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Abstract

In this paper, we establish several geometric properties of boundary sections of convex solutions to the
Monge–Ampère equation: the engulfing and separating properties and volume estimates. As applications,
we prove a covering lemma of Besicovitch type, a covering theorem and a strong type p–p estimate for the
maximal function corresponding to boundary sections. Moreover, we show that the Monge–Ampère setting
forms a space of homogeneous type.
Published by Elsevier Inc.
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1. Introduction

In recent years, there has been a growing interest in studying boundary regularity of solu-
tions to the Monge–Ampère equation and its linearization, that is, the linearized Monge–Ampère
equation. Solutions of many important problems in Analysis and Geometry require a deep un-
derstanding of boundary behaviors of the above Monge–Ampère type equations. Among those,
one can mention the problems of global regularity of the affine maximal surface equation
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[26,27,18] and Abreu’s equation in the context of existence of Kähler metric of constant scalar
curvature [10–13,28]. In these papers, the properties of boundary cross sections of solutions to
the Monge–Ampère equation play an important role as those of interior sections in the land-
mark paper [3] where Caffarelli discovered surprising interior W 2,p estimates for solutions to
the Monge–Ampère equation with right hand side being continuous and bounded away from 0
and ∞.

The notion of sections (or cross sections) of solutions to the Monge–Ampère equation

detD2φ = g in Ω (1.1)

was first introduced and studied by Caffarelli [2–5]. Sections are defined as sublevel sets of
convex solutions after subtracting their supporting hyperplanes. Understanding the geometry of
sections is essential in obtaining sharp regularity properties for solutions of (1.1). As a matter
of fact, the structure of Eq. (1.1) is ultimately related to that of sections of its solutions, and
by studying the shape of interior sections Caffarelli derived fundamental interior regularity esti-
mates for (1.1) in the above mentioned papers. When the right hand side of the Monge–Ampère
equation is only bounded, sections of solutions in the sense of Aleksandrov can have degener-
ate geometry. However, in many applications in Analysis and Geometry involving equations of
Monge–Ampère type, we would like these sections to have properties similar to Euclidean balls
as in uniformly elliptic equations. This is the case of interior sections through the work of Caf-
farelli [2,4,5], Caffarelli and Gutiérrez [6,7] and Gutiérrez and Huang [15]. The case of boundary
sections is less well understood. However, thanks to Savin’s Localization Theorem [22,23] at the
boundary for solutions of (1.1), we expect many properties of interior sections hold also for
boundary ones. This is the subject of our present paper.

The purpose of this paper is to investigate several important geometric properties of boundary
sections of convex solutions to the Monge–Ampère equation (1.1) with right hand side bounded
away from 0 and ∞ and with smooth boundary data: engulfing and separating properties, and
volume estimates. As applications, we prove a covering lemma of Besicovitch type and employ it
to prove a covering theorem and a strong type p–p estimate for the maximal function with respect
to boundary sections. Moreover, we introduce a quasi-distance induced by boundary sections and
show that the structure of our Monge–Ampère equation gives rise to a space of homogeneous
type. This allows us to place the Monge–Ampère setting in a more general context where many
real analytic problems have been studied, see [8,9]. Our results are boundary version of those
established by Caffarelli and Gutiérrez [6,7], Gutiérrez and Huang [15] and Aimar, Forzani and
Toledano [1] for interior sections of solutions to Eq. (1.1) (see also the book by Gutiérrez [14]).
The results in this paper are crucial for our studies in [19,20] about boundary regularity for
solutions to the linearized Monge–Ampère equation

trace
(
ΦD2u

) = f in Ω, (1.2)

where Φ := (detD2φ) (D2φ)−1 with φ being a convex solution of (1.1). In [19,20], we investi-
gate Eq. (1.2) and establish global W 2,p and W 1,p estimates for its solutions which are boundary
version of interior estimates obtained recently in [16,17].

The rest of the paper is organized as follows. We state our main results in Section 2. In Sec-
tion 3, we recall the main tool to study geometric properties of boundary sections of solutions
to the Monge–Ampère equation: the Localization Theorem at the boundary for solutions. Ge-
ometric properties of boundary sections are established in Section 4. In Section 5, we prove a
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Besicovitch-type covering lemma, a covering theorem and a strong type p–p estimate for the
maximal function corresponding to boundary sections. Finally, in Section 6, we show that the
Monge–Ampère setting forms a space of homogeneous type.

2. Statement of the main results

The results in this paper hold under the following global information on the convex domain
Ω and the convex function φ. We assume there exists ρ > 0 such that

Ω ⊂ B1/ρ, and for each y ∈ ∂Ω there is a ball Bρ(z) ⊂ Ω that is tangent to ∂Ω at y. (2.3)

Let φ : Ω → R, φ ∈ C0,1(Ω) ∩ C2(Ω) be a convex function satisfying

detD2φ = g, 0 < λ � g � Λ in Ω. (2.4)

Assume further that on ∂Ω , φ separates quadratically from its tangent planes, namely

ρ|x − x0|2 � φ(x) − φ(x0) − ∇φ(x0) · (x − x0)� ρ−1|x − x0|2, ∀x, x0 ∈ ∂Ω. (2.5)

The section of φ centered at x ∈ Ω with height h is defined by

Sφ(x,h) := {
y ∈ Ω: φ(y) < φ(x) + ∇φ(x) · (y − x) + h

}
.

If x ∈ ∂Ω , then we call Sφ(x,h) a boundary section. For x ∈ Ω , we denote by h(x) the maximal
height of all sections of φ centered at x and contained in Ω , that is,

h(x) := sup
{
h� 0

∣∣ Sφ(x,h) ⊂ Ω
}
.

In this case, Sφ(x,h(x)) is called the maximal interior section of φ with center x ∈ Ω . In what
follows, we will drop the dependence on φ of sections when no confusion arises.

We denote by c, c, C, C1, C2, θ0, θ∗, . . . , positive constants depending only on ρ, λ, Λ, n,
and their values may change from line to line whenever there is no possibility of confusion. We
refer to such constants as universal constants.

Our first result is the engulfing property of sections {S(x, t)}.

Theorem 2.1. Assume that the convex domain Ω and the convex function φ satisfy (2.3)–(2.5).
There exists θ∗ > 0 depending only on ρ, λ, Λ and n such that if y ∈ S(x, t) with x ∈ Ω and
t > 0, then S(x, t) ⊂ S(y, θ∗t).

In this case, we say that the sections {S(x, t)} of φ satisfy the engulfing property with the
constant θ∗.

The engulfing property of sections will be shown to be equivalent to the separating property
of sections as stated in the following.
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Proposition 2.2.

(i) Assume that the convex domain Ω and the convex function φ satisfy (2.3)–(2.5). Let θ∗ be
the constant in Theorem 2.1. Then, the sections {S(x, t)} of φ satisfy the separating property
with the constant θ2∗ , namely, if y /∈ S(x, t), then

S

(
y,

t

θ2∗

)
∩ S

(
x,

t

θ2∗

)
= ∅.

(ii) Conversely, assume that the sections {S(x, t)} of a convex function φ defined on a convex
domain Ω satisfy the separating property with the constant θ . Then the sections {S(x, t)}
satisfy the engulfing property with the constant θ2.

A key in the proof of Theorem 2.1 is a dichotomy for sections of solutions to the Monge–
Ampère equation: any section is either an interior section or included in a boundary section with
comparable height. Thus, when dealing with sections, we can focus our attention to only interior
sections and boundary sections. The precise statement is as follows.

Proposition 2.3. Assume that the convex domain Ω and the convex function φ satisfy (2.3)–(2.5).
Let S(x0, t0) be a section of φ with x0 ∈ Ω and t0 > 0. Then one of the following is true:

(i) S(x0,2t0) is an interior section, that is, S(x0,2t0) ⊂ Ω ;
(ii) S(x0,2t0) is included in a boundary section with comparable height, that is, there exists

z ∈ ∂Ω such that

S(x0,2t0) ⊂ S(z, ct0).

Here c > 1 is a constant depending only on ρ, λ, Λ and n.

As an application of the dichotomy of sections, we obtain the following volume growth of
sections.

Corollary 2.4. Assume that the convex domain Ω and the convex function φ satisfy (2.3)–(2.5).
Then, there exist constants c0, C1, C2 depending only on ρ, λ, Λ and n such that for any section
Sφ(x, t) with x ∈ Ω and t � c0, we have

C1t
n/2 �

∣∣Sφ(x, t)
∣∣� C2t

n/2. (2.6)

By exploiting the geometric properties of boundary sections, we obtain the following covering
lemma of Besicovitch type.

Lemma 2.5. Assume that the convex domain Ω and the convex function φ satisfy (2.3)–(2.5). Let
A ⊂ Ω and suppose that for each x ∈ A a section S(x, t) is given such that t is bounded by a
fixed number M . If we denote by F the family of all these sections, then there exists a countable
subfamily of F , {S(xk, tk)}∞ , with the following properties:
k=1
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(i) A ⊂ ⋃∞
k=1 S(xk, tk);

(ii) xk /∈ ⋃
j<k S(xj , tj ), ∀k � 2;

(iii) The family {S(xk,
tk
α
)}∞k=1 is disjoint, where α = 2θ2∗ , and θ∗ is the engulfing constant in

Theorem 2.1;
(iv) There exists a constant K > 0 depending only on ρ, λ, Λ and n such that

∞∑
k=1

χS(xk,(1−ε)tk)(x) � K log
1

ε
for all 0 < ε < 1.

Our next result is the following covering theorem.

Theorem 2.6. Assume that the convex domain Ω and the convex function φ satisfy (2.3)–(2.5).
Let O ⊂ Ω be a Lebesgue measurable set and ε > 0 small. Suppose that for each x ∈ O a section
S(x, tx) is given with

|S(x, tx) ∩O|
|S(x, tx)| = ε.

Then if sup {tx : x ∈ O} < +∞, there exists a countable subfamily of sections {S(xk, tk)}∞k=1 sat-
isfying

(i) O ⊂ ⋃∞
k=1 S(xk, tk).

(ii) |O| �√
ε|⋃∞

k=1 S(xk, tk)|.

As an application of the covering lemma, we have the following global strong type p–p

estimate for the maximal function with respect to sections.

Theorem 2.7. Assume that the convex domain Ω and the convex function φ satisfy (2.3)–(2.5).
For f ∈ L1(Ω), define

M(f )(x) := sup
t>0

1

|Sφ(x, t)|
∫

Sφ(x,t)

∣∣f (y)
∣∣dy, ∀x ∈ Ω.

Then we have:

(i) There exists a constant C depending only on ρ, λ, Λ and n such that

∣∣{x ∈ Ω: M(f )(x) > β
}∣∣� C

β

∫
Ω

∣∣f (y)
∣∣dy, ∀β > 0.

(ii) For any 1 < p < ∞, there exists C depending only on p, ρ, λ,Λ and n such that

(∫
Ω

∣∣M(f )(x)
∣∣p dx

) 1
p

� C

(∫
Ω

∣∣f (y)
∣∣p dy

) 1
p

.
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Finally, we obtain that the function d : Ω × Ω → [0,∞), defined by

d(x, y) := inf
{
r > 0: x ∈ Sφ(y, r) and y ∈ Sφ(x, r)

}
, ∀x, y ∈ Ω,

is a quasi-distance on Ω . Moreover, (Ω,d, | · |) is a space of homogeneous type where | · | denotes
the n-dimensional Lebesgue measure restricted to Ω . The precise statements of these are given
in Section 6.

3. Sections of the Monge–Ampère equation and the Localization Theorem

In this section, we recall the main tool to study geometric properties of boundary sections
of solutions to the Monge–Ampère equation: the Localization Theorem at the boundary for so-
lutions to the Monge–Ampère equation (Theorem 3.1). Properties of solutions under suitable
rescalings and global regularity for gradient will also be discussed. Throughout this section, we
assume that the convex domain Ω and the convex function φ satisfy (2.3)–(2.5).

3.1. The Localization Theorem

We now focus on sections centered at a point on the boundary ∂Ω and describe their geometry.
Assume this boundary point to be 0 and by (2.3), we can also assume that

Bρ(ρen) ⊂ Ω ⊂ {xn � 0} ∩ B 1
ρ
, (3.7)

where ρ > 0 is the constant given by condition (2.3). After subtracting a linear function, we can
assume further that

φ(0) = 0, ∇φ(0) = 0. (3.8)

Let us denote

S(h) := Sφ(0, h).

If the boundary data has quadratic growth near the hyperplane {xn = 0} then, as h → 0, S(h)

is equivalent to a half-ellipsoid centered at 0. This is the content of the Localization Theorem
proved by Savin in [22,23]. Precisely, this theorem reads as follows.

Theorem 3.1 (Localization Theorem). (See [22,23].) Assume that Ω satisfies (3.7) and φ satisfies
(2.4), (3.8), and

ρ|x|2 � φ(x) � ρ−1|x|2 on ∂Ω ∩ {xn � ρ}.

Then there exists a constant k > 0 depending only on ρ, λ, Λ and n such that for each h � k

there is an ellipsoid Eh of volume ωnh
n/2 satisfying

kEh ∩ Ω ⊂ S(h) ⊂ k−1Eh ∩ Ω.
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Moreover, the ellipsoid Eh is obtained from the ball of radius h1/2 by a linear transformation
A−1

h (sliding along the xn = 0 plane)

AhEh = h1/2B1, detAh = 1,

Ah(x) = x − τhxn, τh = (τ1, τ2, . . . , τn−1,0),

with |τh|� k−1| logh|.

The ellipsoid Eh, or equivalently the linear map Ah, provides useful information about the
behavior of φ near the origin. From Theorem 3.1 we also control the shape of sections that are
tangent to ∂Ω at the origin.

Proposition 3.2. Let φ and Ω satisfy the hypotheses of the Localization Theorem 3.1 at the
origin. Assume that for some y ∈ Ω the section Sφ(y,h) ⊂ Ω is tangent to ∂Ω at 0 for some
h � c with c universal, that is, ∂Sφ(y,h) ∩ ∂Ω = {0}. Then there exists a small positive constant
k0 < k depending only on ρ, λ, Λ and n such that

∇φ(y) = aen for some a ∈ [
k0h

1/2, k−1
0 h1/2],

k0Eh ⊂ Sφ(y,h) − y ⊂ k−1
0 Eh, k0h

1/2 � dist(y, ∂Ω) � k−1
0 h1/2,

with Eh and k the ellipsoid and constant defined in the Localization Theorem 3.1.

Proposition 3.2 is a consequence of Theorem 3.1 and was proved in [24].
The quadratic separation from tangent planes on the boundary for solutions to the Monge–

Ampère equation is a crucial assumption in the Localization Theorem 3.1. This is the case for
solutions to the Monge–Ampère with the right hand side bounded away from 0 and ∞ and
smooth boundary data as proved in [23, Proposition 3.2]. In particular, the quadratic separation
property holds if

φ|∂Ω, ∂Ω ∈ C3, and Ω is uniformly convex.

3.2. Properties of the rescaled functions

Let φ and Ω satisfy the hypotheses of the Localization Theorem 3.1 at the origin. We know
that for all h� k, S(h) satisfies

kEh ∩ Ω ⊂ S(h) ⊂ k−1Eh,

with Ah being a linear transformation and

detAh = 1, Eh = A−1
h Bh1/2 , Ahx = x − τhxn,

τh · en = 0,
∥∥A−1

h

∥∥,‖Ah‖� k−1|logh|.
This gives

Ω ∩ B+
1/2 ⊂ S(h) ⊂ B+

1/2 ⊂ B+
1/4 . (3.9)
ch /|logh| Ch |logh| Ch
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We denote the rescaled functions by

φh(x) := φ(h1/2A−1
h x)

h
.

The function φh is continuous and is defined in Ωh with Ωh := h−1/2AhΩ , and solves the
Monge–Ampère equation

detD2φh = gh(x), λ� gh(x) := g
(
h1/2A−1

h x
)
� Λ.

The section at height 1 for φh centered at the origin satisfies Sφh
(0,1) = h−1/2AhS(h), and by

the Localization Theorem we obtain

Bk ∩ Ωh ⊂ Sφh
(0,1) ⊂ B+

k−1 .

Some properties of the rescaled function φh were established in [21, Lemma 4.2]. For later
use, we record them here.

Lemma 3.3. If h � c, then

(a) for any x, x0 ∈ ∂Ωh ∩ B2/k we have

ρ

4
|x − x0|2 � φh(x) − φh(x0) − ∇φh(x0)(x − x0) � 4ρ−1|x − x0|2,

(b) if r � c small, we have

|∇φh|� Cr|log r|2 in Ωh ∩ Br.

3.3. Global regularity

We note that if φ satisfies (2.4)–(2.5), then for any v ∈ R
n the function φ̃(x) := φ(x) + v · x

also satisfies (2.4)–(2.5) with the same constants. As a result, under our hypotheses the gradient
of φ is not bounded by any universal constant. Nevertheless, the oscillation of ∇φ is globally
bounded thanks to [21, Proposition 2.6]. We record this result and its direct consequence in the
next lemma.

Lemma 3.4. Assume that the convex domain Ω and the convex function φ satisfy (2.3)–(2.5).
Then there exist constants α ∈ (0,1) and C > 0 depending only on ρ, λ, Λ and n such that

[∇φ]Cα(Ω) � C.

As a consequence, there is a universal constant M > 0 satisfying

Sφ(x0,M) ⊃ Ω for all x0 ∈ Ω.
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Proof. The global Cα-estimate for the gradient is from [21, Proposition 2.6]. Now let x0 ∈ Ω .
Then for any x ∈ Ω , we have

φ(x) − φ(x0) − ∇φ(x0) · (x − x0) � [∇φ]Cα(Ω)|x − x0|1+α � C
(
2ρ−1)1+α =: M.

Thus Ω ⊂ Sφ(x0,M) and the lemma follows. �
4. Geometric properties of sections

In this section, we establish several important properties of boundary sections of solutions
to the Monge–Ampère equation. Unless otherwise stated, the convex domain Ω and the convex
function φ are assumed to satisfy (2.3)–(2.5). Under these conditions, we will show that sec-
tions of φ satisfy a dichotomy, the engulfing and separating properties, and their volumes have
expected growth.

4.1. Dichotomy of sections and volume growth

In this subsection, we shall prove the volume growth of sections and a dichotomy for sections
of solutions to the Monge–Ampère equation: any section is either an interior section or included
in a boundary section with comparable height. We begin with the proof of Proposition 2.3.

Proof of Proposition 2.3. It suffices to consider the case x0 ∈ Ω . Let S(x0, h(x0)) be the max-
imal interior section with center x0, and let h := h(x0). If t0 � h/2 then (i) is satisfied. We
now consider the case h/2 < t0 and show that (ii) holds. Without loss of generality, we as-
sume that Ω ⊂ R

n+, ∂Sφ(x0, h) is tangent to ∂Ω at 0, and φ(0) = ∇φ(0) = 0. It follows that
0 = φ(x0) − ∇φ(x0) · x0 + h yielding

Sφ(x0, t) = {
x ∈ Ω: φ(x) < ∇φ(x0) · x + t − h

}
, ∀t > 0. (4.10)

Next, we have

Claim. There exists a small constant c > 0 depending only on ρ, λ, Λ and n such that if h/2 <

t0 � c, then

Sφ(x0,2t0) ⊂ Sφ

(
0, t∗

)
with t∗ := k−4

0 h + 2(2t0 − h). (4.11)

Indeed, if c is small, we have, by Proposition 3.2

∇φ(x0) = aen for some a ∈ [
k0h

1/2, k−1
0 h1/2], (4.12)

where k0 > 0 depends only on ρ, λ, Λ and n. It follows from (4.10) and (4.12) that

Sφ(x0,2t0) = {
x ∈ Ω: φ(x) < axn + 2t0 − h

}
.
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Let us choose c > 0 small enough such that

k−4
0 h + 2(2t0 − h)� 2k−4

0 c + 4c � k,

where k is the constant in the Localization Theorem 3.1. With this choice of c, we are going to
show that (4.11) holds. Suppose otherwise that (4.11) is not true. Then, using the convexity of
the sets Sφ(x0,2t0) and Sφ(0, t∗) and the fact that their closures both contain 0, we can find a
point x ∈ Ω such that x ∈ ∂Sφ(0, t∗) ∩ Sφ(x0,2t0). At this point x, we have

k−4
0 h + 2(2t0 − h) = t∗ = φ(x) < axn + 2t0 − h� k−1

0 h1/2xn + 2t0 − h.

Hence,

k−4
0 h + 2t0 − h

k−1
0 h1/2

< xn.

This together with the Localization Theorem 3.1 applied to Sφ(0, k−4
0 h + 2(2t0 − h)) gives

k−4
0 h + 2t0 − h

k−1
0 h1/2

< k−1(k−4
0 h + 2(2t0 − h)

)1/2 � k−1
0

(
k−4

0 h + 2(2t0 − h)
)1/2

,

or

k−4
0 h + 2t0 − h < k−2

0 h1/2(k−4
0 h + 2(2t0 − h)

)1/2
.

Squaring, we get

k−8
0 h2 + 2k−4

0 h(2t0 − h) + (2t0 − h)2 < k−4
0 h

(
k−4

0 h + 2(2t0 − h)
)

and as a consequence, (2t0 − h)2 < 0. This is a contradiction and hence the claim is proved.
Let c := max{2k−4

0 + 4,M/c}, where M is the universal constant given by Lemma 3.4. Then
from the claim and since

t∗ �
(
2k−4

0 + 4
)
t0 � ct0,

we see that (ii) holds if h/2 < t0 � c.
In the case c < t0, by using Lemma 3.4 we obtain

Sφ(x0,2t0) ⊂ Ω ⊂ Sφ(0,M) ⊂ Sφ

(
0,

M

c
t0

)
⊂ Sφ(0, ct0)

and thus (ii) also holds true. �
As an application of the dichotomy of sections, we obtain their volume growth.
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Proof of Corollary 2.4. Let c0 := k/c, where k, c are the constants in Theorem 3.1 and Proposi-
tion 2.3 respectively. Let S(x0, t0) be a section with t0 � c0. If x0 ∈ ∂Ω then by the Localization
Theorem 3.1, we get the desired result.

Now, we suppose that x0 ∈ Ω and let S(x0, h(x0)) be the maximal interior section with cen-
ter x0. For simplicity, we denote h := h(x0). If t0 � h/2, then the result follows from the volume
growth of interior sections; see [14, Corollary 3.2.4]. Therefore, it remains to consider the case
h/2 < t0 � c0.

In this case, by Proposition 2.3 we have S(x0,2t0) ⊂ S(z, ct0) for some z ∈ ∂Ω . Hence, by
applying Theorem 3.1 we obtain the second inequality in (2.6). To prove the first inequality in
(2.6), we first note that, if t0 < 2h then

∣∣S(x0, t0)
∣∣ � ∣∣∣∣S

(
x0,

h

2

)∣∣∣∣� C0h
n/2 � C1t

n/2
0 .

Here, the second inequality follows from the volume growth of interior sections; see [14, Corol-
lary 3.2.4]. Next, suppose that t0 � 2h. Without loss of generality, we assume that Ω ⊂ R

n+,
∂S(x0, h) is tangent to ∂Ω at 0, and φ(0) = ∇φ(0) = 0. Then by exactly the same arguments as
in the proof of Proposition 2.3, we get for some positive number a

S(x0, t0) = {
x ∈ Ω: φ(x) < axn + t0 − h

}
.

Using this and the fact xn � 0 in Ω , we can conclude that

S(x0, t0) ⊃ {
x ∈ Ω: φ(x) < t0 − h

} ⊃
{
x ∈ Ω: φ(x) <

t0

2

}
= Sφ

(
0,

t0

2

)

which together with the Localization Theorem 3.1 yields the first inequality in (2.6). �
4.2. Engulfing and separating properties of sections

In this subsection, we will establish two important tools: the engulfing and separating proper-
ties of sections, Theorem 2.1 and Proposition 2.2, respectively. These properties are equivalent.

As a first step in the proof of Theorem 2.1, we prove the engulfing property when the center
x lies on the boundary, that is, Sφ(x, t) is a boundary section. Without loss of generality, we
assume that x is the origin and we write S(t) for Sφ(0, t). Furthermore, we assume that φ and Ω

satisfy the hypotheses of the Localization Theorem 3.1 at the origin.

Lemma 4.1. There exists θ0 > 0 depending only on ρ, λ, Λ and n such that if X ∈ S(t) with
t > 0, then

S(t) ⊂ Sφ(X, θ0t).

Proof. Let t � c0 with c0 � k to be chosen later, where k = k(ρ,λ,Λ,n) is the small constant
in the Localization Theorem 3.1. Let us consider h ∈ [t, k]. Let Ah be the linear transformation
associated with the section S(h) as determined by the above theorem. Let

φh(z) := φ(h1/2A−1
h z)

for z ∈ Ωh := h−1/2AhΩ.

h
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For X,Y ∈ S(t), we define

x := h−1/2AhX, y := h−1/2AhY.

Then

Sφh
(0,1) = h−1/2AhS(h); x, y ∈ Sφh

(
0,

t

h

)

and furthermore,

1

h

[
φ(Y ) − φ(X) − ∇φ(X) · (Y − X)

] = φh(y) − φh(x) − ∇φh(x) · (y − x).

By Lemma 3.3(a), φh also satisfies the hypotheses of the Localization Theorem 3.1 in Sφh
(0,1).

Hence, by (3.9), we have for C universal

|x|, |y| � C

(
t

h

)1/2∣∣∣∣log

(
t

h

)∣∣∣∣.
Now, we take h > 0 satisfying t/h = 1/M1 with M1 > 1 is chosen so that

C

(
t

h

)1/2∣∣∣∣log

(
t

h

)∣∣∣∣ = CM
−1/2
1 logM1 � c,

where c is determined by Lemma 3.3. Given this choice of M1, it suffices to take c0 := k
M1

so as
to have h ∈ [t, k]. Then, by Lemma 3.3(b),

∣∣∇φh(x)
∣∣ � c|log c|2.

Thus,

1

h

[
φ(Y ) − φ(X) − ∇φ(X) · (Y − X)

] = φh(y) − φh(x) − ∇φh(x) · (y − x)� t

h
+ 2c2|log c|2

implying

Y ∈ Sφ

(
X,

(
1 + 2M1c

2|log c|2)t).
Hence for any X ∈ S(t) with t � c0, we get

S(t) ⊂ Sφ

(
X,

(
1 + 2M1c

2|log c|2)t).
In the case X ∈ S(t) with t > c0, then by using Lemma 3.4 we obtain

S(t) ⊂ Ω ⊂ Sφ(X,M) ⊂ Sφ

(
X,

M
t

)
.

c0



N.Q. Le, T. Nguyen / Journal of Functional Analysis 264 (2013) 337–361 349
Therefore, by taking θ0 := max{1+2M1c
2|log c|2,M/c0}, we see that S(t) ⊂ Sφ(X, θ0t) for any

t > 0. �
We are now ready to give the proof of Theorem 2.1.

Proof of Theorem 2.1. By Lemma 4.1, it remains to consider the case x ∈ Ω . Let S(x,h(x)) be
the maximal interior section with center x.

If t < h(x)/2 then S(x,2t) is an interior section and the result follows from the engulfing
properties of interior sections of the Monge–Ampère equation with bounded right hand side (see
the proof of Theorem 3.3.7 in [14]), namely,

S(x, t) ⊂ S(y, θt)

for some θ depending only on λ,Λ and n.
Now, consider the case h(x)/2 � t . Then Proposition 2.3 implies that

S(x,2t) ⊂ S(z, ct)

for some z ∈ ∂Ω . Since y ∈ S(z, ct), by the engulfing property of boundary sections from
Lemma 4.1, we have

S(z, ct) ⊂ S(y, θ0ct).

Therefore the result follows with θ∗ := max{θ, θ0c} noting that S(x, t) ⊂ S(z, ct). �
Finally, we prove the separating property of sections.

Proof of Proposition 2.2. (i) Suppose that y /∈ S(x, t). If z ∈ S(y, t

θ2∗
) ∩ S(x, t

θ2∗
), then, by The-

orem 2.1,

S

(
y,

t

θ2∗

)
∪ S

(
x,

t

θ2∗

)
⊂ S

(
z,

t

θ∗

)
.

This implies that y, x ∈ S(z, t
θ∗ ) and also by the engulfing property that S(z, t

θ∗ ) ⊂ S(x, t). There-
fore, y ∈ S(x, t) which is a contradiction and so S(y, t

θ2∗
) ∩ S(x, t

θ2∗
) = ∅.

(ii) Suppose y ∈ S(x, t). We need to prove that

S(x, t) ⊂ S
(
y, θ2t

)
. (4.13)

Suppose that it is not true. Then, we can find z ∈ S(x, t) such that

z /∈ S
(
y, θ2t

)
. (4.14)

Since y, z ∈ S(x, t), it follows from the separating property that

x ∈ S(y, θt) ∩ S(z, θt). (4.15)
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Applying the separating property to (4.14), we get S(z, θt)∩S(y, θt) = ∅. This is a contradiction
to (4.15). Hence (4.13) holds as desired. �
5. A covering theorem and maximal function estimates

In this section we establish a covering lemma of Besicovitch type. Using this lemma, we
prove a covering theorem for boundary sections and derive a global strong type p–p estimate for
the maximal function. Our results extend those in [6] where interior sections are considered. We
begin with the proof of Lemma 2.5.

Proof of Lemma 2.5. We may assume that M = sup{t : S(x, t) ∈ F}. Let us first consider the
family

F0 :=
{
S(x, t) ∈ F :

M

2
< t � M

}
and A0 := {

x: S(x, t) ∈F0
}
.

Pick S(x1, t1) ∈ F0 such that t1 > 3M/4. If A0 ⊂ S(x1, t1), we stop. Otherwise, the set

{
t : S(x, t) ∈F0 and x ∈ A0 \ S(x1, t1)

}
is nonempty and we let α2 denote its supremum. Pick t2 in this set such that t2 > 3α2/4, and let
S(x2, t2) be the corresponding section. We then have x2 /∈ S(x1, t1) and t1 > 3M/4 � 3α2/4 �
3t2/4. Again, if A0 ⊂ S(x1, t1) ∪ S(x2, t2) we stop. Otherwise, we continue the process. As a
result, we have constructed a family, possible infinite, which we denote by

F ′
0 = {

S
(
x0
i , t0

i

)}∞
i=1 with x0

j ∈ A0 \
⋃
i<j

S
(
x0
i , t0

i

)
.

We next consider the family

F1 :=
{
S(x, t) ∈ F :

M

4
< t � M

2

}
and A1 :=

{
x: S(x, t) ∈ F1 and x /∈

∞⋃
i=1

S
(
x0
i , t0

i

)}
.

We repeat the above construction for the set A1 and obtain a family of sections denoted by

F ′
1 = {

S
(
x1
i , t1

i

)}∞
i=1 with x1

j ∈ A1 \
⋃
i<j

S
(
x1
i , t1

i

)
.

We continue this process and in the kth-stage we consider the family

Fk :=
{
S(x, t) ∈F :

M

2k+1
< t � M

2k

}

and

Ak := {
x: S(x, t) ∈Fk and x /∈ sections previously selected

}
.
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In the same way as before, we obtain a family of sections denoted by

F ′
k = {

S
(
xk
i , tki

)}∞
i=1 with xk

j ∈ Ak \
⋃
i<j

S
(
xk
i , tki

)
.

We are going to show that the collection of all sections in all generations F ′
k , k � 0, is the

family that satisfies the conclusion of the lemma.

Claim 1. The overlapping in each generation F ′
k is at most κ , where κ depends only on ρ, λ, Λ

and n.

To show this, let us suppose that

z ∈ S
(
xk
j1

, tkj1

) ∩ · · · ∩ S
(
xk
jN

, tkjN

)
,

with S(xk
ji
, tkji

) ∈ F ′
k and j1 < j1 < · · · < jN . For simplicity we set xk

ji
= xi , tkji

= ti , and let t0

be the maximum of all these ti . Then, by the engulfing property of sections in Theorem 2.1, we
have

N⋃
i=1

S(xi, ti) ⊂ S(z, θ∗t0). (5.16)

For any l > i, as xl /∈ S(xi, ti) we obtain from the separating property of sections in Proposi-
tion 2.2 that

S

(
xl,

ti

θ2∗

)
∩ S

(
xi,

ti

θ2∗

)
= ∅.

Since

M

2k+1
< ti �

M

2k
,

we then conclude that ti > t0/2 and thus

S

(
xl,

tl

2θ2∗

)
∩ S

(
xi,

ti

2θ2∗

)
= ∅; S

(
xl,

t0

2θ2∗

)
∩ S

(
xi,

t0

2θ2∗

)
= ∅. (5.17)

Combining this fact with (5.16), we obtain

N∑
i=1

∣∣∣∣S
(

xi,
t0

2θ2∗

)∣∣∣∣� ∣∣S(z, θ∗t0)
∣∣. (5.18)

Let c0 be the universal constant in Corollary 2.4. If θ∗t0 � c0, then it follows from (5.18) and the
volume estimates (2.6) that
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N∑
i=1

C1

(
t0

2θ2∗

)n/2

� C2(θ∗t0)n/2

and thus

N �N1 := C2

C1
2n/2θ

3n/2∗ .

In the case θ∗t0 > c0, then (5.18) implies
∑N

i=1 |S(xi,
c0

2θ3∗
)| � |Ω| � |B1/ρ |. So by applying (2.6)

again, we get

N∑
i=1

C1

(
c0

2θ3∗

)n/2

� |B1/ρ |

yielding

N � N2 := |B1/ρ |
C1c

n/2
0

2n/2θ
3n/2∗ .

Therefore the overlapping in each generation F ′
k is at most κ , where κ := max{N1,N2}.

Claim 2. The family F ′
k = {S(xk

i , tki )}∞i=1 is actually finite.

Indeed, by Claim 1

∑
i

χS(xk
i ,tki )(x) � κ

and hence by integrating over Ω we obtain

∑
i

∣∣S(
xk
i , tki

)∣∣� κ|Ω|.

Note that M/2k+1 < tki . Therefore if we let a := min{M/2k+1, c0}, then it follows from the above
inequality and Corollary 2.4 that

∑
i

C1a
n/2 �

∑
i

∣∣S(
xk
i , a

)∣∣� κ|Ω|,

implying that the number of terms in the sum is finite and Claim 2 is proved.
From Claim 2 and our construction we get Ak ⊂ ⋃∞

i=1 S(xk
i , tki ) and thus (i) holds. Also since

each generation F ′
k has a finite number of members, by relabeling the indices of all members of

all generations F ′
k we obtain (ii).

In order to prove property (iii), let xi �= xj . If S(xi, ti) and S(xj , tj ) belong to the same gener-
ation, then S(xi, ti/α) ∩ S(xj , tj /α) = ∅ by (5.17), where α := 2θ2∗ . On the other hand, suppose
S(xi, ti) ∈ F ′ and S(xj , tj ) ∈F ′ for some p � 1. Then, by construction, xj /∈ S(xi, ti) and so
k k+p
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S(xj , ti/θ
2∗ ) ∩ S(xi, ti/θ

2∗ ) = ∅ by the separating property in Proposition 2.2. Since ti > tj , this
gives S(xj , tj /θ

2∗ ) ∩ S(xi, ti/θ
2∗ ) = ∅ and so (iii) is proved.

Claim 3. Assume 0 < r � c0. Then the number of sections S(x, t) in the family {S(xk, tk)} with
t � r is bounded by a constant N depending only on r , ρ, λ, Λ and n.

To see this, let us denote this subfamily of sections by {S(xk, tk)}k∈I . Then by using property
(iii) and Corollary 2.4 we obtain

|B 1
ρ
| � |Ω| �

∣∣∣∣⋃
k∈I

S

(
xk,

tk

α

)∣∣∣∣ =
∑
k∈I

∣∣∣∣S
(

xk,
tk

α

)∣∣∣∣� ∑
k∈I

∣∣∣∣S
(

xk,
r

α

)∣∣∣∣� ∑
k∈I

C1

(
r

α

)n/2

.

Thus the number of elements in I is bounded by N := C−1
1 (αr−1)n/2|B1/ρ |.

We next estimate the overlapping of sections belonging to different generations. Let 0 < ε < 1
and

z ∈
⋂
i

S
(
xei
ri

, (1 − ε)tei
ri

)
, (5.19)

where e1 < e2 < · · · , M2−(ei+1) < t
ei
ri � M2−ei , and for simplicity in the notation we set xi = x

ei
ri

and ti = t
ei
ri . Our aim is to show that the number of sections in (5.19) is not more than C log 1

ε
.

We only need to consider ε < 1 − 1
α

since otherwise the sections are disjoint by (iii). Let r0 :=
min{ k

cθ∗M1
, c

cθ∗M1
, c0}, where c is the constant in Lemma 3.3 and M1 is chosen as in the proof

of Lemma 4.1. Then by Claim 3 and in view of our purpose, we can assume without loss of
generality that ti � r0 for all i appearing in (5.19). Now for any j > i, we claim that

ej − ei � C log
1

ε
, (5.20)

where C > 0 depends only on ρ, λ, Λ and n. In particular, the number of members in (5.19) is
at most C log 1

ε
, which together with Claim 1 gives (iv) as desired.

To prove the claim, observe first that by the engulfing property of sections in Theorem 2.1 we
have

S(xj , tj ) ⊂ S(z, θ∗tj ) and S(xi, ti) ⊂ S(z, θ∗ti ). (5.21)

Let S(z, h(z)) be the maximal interior section with center z when z is an interior point of Ω . The
case z ∈ ∂Ω will be dealt with briefly at the end of the proof. We then consider the following
possibilities:

Case 1. θ∗ti < h(z). Then both sections S(xi, ti) and S(xj , tj ) are interior sections and (5.20)
follows from the proof in [14, Lemma 6.5.2]. We include the proof here for the sake of com-
pleteness. Let T be an affine map normalizing the section S(xi, ti). Then since ti > tj , by [14,
Theorem 3.3.8], there exists ε1 depending on ρ,λ,Λ and n such that

T
(
S(xj , tj )

) ⊂ B

(
T xj ,K1

(
tj

)ε1
)

.

ti
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By construction xj /∈ S(xi, ti) and hence by [14, Corollary 3.3.6] we obtain

B
(
T xj ,Cεn

) ∩ T
(
S
(
xi, (1 − ε)ti

)) = ∅.

We deduce from the above two relations that

Cεn < |T xj − T z| � K1

(
tj

ti

)ε1

� K12ε1 2(ei−ej )ε1

implying (5.20).

Case 2. θ∗ti � h(z) and θ∗tj � h(z)/2. We can assume that Ω ⊂ R
n+, ∂S(z, h(z)) is tangent to

∂Ω at 0, and φ(0) = ∇φ(0) = 0. Then, by Proposition 2.3, we know that

S(z, θ∗ti ) ⊂ S(0, cθ∗ti ).

Let M1 be chosen as in the proof of Lemma 4.1 and denote

C0 := cθ∗M1; h := C0ti .

Then h � k where k is the constant in the Localization Theorem 3.1. We use the notation as in
Section 3.2. We rescale φ by

φh(x) := φ(h1/2A−1
h x)

h

where Ah is the linear map in the Localization Theorem 3.1. The function φh is continuous and
is defined in Ωh with Ωh := h−1/2AhΩ , and solves the Monge–Ampère equation

detD2φh = gh(x), λ� gh(x) := g
(
h1/2A−1

h x
)
� Λ.

The section at height 1 for φh centered at the origin satisfies Sφh
(0,1) = h−1/2AhS(h), and by

the Localization Theorem we obtain

Bk ∩ Ωh ⊂ Sφh
(0,1) ⊂ B+

k−1 .

Let T := h−1/2Ah. Due to our assumptions

θ∗tj � h(z)/2 < C0ti = h,

the section Sφh
(T z, θ∗tj /h) = T (S(z, θ∗tj )) is an interior section of φh in Sφh

(0,1). Therefore,
from the proof of [14, Theorem 3.3.8], we find ε1 depending on ρ,λ,Λ and n such that

Sφh

(
T z,

θ∗tj
)

⊂ B

(
T z,K

(
θ∗tj

)ε1
)

.

C0ti C0ti
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Thus, by recalling (5.21), we obtain

|T xj − T z| � K1

(
tj

ti

)ε1

. (5.22)

We have

T xi, T xj , T z ∈ T
(
S(z, θ∗ti )

) ⊂ T
(
S(0, cθ∗ti )

) = Sφh

(
0,

cθ∗ti
C0ti

)
= Sφh

(
0,

1

M1

)
.

By Lemma 3.3(a), φh also satisfies the hypotheses of the Localization Theorem 3.1 in Sφh
(0,1).

Hence, by (3.9), T xi , T xj , T z belong to B(0, c). As a result, we obtain from Lemma 3.3(b) that

∣∣∇φh(T xi)
∣∣, ∣∣∇φh(w)

∣∣� c|log c|2 (5.23)

for any w ∈ [T xj , T z]. Since T xj /∈ T (S(xi, ti)) = Sφh
(T xi,

1
C0

), we have

1

C0
� φh(T xj ) − φh(T xi) − ∇φh(T xi) · (T xj − T xi).

By rewriting the above right hand side in the form

φh(T z) − φh(T xi) − ∇φh(T xi) · (T z − T xi) + φh(T xj ) − φh(T z) − ∇φh(T xi) · (T xj − T z)

and using the fact that T z ∈ T (S(xi, (1 − ε)ti)) = Sφh
(T xi,

1−ε
C0

), we obtain

1

C0
� 1 − ε

C0
+ φh(T xj ) − φh(T z) − ∇φh(T xi) · (T xj − T z)

� 1 − ε

C0
+ C|T xj − T z| (5.24)

where (5.23) is used to obtain the last inequality. It follows from (5.22) and (5.24) that

ε � C|T xj − T z| � C

(
tj

ti

)ε1

� C2(ei−ej )ε1

giving (5.20).

Case 3. θ∗ti � h(z) and θ∗tj > h(z)/2. We can assume that Ω ⊂ R
n+, ∂S(z, h(z)) is tangent to

∂Ω at 0, and φ(0) = ∇φ(0) = 0. Then Proposition 2.3 gives

S(z, θ∗tj ) ⊂ S(0, cθ∗tj ) and S(z, θ∗ti ) ⊂ S(0, cθ∗ti ).

Let C0, h, φh and T be defined as in Case 2. By Lemma 3.3(a), φh also satisfies the hypotheses
of the Localization Theorem 3.1 in Sφ (0,1). By this theorem and (3.9), we have
h
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T
(
S(z, θ∗tj )

) ⊂ T
(
S(0,C0tj )

) = Sφh

(
0,

tj

ti

)
⊂ B

(
0,K

(
tj

ti

) 1
4
)

,

as we can assume tj /ti < k to prove (5.20). It follows that

|T xj − T z| � 2K

(
tj

ti

) 1
4

.

We infer from this and the same estimate as (5.24) that

ε � C

(
tj

ti

) 1
4

� C2
1
4 (ei−ej )

giving (5.20).

Finally, we remark that when z in (5.19) is a boundary point of Ω , say 0 ∈ ∂Ω where Ω ⊂R
n+,

then we also obtain (5.20) exactly as in Case 3 of the interior points. Thus the proof of the lemma
is complete. �

With the help of Lemma 2.5, we are able to give the proof of the covering theorem.

Proof of Theorem 2.6. Let 0 < μ < 1/2 be arbitrary. By applying Lemma 2.5 to the family
F := {S(x, tx)}x∈O , there exists a countable subfamily, denoted by {S(xk, tk)}∞k=1, such that O ⊂⋃∞

k=1 S(xk, tk) and

∞∑
k=1

χS(xk,(1−μ)tk)(x) � K log
1

μ
. (5.25)

Let us write Sk for S(xk, tk) and S
μ
k for S(xk, (1 − μ)tk). Then we have

|O| =
∣∣∣∣∣O ∩

∞⋃
k=1

Sk

∣∣∣∣∣ = lim
N→∞

∣∣∣∣∣O ∩
N⋃

k=1

Sk

∣∣∣∣∣� lim sup
N→∞

N∑
k=1

|O ∩ Sk| = ε lim sup
N→∞

N∑
k=1

|Sk|.

Moreover, by the doubling property in Lemma 6.1(ii), we get

|Sk| � C

∣∣∣∣S
(

xk,
tk

2

)∣∣∣∣� C
∣∣S(

xk, (1 − μ)tk
)∣∣ = C

∣∣Sμ
k

∣∣.
Therefore,

|O| � Cε lim sup
N→∞

N∑
k=1

∣∣Sμ
k

∣∣. (5.26)

Next let n
μ
N(x) be the overlapping function for the family {Sμ

k }Nk=1 as in the proof of [14, Theo-
rem 6.3.3], that is,
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n
μ
N(x) :=

{
#{k: x ∈ S

μ
k } if x ∈ ⋃N

k=1 S
μ
k ,

1 if x /∈ ⋃N
k=1 S

μ
k .

Then

χ⋃N
k=1 S

μ
k
(x) = 1

n
μ
N(x)

N∑
k=1

χS
μ
k
(x)

and n
μ
N(x) �K log 1

μ
by (5.25), and hence

N∑
k=1

∣∣Sμ
k

∣∣ =
∫
Ω

n
μ
N(x)

1

n
μ
N(x)

N∑
k=1

χS
μ
k
(x) dx � K log

1

μ

∫
Ω

1

n
μ
N(x)

N∑
k=1

χS
μ
k
(x) dx

= K log
1

μ

∫
Ω

χ⋃N
k=1 S

μ
k
(x) dx = K log

1

μ

∣∣∣∣∣
N⋃

k=1

S
μ
k

∣∣∣∣∣.
We infer from this and (5.26) that

|O| � CKε log
1

μ

∣∣∣∣∣
∞⋃

k=1

S
μ
k

∣∣∣∣∣ for all 0 < μ < 1/2.

By choosing μ > 0 such that log 1
μ

= 1/(CK
√

ε ), we obtain (ii) as desired. �
We end this section by establishing some global estimates for the maximal function with

respect to sections. The proof is based on the covering lemma (Lemma 2.5) and the standard
method.

Proof of Theorem 2.7. Let Aβ := {x ∈ Ω: M(f )(x) > β} and M be the constant in Lemma 3.4.
By Lemma 3.4, we have

1

|Sφ(x, t)|
∫

Sφ(x,t)

∣∣f (y)
∣∣dy = 1

|Ω|
∫
Ω

∣∣f (y)
∣∣dy, ∀t �M,

which implies that

M(f )(x) = sup
t�M

1

|Sφ(x, t)|
∫

Sφ(x,t)

∣∣f (y)
∣∣dy, ∀x ∈ Ω.

Therefore for each x ∈ Aβ , we can find tx � M satisfying

1

|Sφ(x, tx)|
∫

S (x,t )

∣∣f (y)
∣∣dy � β.
φ x
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Consider the family {Sφ(x,2tx)}. Then by Lemma 2.5, there exists a countable subfamily
{Sφ(xk,2tk)}k such that Aβ ⊂ ⋃

k Sφ(xk,2tk) and
∑

k χsφ(xk,(1−ε)2tk)(x) � C log 1
ε

for every
0 < ε < 1/2. In particular,

|Aβ |�
∑

k

∣∣Sφ(xk,2tk)
∣∣� C

∑
k

∣∣Sφ(xk, tk)
∣∣� C

∑
k

∣∣Sφ

(
xk, (1 − ε)2tk

)∣∣
noting that |Sφ(xk,2tk)| � C|Sφ(xk, tk)| by the doubling property in Lemma 6.1(ii). But as

β � 1

|Sφ(xk, tk)|
∫

Sφ(xk,tk)

∣∣f (y)
∣∣dy � C

|Sφ(xk, (1 − ε)2tk)|
∫

Sφ(xk,(1−ε)2tk)

∣∣f (y)
∣∣dy,

we conclude that

|Aβ | � C

β

∑
k

∫
Sφ(xk,(1−ε)2tk)

∣∣f (y)
∣∣dy = C

β

∑
k

∫
Ω

χSφ(xk,(1−ε)2tk)(y)
∣∣f (y)

∣∣dy

= C

β

∫
Ω

∑
k

χSφ(xk,(1−ε)2tk)(y)
∣∣f (y)

∣∣dy �
C log 1

ε

β

∫
Ω

∣∣f (y)
∣∣dy.

Thus we have proved the weak type 1–1 estimate in (i). This together with the obvious inequal-
ity ‖M(f )‖L∞(Ω) � ‖f ‖L∞(Ω) and the Marcinkiewicz interpolation lemma (see Theorem 5 in
[25, p. 21]) yields the strong type p–p estimate in (ii). Alternatively, (ii) can be obtained by using
the same arguments as in the proof of [29, Theorem 2.8.2]. �
6. Quasi-distance and space of homogeneous type

In this section we will introduce a quasi-distance d induced by sections of solutions φ to the
Monge–Ampère equation in Ω . Moreover, we show that (Ω,d,μ) is a space of homogeneous
type, where μ := detD2φ dx is the Monge–Ampère measure. We begin with the following sim-
ple lemma.

Lemma 6.1. Assume that the convex domain Ω and the convex function φ satisfy (2.3)–(2.5).
For all x ∈ Ω and t > 0, we have

(i) if y ∈ S(x, t), then S(y, t) ⊂ S(x, θ2∗ t);
(ii) |S(x,2t)| � C|S(x, t)|.

Here θ∗ is the engulfing constant and C depends only on ρ, λ, Λ and n.

Proof. If y ∈ S(x, t), then x ∈ S(x, t) ⊂ S(y, θ∗t) by Theorem 2.1. By applying again the en-
gulfing property, we obtain S(y, θ∗t) ⊂ S(x, θ2∗ t) which gives (i).

To prove the doubling property (ii), let c0 be the universal constant in Corollary 2.4. If 2t � c0,
then (ii) follows from the volume growth given by Corollary 2.4. Now assume 2t > c0. Then we
have
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∣∣S(x,2t)
∣∣� |Ω| � |B 1

ρ
| = CC1

(
c0

2

) n
2

� C

∣∣∣∣S
(

x,
c0

2

)∣∣∣∣� C
∣∣S(x, t)

∣∣,
where the third inequality is by Corollary 2.4. The proof is thus complete. �

Let Ω ⊂R
n be a convex set and φ ∈ C(Ω) be a convex function. We define a function d : Ω ×

Ω → [0,∞) by

d(x, y) := inf
{
r > 0: x ∈ Sφ(y, r) and y ∈ Sφ(x, r)

}
, ∀x, y ∈ Ω. (6.27)

Also the induced d-ball with center x ∈ Ω and radius r > 0 is given by

Bd(x, r) := {
y ∈ Ω: d(x, y) < r

}
.

The next result is the boundary version of that in [1, Section 3] where interior sections are con-
sidered.

Theorem 6.2. Assume that the convex domain Ω and the convex function φ satisfy (2.3)–(2.5).
Let d : Ω × Ω → [0,∞) be defined by (6.27). Then the function d satisfies

(i) d(x, y) = d(y, x) for all x, y ∈ Ω ;
(ii) d(x, y) = 0 if and only if x = y;

(iii) d(x, y)� θ2∗ [d(x, z) + d(z, y)] for all x, y, z ∈ Ω .

In addition, we have

Sφ

(
x,

r

2θ2∗

)
⊂ Bd(x, r) ⊂ Sφ(x, r) (6.28)

for all x ∈ Ω and r > 0. Here θ∗ > 1 is the engulfing constant given by Theorem 2.1.

Proof. The theorem follows from Lemmas 1 and 2 in [1] with K := θ2∗ provided that the follow-
ing four conditions are satisfied:

(a)
⋂

r>0 Sφ(x, r) = {x} for every x ∈ Ω ;
(b)

⋃
r>0 Sφ(x, r) = Ω for every x ∈ Ω ;

(c) for each x ∈ Ω , the map r �→ Sφ(x, r) is nondecreasing in r ;
(d) for any y ∈ Sφ(x, r), we have Sφ(x, r) ⊂ Sφ(y, θ2∗ r) and Sφ(y, r) ⊂ Sφ(x, θ2∗ r).

Observe that (b) holds by Lemma 3.4 and (c) is obvious. On the other hand, property (d) is a
consequence of Theorem 2.1 and Lemma 6.1(i).

To verify (a), it suffices to show that
⋂

r>0 Sφ(x, r) ⊂ {x}. First, we consider the case x is a
boundary point of Ω . Then, by (3.9), we have

⋂
Sφ(x, r) ⊂

⋂
B

(
x,Cr1/4) = {x}.
r>0 r>0
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Now, consider the case x is an interior point of Ω . Let x̃ ∈ ⋂
r>0 Sφ(x, r). Then φ(x̃) < φ(x) +

∇φ(x) · (x̃ − x) + r for every r > 0. It follows that

φ(x̃) = φ(x) + ∇φ(x) · (x̃ − x),

that is, the supporting hyperplane z = φ(x) + ∇φ(x) · (y − x) touches the graph of φ at both
x and x̃. Since Ω and φ satisfy (2.3)–(2.5), φ is C1,α on the boundary ∂Ω for all α ∈ (0,1) as
observed in [21, Lemma 4.1]. In fact, we have for all x0 ∈ ∂Ω and for all x in Ω close to x0,

∣∣φ(x) − φ(x0) − ∇φ(x0) · (x − x0)
∣∣� C|x − x0|2

(
log |x − x0|

)2
.

Consequently, by Caffarelli’s Localization Theorem [2], we know that φ is strictly convex in Ω .
Therefore, we infer that x̃ = x and so property (a) is proved. �

It follows from properties (i)–(iii) in Theorem 6.2 that d is a quasi-distance on Ω and (Ω,d)

is a quasi-metric space. Moreover, as a consequence of Lemma 6.1(ii) and (6.28) we obtain the
following doubling property for d-balls:

∣∣Bd(x,2r)
∣∣ � ∣∣S(x,2r)

∣∣ � C

∣∣∣∣S
(

x,
r

2θ2∗

)∣∣∣∣� C
∣∣Bd(x, r)

∣∣ for all x ∈ Ω and r > 0,

where C depends only on ρ, λ, Λ and n. Thus, (Ω,d, | · |) is a doubling quasi-metric space and
hence it is a space of homogeneous type; see [8, Remark on p. 67]. We refer readers to [8,9] for
some results and analysis on this type of spaces.
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