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a b s t r a c t

This paper studies a min–max location-routing problem, which aims to determine both
the home depots and the tours for a set of vehicles to service all the customers in a given
weighted graph, so that the maximum working time of the vehicles is minimized. The
min–max objective is motivated by the needs of balancing or fairness in vehicle routing
applications. We have proved that unless NP = P, it is impossible for the problem to
have an approximation algorithm that achieves an approximation ratio of less than 4/3.
Thus, we have developed the first constant ratio approximation algorithm for the problem.
Moreover, we have developed new approximation algorithms for several variants, which
improve the existing best approximation ratios in the previous literature.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Consider a complete undirected graph G = (V , E)with a vertex set V and an edge set E. Each e ∈ E has a symmetric edge
weight w(e), which is a non-negative integer, to indicate the traveling time. Consider a set of customer locations J ⊆ V , and
p identical vehicles. Given the home depots of the vehicles, the classical min–max p-traveling salesmen problem (p-TSP)
[7,3,2] is to determine the tours for the p vehicles to service all the customer locations in J , such that each vehicle starts from
and returns to its home depot, with the maximum traveling time of the vehicles being kept to a minimum. This min–max
objective can be motivated by the need to minimize the latest completion time of the travels of the vehicles [7,6], by the
desire to balance the traveling time of the vehicles in a fair way [4], and by restrictions such as limited working days to the
vehicles [4].

In this paper, we study an extension of the min–max p-TSP, named as the min–max Location-Routing Problem (LRP),
which, in addition to the tours, needs to simultaneously determine the home depots of the p vehicles by choosing from
a given set D ⊆ V of available depots. In the min–max LRP, we also take the capacities of the available depots into
consideration, such that for each d ∈ D, the number of vehicles that start from d cannot exceed its capacity, which is denoted
by a positive integer b(d). Moreover, for each customer location v ∈ J , a vertex weight h(v) is given to indicate the time for a
vehicle to service v, where h(v) is a non-negative integer. Thus, the min–max LRP is to determine the home depots and the
tours for the p vehicles to service all the customer locations, so as to minimize the maximum working time of the vehicles,
including both the travel and service time.

Our study of the min–max LRP follows a growing body of research on location-routing problems [17,5,13], which need
to decide on the home depots and travel routes of the vehicles simultaneously. Most of the location-routing problems in the
previous literature have a min–sum objective, which is to minimize the sum of the travel and service costs of the vehicles,
and the cost of establishing the home depots. In the min–max LRP, we assume that the available depots in D have already
been established, and only the maximum working time of the vehicles needs to be minimized. We do not include the cost
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of establishing the home depots in the min–max LRP, partially because it cannot be directly combined with the travel and
service costs of the vehicles in the min–max objective.

We denote the above mentioned instance of the min–max LRP as (N , p), where N = (G,D, J, w, h, b) indicates a
weighted network. We assume that G is a complete graph (i.e., E = V × V ), and that the edge weights form a metric
(i.e., they are symmetric and satisfy the triangle inequality), because the vehicles can always travel along the shortest path
between any two vertices. We also assume that for each v ∈ V , either v ∈ D or v ∈ J , because otherwise, if there exists
v ∈ V that is in neither D nor J , then the vehicles can always skip v due to the triangle inequality of the edge weights, which
implies that we can always remove v from G. Thus, we can assume that D ∪ J = V . Moreover, we assume that p ≤ |J|,
because otherwise, if p > |J|, then there are always at least (p−|J|) vehicles that do not service any customer locations, and
therefore we can consider only |J| vehicles.We also assume that b(d) ≤ p for each available depot d ∈ D, because otherwise,
if there exists d ∈ D with b(d) > p, we can always revise b(d) to be equal to p. Finally, we assume that

∑
d∈D b(d) ≥ p to

avoid trivial infeasible instances that lack the capacities of the available depots.
Since the classical traveling salesman problem (TSP) is a special case of the min–max LRP with p = 1, and is known to be

strongly NP-hard [9], the min–max LRP is also strongly NP-hard. Thus, in this paper, we present approximation algorithms
that achieve constant approximation ratios for the min–max LRP and its special cases. Here, a ρ-approximation algorithm is
defined as a polynomial time algorithm that produces a feasible solution of objective value no more than ρ times the objec-
tive value of an optimal solution to aminimization problem. The value of ρ is called an approximation ratio of the algorithm.

1.1. Previous results

We use (α; β; γ ) to classify the settings for different special cases of the min–max LRP, where α, β , and γ specify the
restrictions on h,D, and b of a problem instance, respectively. For example, the setting (h = 0;D = J; b = ∞) indicates
that the problem instance satisfies h(v) = 0 for each v ∈ J,D = J , and b(d) = ∞ for each d ∈ D. In this paper, the min–max
LRP with a setting (α; β; γ ) is referred to as the min–max (α; β; γ )-LRP. As a convention, we set α, β , and γ to be h,D,
and b, respectively, when no restrictions are specified on h,D, and b. Thus, the min–max LRP can also be referred to as the
min–max (h;D; b)-LRP.

In the literature to date, constant ratio approximation algorithms have been developed only for some special cases of
the min–max LRP. Firstly, the min–max p-TSP is a special case of the min–max LRP with a setting (h = 0; |D| = p; b = 1),
where each available depot inDmust be assigned as the homedepot of a unique and distinct vehicle. The best approximation
algorithm for the min–max p-TSP was developed by Even et al. [7], achieving an approximation ratio of 8+ ϵ for any ϵ > 0.
Moreover, when G is a path, there exists a (2 + ϵ)-approximation algorithm for the min–max p-TSP and the min–max
(h; |D| = p; b = 1)-LRP [11].

Secondly, Nagamochi [14] studied amin–max rooted-cycle cover problem, which is equivalent to themin–max (h; |D| =

1; b = ∞)-LRP, where only one available depot, with unlimited capacity, is included in D, and this must be assigned as the
home depot of all the vehicles. Nagamochi [14] developed a [6 − 4/(p + 1)]-approximation algorithm for this problem.
When h(v) = 0 for v ∈ J , the approximation ratio can be reduced to (5/2 − 1/p) [8].

Moreover, certain special cases of the min–max LRP with D = J have also been studied in the previous literature, where
each customer location can be assigned as the home depot of a vehicle. Even et al. [7] developed an (8 + ϵ)-approximation
algorithm for any ϵ > 0 for a nurse location routing problem, which is equivalent to the min–max (h = 0;D = J; b = 1)-
LRP. Assuming thatG is a tree and p is a constant, Averbakh and Berman [3] andNagamochi andOkada [15] studied a problem
equivalent to the min–max (h;D = J; b = ∞)-LRP, and developed two algorithms that achieve approximation ratios of
2p/(p + 1) and (p + 1)/(p − 1), respectively. However, the time complexities of the two algorithms are exponential in p.
Furthermore, when p = 2 and p = 3, although the min–max (h;D = J; b = ∞)-LRP is still NP-hard [3], Averbakh and
Berman [4] proved that one can find optimal home depots of the p vehicles in polynomial time, without the corresponding
tours.

It is widely known that from a set of p trees, one can obtain a set of p tours by first duplicating the edges of the
trees to obtain p Eulerian graphs, and then computing a Eulerian cycle in each Eulerian graph [7]. Therefore, most of
the approximation algorithms in the literature for the special cases of the min–max LRP mentioned above are based on
approximation solutions to some min–max tree-cover problems, which aim to find a set of trees that cover all the vertices
of a given graph so as to minimize the maximum of the weights of the trees [16,14,7]. In addition to the tree covers,
approximation algorithms have also been developed in the literature for min–max graph cover problems that use other
covering objectives, such as stars and paths [1,19].

Recently, inapproximability bounds have been derived for some min–max graph cover problems [18,19]. Among them,
the only inapproximability bound known for the min–max LRP is 20/17 [18], which was derived for a tour cover problem
equivalent to the min–max (h = 0; |D| = 1; b = ∞)-LRP.

1.2. Our results

We first define a gap-preserving reduction as follows. An algorithmΦ , is a gap-preserving reduction from aminimization
problem A to a minimization problem B, if algorithm Φ satisfies that given any instance of A, algorithm Φ can compute
in polynomial time an instance of B, such that given any solution to B with the objective value at most being ρ ≥ 1 times
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the minimum of B, algorithm Φ can further compute in polynomial time a solution to A with the objective value at most ρ
times theminimumofA. Therefore, for any ρ ≥ 1, the existence of a ρ-approximation algorithm forB implies the existence
of a ρ-approximation algorithm for A.

The main results and the organization of this paper can be summarized as follows:
• After introducing the notation in Section 2, we present some preliminary results in Section 3, including the proofs of

the existence of a gap-preserving reduction from the min–max (α; β; γ )-LRP to the min–max (h = 0; β; γ )-LRP for
any setting (α; β; γ ), and the existence of a gap-preserving reduction from the min–max (α; β; γ )-LRP to the min–max
(α;D; b = 1)-LRP for any setting (α; β; γ ).

• Wedevelop in Section 4 a tree decomposition procedure, which is used extensively in the development of approximation
algorithms for the min–max LRP and its special cases.

• We develop a 7-approximation algorithm for the min–max (h; |D| = p; b = 1)-LRP (in Section 5), which improves the
existing best approximation ratio from (8 + ϵ) for the min–max (h = 0; |D| = p; b = 1)-LRP [7].

• We develop the first constant ratio approximation algorithm for the min–max (h;D; b)-LRP (in Section 6), achieving an
approximation ratio of 13.

• We develop a 6-approximation algorithm for the min–max (h;D = J; b)-LRP (in Section 7), which improves the existing
best approximation ratio from (8 + ϵ) for the min–max (h = 0;D = J; b = 1)-LRP [7].

• Wedevelop the first constant ratio approximation algorithm for themin–max (h;D; b = ∞)-LRP (in Section 8), achieving
an approximation ratio of 7.

• For every setting of (α; β; γ ) of the min–max LRP studied in this paper, we derive an inapproximability bound of 4/3 (in
Section 9), by showing that there exist no polynomial time approximation algorithms that can achieve an approximation
ratio of (4/3 − ϵ) for any ϵ > 0 unless NP = P, which improves the existing best bound from 20/17 for the min–max
(h;D; b)-LRP and the min–max (h;D; b = ∞)-LRP [18].

2. Notation

Consider an instance (N , p) of the min–max LRP, where N = (G,D, J, w, h, b) and G = (V , E). For any subgraph H of G,
let J(H), V (H), and E(H) denote the customer location set, vertex set, and edge set of H , respectively. For any edge subset
Q ⊆ E, let w(Q ) and wmax(Q ) denote the total edge weight and maximum edge weight of Q , respectively. For any vertex
subset U ⊆ J , let h(U) and hmax(U) denote the total vertex weight and maximum vertex weight of U , respectively, and let
G(U) denote the subgraph of G induced by U . Moreover, for any δ ≥ 0, let E[δ] = {e : w(e) ≤ δ, ∀e ∈ E} denote the set of
edges of Gwith weights less than or equal to δ. We use G[δ] to denote the subgraph (V , E[δ]) of G.

We define a p-schedule of N as a collection S = {Si : 1 ≤ i ≤ p} with Si = (ri,Qi, Ai), where ri ∈ D indicates the home
depot of vehicle i,Qi indicates a connected subgraph of G for the construction of a tour of vehicle i, and Ai ⊆ J indicates the
set of customer locations that are allocated to be served by vehicle i, such that the following conditions are satisfied:
• the customer allocation sets Ai for 1 ≤ i ≤ p must form a partition of J , i.e., Ai ∩ Aj = ∅ for i ≠ j and J =

p
i=1 Ai;

• for each vehicle i, where 1 ≤ i ≤ p, customer locations in Ai must be covered by the subgraph Qi, i.e., Ai ⊆ J(Qi);
• for each vehicle i, where 1 ≤ i ≤ p, its home depot ri must be covered by Qi, i.e., ri ∈ V (Qi);
• for each d ∈ D, its capacity should not be exceeded, i.e., there are at most b(d) indices i for 1 ≤ i ≤ p with ri = d.

For 1 ≤ i ≤ p, the total weight of Si = (ri,Qi, Ai) is defined as equal to w(E(Qi)) + h(Ai). The cost of the p-schedule S,
denoted by cost(S), is defined as equal to max1≤i≤p[w(E(Qi)) + h(Ai)]. We use E(S) to denote the set of edges of Qi for all
(ri,Qi, Ai) ∈ S. Moreover, we define S as a p-tour schedule if S is a p-schedule with each Qi for 1 ≤ i ≤ p being a tour, and
define S as a p-tree schedule if S is a p-schedule with each Qi for 1 ≤ i ≤ p being a tree rooted at ri.

Thus, given any instance (N , p), the min–max LRP can be defined as to find a p-tour schedule S of N with cost(S)
minimized. Accordingly, a feasible solution to (N , p) is a p-tour schedule ofN , and an optimal solution to (N , p) is a feasible
solutionwith aminimum cost.We use OPT(N , p) to denote the cost of an optimal solution to (N , p). Due to the assumption
of

∑
d∈D b(d) ≥ p in Section 1, it can be seen that (N , p) always has a feasible solution.

3. Preliminary results

Firstly, we present Proposition 1, which is proved in Appendix A.

Proposition 1. Consider any instance (N , p). Given any p-tree schedule S of N , one can obtain a p-tour schedule of N with a
cost not greater than 2cost(S) in polynomial time.

Proposition 1 implies that for any setting (α; β; γ ), if there is a polynomial time algorithm that can produce a p-tree
schedule of (N , p) with a cost not greater than ρ · OPT(N , p) for any instance (N , p) of the min–max (α, β, γ )-LRP, then
there exists a (2ρ)-approximation algorithm for the min–max (α, β, γ )-LRP. Thus, like most approximation algorithms in
the literature for various special cases of the min–max LRP [16,14,7], approximation algorithms in this paper are also based
on constructions of tree schedules.

Secondly, we establish Lemma 1,which implies that for any setting (α; β; γ ), if there exists a ρ-approximation algorithm
for the min–max (h = 0; β; γ )-LRP or for the min–max (α;D; b = 1)-LRP, then there exists a ρ-approximation algorithm
for the min–max (α; β; γ )-LRP.



Z. Xu et al. / Discrete Applied Mathematics 160 (2012) 306–320 309

Lemma 1. For any setting (α; β; γ ), (i)there exists a gap-preserving reduction from themin–max (α; β; γ )-LRP to themin–max
(h = 0; β; γ )-LRP; (ii) there exists a gap-preserving reduction from the min–max (α; β; γ )-LRP to the min–max (α;D; b = 1)-
LRP.

Proof. Consider any setting (α; β; γ ), and any instance (N , p) of themin–max (α; β; γ )-LRP, whereN = (G,D, J, w, h, b)
and G = (V , E).

To prove (i), we define h′′(u) = 0 for each u ∈ J , and define a revised edge weight for each (u, v) ∈ E as w′′(u, v) =

h(u) + 2w(u, v) + h(v), so that the revised edge weights w′′ are all integers and form a metric. Thus, (N ′′, p), where
N ′′

= (G,D, J, w′′, h′′, b), is an instance of the min–max (h = 0; β; γ )-LRP. Moreover, on the one hand, each p-tour
schedule of N ′′ is a p-tour schedule of N with its cost in N ′′ larger than or equal to twice its cost in N . On the other
hand, from any p-tour schedule S of N , one can obtain a p-tour schedule S′′ of N ′′ by skipping all the repeated visits of
each customer location on the tours of S. Due to the triangle inequality and the fact that no two tours of S′′ visit the same
customer location, it can be seen that the cost of S inN is larger than or equal to half of the cost of S′′ inN ′′. Thus, we obtain
that OPT(N ′′, p) = 2OPT(N , p), and that the transformation from (N , p) to (N ′′, p) and the transformation from every
p-tour schedule of N ′′ to itself together form a gap-preserving reduction from the min–max (α; β; γ )-LRP to the min–max
(h = 0; β; γ )-LRP.

To prove (ii), let dq1 for 1 ≤ q ≤ |D| denote the available depots inD. We use the following procedure to transform (N , p)
to an instance of the min–max (α;D; b = 1)-LRP. Each dq1 ∈ D can be assigned as a home depot for only b(dq1) vehicles
at most. Thus, we can extend D to define D′

= D ∪ {dq2, dq3, . . . , dq,b(dq1) : ∀dq1 ∈ D}, where each dqj for 2 ≤ j ≤ b(dq1)
is a replication of dq1 that shares the same location as dq1. For consistency, we treat dq1 for each dq1 ∈ D as one of its own
replications in D′. For each dqj ∈ D′, let its capacity be b′(dqj) = 1. Define V ′

= D′
∪ J , and let G′ denote the complete

graph on V ′. For each pair of vertices u′ and v′ of V ′, let u and v denote the vertices of V that have the same locations
as u′ and v′, respectively. We can then define w′(u′, v′) = w(u, v) as the edge weight of (u′, v′) in G′, so that the edge
weights defined byw′ are all integers and form ametric. Thus, (N ′, p), whereN ′

= (G′,D′, J, w′, h, b′), is an instance of the
min–max (α;D; b = 1)-LRP. Moreover, on the one hand, from any p-tour schedule of N ′, we can transform it to a p-tour
schedule of N without changing the cost, by contracting all the replications dq1, dq2, . . . , dq,b(dq1) into dq1 for each dq1 ∈ D.
On the other hand, from any p-tour schedule of N , we can transform it to a p-tour schedule of N ′ without changing the
cost, by expanding each depot in D to their replications in D′. Thus, we obtain that OPT(N , p) = OPT(N ′, p), and that the
transformation from (N , p) to (N ′, p) and the transformation from any p-tour schedule of N ′ to a p-tour schedule of N
together form a gap-preserving reduction from the min–max (α; β; γ )-LRP to the min–max (α;D; b = 1)-LRP. �

Our basic idea for developing approximation algorithms for the min–max LRP with a setting (α; β; γ ) is as follows. We
first develop a procedure which, for a given problem instance (N , p) with N = (G,D, J, w, h, b) and a guessed value λ of
OPT(N , p), runs in polynomial time to either return a p-tree schedule of N with a cost at most ρλ where ρ ≥ 1, or return
and guarantee that the guessed value is too low, i.e., λ < OPT(N , p). We define such a procedure as an ORACLEρ for the
min–max (α; β; γ )-LRP.

Since 0 ≤ OPT(N , p) ≤ w(E) + h(J), we next use a binary search to obtain an integer λ∗ in the interval [0, w(E) + h(J)],
such that the ORACLEρ returns a p-tree schedule of N with a cost at most ρλ when λ ≥ λ∗, and that it returns that λ is
too low when λ < λ∗. The binary search runs in O(log[w(E) + h(J)]) time, which is polynomial to the input length of the
problem instance. Since OPT(N , p) is an integer, we obtain λ∗

≤ OPT(N , p). Thus, executing the ORACLEρ with λ = λ∗

yields a p-tree schedule S of N with cost(S) ≤ ρλ∗
≤ ρOPT(N , p). According to Proposition 1, we can construct, from S, a

p-tour schedule of N with a cost at most 2ρOPT(N , p). Thus, we have obtained a (2ρ)-approximation algorithm, and have
established Theorem 1.

Theorem 1. For any setting (α; β; γ ), if an ORACLEρ for the min–max (α; β; γ )-LRP is given, a (2ρ)-approximation algorithm
for the min–max (α; β; γ )-LRP can be obtained by binary search.

Finally, given a p-tour schedule, we can use the following proposition to obtain an upper bound on the weight of every
edge that joins vertices of the same tour in the schedule.

Proposition 2. Given any instance (N , p), consider any p-tour schedule S of N . Then, for every edge (u, v) with u and v both
belonging to the same tour of S, it satisfies that w(u, v) ≤ cost(S)/2.

Proof. Suppose that N = (G,D, J, w, h, b). Let Qi denote the tour of S that u and v both belong to, which implies that
w(E(Qi)) ≤ cost(S), and that 2w(u, v) = w(u, v) + w(v, u) ≤ w(E(Qi)) due to the triangle inequality. Thus, we obtain
w(u, v) ≤ cost(S)/2. �

4. Tree decomposition

We present a tree decomposition procedure in Algorithm 1, which is used extensively in the approximation algorithms
developed in this paper. It extends the procedure in [7] by taking the service time at customer locations into consideration,
and is particularly useful for the design of the algorithm for the min–max (h;D; b)-LRP in Section 6.
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v1 vq

(a) Step 2.1. (b) Step 2.2.1. (c) Step 2.2.2.A. (d) Step 2.2.2.B.

Fig. 1. An illustration of the iteration i of Step 2 of Algorithm 1 to construct (ri, Ti, Ai), where each vertex in gray denotes ri , each subtree in bold forms Ti ,
vertices in each area with forward slash but not in A form Ai .

An input of Algorithm 1 consists of a threshold δ > 0 and a weighted network N = (G,D, J, w, h, b), where G = (V , E)
is a rooted tree with the root denoted by r . Since D and b are not used in Algorithm 1, we assume that D = J and b(d) = ∞

for d ∈ D.
The output of Algorithm 1 consists of an integer m and an m-tree schedule of N denoted by S = {Si : 1 ≤ i ≤ m} with

Si = (ri, Ti, Ai). Algorithm 1 constructs Si for i = 1, 2, . . . ,m − 1 iteratively in Step 2. Throughout the iterations in Step
2, it uses T , which is initially set to be G in Step 1, to denote the rooted tree that remains to be decomposed, and uses A,
which is initially set to be empty in Step 1, to denote the set of customer locations that have already been allocated to some
Ai. As later shown in Theorem 2, the total weight of each Si satisfies a lower bound and/or an upper bound defined by the
threshold δ.

For each vertex u ∈ V (T ), we use T (u) to denote the subtree of T that is rooted at u and includes all the descendants of
u in T . For each edge e = (u, v) of T , where u is the parent of v in T , we use T (e) or T (u,v) to denote the subtree of T that
consists of u, T (v), and (u, v). Thus, for the given threshold δ > 0 and the subset A of customer locations, we define a rooted
subtree T (u) for u ∈ V (T ) to be light, medium, or heavywith respect to δ and A, ifw(E(T (u)))+h(J(T (u))\A) is in the intervals
[0, δ], (δ, 2δ], or (2δ, ∞) respectively, and where J(T (u)) \ A indicates the set of customer locations in T (u) that have not
been allocated.

During each iteration i in Step 2, Algorithm 1 first identifies a subtree Ti of T , a vertex ri ∈ V (Ti), and a subset Ai of
customer locations not in A. This is done in Step 2.1 if T has a medium subtree T (u) with respect to δ and A, and is done in
Step 2.2 otherwise. It aims to ensure δ < w(E(Ti))+h(Ai) ≤ max{2δ, δ+wmax(E), hmax(J)}, which is shown in Algorithm 1.
In Step 2.3, Algorithm 1 sets Si = (ri, Ti, Ai), and updates S and A accordingly. It then splits Ti away from T in Step 2.4,
and moves forward to the next iteration of Step 2 unless T becomes light with respect to δ and A. Fig. 1(a)–(d) provide an
illustration of Step 2. After the iterations in Step 2, Algorithm 1 constructs Sm = (rm, Tm, Am) in Step 3, to assign to Tm the
remaining tree T , and to allocate to Am the customer locations remaining in A (which can be empty). It then returns m and
S = {(ri, Ti, Ai) : 1 ≤ i ≤ m} in Step 4.

Algorithm 1 (Tree-Decomposition). Input: A threshold δ > 0, and a weighted network N = (G,D, J, w, h, b) where
G = (V , E) is a tree with the root denoted by r,D = J , and b(d) = ∞ for d ∈ D.

Output: An integer m, and an m-tree schedule of N denoted by S = {Si : 1 ≤ i ≤ m} with Si = (ri, Ti, Ai).

1. Initially, set i = 0, S = ∅, T = G, and A = ∅.
2. Until T is light with respect to δ and A, increase i by 1, and consider the following cases to construct (ri, Ti, Ai):

2.1. If T has a medium subtree T (u) with respect to δ and A, where u ∈ V (T ), then set Ti = T (u), ri = u, and Ai = J(Ti) \ A.
See Fig. 1(a).

2.2. Otherwise, T must have a subtree T (u) with u ∈ V (T ) such that T (u) is heavy with respect to δ and A, and that T (v) is
light with respect to δ and A for every child v of u in T (or u has no child). Then,
2.2.1. If there exists a child v of u such that δ < w(E(T (v))) + h(J(T (v)) \ A) + w(u, v), then set Ti = T (u,v), ri = v,

and Ai = J(T (v)) \ A. See Fig. 1(b).
2.2.2. Otherwise, each child v of u satisfies w(E(T (v))) + h(J(T (v)) \ A) + w(u, v) ≤ δ, (or u has no child). Let

v1, v2, . . . , vq denote the children of u, where q ≥ 0. If q > 0, let j denote the largest index j′ such that∑j′
t=1[w(E(T (vt ))) + h(J(T (vt )) \ A) + w(u, vt)] ≤ δ, where 1 ≤ j′ ≤ q. Otherwise, set j = 0.

A. If j < q, set Ti =
j+1

t=1 T
(u,vt ), Ai = J(Ti) \ A \ {u}, and ri = u. See Fig. 1(c).

B. Otherwise, j = q, which implies that w(E(T (u))) + h(J(T (u)) \ A \ {u}) ≤ δ. Since T (u) is heavy with respect
to δ and A, it can be seen that h(u) > δ and u ∉ A. Set Ti = ({u}, ∅), which is a tree that contains u only,
and set Ai = {u} and ri = u. See Fig. 1(d).

2.3. Set Si = (ri, Ti, Ai). Update S by S ∪ {Si}. Update A by A ∪ Ai.
2.4. Split Ti away from T , by first removing from E(T ) all the edges in E(Ti), and then removing from V (T ) all the vertices

that are not connected to r by any path in T .
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3. Letm = i + 1. Set Sm = (rm, Tm, Am), where rm = r, Tm = T , and Am = J(Tm) \ A. Update S by S ∪ {Sm}.
4. Returnm and S. �

We next establish Theorem 2 to prove the properties of Algorithm 1 for the tree decomposition.

Theorem 2 (Tree Decomposition). Given a valid input, δ and N , Algorithm 1 returns in polynomial time an integer m and an
m-tree schedule S of N , where S = {Si : 1 ≤ i ≤ m} with Si = (ri, Ti, Ai), such that the following properties are satisfied:

(i) Ti is a subtree of G for 1 ≤ i ≤ m, and Tm contains the root r of T ;
(ii) E(Tj) and E(Ti) are disjoint for 1 ≤ j < i ≤ m;
(iii) δ < w(E(Ti)) + h(Ai) ≤ max{2δ, δ + wmax(E), hmax(J)} for 1 ≤ i ≤ m − 1, and 0 ≤ w(E(Tm)) + h(Am) ≤ δ;
(iv) m ≤ ⌈[w(E) + h(J)]/δ⌉.

Proof. To examine the time complexity of Algorithm 1, consider each iteration i of Step 2 of Algorithm 1. If (ri, Ti, Ai) is
constructed in Step 2.1, then T (u) is medium, by which it can be verified that either E(Ti) or Ai is not empty. If (ri, Ti, Ai) is
constructed in Step 2.2.1 or Step 2.2.2.A, then it can be verified that E(Ti) is not empty. Otherwise, (ri, Ti, Ai) is constructed in
Step 2.2.2.B, by which it can be verified that Ai is not empty. Thus, we obtain that either A is increased by adding at least one
customer location in Step 2.3, or T is shrunk by removing at least one edge in Step 2.4. Hence, after atmost |J|+|E| iterations,
T must become light with respect to δ and A, and therefore the iterations of Step 2 must stop. Therefore, Algorithm 1 has a
polynomial time complexity.

Property (i) and Property (ii) are easy to see as follows. Since T is always a subtree of G in Algorithm 1, each Ti for
1 ≤ i ≤ m, which is a subtree of T , must be a subtree of G. From Step 2.4 we know that V (T ) always contains r , which
implies that Tm contains r according to Step 3. Thus, Property (i) is proved. Moreover, for 1 ≤ i < j ≤ m, since all the edges
in E(Tj) are removed from T in Step 2.4 during iteration j, we have that E(Ti), which is a subset of E(T ), must be disjoint with
E(Tj). Thus, Property (ii) is proved.

We can then prove that S is an m-tree schedule of N . Consider Si = (ri, Ti, Ai) for each 1 ≤ i ≤ m. Due to Step 2 of
Algorithm 1 and Property (i) of Theorem 2, we know ri ∈ V (Ti). Due to Step 2.3 and Step 3, we know that Ai for 1 ≤ i ≤ m
form a partition of J . According to Step 2, we have Ai ⊆ J(Ti). Thus, since b(d) = ∞ for all d ∈ D, and since D = J and
m = |S|, by definition we obtain that S is anm-tree schedule of N .

To prove Property (iii), consider the tree T and the set A remaining after the iterations of Step 2 of Algorithm 1. Since
T must be light with respect to δ and A, we have 0 ≤ w(E(T )) + h(J(T ) \ A) ≤ δ, which, together with Tm = T and
Am = J(Tm) \ A in Step 3, implies that 0 ≤ w(E(Tm)) + h(Am) ≤ δ.

For 1 ≤ i ≤ m − 1, we next derive bounds on w(E(Ti)) + h(Ai) for the following four cases of the construction of
Si = (ri, Ti, Ai). Case 1: If Si is constructed in Step 2.1, then since Ti = T (u), which is a medium subtree with respect to A and
δ, and since Ai = J(Ti) \ A, it can be seen from Fig. 1(a) that w(E(Ti)) + h(Ai) ∈ (δ, 2δ]. Case 2: If Si is constructed in Step
2.2.1, then Ti = T (u,v), which satisfies that w(E(T (v))) + h(J(T (v)) \ A) + w(u, v) > δ and w(E(T (v))) + h(J(T (v)) \ A) ≤ δ.
Thus, since Ai = J(T (v)) \ A and w(u, v) ≤ wmax(E), it can be seen from Fig. 1(b) that w(E(Ti)) + h(Ai) ∈ (δ, δ + wmax(E)].
Case 3: If Si is constructed in Step 2.2.2.A, then from Step 2.2.2, we know w(E(T (u,vj))) + h(J(T (vj)) \ A) + w(u, vj) ≤ δ, and
from Step 2.2.2.A we knoww(E(Ti))+h(Ai) =

∑j+1
t=1[w(E(T (u,vt )))+h(J(T (vt ) \A))+w(u, vt)]. Thus, by the definition of j in

Step 2.2.2, it can seen from Fig. 1(c) that w(E(Ti))+ h(Ai) ∈ (δ, 2δ]. Case 4: If Si is constructed in Step 2.2.2.B, then as shown
in Fig. 1(d), since Ti contains no edge and Ai contains u only, we have w(E(Ti)) + h(Ai) = h(u). As shown in Step 2.2.2.B, we
have h(u) > δ, which, together with h(u) ≤ hmax(J), implies that w(E(Ti)) + h(Ai) ∈ (δ, hmax(J)]. Combining the bounds
on w(E(Ti)) + h(Ai) for the above four cases, we can conclude that w(E(Ti)) + h(Ai) ∈ (δ,max{2δ, δ + wmax(E), hmax(J)}].
Thus, Property (iii) is proved.

Finally, from Properties (i), (ii), and (iii) of Theorem 2, we know
∑m−1

i=1 w(E(Ti)) ≤ w(E(T )) and (m − 1)δ <∑m−1
i=1 [w(E(Ti)) + h(Ai)], which, together with

∑m−1
i=1 h(Ai) ≤ h(J), implies that (m − 1)δ < w(E) + h(J) and m ≤

⌈[w(E) + h(J)]/δ⌉. Thus, Property (iv) is proved. �

5. Min–max (h; |D| = p;b = 1)-LRP

Our approximation algorithm for the min–max (h;D; b)-LRP, which will be presented in Section 6, relies on an ORACLEρ

for the min–max (h = 0; |D| = p; b = 1)-LRP, which is presented in Algorithm 2 as follows, where ρ = 3θ + 0.5 and θ ≥ 1
is a parameter. In the min–max (h = 0; |D| = p; b = 1)-LRP, there are exactly p available depots in D, which are denoted
by d1, d2, . . . , dp, with capacity b(dj) = 1 for 1 ≤ j ≤ p. Thus, each dj must be assigned to a distinct vehicle. Moreover,
when θ = 1, Algorithm 2 is an ORACLE3.5 for the min–max (h = 0; |D| = p; b = 1)-LRP, which, according to Theorem 1
and Lemma 1, implies the existence of a 7-approximation algorithm for the min–max (h; |D| = p; b = 1)-LRP.

Algorithm 2. Input: An instance (N , p) of the min–max (h = 0; |D| = p; b = 1)-LRP, where N = (G,D, J, w, h, b) and
G = (V , E); a guessed value λ of OPT(N , p); a parameter θ with θ ≥ 1.

Output: ‘‘λ is too low’’, or a p-tree schedule T of N with cost(T ) ≤ (3θ + 0.5)λ.
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1. Construct a graph G′ from G[λ/2] by contracting all the available depots in D = {dt : 1 ≤ t ≤ p} into a single vertex
denoted by d′. If G′ is not connected, then return ‘‘λ is too low’’. Otherwise, compute a minimum spanning tree M ′ of G′.
Let {Mj : 1 ≤ j ≤ p} denote the forest obtained from M ′ by un-contracting d′ to the available depots in D, where Mj is a
tree rooted at dj ∈ D.

2. Ifw(E(M ′)) > pλ, then return ‘‘λ is too low’’. Otherwise, for each treeMj, where 1 ≤ j ≤ p, construct aweighted network
Nj = (Mj, V (Mj), V (Mj), w, h, b′) where b′(v) = ∞ for all v ∈ V (Mj). Then, apply Algorithm 1 on Nj with the threshold
equal to θλ to obtain an integermj and an mj-tree schedule Sj of Nj, where Sj = {Sji : 1 ≤ i ≤ mj} and Sji = (rji, Tji, Aji).

3. Construct a bipartite graph, where one side of the vertex set is D, and the other side consists of vertices sji for 1 ≤ j ≤ p
and 1 ≤ i ≤ mj − 1, where each sji represents Sji = (rji, Tji, Aji) in Sj. For each dt ∈ D and each sji, they are joined by an
edge in the bipartite graph, if and only if dt and Tji are joined by an edge in G[λ/2]. Compute a maximummatching of the
bipartite graph.

4. If there exists a vertex sji of the bipartite graph that is not matched with any dt ∈ D in Step 3, then return ‘‘λ is too low’’.
5. Return success with T = {(dt , T ′

t , A
′
t) : 1 ≤ t ≤ p}, which is defined as follows. For 1 ≤ t ≤ p, if the available depot dt

is not matched in Step 3, then let A′
t = At,mt , and let T ′

t be the tree that consists of dt and Tt,mt ; otherwise, dt is matched
with some sji in Step 5, where 1 ≤ j ≤ p and 1 ≤ i ≤ mj − 1. Then, let A′

t = At,mt ∪ Aji, and let T ′
t be the tree that consists

of dt , Tt,mt , Tji, and the edge of G[λ/2] that joins dt and Tji. �

To prove the correctness of Algorithm 2, we establish Lemmas 2 and 3 as follows.

Lemma 2. If Algorithm 2 returns ‘‘λ is too low’’ in Step 4, then λ < OPT(N , p).

Proof. Suppose that Algorithm 2 returns ‘‘λ is too low’’ in Step 4. Thus, the maximummatching obtained in Step 3 does not
cover all the vertices sji of the bipartite graph, where 1 ≤ j ≤ p and 1 ≤ i ≤ mj − 1. Due to Step 1 and Step 2, we know that
G′ is connected and that w(E(M ′)) ≤ pλ.

Suppose, to the contrary, that there exists a p-tour schedule Q = {(rt ,Qt , At) : 1 ≤ t ≤ p} of N with cost(Q) ≤ λ. We
next show that the maximum matching of the bipartite graph covers all sji for 1 ≤ j ≤ p and 1 ≤ i ≤ mj − 1, which is a
contradiction. For each subset F ⊆ {sji : 1 ≤ j ≤ p, 1 ≤ i ≤ mj − 1}, let N(F ) denote the set of available depots of D that
are adjacent to some sji ∈ F in the bipartite graph. According to Hall’s Marriage Theorem [12], to prove that the maximum
matching of the bipartite graph covers all sji for 1 ≤ j ≤ p, 1 ≤ i ≤ mj − 1, it is sufficient to prove |F | ≤ |N(F )| as follows.

Let Q(F ) denote the set of (rt ,Qt , At) ∈ Q with Qt containing at least one vertex of Tji for some sji ∈ F . Consider each
(rt ,Qt , At) ∈ Q(F ). Suppose that Qt contains a vertex v of Tji for some sji ∈ F . Since cost(Q) ≤ λ, by Proposition 2 we have
w(rt , v) ≤ λ/2. Thus, rt and sji are adjacent in the bipartite graph, which implies that rt ∈ N(F ). Thus, due to b(rt) = 1 for
1 ≤ t ≤ p, we obtain |Q(F )| ≤ |N(F )|.

We are next going to show |F | ≤ |Q(F )|. Due to Property (iii) of Theorem 2, we have θλ ≤ w(E(Tji)) for each sji ∈ F ,
which implies:

|F | · θλ ≤

−
sji∈F

w(E(Tji)). (1)

Since cost(Q) ≤ λ, we have:−
(rt ,Qt ,At )∈Q(F )

w(E(Qt)) ≤ |Q(F )| · λ. (2)

Consider theminimum spanning treeM ′ ofG′ and the forest {Mj : 1 ≤ j ≤ p}, which are obtained in Step 1 of Algorithm2,
and satisfy

∑p
j=1 w(E(Mj)) = w(E(M ′)). Since cost(Q) ≤ λ, by Proposition 2 we have E(Qt) ⊆ E[λ/2] for 1 ≤ t ≤ p. Thus,

from {Mj : 1 ≤ j ≤ p}, we can construct a subgraph M ′′ of G[λ/2] by deleting all the edges of trees Tji for all sji ∈ F , and
inserting all the edges of tours Qt for all (rt ,Qt , At) ∈ Q(F ). Due to Proposition 2 and cost(Q) ≤ λ, all the vertices on
the tours of Q(F ) must belong to the same connected component of G[λ/2]. Since each tour in Q(F ) contains an available
depot ofD, it can be seen thatM ′′ is connected if all the available depots inD are contracted into one vertex. Thus, we obtain:

0 ≤ w(E(M ′′)) − w(E(M ′)) = −

−
sji∈F

w(E(Tji)) +

−
(rt ,Qt ,At )∈Q(F )

w(E(Qt)). (3)

From (1)–(3), and θ ≥ 1, we have |F | ≤ (|F | · θλ)/λ ≤ |Q(F )|.
Hence, we obtain |F | ≤ |N(F )|, implying that the maximum matching in Step 3 covers all sji for 1 ≤ j ≤ p and

1 ≤ i ≤ mj − 1, leading to a contradiction. Thus, λ < OPT(N , p). �

Lemma 3. Algorithm 2 with a parameter θ ≥ 1 is an ORACLE3θ+0.5 for the min–max (h = 0; |D| = p; b = 1)-LRP.

Proof. It is easy to see that Algorithm 2 runs in polynomial time.
If Algorithm 2 returns ‘‘λ is too low’’ in Step 1, then the contracted graph G′ is not connected, implying that there exists

a customer location v ∈ J such that no d ∈ D satisfies w(d, v) ≤ λ/2, which, together with Proposition 2, implies that
λ < OPT(N , p).
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If Algorithm 2 returns ‘‘λ is too low’’ in Step 2, then w(E(M ′)) > pλ. Consider any optimal p-tour schedule Q of N with
cost(Q) = OPT(N , p). By contracting the available depots of D into one vertex, the tours of Q form a connected subgraph
of G′ that contains all the vertices of G′. Since M ′ is a minimum spanning tree of G′, we have w(E(M ′)) ≤ w(E(Q)) ≤

p · OPT(N , p). Thus, we obtain λ < OPT(N , p).
If Algorithm 2 returns ‘‘λ is too low’’ in Step 4, then by Lemma 2, we have λ < OPT(N , p).
Otherwise, Algorithm 2 returns success with T = {(dt , T ′

t , A
′
t) : 1 ≤ t ≤ p}, where T is constructed in Step 5 by

combining the trees of Sj for 1 ≤ j ≤ p obtained in Step 2 and the matching obtained in Step 3. Due to Theorem 2, each
Sj is an mj-tree schedule of Nj for 1 ≤ j ≤ p. Since each available depot is matched with at most one sji in the bipartite
graph, the available depots that are assigned as home depots in T must be distinct. Thus, it is easy to verify that T is a
p-tree schedule of N . To bound cost(T ), let us consider Sji = (rji, Tji, Aji) ∈ S for 1 ≤ j ≤ p and 1 ≤ i ≤ mj, which are
obtained in Step 2 by decomposing the forest {Mj : 1 ≤ j ≤ p}. Since each Mj for 1 ≤ j ≤ p is a subgraph of G[λ/2], we
have wmax(E(Mj)) ≤ λ/2. Thus, by Property (iii) in Theorem 2 and θ ≥ 1, we obtain that for 1 ≤ j ≤ p, w(E(Tjt)) ≤ 2θλ
for 1 ≤ t ≤ mj − 1, and w(E(Tj,mj)) ≤ θλ. Next, we consider the following two cases for each (dt , T ′

t , A
′
t) ∈ T returned

by Step 5. Case 1: dt is not matched in Step 3. Then, due to Property (i) of Theorem 2, we have dt ∈ V (Tt,mt ), which implies
that w(E(T ′

t )) = w(E(Tt,mt )) ≤ θλ. Case 2: dt is matched with some sji, which implies that there exists an edge e ∈ E[λ/2]
that joins dt and Tji. Thus, w(T ′

t ) = w(Tt,mt ) + w(Tji) + w(e). By w(Tt,mt ) ≤ θλ, w(Tji) ≤ 2θλ, and w(e) ≤ λ/2, we obtain
w(E(T ′

t )) ≤ (3θ + 0.5)λ. Summarizing Cases 1 and 2, we conclude that w(E(T ′
t )) ≤ (3θ + 0.5)λ for each T ′

t of T , which
implies that cost(T ) ≤ (3θ + 0.5)λ.

Hence, Algorithm 2 with a parameter θ ≥ 1 is an ORACLE3θ+0.5 for the min–max (h = 0; |D| = p; b = 1)-LRP. �

Thus, from Theorem 1, Lemmas 3 and 1, we can establish Theorem 3.

Theorem 3. The min–max (h; |D| = p; b = 1)-LRP has a 7-approximation algorithm.

Proof. For the min–max (h = 0; |D| = p; b = 1)-LRP, by Lemma 3, Algorithm 2 with θ = 1 is an ORACLE3.5, which implies
the existence of a 7-approximation algorithmdue to Theorem1. Thus, by Lemma1, there exists a 7-approximation algorithm
for the min–max (h; |D| = p; b = 1)-LRP. �

Moreover, we can establish Lemma 4 to derive an upper bound on the total weight of the p-tree schedule returned by
Algorithm 2, which is useful in Section 6.

Lemma 4. Consider any valid input of Algorithm 2, including (N , p), λ, and θ . Suppose that Algorithm 2 returns success with
a p-tree schedule T of N in Step 5. Given any m-tour schedule Q of N where m ≥ 1, let p′

= m · cost(Q)/λ. Then,
w(E(T )) ≤ (p′

+ 0.5⌊p′/θ⌋)λ ≤ [(1 + 0.5θ−1)p′
]λ.

Proof. From Q we can construct a connected subgraph of G′ that covers all the vertices of G′, by contracting the available
depots into one vertex. Since M ′ is a minimum spanning tree of G′, and since |Q| = m, we have w(E(M ′)) ≤ m ·

cost(Q). Thus, from Step 2 and theorem 1, we have
∑p

j=1
∑mj

i=1 w(E(Tji)) ≤ w(E(M ′)) ≤ m · cost(Q). Moreover, due
to Property (iii) of Theorem 2, we have w(E(Tji)) > θλ for each sji of the bipartite graph of Step 3, which implies that
the matching, obtained in Step 3 and denoted by W , contains at most ⌊w(E(M ′))/(θλ)⌋ edges. From Step 5, we have
w(E(T )) ≤

∑p
j=1

∑mj
i=1 w(E(Tji)) + w(E(W )). Thus, since the weight of each edge of W is not greater than λ/2, and since

p′
= m · cost(Q)/λ, we obtain:

w(E(T )) ≤

p−
j=1

mj−
i=1

w(E(Tji)) + w(E(W )) ≤ w(E(M ′)) +


w(E(M ′))

θλ


λ/2

≤ m · cost(Q) +


m · cost(Q)

θλ


λ/2 ≤ (p′

+ 0.5⌊p′/θ⌋)λ ≤ [(1 + 0.5θ−1)p′
]λ. �

6. Min–max (h;D;b)-LRP

According to Lemma 1 and Theorem 1, to obtain a (2ρ)-approximation algorithm for the min–max (h;D; b)-LRP for
some constant ρ, we only need to develop an ORACLEρ for the min–max (h = 0;D; b = 1)-LRP. Unlike the min–max
(h = 0; |D| = p; b = 1)-LRP, in which each available depot must be assigned to a unique and distinct vehicle, the min–max
(h = 0;D; b = 1)-LRP needs to select some available depots from D for the vehicles, and is therefore more complicated.

Consider any instance (N , p) of the min–max (h = 0;D; b = 1)-LRP, where N = (G,D, J, w, h, b), and consider any
guessed value λ > 0 of OPT(N , p). We are going to develop an ORACLEρ for (N , λ), where ρ depends on a parameter θ ≥ 1.

LetEλ denote the set of edges of G[λ/2] that each have at least one endpoint in J . Consider the subgraph Hλ = (V ,Eλ) of
G[λ/2]. We letmλ denote the number of the connected components of Hλ that each contain at least one customer location,
and use Hλ,1,Hλ,2, . . . ,Hλ,mλ

to denote these mλ connected components of Hλ. For 1 ≤ t ≤ mλ, and let Gλ,t denote the
complete subgraph of G induced by V (Hλ,t). Thus, J ⊆


1≤t≤mλ

V (Hλ,t) =


1≤t≤mλ
V (Gλ,t).
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Let Q∗
= {(r∗

i ,Q ∗

i , A∗

i ) : 1 ≤ i ≤ p} denote an optimal p-tour schedule of (N , p) with cost(Q∗) = OPT(N , p). Due to
the triangle inequality, we can assume, without loss of generality, that V (Q ∗

i ) \ {r∗

i } ⊆ J for 1 ≤ i ≤ p. Thus, Lemma 5 can
be established.

Lemma 5. If OPT(N , p) ≤ λ, then (i) for each tour Q ∗

i of Q∗ where 1 ≤ i ≤ p, all the vertices of Q ∗

i belong to the same
connected component of Hλ; (ii) D(Gλ,t) is not empty for 1 ≤ t ≤ mλ.

Proof. To prove (i), consider each Q ∗

i of Q∗ for 1 ≤ i ≤ p. If V (Q ∗

i ) = {r∗

i }, the proof of (i) is trivial. Otherwise, consider
each v ∈ V (Q ∗

i ) \ {r∗

i }, which, by the definition of Q∗, must be a customer location. By Proposition 2, w(v, r∗

i ) ≤ λ/2, which
implies that (v, r∗

i ) ∈ Eλ. Thus, all the vertices of Q ∗

i belong to the same connected component of Hλ. (i) is proved.
By V (Gλ,t) = V (Hλ,t) we know that V (Gλ,t) contains at least one customer location denoted by u. Thus, since there must

exist a depot d ∈ D such that d and u belong to the same tour of Q∗, by Proposition 2 we obtain w(u, d) ≤ λ/2, which
implies that d ∈ D(Gλ,t). (ii) is proved. �

Consider the case when OPT(N , p) ≤ λ. For 1 ≤ t ≤ mλ, let Q∗

λ,t denote the set of (r∗

i ,Q ∗

i , A∗

i ) ∈ Q∗ for 1 ≤ i ≤ p with
V (Q ∗

i ) ⊆ V (Hλ,t), let p∗

λ,t = |Q∗

λ,t |. By (ii) of Lemma 5 we have 1 ≤ |D(Gλ,t)|. Since J(Hλ,t) is not empty, and since b(d) = 1
for d ∈ D, we obtain

1 ≤ p∗

λ,t = |Q∗

λ,t | ≤ |D(Hλ,t)| = |D(Gλ,t)|. (4)

By (i) of Lemma 5, sets Q∗

λ,t for 1 ≤ t ≤ mλ are disjoint with each other, which implies:

mλ−
t=1

p∗

λ,t ≤ |Q∗
| = p. (5)

Let Nλ,t = (Gλ,t ,D(Gλ,t), J(Gλ,t), w, h, b). Since Q∗

λ,t is a (p∗

λ,t)-tour schedule of Nλ,t , we obtain:

OPT(Nλ,t , p∗

λ,t) ≤ OPT(N , p). (6)

The observations above suggest the following approach to develop an ORACLEρ for (N , p) and λ. Firstly, we can guess
the values of p∗

λ,t for 1 ≤ t ≤ mλ, with the guessed values denoted by pt . Then, for 1 ≤ t ≤ mλ, we apply an ORACLEρ on
(Nλ,t , pt) and λ, which is developed in Algorithm 3. If Algorithm 3 returns success with a pt-tour schedule of Nλ,t for each
t , and if

∑mλ
t=1 pt ≤ p, we can combine these schedules, and then include additional (p −

∑mλ
t=1 pt) tours that each contain

only one available depot, to form a p-tour schedule of N .
In the following, we first illustrate and analyze Algorithm 3, and then explain how we guess the values of p∗

λ,t for
1 ≤ t ≤ mλ. Given any valid input, including λ, θ , an index t with 1 ≤ t ≤ mλ, and a guessed value pt of p∗

λ,t with
1 ≤ pt ≤ |D(Gλ,t)|, Algorithm 3 either returns ‘‘λ is too low’’, which implies that λ < OPT(Nλ,t , pt) as proved in Lemma 7,
or returns a p-tree schedule Tt ofNλ,t with cost(Tt) ≤ ρλ and ρ = max{3θ +0.5, 6+θ−1

} as proved in Lemma 8. To achieve
this, it first relaxes the number of vehicles ton = |D(Gλ,t)| in Step 1, and applies Algorithm2on (Nλ,t , n), which is an instance
of the min–max (h = 0; |D| = p; b = 1)-LRP. If Algorithm 2 returns an n-tree schedule T ′

= {(r ′

i , T
′

i , A
′

i) : 1 ≤ i ≤ n} of
Nλ,t in Step 1, and if

∑n
i=1 w(E(T ′

i )) > (1 + 0.5θ−1)ptλ in Step 2, Algorithm 3 computes a minimum spanning tree M of
W [λ] in Step 3, where W is the subgraph of Gλ,t induced by J(Gλ,t), and W [λ], as shown in Lemma 6, must be connected.
It then constructs a weighted network N based on M , and applies Algorithm 1 on N with the threshold equal to 3θ + 0.5
to decompose M into an m-tree schedule T of N . To ensure T can be further transformed to a p-tree schedule of Nλ,t , for
each iwith 1 ≤ i ≤ n and A′

i not empty, Step 3 of Algorithm 3 chooses any vertex v′

i ∈ A′

i as the representative of (r ′

i , T
′

i , A
′

i),
and sets the vertex weight of v′

i in N ash(v′

i) = w(E(T ′

i )). Let V
′ denote the set of all the representatives. Thus, if m ≤ pt

in Step 4, then for each (ru,Tu,Au) ∈ T with V ′
∩Au not empty, Algorithm 3 combines the customer locations of A′

i for all
v′

i ∈ V ′
∩Au to obtain a customer allocation set A′′

u , and combines the vertices of Tu and the vertices of T ′

i for all v
′

i ∈ V ′
∩Au

to obtain a vertex set V ′′
u in Step 5. It then constructs a tree T ′′

u by computing a minimum spanning tree of the complete
graph G′′

u on V ′′
u , and sets d′′

u to be the available depot r ′

i of any (r ′

i , T
′

i , A
′

i) ∈ T ′ with v′

i ∈ V ′
∩Au. Let T ′′ denote the set of

(d′′
u, T

′′
u , A′′

u) that are defined above. Since |T ′′
| ≤ m ≤ pt , Algorithm 3 can further extend T ′′ to obtain a pt-tree schedule of

Nλ,t , which is proved in Lemma 8.

Algorithm 3. Input: The guessed value λ of OPT(N , p), the parameter θ ≥ 1, an index t with 1 ≤ t ≤ mλ, and a guessed
value pt of p∗

λ,t with 1 ≤ pt ≤ D(Gλ,t).
Output: ‘‘λ is too low’’, or a p-tree schedule Tt of Nλ,t with cost(Tt) ≤ ρλ, where ρ = max{3θ + 0.5, 6 + θ−1

}.

1. Let n = |D(Gλ,t)|. Consider (Nλ,t , n), which is an instance of the min–max (h = 0; |D| = p; b = 1)-LRP. Apply
Algorithm 2 on (Nλ,t , n), λ, and θ . If Algorithm 2 returns ‘‘λ is too low’’, then return ‘‘λ is too low’’; otherwise, let
T ′

= {(r ′

i , T
′

i , A
′

i) : 1 ≤ i ≤ n} denote the n-tree schedule of Nλ,t returned by Algorithm 2.
2. If

∑n
i=1 w(E(T ′

i )) > (1 + 0.5θ−1)ptλ, then return ‘‘λ is too low’’.
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3. Let W denote the complete subgraph of Gλ,t induced by J(Gλ,t). Compute a minimum spanning tree M of the subgraph
W [λ] of W . For each (r ′

i , T
′

i , A
′

i) of T ′ with A′

i not empty, let v′

i denote any vertex in A′

i , which is referred to as
the representative of (r ′

i , T
′

i , A
′

i). Let V ′
= {v′

i : A′

i ≠ ∅, 1 ≤ i ≤ n}. Construct a weighted network N =

(M, J(M), J(M), w,h,b). For each v ∈ J(M), letb(v) = ∞. If v is a representative of some (r ′

i , T
′

i , A
′

i) ∈ T ′, which
implies that v ∈ V ′, then leth(v) = w(E(T ′

i )), and otherwise leth(v) = 0. Apply Algorithm 1 on N with the threshold
equal to 3 + 0.5θ−1 to obtain an integer m, and an m-tree schedule of N denoted by T = {(ru,Tu,Au) : 1 ≤ u ≤ m}.

4. If m > pt then return ‘‘λ is too low’’.
5. Consider each (ru,Tu,Au) ∈ T with V ′

∩Au not empty, where 1 ≤ u ≤ m. Let A′′
u denote the union of A′

i for all i with
v′

i ∈ V ′
∩Au. Let V ′′

u denote the union of V (Tu) and V (T ′

i ) for all iwith v′

i ∈ V ′
∩Au. Let G′′

u denote the complete subgraph
of Gλ,t induced by V ′′

u . Compute aminimum spanning tree T ′′
u of G′′

u . Choose any (r ′

i , T
′

i , A
′

i) ∈ T ′ with v′

i ∈ V ′
∩Au, and set

d′′
u = r ′

i . Let T ′′
= {(d′′

u, T
′′
u , A′′

u) : 1 ≤ u ≤ m, V ′
∩Au ≠ ∅}. Moreover, set d1, d2, . . . , dpt−|T ′′| to be (pt − |T ′′

|) distinct
available depots in D(Gλ,t) but not in {d′′

u : 1 ≤ u ≤ m}. Let T ′′′
= {(du, {du}, ∅) : 1 ≤ u ≤ pt − |T ′′

|}. Return success
with Tt = T ′′

∪ T ′′′. �

Lemma 6. The subgraph W [λ], defined in Step 3 of Algorithm 3, is connected.

Proof. Consider any vertices v and u of W [λ]. By the definitions of W [λ],W , and Gλ,t , we know V (W [λ]) = V (W ) =

J(Gλ,t) = J(Hλ,t), which implies that {v, u} ⊆ J(Hλ,t). SinceHλ,t is a connected component ofHλ, there exists a path P inHλ,t

that connects u and v. Since E(Hλ) = Eλ, we have E(P) ⊆ Eλ, which, due to the definition ofEλ, implies that w(e) ≤ λ/2
for each e ∈ E(P). From P we can obtain a path P ′ by skipping all the vertices not in J . Thus, V (P ′) ⊆ J(Hλ,t) = V (W [λ]).
Since each edge inEλ has at least one endpoint in J , due to the triangle inequality, we have w(e) ≤ λ/2 + λ/2 = λ for each
e ∈ E(P ′). Thus, E(P ′) ⊆ E(W [λ]). Since P ′ connects v and u, we obtain thatW [λ] is connected. �

Lemma 7. If Algorithm 3 returns ‘‘λ is too low’’, then λ < OPT(Nλ,t , pt).

Proof. Let Q denote any optimal pt-tour schedule of Nλ,t . Thus, cost(Q) = OPT(Nλ,t , pt). Consider the following three
cases.

Case 1: If Algorithm 3 returns ‘‘λ is too low’’ in Step 1, then Algorithm 2 on (Nλ,t , n) returns ‘‘λ is too low’’, which, due
to Lemma 3, implies that λ < OPT(Nλ,t , n). Moreover, since pt ≤ n, we can extend Q to obtain an n-tour schedule of Nλ,t
without changing the cost value, by including (n−pt) additional tours that each contain only one distinct available depot not
assigned as a home depot in Q. From this, we obtain OPT(Nλ,t , n) ≤ OPT(Nλ,t , pt), which implies that λ < OPT(Nλ,t , pt).

Case 2: If Algorithm 3 returns ‘‘λ is too low’’ in Step 2, then (1 + 0.5θ−1)ptλ <
∑n

i=1 w(E(T ′

i )). By Lemma 4 we have∑n
i=1 w(E(T ′

i )) ≤ (1 + 0.5θ−1)pt · cost(Q). Thus, λ < cost(Q) = OPT(Nλ,t , pt).
Case 3: If Algorithm 3 returns ‘‘λ is too low’’ in Step 4, then m > pt . Moreover, from Step 2 we know

∑n
i=1 w(E(T ′

i )) ≤

(1 + 0.5θ−1)ptλ. Suppose, to the contrary, that OPT(Nλ,t , pt) ≤ λ. Thus, cost(Q) ≤ λ. By skipping the vertices that are
not in V (W ), we can transform the pt tours of Q to obtain a set Q′ of pt tours in W , where W , as defined in Step 3 of
Algorithm 3, is a complete graph on J(Gλ,t). Due to the triangle inequality, we have that for each tour Q ∈ Q′, it satisfies
w(E(Q )) ≤ cost(Q) ≤ λ, which implies that all the vertices on Q are connected by edges of W [λ]. By Lemma 6, W [λ]

is connected. Thus, we can connect the pt tours in Q′ by adding at most (pt − 1) edges of W [λ], to obtain a connected
subgraph ofW [λ] that covers all the vertices ofW [λ]. Since M is a minimum spanning tree ofW [λ], we obtain w(E(M)) ≤∑

Q∈Q′ w(E(Q ))+ (pt −1)λ ≤ ptλ+ (pt −1)λ, which implies thatw(E(M)) ≤ 2ptλ. Moreover, from Step 3 of Algorithm 3,
we know h(J(M)) ≤

∑n
i=1 w(E(T ′

i )) = w(E(T ′)) ≤ (1+0.5θ−1)ptλ. Thus, we have h(J(M))+w(E(M)) ≤ (3+0.5θ−1)ptλ,
which, due to Property (iv) of Theorem 2, implies that m ≤ pt , leading to a contradiction. Hence, λ < OPT(Nλ,t , pt). The
proof is completed. �

Lemma 8. If Algorithm 3 returns success with Tt , then Tt is a pt-tree schedule of Nλ,t with cost(Tt) ≤ ρλ, where ρ =

max{3θ + 0.5, 6 + θ−1
}.

Proof. Suppose that Algorithm 3 returns success with Tt in Step 5. Firstly, consider the n-tree schedule T ′
= {(r ′

i , T
′

i , A
′

i) :

1 ≤ i ≤ n} of Nλ,t obtained in Step 1. Since for 1 ≤ i ≤ n, the representative v′

i of (r ′

i , T
′

i , A
′

i) defined in Step 2 belongs
to A′

i , and since A′

1, A
′

2, . . . , A
′
n form a partition of J(Gλ,t), we know that v′

i must be distinct for 1 ≤ i ≤ n. Moreover, sinceT = {(rp,Tp,Ap) : 1 ≤ p ≤ m} obtained in Step 3 is an m-tree schedule of N , we know thatAu for 1 ≤ u ≤ m form a
partition of J(M), which is also a partition of J(Gλ,t) because J(M) = J(W ) = J(Gλ,t). Thus, since A′′

u defined in Step 4 equals
the union of Ai for all i with vi ∈ V ′

∩Au, it is easy to verify that A′′
u for 1 ≤ u ≤ m with V ′

∩Au ≠ ∅ form a partition of
J(Gλ,t).

Secondly, since A′

i ⊆ V (T ′

i ) for 1 ≤ i ≤ n, by the definitions of A′′
u and V ′′

u in Step 5, we have A′′
u ⊆ V ′′

u for 1 ≤ u ≤ m,
which implies that A′′

u ⊆ V (T ′′
u ) because V (T ′′

u ) = V ′′
u .

Thirdly, for the available depot r ′

i assigned to d′′
u in Step 5where 1 ≤ u ≤ m, since r ′

i ∈ V (T ′

i ) and V (T ′

i ) ⊆ V (T ′′
u ), we have

r ′

i ∈ V (T ′′
u ). From Step 1, we know that each r ′

i for 1 ≤ i ≤ n is distinct. Thus, since the representative v′

i of each (r ′

i , T
′

i , A
′

i)
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is distinct, the available depot d′′
u of each (d′′

u, T
′′
u , A′′

u) is distinct, which implies that the capacity of each available depot is
not exceeded.

Hence, T ′
= {(d′′

u, T
′′
u , A′′

u) : 1 ≤ u ≤ m, V ′
∩Au ≠ ∅} is a |T ′

|-tree schedule of Nλ,t . Moreover, from Step 4 we knowm ≤ pt , which, together with |T ′
| ≤ m, implies that |T ′

| ≤ pt . Thus, since pt ≤ |D(Gλ,t)|, it can be seen that Tt obtained in
Step 5 is a pt-tree schedule of Nλ,t .

Furthermore, we can bound cost(Tt) as follows. By Lemma 3, we know T ′ obtained in Step 1 satisfies cost(T ′) ≤

(3θ+0.5)λ, which implies thath(v) ≤ (3θ+0.5)λ for eachv ∈ J(M)∩V ′ in Step3. Thus,weobtainhmax(J(M)) ≤ (3θ+0.5)λ,
which, together with Property (iii) of Theorem 2, implies that T obtained in Step 3 satisfies cost(T ) ≤ max{3θ + 0.5, 6 +

θ−1
}λ (under w andh). Moreover, consider each (r ′′

u , T ′′
u , A′′

u) ∈ T ′′ obtained in Step 5. For each i with v′

i ∈ V ′
∩ Au, we

know v′

i ∈ V (T ′

i ) and v′

i ∈ V (Tu). Thus, G′′
u defined in Step 5 is connected. By combiningTu and T ′

i for all i with v′

i ∈ V ′
∩Au,

we can obtain a connected subgraph of G′′
u that covers all the vertices of G′′

u . Since T ′′
u is a minimum spanning tree of G′′

u ,
and since h(v′

i) = w(E(T ′

i )) for all i with v′

i ∈ V ′
∩ Au, we obtain w(E(T ′′

u )) ≤ w(E(Tu)) + h(Au). Hence, cost(T ′′)

(under w and h) is less than or equal to cost(T ) (under w andh). Moreover, from Step 5, we know cost(T ′′′) = 0 and
cost(Tt) = max{cost(T ′′), cost(T ′′′)}. Thus, we obtain cost(Tt) ≤ max{3θ + 0.5, 6 + θ−1

}λ = ρλ. �

Next, we are going to determine the guessed value of p∗

λ,t , for any λ and 1 ≤ t ≤ mλ. Let p̂λ,t denote theminimum integer
value of pt with 1 ≤ pt and pt ≤ |D(Gλ,t)|, such that Algorithm 3 on λ, t, pt , and θ returns success, and we define p̂λ,t = ∞

if no such pt exists. For any two guessed values, p′
t and p′′

t , with p′
t < p′′

t , it is easy to verify that if Algorithm 3 on λ, t , p′′
t , and

θ returns ‘‘λ is too low’’, then Algorithm 3 on λ, t, p′
t , and θ also returns ‘‘λ is too low’’. Thus, we can apply a binary search

to obtain p̂λ,t in polynomial time. Moreover, we can establish Lemma 9 for p̂λ,t .

Lemma 9. For any λ > 0, if
∑mλ

t=1 p̂λ,t > p, then λ < OPT(N , p).

Proof. If
∑mλ

t=1 p̂λ,t > p, then suppose, to the contrary, that OPT(N , p) ≤ λ. For each t where 1 ≤ t ≤ mλ, by (6) we have
OPT(Nλ,t , p∗

λ,t) ≤ λ, which, together with the definition of p∗

λ,t and Lemma 7, implies that Algorithm 3 on λ, t, p∗

λ,t , and θ

returns success. Hence, due to (4), we have p̂λ,t ≤ p∗

λ,t , which, together with (5), implies that
∑mλ

t=1 p̂λ,t ≤ p, leading to a
contradiction. �

Based on Lemma 9, we can obtain Algorithm 4, which, as shown in Lemma 10, is an ORACLEρ for the min–max
(h = 0;D; b = 1)-LRP with ρ = max{3θ + 0.5, 6 + θ−1

}.

Algorithm 4. Input: An instance (N , p) of the min–max (h = 0;D; b = 1)-LRP, where N = (G,D, J, w, h, b) and
G = (V , E), a guessed value λ of OPT(N , p), a parameter θ ≥ 1.

Output: ‘‘λ is too low’’, or a p-tree schedule T of N with cost(T ) ≤ ρλ, where ρ = max{3θ + 0.5, 6 + θ−1
}.

1. If D(Gλ,t) is empty for some t , where 1 ≤ t ≤ mλ, then returns ‘‘λ is too low’’.
2. Let Hλ = (V ,Eλ), whereEλ denotes the set of edges of G[λ/2] that each have at least one endpoint in J . Letmλ denote the

number of connected components of Hλ that each have at least one customer location. Let Hλ,1, . . . ,Hλ,mλ
denote these

mλ connected components.
3. For each t , where 1 ≤ t ≤ mλ, apply a binary search to determine p̂λ,t , which is the minimum integer value of pt with

1 ≤ pt and pt ≤ |D(Gλ,t)|, such that Algorithm 3 on λ, t, pt , and θ returns success, and where p̂λ,t = ∞ if no such pt
exists.

4. If
∑mλ

t=1 p̂λ,t > p, return ‘‘λ is too small’’. Otherwise, let ∆ = p −
∑mλ

t=1 p̂λ,t . Set d1, d2, . . . , d∆ to be ∆ distinct available
depots not assigned as home depots in Tt for 1 ≤ t ≤ mλ. Let T be the union of


1≤t≤mλ

Tt and {(du, {du}, ∅) : 1 ≤ u ≤

∆}. Return success with T . �

Lemma 10. Algorithm 4 with a parameter θ ≥ 1 is an ORACLEρ for the min–max (h = 0;D; b = 1)-LRP, where ρ =

max{3θ + 0.5, 6 + θ−1
}.

Proof. It is easy to see that Algorithm 4 runs in polynomial time. If Algorithm 4 returns ‘‘λ is too low’’ in Step 1, then by
(ii) of Lemma 5, λ < OPT(N , p). If Algorithm 4 returns ‘‘λ is too low’’ in Step 4, then

∑mλ
t=1 p̂λ,t > p. Thus, by Lemma 9,

λ < OPT(N , p). Otherwise,
∑mλ

t=1 p̂λ,t ≤ p. Then, since Algorithm 3 on λ, t, pt , and θ returns success, by Lemma 8, Tt is a
(p̂λ,t)-tree schedule of Nλ,t with cost(Tt) ≤ ρλ. Since J ⊆


1≤t≤mλ

V (Hλ,t), it is easy to verify that T , which is constructed
by combining Tt for 1 ≤ t ≤ mλ, is a p-tree schedule of N with cost(T ) ≤ max1≤t≤mλ

cost(Tt) ≤ ρλ. Hence, Algorithm 4 is
an ORACLEρ for the min–max (h = 0;D; b = 1)-LRP. �

From Theorem 1, Lemmas 10 and 1, we can establish Theorem 4.

Theorem 4. The min–max (h;D; b)-LRP has a 13-approximation algorithm.

Proof. For themin–max (h = 0;D; b = 1)-LRP, by Lemma 10we know that Algorithm 4with θ = 2 is an ORACLE6.5, which
implies the existence of a 13-approximation algorithm due to Theorem 1. Thus, by Lemma 1, themin–max (h;D; b)-LRP has
a 13-approximation algorithm. �
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7. Min–max (h;D = J;b)-LRP

In this section, we develop a 6-approximation algorithm for the min–max (h;D = J; b)-LRP, in which each customer
location can be assigned as the home depot of a vehicle. We first present an ORACLE3 for the min–max (h = 0;D = J; b)-
LRP in Algorithm 5.

Algorithm 5. Input: An instance (N , p) of the min–max (h = 0;D = J; b)-LRP, where N = (G,D, J, w, h, b) and
G = (V , E); a guessed value λ of OPT(N , p).

Output: ‘‘λ is too low’’, or a p-tree schedule T of N with cost(T ) ≤ 3λ.
1. For 1 ≤ j ≤ q, where q denotes the number of connected components of G[λ/2], compute a minimum spanning tree Mj

of the j-th connected component of G[λ/2], and let pj = ⌊w(E(Mj))/(3λ/2)⌋.
2. If

∑q
j=1(pj + 1) > p, then return ‘‘λ is too low’’.

3. For each tree Mj with 1 ≤ j ≤ q, construct a weighted network Nj = (Mj, V (Mj), V (Mj), w, h, b′) with b′(v) = ∞ for
v ∈ V (Mj). Apply Algorithm 1 on Nj with the threshold equal to 3λ/2 to obtain an integer mj and an mj-tree schedule
Sj = {(rji, Tji, Aji) : 1 ≤ i ≤ mj} of Nj.

4. Let T ′ be the set of (dji, Tji, Aji) with Aji ≠ ∅ for 1 ≤ j ≤ q and 1 ≤ i ≤ mj, where dji denotes any vertex in Aji. As
shown in the proof of Lemma 12, |T ′

| ≤ p. Let d1, d2, . . . , d(p−|T ′|) denote (p − |T ′
|) distinct available depots not in

{dji : 1 ≤ j ≤ q, 1 ≤ i ≤ mj, Aji ≠ ∅}. Let T ′′
= {(du, {du}, ∅) : 1 ≤ u ≤ (p − |T ′

|)}. Return success with T = T ′
∪ T ′′.

�

We next establish Lemma 11, which is proved in Appendix B, for Step 2 of Algorithm 5.

Lemma 11. If
∑q

j=1(pj + 1) > p in Step 2 of Algorithm 5, then λ < OPT(N , p).

Thus, we can establish Lemma 12, which guarantees the correctness of Algorithm 5.

Lemma 12. Algorithm 5 is an ORACLE3 for the min–max (h = 0;D = J; b)-LRP.

Proof. It is easy to see that Algorithm 5 runs in polynomial time. Moreover, if Algorithm 5 returns ‘‘λ is too low’’ in Step
2, then by Lemma 11, we have λ < OPT(N , p). Otherwise,

∑q
j=1(pj + 1) ≤ p, and Algorithm 5 returns success with T

in Step 4. By Property (iv) of Theorem 2, each mj obtained in Step 3 for 1 ≤ j ≤ q satisfies mj ≤ pj + 1. Thus, from
Step 4, we know |T ′

| ≤
∑q

j=1 mj ≤ p, which implies that |T | = p. Moreover, for 1 ≤ j ≤ q, the mj-tree schedule
Sj = {(rji, Tji, Aji) : 1 ≤ i ≤ mj} of Nj, obtained in Step 3, satisfies that Aji ⊆ J(Tji), and that Aji for 1 ≤ j ≤ q and 1 ≤ i ≤ mj
form a partition of J . This, together with D = J , implies that all the available depots in T are distinct, which implies that
the capacity of each available depot is not exceeded. Therefore, T is a p-tree schedule of N . Furthermore, according to Step
1, Mj is a subgraph of G[λ/2] for 1 ≤ j ≤ q, which implies that wmax(E(Mj)) ≤ λ/2. Thus, due to h(v) = 0 for v ∈ J and
Property (iii) of Theorem 2, we obtain cost(Sj) ≤ 3λ for 1 ≤ j ≤ q, which, according to Step 4, implies that cost(T ) ≤ 3λ.
Hence, Algorithm 5 is an ORACLE3 for the min–max (h = 0;D = J; b)-LRP. �

Hence, in a similar way to the proof of Theorem 4, from Theorem 1, Lemmas 12 and 1, we obtain directly Theorem 5.

Theorem 5. The min–max (h;D = J; b)-LRP has a 6-approximation algorithm.

8. Min–max (h;D;b = ∞)-LRP

In this section, we develop a 7-approximation algorithm for the min–max (h;D; b = ∞)-LRP, in which each available
depot in D has unlimited capacity. We first present an ORACLE3.5 for the min–max (h = 0;D; b = ∞)-LRP in Algorithm 6.

Algorithm 6. Input: An instance (N , p) of the min–max (h = 0;D; b = ∞)-LRP, where N = (G,D, J, w, h, b) and
G = (V , E); a guessed value λ of OPT(N , p).

Output: ‘‘λ is too low’’, or a p-tree schedule T of N with cost(T ) ≤ 3.5λ.
1. For each v ∈ J , let d(v) denote an available depot in D that minimizes w(v, d(v)).
2. If maxv∈J w(v, d(v)) > λ/2, then return ‘‘λ is too low’’.
3. Set N ′

= (G(J), J, J, w, h, b). Apply Algorithm 5 on (N ′, p) and λ. If Algorithm 5 returns ‘‘λ is too low’’, then return ‘‘λ is
too low’’. Otherwise, Algorithm 5 returns a p-tree schedule of N ′ denoted by T = {(di, Ti, Ai) : 1 ≤ i ≤ p}.

4. For 1 ≤ i ≤ p, if Ti contains an available depot d ∈ D, then let d′

i = d and T ′

i = Ti; otherwise, let d′

i = d(v),
where v denotes any vertex of Ti, and let T ′

i be a tree that consists of Ti, edge (d(v), v), and d(v). Return success with
T ′

= {(d′

i, T
′

i , Ai) : 1 ≤ i ≤ p}. �

We show the correctness of Algorithm 6 in Lemma 13, which is proved in Appendix C.

Lemma 13. Algorithm 6 is an ORACLE3.5 for the min–max (h = 0;D; b = ∞)-LRP.

Hence, in a similar way to the proof of Theorem 4, from Theorem 1, Lemmas 13 and 1, we obtain directly Theorem 6.

Theorem 6. The min–max (h;D; b = ∞)-LRP has a 7-approximation algorithm.
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Fig. 2. A component for Mi = (xα(i), yβ(i), zγ (i)) ∈ M in transforming 3DM to the min–max (h = 0, |D| = p, b = 1)-LRP, where vertices shown in gray
are available depots, and the 13 edges shown in lines constitute an edge set E ′

i .

9. Approximation hardness

Firstly, we establish Theorem 7, which shows an inapproximability bound of 4/3 for the min–max (h = 0; |D| = p;
b = 1)-LRP, and therefore the bound is also valid for the min–max (h = 0;D; b = 1)-LRP and the min–max (h;D; b)-LRP.

Theorem 7. For any ϵ > 0, there is no (4/3 − ϵ)-approximation algorithm for the min–max (h = 0; |D| = p; b = 1)-LRP,
unless NP = P.

Proof. Given a setM ⊆ X ×Y ×Z with |M| = m, where X = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , yn}, and Z = {z1, z2, . . . , zn}
are disjoint sets having the same number n of elements, let us consider the 3-dimensional matching (3DM) problem, which
aims to decide whether or notM contains an exact matching, i.e., a subsetM′

⊆ M such that |M′
| = n and no two elements

of M′ agree in any coordinate. It is well-known that 3DM is NP-complete [9].
Suppose, to the contrary, that for the min–max (h = 0; |D| = p; b = 1)-LRP, there exists a (4/3 − ϵ)-approximation

algorithm A for ϵ > 0, which has a polynomial running time. We show as follows that algorithm A can be used to solve
3DM in polynomial-time, which contradicts NP ≠ P.

Given any 3DM instance, we construct the corresponding instance (N , p) of the min–max (h = 0; |D| = p; b = 1)-LRP
as follows. Let G = (V , E) be a complete undirected graph with V = X ∪ Y ∪ Z ∪

m
i=1{qij : 1 ≤ j ≤ 6}. The set of customer

locations is J = V . The set of available depots is D = X ∪
m

i=1{qi1, qi4}. For each Mi = (xα(i), yβ(i), zγ (i)) ∈ M, where
1 ≤ i ≤ m, let E ′

i denote the edge set consisting of the 13 edges as depicted in Fig. 2, where α(i), β(i), γ (i) ∈ {1, 2, . . . , n},
and i = 1, 2, . . . ,m. Let E ′

=
m

i=1 E
′

i . Let w(e) = 1 for each e ∈ E ′, and w(e) = 2 for each e ∈ E \ E ′. Clearly, the edge
weight function w forms a metric. Let h(v) = 0 for all v ∈ V . We let b(d) = 1 for each d ∈ D. Finally, let p = n + 2m,
which, together with |D| = n + 2m, implies that |D| = p. Thus, (N , p) defined above is an instance of the min–max
(h = 0; |D| = p; b = 1)-LRP.

Since all the edge and the vertexweights are integers, the (4/3−ϵ)-approximation algorithmA returns a feasible solution
to (N , k) with an integer cost value. Consider the following two cases.

Case 1: The (4/3 − ϵ)-approximation algorithm A returns a feasible solution to (N , k) with a cost greater than or equal
to 4. In this case, we will show that the given instance of 3DM does not contain an exact matching. By contradiction,
suppose that it contains an exact matching M′. Then, we can construct the following solution S to instance (N , k):
For i = 1, 2, . . . ,m, if (xα(i), yβ(i), zγ (i)) ∈ M′, then we let S include (ri1,Qi1, Ai1), (ri2,Qi2, Ai2), (ri3,Qi3, Ai3), where
ri1 = xα(i),Qi1 = (xα(i)qi3qi6xα(i)), and Ai1 = {xα(i), qi3, qi6}; ri2 = qi4,Qi2 = (qi4qi5zγ (i)qi4), and Ai2 = {qi4, qi5, zγ (i)}; ri3 =

qi1,Qi3 = (qi1qi2yβ(i)qi1), and Ai3 = {qi1, qi2, yβ(i)}. Otherwise, let S include (ri4,Qi4, Ai4) and (ri5,Qi5, Ai5), where ri4 =

qi1,Qi4 = (qi1qi2qi3qi1), and Ai4 = {qi1, qi2, qi3}; ri5 = qi4,Qi5 = (qi4qi5qi6qi4), and Ai5 = {qi4, qi5, qi6}. Since M′ is an exact
matching, it is easy to verify that the customer allocation sets in S form a partition of J , and that each tour in S contains a
unique and distinct available depot in D. Thus, since |S| = 3|M′

| + 2(m− |M′
|) = n+ 2m = p, we obtain that S is a p-tour

schedule of N . Since all the edges of tours in S are in E ′, it is easy to see that cost(S) = 3. This implies that OPT(N , p) is
no greater than 3. Thus, the approximation algorithm A must return a feasible solution with a cost value no greater than
(4/3 − ϵ)(3) < 4, which is a contradiction. Therefore, the given instance of 3DM does not contain any exact matching.

Case 2: The (4/3 − ϵ)-approximation algorithm A returns a feasible solution S = {(rj,Qj, Aj) : 1 ≤ j ≤ p} to
(N , k) with cost(S) ≤ 3. In this case, each tour Qj for 1 ≤ j ≤ p contains no more than three vertices. Thus, since
|V | = |J| = |W | + |X | + |Y | + 6m = 3p, and since tours in S cover all the vertices, we obtain that each tour Qj must
contain exactly three vertices, and that no two tours in S visit the same vertices. This, together with V = J and cost(S) ≤ 3,
implies that Aj = V (Qj), and w(e) = 1 for e ∈ E(Qj), for 1 ≤ j ≤ p.

Therefore, for each j = 1, 2, . . . , n, there exists a unique and distinct tour in S that covers yj, which, according
to Fig. 2, must be either tour (qσ(j)1qσ(j)2yβ(σ(j))qσ(j)1) or tour (qσ(j)1yβ(σ(j))qσ(j)2qσ(j)1), for some σ(j) with β(σ(j)) =

j and 1 ≤ σ(j) ≤ m. Moreover, it can be seen from Fig. 2 that S must include (xα(σ(j))qσ(j)3qσ(j)6xα(σ(j))) or
(xα(σ(j))qσ(j)6qσ(j)3xα(σ(j))) to cover qσ(j)3, andmust include (qσ(j)4qσ(j)5zγ (σ (j))qσ(j)4) or (qσ(j)4zγ (σ (j))qσ(j)5qσ(j)4) to cover qσ(j)5.
Let M′

= {(xα(σ(j)), yβ(σ(j)), zγ (σ (j))) : j = 1, 2, . . . , n}, which implies that |M′
| = n. Since no two tours in S visit the same

vertices, no two elements of M′ agree in any coordinates. Thus, M′ is an exact matching in the given instance of 3DM.
Summarizing Cases 1 and 2, we conclude that the (4/3 − ϵ)-approximation algorithm, which has a polynomial running

time, can be used to determine whether or not the given instance of 3DM contains an exact matching. This is impossible
unless P = NP. �
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Next, we establish Theorem 8, which shows an inapproximability bound of 4/3 for the min–max (h = 0;D = J; b)-LRP
and the min–max (h = 0;D, b = ∞)-LRP, and therefore the bound is also valid for the min–max (h;D = J; b)-LRP and the
min–max (h;D, b = ∞)-LRP.

Theorem 8. For any ϵ > 0, there is no polynomial time approximation algorithm that can achieve an approximation ratio of
(4/3 − ϵ) for the min–max (h = 0;D = J; b = ∞)-LRP, or for the min–max (h = 0;D, b = ∞)-LRP, unless NP = P.

Proof. For the min–max (h = 0;D = J; b)-LRP, the proof is similar to that of Theorem 7, by a reduction from any instance
of 3DM to an instance (N , p), in which we define D = J , and define all the other components of (N , p) the same as in the
proof of Theorem 7.

For themin–max (h = 0;D; b = ∞)-LRP, the proof is also similar to that of Theorem 7, by a reduction from any instance
of 3DM to an instance (N , p), where we define b(d) = ∞ for each d ∈ D, and define all the other components of (N , k) the
same as in the proof of Theorem 7. �

10. Conclusions

Compared with the existing literature, we have developed better constant ratio approximation algorithms and better
approximation hardness results for the min–max LRP and its special cases, which aim to determine both the home depots
and the tours of a given set of vehicles to service customer locations, with the maximum working time of the vehicles kept
to minimum.

The research can be extended in several directions. Firstly, one might try to improve the approximation algorithms
or the approximation hardness results. Secondly, one might study some extensions of the min–max LRP with the cost of
establishing home depots taken into consideration. Although, in the min–max objective, such a depot establishing cost
cannot be directly combinedwith themaximumworking time of the vehicles, it can be restricted by a budget constraint. The
results presented in this paper can be helpful for development of constant ratio approximation algorithms for this extension,
which is unknown in the existing literature. Thirdly, while we study the min–max objective in this paper, it might be more
common in reality to deal with the min–sum objective, which is to minimize the sum of the costs of establishing home
depots, servicing customer locations, and traveling. Although there is a rich literature concerning themin–sum objective for
the location-routing problems [17], only a 2-approximation algorithm is known for a simple special case where an arbitrary
number of vehicles can be used, and every vertex is an available depot with unlimited capacity [10]. It would be interesting
to see to what extent constant approximation algorithms can be obtained for the min–sum objective.
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Appendix A. Proof of Proposition 1

Consider any p-tree schedule S = {Si : 1 ≤ i ≤ p} of N where Si = (ri, Ti, Ai). For each tree Ti, we can duplicate
every edge of Ti to obtain a Eulerian graph, of which a Eulerian cycle Qi can be obtained in polynomial time [12], satisfying
w(E(Qi)) = 2w(E(Ti)). Let Q ′

i denote the tour embedded in Qi that skips repeated vertices, which satisfies w(E(Q ′

i )) ≤

w(E(Qi)) due to the triangle inequality. Since S is a p-tree schedule, it is easy to verify that S′
= {S ′

i : 1 ≤ i ≤ p} with
S ′

i = (ri,Q ′

i , Ai) is a p-tour schedule of N . Moreover, for 1 ≤ i ≤ p, we have w(E(Q ′

i )) + h(Ai) ≤ w(E(Qi)) + h(Ai) ≤

2w(E(Ti)) + 2h(Ai) ≤ 2cost(S), which implies that cost(S′) ≤ 2cost(S). �

Appendix B. Proof of Lemma 11

Consider the case when
∑q

j=1(pj + 1) > p in Step 2 of Algorithm 5. Suppose, to the contrary, that there exists a p-tour
schedule Q = {(ri,Qi, Ai) : 1 ≤ i ≤ p} of N with cost(Q) ≤ λ. For each 1 ≤ j ≤ q, consider the minimum spanning tree
Mj of the j-th connected component of G[λ/2], obtained in Step 1 of Algorithm 5. Let Q(Mj) denote the set of (ri,Qi, Ai) ∈ Q
with Qi containing at least one vertex ofMj. Let p∗

j = |Q(Mj)|. Since J(Mj) is not empty, we have p∗

j ≥ 1.
For each (ri,Qi, Ai) ∈ Q, where 1 ≤ i ≤ q, by Proposition 2 we know that all the vertices of Qi must belong to the same

connected component of G[λ/2]. Thus, Q(Mj) for 1 ≤ j ≤ q are disjoint to each other, and constitute a partition of Q, which
implies:

q−
j=1

p∗

j =

q−
j=1

|Q(Mj)| = p. (B.1)
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Moreover, for eachMj, where 1 ≤ j ≤ m, sinceD = J , we have V (Mj) =


∀(ri,Qi,Ai)∈Q(Mj)
V (Qi). Thus, connecting all the tours

Qi of (ri,Qi, Ai) ∈ Q(Mj) by adding at most (p∗

j − 1) edges of G[λ/2], we obtain a subgraph of the j-th connected component
of G[λ/2] that covers all the vertices ofMj. SinceMj is a minimum spanning tree of the j-th connected component of G[λ/2],
we obtain:

w(E(Mj)) ≤ w(E(Q(Mj))) + (p∗

j − 1)λ/2. (B.2)

Therefore, since cost(Q) ≤ λ and h(v) = 0 for v ∈ J , we have w(E(Q(Mj))) ≤ p∗

j λ. Due to λ > 0 and (B.2) we obtain
2w(E(Mj))/(3λ) < p∗

j . Thus, pj + 1 = ⌊2w(E(Mj))/3λ⌋ + 1 ≤ p∗

j , because pj and p∗

j are integers. By (B.1) we obtain∑q
j=1(pj + 1) ≤

∑q
j=1 p

∗

j = p, leading to a contradiction. �

Appendix C. Proof of Lemma 13

If Algorithm 6 returns ‘‘λ is too low’’ in Step 2, then there exists v ∈ J such that no available depot d ∈ D satisfies
w(d, v) ≤ λ/2. Thus, by Proposition 2, we have λ < OPT(N , p).

If Algorithm 6 returns ‘‘λ is too low’’ in Step 3, then by Lemma 12, λ < OPT(N ′, p). Since G(J) of N ′ is a subgraph of G of
N , we can transform each p-tour schedule of N to a p-tour schedule of N ′, by skipping all the vertices that are in G but not
in G(J), with the cost not increased, due to the triangle inequality. Thus, we obtain λ < OPT(N ′, p) ≤ OPT(N , p).

Otherwise, in Step 3 of Algorithms 6 and 5 must return a p-tree schedule T of N ′, with cost(T ) ≤ 3λ due to Lemma 12.
According to Step 4, we have Ai ⊆ J(Ti) ⊆ J(T ′

i ) and r ′

i ∈ V (T ′

i ) ∩ D for 1 ≤ i ≤ p, and |T ′
| = |T | = p. Thus, T ′ is a

p-tree schedule of N . Moreover, for each (r ′

i , T
′

i , Ai) ∈ T ′, its weight is either equal to the weight of (ri, Ti, Ai) ∈ T , which
is not greater than 3λ, or equal to the weight of (ri, Ti, Ai) plus the weight of edge (v, d(v)) for some v ∈ V (Ti), which is not
greater than (3λ + λ/2). Thus, cost(T ′) ≤ 3.5λ.

Moreover, since Algorithm 6 runs in polynomial time, we obtain that it is an ORACLE3.5. �
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