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Abstract

In this paper we generalize a version of the classical Calderon—Zygmund theorem on principle
value integrals in generalized Lebesgue spdo®s proved in [J. Reine Angew. Math. 563 (2003)
197-220], to kernels, which do not satisfy standard estimaté&?crt. This result will be used in
part 1l of this paper to prove the classical theorem on halfspace estimates of Agmon, Douglis, and
Nirenberg [Comm. Pure Appl. Math. 12 (1959) 623—727] for generalized Lebesgue $p¥ces
0 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Motivated by the study of electrorheolagi fluids the authors have been interested
in transferring techniques known for geakzed Newtonian fluids to the case of elec-
trorheological fluids (see, e.g., Malek et al. [16], Frehse et al. [18FidRa [19], and
Diening [9] on a survey on existence and regity results for generalized Newtonian flu-
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ids and electrorheological fluids). Moreqmisely, the motion of generalized Newtonian
fluids is governed by (cf. [17] for a detailed discussion of generalized Newtonian fluids)

oV —divS+ [VV]V+ Vr =T, divv =0, Q)

where the extra stress tens®iis given byS= u(1+ |D|2)?=2/2D and p € (1, 00) is

a given material constant. Thus the naturakrgy space for the system of generalized
Newtonian fluids isW7(£2). The motion of electrorheogical fluids is governed by a
system similar to (1), however the extra stress tensor is now given by (cf. [19])

S=ax((1+ D) P — 1)E @ E + (a1 + azslEl?) (14 1D1) " ?/*D
+as51(1+ D) " ?*(DE @ E + E ® DE),
whereq;; are constants and = p(|E|?) is a given material function satisfying
1<p~ <p(EP)<pt <oo.

Therefore the natural energy space for the system of electrorheological fluids is the gener-
alized Sobolev spac&@®7()(£2). One of the main issues in the study of the above systems

is to prove the existence of solutions, where the values ahd p—, respectively, are as

small as possible. The applied techniques essentially use optimal estimates for solutions of
linear elliptic equations and systems, e.g., the Laplace equation, the Stokes system and the
divergence equation. These estimates are classical results in the usual Lebesgue spaces.
However, in generalized Lebesgue spaces only little is known. The divergence equation
has already been treated imEtka and Diening [5]. In thatgper the classical theorem

by Calder6n and Zygmund [3] on principal value integrals and the continuity of classi-

cal Calderon—Zygmund operators has also been extended to generalized Lebesgue spaces
LPO(R4). With the help of these results one can easily show interior regularity for elliptic
equations and systems in generalized Lebesgue sp&téa?). In order to treat the regu-

larity near the boundary in these spaces, ageds corresponding results for the halfspace.

It is the purpose of parts | and Il of this paper to establish these results. In the present part
we generalize a version of the classical Calder6n—Zygmund theorem on principle value in-
tegrals in generalized Lebesgue spat@s proved in [5], to kernels, which do not satisfy
standard estimates d&’*+1. Based on this result we prove the analogue of Lemma 3.2

in [1]. This result will be used in part Il of the paper [6] to establish the analogue of the
halfspace estimates by Agmon et al. [1].

2. A Calderén—Zygmund type result onR?+1

Let us introduce some notation. PointsRA*! will be denoted byP := (x, 1), Q :=
(y,5) and R := (z,u), with x, y, z € RY. We set|x| := (X¢_; x»)¥2 and | P| := (1x|? +
t2)1/2. For all P € RY*1 holds (|x| + |¢]) < [P < |x| + |£]. By R‘gl = {P e RIt1|
t >0} andR”grl :={P e R¥*1 |t < 0} we denote halfspaces and BY** (respectively
R4+1) the corresponding counterparts wathict inequalities. For a functiofi: R+ — R
we denote the partial derivatives with respect toithevariablej =1, ..., d, by d; f, while
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the partial derivative with respect to tli€ + 1)-variable is denoted by, /. The gradient
V f stands foiV f := (81 f, ..., 04 f, 0: f).

We will now introduce the spaces?)(£2) and W70 (2). Let £2 be a measurable
subset ofR*L. For a measurable functiop : R‘*1 — [1, co) (called the exponent)
we defineL?")(£2) to consist of measurable functiors: 2 — R such that the mod-
ular p,(f) == [o | f(Q)IPQdQ is finite. If p* := supp < oo (called a bounded ex-
ponent), then the expressidf || ,) = inf{x > 0| pp(rlf) < 1} defines a norm on
LPO)(£2). This makesL?)(£2) a Banach space. Ip~ :=infp > 1, thenL?")(2) is
uniformly convex and reflexive, and the dual space is isomorphit§’(2), where
1/p() +1/p'(-) = 1. Further, letWw1,0)(£2) denote the space of measurable functions
f:£ — R such thatf and the distributional derivativ€ f are in L?)(£2). The norm
111 pcy == £l pcy + IV £l oy makesWhPO)(2) a Banach space. BW&”’(')(Q) we
denote the closure @$°(£2) in W10 (£2). We refer to Hudzik [14], Kovéik and Rakos-
nik [15], Samko [20], Edmunds et al. [10]uRitka [19], Edmunds and Rakosnik [11], Fan
et al. [12], Diening [7-9] for a detailed discussion of the spacs andw* 70,

By B we denote an arbitrary ball iR¢+1. We write B(P) for a ball centered aP and
B, for a ball with radius-. For f € L (R9*1) we set

MBf:=][|f<Q>|dQ,
B

where f ; is the mean value integral ovét. By Mf we denote the Hardy-Littlewood
maximal function off, i.e.,

Mf(P):=supMpp)f,
B(P)

where the supremum is taken over all balls centeregt.aBy P(R¢*1) we denote the
set of bounded exponengssuch thatM is bounded orL.”") (R4*1). In particular, if p €
PRI*L) thenCS (R is dense inW* PO (RI+1), k e N (cf. [7]).

It has been shown by Diening [7] that jf satisfies 1< p~ < p™ < oo, the uniform,
local continuity condition

Ip(P) — p(Q)| < A|iIn|P = QI|™%, P, QeRH, )

whereA; is a given constant, anglin addition is constant outside some large ), (0),
thenp e P(R4+1). Later is was shown by Nekvinda [18] that the condition thas con-
stant outside some large b#lk, (0) can be weakened to the integral condition: there exists
aconstany > 0 andps € [p~, p*1 such that/p,, y /PP =Pxl d P < co. In particular,

if p satisfies the decay condition

A2
Ine +|P))’
wherepo, € [p~, pT]1 and Az > 0 are given constants, one easily checks that the integral

condition above is fulfilled (cf. [4] for a different proof of the same result). Thus we have
p € P(R4+1) if the conditions (2) and (3) are satisfied for &l Q € R7*1.

|p(P) — poo| < PRI 3)
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We also need the following maximal type operators: Lek@& < oo and f €
L{ (R¥TY). Then for all ballsB we define

B(P)

1/«
Mo f = <][|f(Q)|adQ> ; My f(P) := SUp My, B(p) [,
B

1/a
Mfpf = <][|f(Q)—fB|“dQ) . MIf(x) :=§£M§,B(P)f,
B

where fp := f, f(Q)dQ. The operatoan is called sharp operator. Note théfy f =
M and that for alky < a2 there holds\y, f < Ma, f andM; f < M7, f dueto Jensen’s
inequality. In Diening and BZika [5] it is shown that for allf € L7 (R4+1)

clfllpey < [MEF] 0y < CUFNpeo,

wheneverp, p’ € P(R?*t1) and 1< p~ < pt < oo. This equivalence is crucial for
proving the continuity of Calder6n—Zygmurgberators in generalized Lebesgue spaces
L”(')(Rd+1).

The aim of this section is to generalize Corollary 4.12 in [5], which is the version of
the classical Calderén Zygmund theorem on principal value integrald ih(R4+1), to
kernels, which do not satisfy standard estimate®R6h!. For that we need to generalize
the notion of a standard kernel as follows:

Definition 2.1. Let £2 € Rt be a set. A kerneK on £2 is a locally integrable real-
valued function defined o®\{0}. We say thatk satisfies standard estimates of degree
—m on £ C £2 if there exists > 0 andA4 > 0, such that for allP, O € £20\{0} with

|P — Q| < 3|0] and allR € 20\{0} holds

|K(R)| < A4lR|I™™, (4a)
|K(P) — K(Q)| < A4lP - QP°|Q|™"°. (4b)

Note that (4a) and (4b) imply th& is §-Ho6lder continuous o229\ {0} and bounded on
every spher@o N {P | | P| =ro}, 0 < rg < co. The sets2 and£2g in the above definition
will usually be one of the se®¢*?, R4+, RO or RYH2,

We say that a operatdr is associated to a kern&l on R4+1 if

Tf(P)= / k(P — Q) f(Q)dQ

Rd+1

holds for a.e.P outside the support of € C5°(R*1). T is said to be a singular integral
operator ifT is associated to a kernel ®f*1, which satisfies standard estimates of degree
—(d + 1) onR?*1, If in addition T extends to a bounded, linear operator/d(R4*1),
then we calll’ a Calderén—Zygmund operator.

Since we are interested in kernels, like

K(P)=sgnn|P|~% 1, (5)
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which satisfy standard estimates B! andR%*2, but not onR?*1, we need a modifi-
cation of a definition of Alvarez and Pérez [2], which reads as follows:

Definition 2.2. For a kernelk onR?*1 we define for al- > 0 and allQ € R?*+1\ {0}

FrK(Q) = ][ ][|K(P—Q)—K(R—Q)|deP.
B/ (0) B, (0)

Fora > 1 we say that the kerndl satisfies conditioiD,,) if and only if there are constants
As, N > 0 such that

sup | f(Q+ Po)|F,K(Q)dQ < AsM, f (Po) (Da)

holds for all f € C5°(R¥*1) and Py e R4 +1,
Note that fore = 1 this is exactly conditioriD) of Alvarez and Pérez [2].

Lemma 2.3.Let K be a homogeneous kernel of degre@/ + 1) on R¢*1, which satisfies
standard estimates dR?** and onR%*! of degree—(d + 1). Thenk satisfies condition
(D) forall o > 1.

Proof. From the definition off,. K and the homogeneity & we easily compute that for
all r > 0 holds

F,K(rP)=r"“"DEK(P),
and thus we have for ajf € C5°(RY*1)

/ | f(O+ Po)|F,K(Q)dQ = / | /(O + Po)| FLK(Q)d Q, (6)
|Q|>Nr |Q|>N

where £,(Q + Po) := f(rQ + Po) € CZ(RY™). In order to verify condition(Dy), it
suffices to show that for af € C3°(R?*) holds

|8(Q + Po)| F1K (Q)d Q < CMug(Po). (7
|Q|>N

Indeed, we choosg = f, in (7), use (6), take the supremum over 0 and use that
My f,(Po) = My f (Po). For|P|,|R| < 1andQ = (y, s) we see thaR — Q, P — Q e R¢+1

if s>1andthatR — Q, P — Q e RI1if s < —1. Thus we can rewrite the left-hand side
of (7) as

2(Q + Po)| F1K (Q)d Q + / |8(Q + Po)|F1K (Q)d Q

Q>N Q>N
s>1 s<—1

+ / |8(0 + Po)| F1K(Q)dQ =: 11+ I2+ I3.

1Q|>N
lsI<1
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For the termd and /> we use (4b) since foN > 5 and|P|, |R| < 1 we havg P — Q| >
2/(P — Q) — (R — Q)|. Moreover, we haveP — Q| > |Q|/2 and thus we can estimate

|P—R|°
L+ 1> <2As |g(Q + Po)| — _ _dRdPdQ

|P _ Q|d+l+5
|Q|>N B1(0) B1(0)

P
< 242 4, / %mdQ

Q1>N

<C(A4,5)Z / Ig(Q+P0)IdQ

: (sz)dJrlJrS
7=0%i N<j0l<2i+IN

1

@NY ][ |8(Q + Po)|dQ

BZH'lN(O)

gC(A4787d1 N)Mg(PO)gc(Allsdvav N)Mag(PO)' (8)

oo
<c(Aad,d)y
j=0

For the term/z we use (4a) angdP — Q|, |R — Q| > |Q|/2 to derive

|8(0 + Po)l
I3 < A420H_2 / |Q|7d+l do
[Q|>N
Is|<1
> 1
Sc(A4,d)j§0W / |8(Q+PO)|XN,-(Q)dQ

B,jt+1,(0)

00 1/
1 o -
Sc(A4,d)ZW< / ‘g(Q+Po)| dQ) VO|(N].)1 1/«
Jj=0

Bz_H—lN (O)

o0

1 _ 1

<c(Aad)) Ny — My g(Po)VOI(N )Y/ v0l( By (0) /e
j=0

<c(Ag,d, N, a)Mug(Po), 9)

ad 1
=c(A4,d)Myg(Po) Z i 1-1/a
j=0 @ Ny

where we used > 1 and whereyy; is the characteristic function of the sk := {Q =
(y,8) | 2/N < 0| <2/tIN, |s| < 1}. Estimates (8) and (9) imply (7) and thus the lemma
is proved. O

For a kernelk onR“*+1 we define the truncated kernets for ¢ > 0 through

| K(P) for |P| > ¢,
Ke(P) '_{0 for|P| <e.
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Furthermore, we define fer> 0

T, f(P) = / Ke(P—0)f(Q)dO;
Rd+1

in particular,T; is associated to the kernkl .

Proposition 2.4.Let K be a kernel orR?*1, which satisfies standard estimatesfr!
and onR%*! of degree—(d + 1). Moreover, assume that for the surface integrakobver
the unit sphere iR?*1 holds

K(Q)dw=0. (10)
3B1(0)

Then for evenyl < g < oo the operatorsT, are uniformly bounded o (R?*1) with
respect tee > 0. Moreover,

Tf(P):= lim T, f(P)= lim / K.(P—-0)f(Q)dQ (11)
e—0t e—0t

Rd+1

exists almost everywhere atith,_, o+ 7. f = Tf in L4 (R?*1) norm. In particular, T is
continuous orL? (R4+1y,

Proof. From (4a) follows thatk is bounded byA4 on the unit sphere. Thus all assump-
tions of the classical theorem of Calderén and Zygmund [3] are fulfilled and the assertion
follows. O

Proposition 2.5.Let K be a kernel orR¢+1, which satisfies the same assumption as in
Proposition2.4. Then the operatorg,, T are of weak typé&l, 1) uniformly with respect
toe.

Proof. We wantto use Corollary 1.7.1in [21, p. 33]. Thus we have to verify condition (10)
there, which in our context reads: there exists a congiant0 such that

|K(Q-P)-K(Q)]dO<C, (12)
|Q1=2r

whenever P| < r. For suchP = (x,7) and Q = (y, s) we see tha, Q — P € R4 if
s < —r and thatQ, Q0 — P € R if s > r. Thus we can rewrite the left-hand side of (12)
as

/|K(Q—P)—K(Q)|dQ+ / |K(Q—P)—K(Q)|dQ

101 >2r 101=2r
s§>r s<—r
+ / |K(Q—-P)—K(Q)|dQ=1h+ DL+
1Q1>2r

Is|<r
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Using (4b) and P| < r one easily computes (cf. (8))

do
S
I1+ 1> < c(As, d, 8)r W

lQ1=2r

where we have also used that2— P| > |Q|. Using again this fact and (4a) we get
similarly as in Lemma 2.3 (cf. (9))

< C(A47 d: 5)7 (13)

1
I3 < c(Ag,d) / |Q|dQ+1 <c(A4,d)Z(2] T / o

|Q|>2r 2/rg|Ql<2/*ty
Is|<r Is|<r
> 1
< c(As,d) Zl o <c(Agd). (14)

From (13) and (14) we immediately get (12) and thus Corollary 1.7.1 in [21] implies that
T, are of weak typél, 1) uniformly with respect t@. That the same holds true f@rnow
follows easily (cf. Remark 4.4 in [5]). O

Corollary 2.6. Let K be a homogeneous kernel of degre@ + 1) onR¢*+1, which satisfies
the same assumptions as in Propositibd. Let 7 be the operator defined bit1). Then,

forall s1, so with0 < s1 < 1 < s2, there exists a constanis = Ag(s1, s2) > 0 such that for

all f e CR?) and P e R?* holds

(ME(ITFI1)) Y (P) < AsM,, £ (P). (15)

Proof. Proposition 2.5 implies thaf is of weak typg(1, 1). Thus we can proceed exactly
as in the proof of Theorem 2.1 of [2]. However, in the last step we use our condition
(Ds,), which holds due to Lemma 2.3, instead of condit{@» in [2] to obtain the desired
assertion. O

Theorem 2.7.Let K be a homogeneous kernel of degreé¢ + 1) on R¢*+1, which
satisfies the same assumptions as in Proposi®idn Let T be the operator defined by
(11). Let p be a bounded exponent wihr > 1 and0 < s1 <1 < s2 < p~ such that
p, (p/s1), p/s2 € P(RtL). ThenT is a bounded operator ol.”")(R?*1), i.e., there
exists a constand 7 > 0, such that

||Tf||Lp()(Rd+1) A7||f||Lp<)(Rd+l)

Proof. Sincep € P(R?*1) and 0< s1 < 1, there holdg/s1 € P(R?T1) by Remark 2.3
in [5]. Thus it follows from Theorem 3.6 in [5] that for afl € L?)(R?*1) holds

||g||Lp()(Rd+l) C”Mlg| LPO) (RA+1)* (16)

Let f € CP(RIHY). ThenTf e LP RN LP" (R4+1) due to Proposition 2.4, which

impliesT f € LPO(RI*TY) and(T )1 e LPO/s1(R4+L) . This justifies the following calcu-
lations:
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ITflpey = 1T ||ia/<f>l/s1

19 51 51 51
< | mi(Trry| 7, =l (Trr)

p()/s1 ()

(15
< ClIMy fllpey =CM(F12) 202,

< A, =Cllf oo, (17)

where we used in the last ling/s, € P(R?+1). SinceCS® (R +1) is dense inL? O (RI+1),
this proves the theorem.o

In order to transfer the statements of Proposition 2.4 to the sgategrR? 1) we need
a modification of a classical resultrfthe maximal truncated operat@}. (cf. Proposi-
tion 1.7.2 in [21]), which is defined by

T f(P):=supT. f(P)|.

e>0

Proposition 2.8.Let K be a kernel orR?+1, which satisfies the same assumptions as in
Proposition2.4. Let T be the operator defined 1) and let0 < s1 < 1 < s2. Then there
exists a constamg = Ag(s1, s2) > 0, such that

Ty f (P) < Ag(Myy (T f)(P) + My, f (P))

forall f € C°(R?*1) and all P € R¥*1,

Proof. LetusfixPp € R‘™, e > 0 andf e C5°(R™). We decomposg asf = f1+ f,
where f1 := fxp.(py and f2 := fXRdJrl\Bg(Po). By definition of K, we haveT f2(Pp) =
T. f (Po). We will prove that for allP € B, (Po), 0 < x < 1/2,and 1< s2 holds

| T f2(Po) — T f2(P)| < CMy, f (Po). (18)
Indeed, the left-hand side of (18) is bounded by

|K(Po— Q) — K(P - Q)||f(@)|d0

|Q—Pol>¢

= / |K(Q)— K(P—Po+ Q)||f(Po— Q)|dQ. (19)
[Q]>¢

The domain of integration in the last integral is split again into three parts, nafneby
{0=0.9)110l>¢, s>ke}, E2:={Q =(y,5) [ |Q] > ¢, s <—ke}andEz:={Q =
(v,5) | 1Q| > &, |s| < ke}. Note thatE; ¢ R4+ and E; ¢ R and thus we can use (4b)
on these sets. Let us denote again the integrals on the right-hand side of (18) oy,
i=123.Since|P — Py| < ke < %|Q| we obtain similarly as in (8) (carefully tracking
the dependencies on cf. (13)) that

It + 12 <c(Ag,8,d,ik)Mf(Po) < c(Ag,8,d, k)M, f (Po).
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For the termiz we proceed as in (9), carefully using the definitionsf to derive
13 < C(A41 dv K)Mszf(PO)

The last two inequalities prove (18). Thus we have forPa# B (Po)

|T. f(Po)| < |TF(P)| +|Tf1(P)|+ CMs, f (Po). (20)

Due to Proposition 2.4 we can now proceed élyaas in the proof of Proposition 1.7.2 in
[21] to show that there exists a poiRte B, (Po) such that

|Tf(P)| + |Tf1(P)| < (M (TF)(P)+ Mf(P)). (21)
From (20), (21) andM f < M, f we obtain the assertion of the propositiorts

Corollary 2.9. LetK be a homogeneous kernel of degre@ + 1) onR¢+1, which satisfies
the same assumptions as in Propositiba. Let p be a bounded exponent wigh > 1
and0 < s1 <1< s2 < p~ such thatp, (p/s1), p/s2 € P(R4t1). ThenT, is bounded on
LPO(RITY) j.e., there exists a constang > 0, such that

||T*f||Lp(->(Rd+1) < A9||f||Lp(~)(Rd+1).

Proof. Let f € C°RY™) with | £l () < 1. By Theorem 2.7 we haveT f || o) < A7.
Since p € P(RY*Y), this implies |M(Tf)|l,y < C. In (17) we have shown that
M, fllpy < Cllfllpey < C. Now Proposition 2.8 withyy = 1 implies || Ty fl ,) < C.
SinceT,(Af) = [A|T.(f) and CF (RTY) is dense inL”) (R¥+1), this proves the corol-
lary. O

Theorem 2.10.Let K be a homogeneous kernel of degre@/ + 1) onR?*1, which satis-
fies the same assumptions as in Proposif@hLet p be a bounded exponent with > 1
andlet0 < s; <1 <s2 < p~ besuchthap, (p/s1)’, p/s2 € P(R4t1). Then the operators
T, are uniformly bounded oh?”) (R4+1) with respect ta: > 0. Moreover,

Tf(P)= lim T, f(P)= lim / Ke(P—0)f(Q)dQ
e—0t e—0t

Rd+1

exists almost everywhere alinh,_, g+ 7, f = Tf in LPO (R?*T1) norm. In particular,T, T,
are uniformly continuous il.”) (R4*1) with respect tc:.

Proof. Due to Corollary 2.9 the operat®}, is bounded oi.?)(R?*1). Since|T, f (P)| <

T* f(P) forall f e LPORI*L) and all P € R?*1 by definition of 7, there follows that
the operatord, are uniformly bounded o.”)(R?*1) with respect toe > 0. Now fix

f € LPO(RIFL). Then for alls > 0 there existg € CS° (R +1) such that] f — gl p() <8
(cf. Corollary 2.5 in [5]). By Proposition 2.4 there holds |img+ T.g = T g almost every-
where. SincgT, g| < T*g € LPO (R4+1) by Corollary 2.9, there follows by the dominated
convergence theorem thaltg € L7V (RY*Y) and lim._, g+ p,(Teg — Tg) = 0, which is
equivalentto lim_ o+ | Tz g — Tgll ) = 0. Thus
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im T f =Tl

< fim (17eg = T8llpe) + [T =9 o, + 1T = )] ,))
<|Tlf =, + 1T =91,
<Clf —gllpe <C8, (22)

where we used Corollary 2.9 and Theorem 2.7. Sthee0 was arbitrary, this proves the
theorem. O

As a consequence of Theorem 2.10 we can prove the following proposition, which is
the analogue of Lemma 3.2 in [1].

Proposition 2.11.Let K be a homogeneous kernel of degre@ + 1) on R4+, which
satisfies standard estimates of degre@! + 1) and is nonnegative oR?**. Let p be a
bounded exponent with~ > 1 on R¢*+1 which is extended t&‘** by an even reflection,
ie., p(x,t):=p(x,—1),t <0.Let0O<s1 <1< s2 < p~ besuchthap, (p/s1), p/s2 €
P(RY*H1). LetG be ameasurable function definedRfr* which satisfies for alP e RZ+1
|G(P)| < K(P). (23)

Consider the function

u(x,t):= / / Gx—y, t+s)v(y,s)dyds, (24)

Rd 0

wherev € LPO(RZHY), Thenu(P) exists for a.eP = (x,1) € R4+ and there exists a
constantd1g > 0 such that

”M ||L17(')(Rd>+1) < AlO” U” Lp(-)(Rli‘*'l)' (25)

Proof. We extendk andG to R¢+1 by an odd reflection, i.eK (x, 1) :== —K (x, —t) and
G(x,t):=—G(x,—1),t < 0. Letus extend € LPV (Rt toR*+ by v(r, x) =0, < 0.
Moreover, we denoté(y, s) := v(y, —s) € LPO (R¥*1) and set for allx, 1) e R4+

ui(x,t) := // K(x—y,t—s)|f)(y,s)|dyds. (26)

Rd+1
SinceK andp satisfy the assumptions of Theorem 2.10 we get
”ul”Lp(-)(Rli*—l) < ||ul||LP(')(Rd+1) < C”E”LP()(RII-H) = C“U”LP(')(R‘QJ)' (27)

Thus for almost alkx, 1) € R+ the functionu1(x, ) is finite. Moreover, we have for
almost all(x, t) € R¢+1
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//|G(x =y, t+9)v(y,s)|dyds

R4 O

o
<//K(x—y,t+s)|v(y,s)\dyds

RI O
://K(x—y,t+s)|v(y,s)|dyds
Rd+1
=//K(x—y,t—s)\ﬁ(y,s)\dydszul(x,t)<oo. (28)
R4+1

Since the integrand in (26) is nonnegative, the last estimate proves that the integral in (24)
is well defined for almost allx, r) € RZ+L. From the definition of: (cf. (24)) and (28) we
see that for alP € R4*+1 holds|u(P)| < u1(P), which together with (27) implies

||I/l ||L17(')(Rd>+1) < ”ul”Lp(J(R‘i‘*'l) < C” Vv ||L17(')(Rli+l)’

which proves the proposition.O
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