. Diffie and M.E. Hellman, New directions in cryptography, IEEE. Trans Information Theory

(New York (Nov. 1976).
i27] V.R. Pratt, Every prime has a succint certificate, SIAM J. Comput. 4(1975) 214-220.
(281 R.L. Rives& A. Shamir and L. Adleman, On digitial signatures and public-key cryptosystems, TM

82, Lab. for Comput. Sci., MIT (April 1977).

