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Consider a one-dimensional slab of ice occupying an interval 0 <x <L. 
The initial temperature of the ice is GO. Heat enters from the left at a rate 
q(t). As the temperature at x = 0 increases to 0°C the ice begins to melt. We 
assume that the resulting water is immediately removed. The ice stops 
melting when the temperature at its left endpoint becomes strictly negative; 
due to the flow of heat q(t) melting will resume after a while, the resulting 
water is again immediately removed, etc. 

This physical problem was studied by Landau [4] and Lotkin [5], who 
obtained some numerical results. 

In this paper we shall formulate the above model as a Stefan problem with 
Signorini boundary conditions at the moving boundary. We shall establish 
existence and uniqueness theorems and study regularity and some geometric 
features of the free boundary. 

In Section we state an existence theorem; the proof is given in Sections 2 
and 3. In Section 4 we prove a uniqueness theorem. In Section 5 we estimate 
the number of vertical segments of the free boundary. Finally, in Section 6 it 
is shown that the free boundary is in general not in Clta for CL > f; it is 
always in C312. 
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1. THE STEFAN-SIGNORINI MODEL 

We denote the temperature of the ice by -u(x, t) and the free boundary by 
x = h(t). The Stefan-Signorini problem consists of finding functions u(x, t), 
h(t) satisfying: 

-u,, + u1 = 0 if h(t) < x < L, 0 < t < T, (1.1) 

u,(L t> = 0, if O<t<T, (1.2) 

4x7 0) = uo(x) if Otx<L, (1.3) 

u(W), t) > 0, -UW, 4 + g(t) > 0, 

44th t)[-M(t), t> + g(t)] = 0 for 0 < t < T, 
(1.4) 

and 

h’(t) = -ux( h(t), t> + g(t) for O<tcT (1.5) 

where h(0) = 0,O < h(t) < L; further, either 

T=co or h(T- 0) = L. (l-6) 

We shall always assume that 

4l(x) > 0, g(4 > 0, u;(L) = 0, 

u, E C2[0, L], g E C’[O, q and -4(O) + g(O) > 0, (1.7) 

~0(0)(-Kx0) + g(O)) = 0. 

THEOREM 1.1. There exists a solution of the Stefan-Signorini problem. 

The solution is classical in the sense that h E C’(O, T] and U, is 
continuous in h(t) ,< x <L, 0 < t < T. 

By integrating the heat equation (1.1) over h(t) < x < L, 0 < t < f, and 
letting ?--+ T we obtain the conservation of energy law: 

L + i,I uo(x) dx = 1 g(t) dt. (1.8) 

Consequently, if 

I 

cc 
g(t) dt = 03 

0 

then T must be finite. 
In Section 2 we study the Signorini problem (l. l)-(1.4) for a fixed 

function h(t); this will be used, in Section 3, to prove Theorem 1.1. 
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2. A SIGNORINI PROBLEM 

Consider the Signor% problem (1.1)-( 1.4) for a fixed function h(t) 
satisfying: 

h E C’[O, 7-1, h(0) = 0, h’(f) > 0, h(T) < L. (2.1) 

LEMMA 2.1. The problem (1. I)-( 1.4) has a unique classical solution u; 
further 

0 < u,(W), 0 + g < c, 3 l%l~G?~ (2.2) 

I%xI f I%1 G CT (2.3) 

Iux(x, LJ- u*(x, a < Clt, - t*lli2 (2.4) 

where C,, C are constants: C, depends only on sup g and the C’ norm of u,, 
and C depends on the C’ norm of g, the C* norm of u,, the C’ norm of h 
and any positive lower bound on L - h(T). 

Prooj Set I= u,(O), I, = --u;(O) + g(0). Then I > 0, I, 2 0, II, = 0. We 
can choose a family of C* functions /3,(t) in C’(-co, 00) (0 < E < 1) 
satisfying: 

P,< 0, P:> 07 (2.5) 

P,(O) = -1, if I= 0, PXO = 0 ifl>O, (2.6) 

and 

( 0 if t > (1 + 1,)~ 

P,(t) = t + E 
I- & 

if tc--I,& (2.7) 

for some positive constant I, depending on 1, 1,. 
Consider the penalized problem 

-u,, + U[ = 0 for h(t) < x < L, 0 < t < T, 

u,(L, t) = 0 for 0 < t < T, 

u(x, 0) = u,(x) for 0 <x CL, 

-u,( h(t), t) + P,(u(h(t), t)) + g(t) = 0 for 0 < t < T. 

(2.8) 

(2.9) 

(2.10) 

(2.11) 
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By well-known results [l] this system has a unique classical solution uE; 
notice that the consistency conditions of the initial and boundary data are 
satisfied at (0,O) (by (2.6)) and at (L, 0) (since u&5) = 0). 

We shall derive the estimates 

-co 8 < u&G t) < c,, 

0 < - u,,(W), f) + g(t) < co, 

I&(X9 t)l G co> 

bc,rk Ql -t- I%,& t)l G c, 

I %&> t,> - ~J-c &)I < c I t, - t, I ‘j2 

where C,, C are as in the statement of Lemma 2.1. 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

If u, attains negative minimum smaller 
(to E (0, T]) then u,,(h(t,), to) > 0; hence 

P,(uXwo))~ hJ -I- 

than -1,~ at some point (h(t,), to) 

From (2.7) we then obtain 

& f &> > 03 

that is, u,(h(t,), to) > -C,E. Since u, cannot take minimum on {x = L 1 and 
since u0 > 0, the first estimate of (2.12) follows. 

Next, if U, takes a positive maximum larger than max U, at some point 
(h(t,), to) (to E (0, T]) then u,,, < 0 at that point, so that 

Since g(l,) > 0, we deduce that P,(u,(h(t,), tJ) < 0, so that by (2.7) 

This completes the proof of the second estimate in (2.12). 
Next (2.13) follows from (2.12), (2.1 l), and (2.14) is a consequence of the 

maximum principle applied to u,,,. 
In order to derive (2.15), (2.16) we may assume that h E C*[O, 7j, 

otherwise we approximate h by C2 functions hj and, after deriving (2.15), 
(2.16) for the corresponding uE= U,,j, letj+ a~. 

Consider the function v = u,,,. It satisfies: 

-?I,, + v, = 0, v,(L, t) = 0, u(x, 0) = u{(x), 
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and, by differentiating (2.11) with respect to 4 

-v, + MUE(W)~ 4) - h’(t)1 v 

+ PXuXW), t)) h’(t) u,,,(W 4 + g’(t) = 0 for 0 < t < T. 

Consider the function w  defined by 

v = we a(x-(L-mP+ yt 

where 

6 = +(L - h(T)). 

We compute 

-w,, + w, - 4a[x - (L - S)] w,+(y-2a[1+2a(x-(L-6))*]}w=0, 

w,(L, f) + 2cdw(L, f) = 0, 

-w, + [/I;( . . . ) - h’(t) + 2a(L - h(t) - S)] w 

= -[g’(t) +p;( . . . ) h’(f) u,~,] e-a(x-(L-s))2-Yt on x = h(t), (2.17) 

w(x, 0) = u;(x) e-a(x-(L-6))*. 

Taking 

a = (l/26)(1 + max l/r’\), y= 2a(l t 2oL*), 

we find that 

{y-2a[l t2a(x-(L-6))*]faO, 

[lJd( aa- )-h’(t) + 2a(L - h(t) - S)] >, 1 + /3:( ..a ). 

(2.18) 

(2.19) 

We can modify the function q,(x) near x = 0 and x = L into functions 
noi with ~~~(0) > 0 such that for the corresponding u,,~ the initial and 
boundary conditions satisfy the consistency conditions at (0, 0), (L, 0) and 

uOj + uO uniformly in 0 < x < L, 

l"OjlC~[O,L~ G l + l"OlC210,Ll' 

But then the corresponding w  = wi is continuous at (0, 0), (0, L) (we use here 
the assumption that h E C*[O, T]). Recalling also (2.18), we see that the 
maximum principle can be applied to Wj. Since wj -+ w  as j -+ co, we may 
assume that the maximum principle applies also to w. 
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Notice that fw cannot take maximum on x = L. If iw takes maximum on 
x = h(t), then fw, ( 0 and then, by (2.17), (2.19) and (2.13), 

max,w,< maxIg’/+PX.*.)C ,<C 
\ 

1+/q***) * 

Finally, if i-w takes maximum on t = 0 then max 1 WI < max 1~; (. 
Recalling the definition of w  we deduce that ) u,,,/ < C; hence also 
( u,,,,( < C, and (2.15) is proved. 

To prove (2.16) let 0 < f, < f2 < T, r = (t2 - t,)“*. Then 

12 

i i 

XfT 
= dt 

t1 x 
~w.x,(J’~ f> & = jt; [%.,x(x + r, t) - uzxx(x, t)] dt 

= O( I)(& - tJ. 

Hence there exists a point r E (x, x + r) such that 

lu,,,(r,t,)-uu,,(r,t*)l <Clf, -p. 

We can now estimate 

I~&~ tJ - 4J(XI &)I 

G I%,(-% t1> - U6,& tJl + I%&~ 4) - ~E,X(O &)I + c It, - v2 

6 (C + sup k,XXINI - t2PZ9 

which proves (2.16). 
In view of the estimates (2.12)-(2.16) there is a sequence E + 0 for which 

u,-+ u, U&X -P ux uniformly, 

U6,XX -+ uxx in the L”-weak star topology, 

and u > 0 (by (2.12)). All the assertions of the theorem regarding the 
solution of (1. l)-( 1.4) are satisfied; the only point that requires an argument 
is the last condition in (1.4), namely, if u(h(t,), to) > 0 then 

-u,w,)~ &I) + &o> = 0. (2.20) 

But since u,(h(t,), t,) > c > 0 for some c > 0 and all E small enough, we have 
/3,(uXh(t,,), to)) = 0 and thus, by (2.1 l), 

-~~,,w,)~ GJ + &> = 0, 

which gives (2.20). 
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To prove uniqueness we rewrite (1. 1 )-( 1.4) as a variational inequality: 

jj 
n 

G - ~1, + j* (v - u)(W), 0) g(t) dt 
0 

+ jj %(Q - u> 2 0 VV E H’(f2) n Co@), V( h(t), t) > 0 (2.21) 
I;, 

where B = ((x, t); h(t) ( x < L, 0 < t < T}. If ui is another solution then 
take u = u1 in (2.21) and take v = u in the corresponding variational 
inequality for u, . Adding the inequalities we easily find that 

jjD (@ - QJ2 + + j' (u - u,)'(W), t) h'(t) dt < 0, 

which implies that u E u i. 

3. PROOF OF THEOREM 1.1. 

Denote by C, the class of functions h(t) in C’[O, T] satisfying: 

h(0) = 0, O<h’(t)<A 

where A is a fixed positive number and T is small enough so that 

h(T)<AT<L. 

If u is a solution of (1. l)--( 1.4) then by integrating the heat equation (1.1) we 
find that 

= I,‘&) dt + i:,*, 4x, t) dx - jL uo(x) dx + j’ u(h(t), t) h’(t) dt. (3.1) 
0 0 

For any h E C, we solve the Signorini problem (1. l)-( 1.4) and set Sh = & 
where 

h”(t) = j*&‘(t) + jL u(x, t) dx - j” u,,(x) dx -t j’u(h(t), t) h’(t) dt. (3.2) 
0 h(t) 0 0 

If we can show that S has a fixed point in C, then from (3.1), (3.2) it 
follows that 
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40 = it (g(t) - u,@(t), t)) & 
‘0 

i.e., (1.5) is satisfied. Thus U, h will then form a solution of (1.1~(1.5). 
We shall consider ZA as a compact subset of C/O, T]. 
To-show that S maps ZA into EA we observe that h” is again in C’(0, rj 

and h(0) = 0. Further, 

Finally, by (2.2), 

h;(t) < co (3.3) 

where Co is a positive constant independent of h. Hence if we take A = Co 
then S maps ZA into itself. 

We next show that S is a continuous mapping. We can write 

h;(t)-h;(t)=jL u,(x,f)dx-jL Qx, 1) dt 
h](t) h,(t) 

Setting 

and writing 

z&(x, 1) = 
I 

ui(x3 t) if h,(t) < x <L, 

u,(Wh 4 if x < hi(t), 

ho(t) = minlh,(t), h,(t)}, 

s ’ ui(hi(t), t, hf(t) 
0 

= jl ui(hi(t)v t) h;(t) dt + jt Ui(hi(t), t) f (hi(t) - ho(t)) dt 
0 

I 
[hi(t) - ho(t)] dt 

+ ui(hi(t>3 t)(hdt> - ho(t)) 
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we find that 

221 

Set 

Qi= ((x7 t); hi(t) <X < L,O < t < T}, l2=fl,UR,. 

From the variational inequality for ui in R, we get 

+ j j  
a 

ci,r(” - u’i> - j jQ,, ;i,tCv - ;i) >, O* 
I 

Taking v = Gz for i = 1 and v = zZ, for i = 2 and adding, we obtain 

(3.5) 

Clearly 

1 L =- 2 I, (t) (4 - &I* dx + +j; [(u'l - 4)*lx+,w W) dt. (3.6) 
0 
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Next 

by (2.2). (3.7) 

Since in J2\J2, 

we also have, by (2.3), 

lJ,(,<Cmeas(n\~,)~CmaxIh,-h,(. 

Similarly 

IJ,I,<CmaxJh,-h,I. 

Substituting the estimates (3.6)-(3.9) into (3.5), we obtain 

(3.8) 

(3.9) 

jjQ (($1 - u”2M2 + f j;,,, (6, - u’,>‘(x, t> dx 0 

+ +j; l@l - U;)21x=ha(l) hh(t)dt<Cmax(h,-h,(. (3.10) 

This estimate will be needed for proving the continuity of S. 
Returning to (3.4) we can write 

/h;(f)-h;(f)I,<C /j:,, [i,(x,f)-C2(x,f)12dx/ I’* + Cmax(h, -h,l 
0 

+jflu‘,(h,(f).f)-n,(h,(f),f)lh;(r)df 
0 

+ j' I4W)r 4 - Wo(4 f)l h;(f) df 
0 

+ j' I u”,(W), 0 - Wdf), 4 (h;(f) df 
0 

Clearly 



Next, by (3.10), 

and 

J5 G c ! j : I ~,(hJ(~), 0 - u’,(h,(t), t)! I2 h;(t) dt 
I 

l/Z 
< C(max 

Consequently 
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Similarly 

1 h, - h2)p2. 

that is, 

lit,(f)- i2(2(t)( < C{max jh, - h,(}“‘; 

II% - Sh,ll < c llh, - h2V2 (3.11) 

with the ClO, T] norm. 
We have thus proved that S maps a convex compact subset C, of C[O, Tj 

into itself and it is continuous. By Schauder’s fixed point theorem it follows 
that S has a fixed point in C, . This gives a solution of (1. l)-( 1.5) in 
O<t<T. 

BY (2.3) 

I ux,(x, T) I G c (3.12) 

where C depends only on sup [u{ 1, the C’ norm of g, sup ( h’ 1 and a lower 
bound on L - h(T). Since I/z’(t)\ < C, (cf. (3.3)), C then depends only on a 
lower bound on L - h(T) and on the data uO, g. 

We can now proceed step by step to construct a solution in T < t < T,, 
T, < t < T,, etc. By the previous observation, the constants in the estimates 
(3.3) at T, T,, T,, etc., all remain uniformly bounded as long as 
L - h(T,) > 6, and inf(Tj - Tj- 1) remains uniformly positive; here 6 is any 
given positive number. It follows that a solution of (l.l)-(1.5) can be 
constructed for all t < T, where either T= co and h(t) < L for all t < co, or 
T < co and h(t) -+ L as t + T. This establishes (1.6), and the proof of 
Theorem 1.1 is complete. 

Remark 3.1. From (2.4), (1.5) it follows that 

h(t) E C3’2[0, T). (3.13) 

Hence also uXX, U, belong to C;;?” for any a < f (up to the boundary 
x = h(t)). 
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4. UNIQUENESS 

DEFINITION. Let U, h be a solution of (l.l)-( 1.5). Suppose there exists a 
sequenceO=t,<t,<t,<...<t,-+Tsuchthat 

u@(t), t> > 0 in tli_, < t < tzi. (4.1) 

u(h(t), t) = 0 in t,i < t < t*j+j ; (4.2) 

then we say that h has a discrete set of switchings, (tj}. 

Notice that (4.1) implies 

h’(t) = 0 if tzi_, ,< t < tzi 

whereas (4.2) together with (1.5) form the Stefan conditions on the free 
boundary. The Stefan conditions imply that h(t) is C” and, if g(t) is 
analytic, h(t) is also analytic [2]. 

THEOREM 4.1. There exists at most one solution of the Stefan-Signorini 
problem having a discrete set of switchings. 

Existence of such a solution will be proved in Section 5. 

ProojI Suppose u,, h, and uZr h, are two such solutions. Then, for a 
small enough E > 0, only the following cases may occur: 

h,(t) = h*(t) = 0 if 0 < t < E, 

ui(hi(t), t) = 0 if 0 < t < s (i = 1, 2), 

h,(t) = 0, u,&(t), t) = 0 if 0 < t < .s, 

h,(t) = 0, u,@,(t), t) = 0 if 0 < t < E. 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

In case (4.3) U, and u2 are solutions of the same second initial-boundary 
value problem and, therefore, U, = u2. In case (4.4), U, = u2 by uniqueness 
for the Stefan problem. 

In case (4.5), h2(t) > 0 and by the maximum u, > u2. If we integrate the 
heat equations for U, and u2 and compare the results, we obtain 

-h,(t) = j; 

L 

u,(x, t) dx - 
I 

u,(x, t) dx. 
h(t) 

Since the right-hand side is >O, we conclude that h*(t) z 0. The case (4.6) is 
treated similarly. 
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5. FINITE NUMBER OF SWITCHINGS 

In this section we assume: 

there exists a finite number m of disjoint closed intervals J, 
such that 

-u;(x) -t g(O) < 0, 

-u;(x) + g(O) > 0 

-u;(x) + g(0) & 0 in J,, and 
(5-l) 

in [O, LI\U JI, 

g(t) > 03 g’(t) > 0 if O<t<T. (5.2) 

THEOREM 5.1. If (5.1), (5.2) hold then there exists a solution u, h for 
which there exist at most m + 1 disjoint closed intervals .f, in [0, T) such that 

h’(t) E 0 

h’(t) > 0 

in each .f,, 

in [ 0, T)\.f, . 

We express the assertion by saying that the boundary has at most m + 2 
switchings. 

LEMMA 5.2. Let w  be a solution of 

- w,,+ w,=o in R = ((x, t); h(t) < x < L, 0 < t < T}, 

w(W), 0 2 0 for O<t<T, 

w(L, t) = 0 for 0 <t < T, 

w(x, 0) = $(x) for 0 < x < L, 4 continuous. 

Suppose that there exist m disjoint closed intervals J, in [h(O), L] such that 

4(x) < O! tie> g 0 in each J,, 

Ye> > 0 in [h(O), L]\U J,. 

Then, for any o E (0, T), there exist at most m disjoint open intervals in 
(h(a), L) where w(x, u) < 0. 

Proof. Suppose there are at least p such intervals J, for w(x, 0). Denote 
by S, the component of {w < 0) in R n {t < cr} which contains I,. Then 

Sk n S, = 0 if k f 1. (5.3) 



226 FRIEDMAN AND JIANG 

Indeed, otherwise, by the maximum principle, 

w(x, u) < 0 on an x-interval containing both .& and -7,. (5.4) 

Since w= 0 on x= L, w> 0 on x= h(t), w  cannot take its negative 
minimum in $, on x = L or on x = h(t). Finally, if ~3, c (t > 0) then w  = 0 
in S,, a contradiction. We conclude that ,?, must intersect (f = 0) at points 
where w(x, 0) < 0, i.e., ,?, intersects some interval J,,. If ,!?, with k # 1 also 
intersects J,, then, again by the maximum principle, we deduce that (5.4) 
holds; a contradiction. We conclude that p < m. 

Proof of Theorem 5.1. Let D be a solution of 

u, - vxx = 0 if h(t)<x<L,O<t<T, 

w 0) = g(O) if O<x<L, 

~(h(4 4 = g(f) if O<tcT, 

v,(L, t) = 0 if O<tcT, 

and set w  = -u, + U. 
For any u E (0, r) denote by k(u) the number of disjoint intervals Ij where 

w(x, o) < 0 and let 

s,(u) < s*(u) < **a < s,(u) 

be their endpoints in h(u) < x < L. 
The proof of Lemma 5.2 shows that k(u) is monotone decreasing in u. 
Notice that any curve x = sj(t) cannot have discontinuity of the second 

kind. Indeed, if lim I+0 sj(t) does not exist then w(x, u) = 0 on some x- 
interval, so that u,(x, a) - U(X, a) = 0 (by analyticity of uX(x, a), U(X, a) in 
x). Taking x = L we get v(L, u) = 0. But since g > 0, u > 0 and consequently 
u takes minimum at (L, a). This implies (by the maximum principle) that 
v,(L, a) < 0, a contradiction. 

If for some j, w(x, t) < 0 for sj(t) < x < sj+ ,(t) if t < 7 and sj(7 - 0) = 

sj+ 1(7 - 0) then k(t) < k(z - 0). 
Consider now a maximal interval 

Ij : Sj(U) < X < Sj+ l(U) 

where W(X, U) < 0, and sj(U) > h(u), sj+ ,(u) < L. (5.5) 

Since, as mentioned above, w(x, u) is analytic in x, there exist intervals 

Sj(U) - 6 < X < Sj("), sj+l(")<x,<sj+~(u>+6 (6 > 0) 
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where w(x, a) > 0. By continuity we deduce that 

W(Sj(U) - 6, t) > 0, W(Sj+ ,(a) + 6, t> > 0 if o<t<a+s 

for some E > 0. If (5.5) holds for any maximal interval where w(x, o) < 0, 
then we conclude that k(t) = k(o - 0) for u < t < u + E. 

If for a maximal interval Zj where w(x, a) < 0 we have Sj(U) = h(u), no 
new negative interval for w  can start to the left of Zj for t > a; this indeed 
follows from the proof of Lemma 5.2. A similar assertion holds in case 
sj+,(u)=L. 

From the above analysis it follows that there exist at most 2m + 1 
domains Ri bounded by some of the curves x = sj(t), a segment on the x-axis 
and an arc Zi on the free boundary such that in each Qi either w  > 0 or 
w  < 0, and 

U Zi coincides with the entire free boundary. 

Set 

ri = ((h(f), t); ui ,< t < Ti}. 

Consider first a domain Qi where w  < 0. Since w(h(t), t) > 0, we must 
have 

w(h(t), t) = 0 if ui<t<ti, 

and (1.5) gives h’(t) G 0. 
Consider next a domain Ri where w  > 0. We claim: There exists a point 

t, E [ui, ri] such that 

h(t) = 0 if u,<t<t,, 

h’(t) > 0 if t, < t < ri. 

To prove this suppose that 

h’(t) = 0 in some interval t, < t < t, 

where ui < t, < t, < ri, and 

NW,), t,) = 0. 

Then 

(5.6) 

40 = h(td 
w(h(t), t) = h’(t) = 0 

if t, < t < t,. 

if t, < t < t,. 
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Since w  > 0 in Qi, w  attains minimum in bi at (h(t), t) (for any t E (tl, tz)) 
and the maximum principle gives 

Since g’ > 0, u takes in {(x, t’); h(t’) < x < L, 0 < t’ < t} maximum at the 
point (h(t), t); hence 

u,(W), t> < 0. 

Consequently 

24, = u xx = u, - w, < 0 

Since also h’(t) = 0, we get 

at (W), 0 

It follows that 

g z@(t), t) < 0. 

a contradiction. 
We conclude that a maximal interval where h’(t) = 0 must be of the form 

ci < t < t, (it is therefore unique). Now define 

t, = inf{t; ui < t < ti, u(h(t), t) = 0). 

Since h’(t) = 0 if u(h(t), t) > 0, the preceding result implies that 

u@(t), t) > 0 if ai<t<to, 

z@(t), t) = 0 if t,<t<ri. 
(5.7) 

Therefore h’(t) = 0 if cri < t < t,. We next claim that h’(t) > 0 if t, < t < ri. 
Indeed, otherwise there is a t, E (to, ti) such that 

h’(t,) = 0. (5.8) 

Then, by (1.5), 

w(W,), t*> = 0. 

Since w  > 0 in fii, the maximum principle gives 

w,(WA Cl> > 0. 

Since also u,(h(t,), tl) < 0, 

%,W,h tA = u,@(t,), t,) < 0. (5.9) 
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On the other hand, by (5.7), (5.8) 

O= [$4W,t)]t=t,= LO’ + u,lW,)~ tJ = W@,h td 

contradicting (5.9). 
We have thus proved that 

h’(t) = 0 if oi<t<to, 

h’(t) > 0 if to < t < ri 

provided w > 0 in ai. 
Recalling also h’(t) E 0 in ui < t < ri provided w < 0 in 52,, the proof of 

Theorem 5.1 is complete. 

Remark. Suppose g = const so that v = g(0). If w < 0 in fii then 

-$ Wt), 0 = u,(W), Oh’(t) + u,(W), t> 

= u,(h(t), t) = -W,(h(t), t) > 0 (ai < t < pi) 

(since w = 0 on x = h(t)), so that u increases along the free boundary. On 
the other hand, if w > 0 in Ri then 

-$ u(h(t), t) = -w,(h(t), t) < 0 for ui < t < to 

(by the maximum principle, since w(h(t), t) = 0), so that u(h(t), t) is strictly 
decreasing. 

6. REGULARITY OF THE FREE BOUNDARY 

As mentioned in Remark 3.1, h(t) E C3’*[0, 7). In this section we show 
that this is the optimal regularity, i.e., in general, 

h G!G Cl+= if a>+. (6.1) 

We take for simplicity the case g(t) E const and U,,(X) for which there is 
just one switching, and 

u,(O) > 0, -u;(o) + g(0) = 0. 

Thus h(t) = 0 if 0 < t < to, h’(t) > 0 if t > to. By the maximum principle, 
w, > 0 at (h(t,), t,), i.e., 

-~,,(O, t,) > 0. (6.2) 

505/51/2-6 
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We shall show that 

h’(t) = - ‘xx$to’ (t - toy2 + o(l t - toI 1’2); (6.3) 

this will establish (6.1). 
For simplicity we replace t - to by t. Then u is a solution of the Stefan 

problem for t > 0, with 

u,(L t) = 0, 

u(x, 0) = 4(x) (4(x> = 4x3 to)), 

Wt), t) = 0, 
dh 

dt = -u,(h(t), t) t g. 

We can represent the solution in the form 

4~ 4 = j’ N(x, t; t-3 0) Q(T) & 
0 

+ j; Wx, c h(r), r) u,@(t), r) dr 

(6.4) 

where 

N(x, t; r, r) = K(L - x, t; L - <, z) + K(x - L, t; L - r, s), 

K(x, t) = (4m-“2 exp( -x2/4t). 

Differentiating (6.4) with respect to x and letting x --) h(t) we obtain, using 
standard jump relations (see [ 1, 3]), 

+ [g -H(t)] = -N(h(t), t; <, 0)&i% + jr N(h(t), t; <, O)#) dtl 

t j; N,@(t), t; h(r), r)[ g - H(r)] dr 

where H(t) = h’(t). From this we easily obtain 

H(t) = + g - f WW), t; 6 O)[#‘(O) t $“(O)t + o(l)] dr 
0 

- g jt K,(W), t; h(t), t) dr 
0 

+ j; K,@(t), t; h(z), T) H(r) dr + O(t). 
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Substituting 

in the first integral on the right with N replaced by K, we find that it is equal 
to 

All the remaining integrals can be estimated by o(t). Since 4’(O) = g, (6.3) 
follows. 
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