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We discuss phantom metrics admitting Killing spinors in fake N =2, D = 4 supergravity coupled to vector
multiplets. The Abelian U (1) gauge fields in the fake theory have kinetic terms with the wrong sign. We
solve the Killing spinor equations for the standard and fake theories in a unified fashion by introducing
a parameter which distinguishes between the two theories. The solutions found are fully determined in
terms of algebraic conditions, the so-called stabilisation equations, in which the symplectic sections are

related to a set of functions. These functions are harmonic in the case of the standard supergravity theory
and satisfy the wave-equation in flat (2 + 1)-space-time in the fake theory. Explicit examples are given
for the minimal models with quadratic prepotentials.
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1. Introduction

In recent years, a good amount of research activity has been
focused on the classification of solutions preserving fractions of
supersymmetry in supergravity theories in various space-time di-
mensions. Finding new gravitational solutions by solving first order
Killing spinors differential equations is certainly an easier task than
solving for the coupled second order Einstein equations of motion.
Building on the work of Gibbons and Hull [1], Tod in [2] performed
the first systematic classification for all metrics admitting Killing
spinors in four-dimensional Einstein-Maxwell theory. The solutions
with time-like Killing spinors turn out to be the known IWP solu-
tions [3] which in the static limit reduce to the MP solutions [4].
More recently, techniques, partly based on [5], were implemented
in the classifications of supersymmetric solutions. This was first
done in [6] and later has been a very powerful tool in the classifi-
cation of solutions in supergravity theories in four and five space-
time dimensions (see for example [7]). This classification included,
in addition to the standard ungauged and gauged supergravities,
fake de Sitter supergravity theories which can be obtained by an-
alytic continuation of anti de Sitter supergravity. It must be noted
that de Sitter supergravities can also be obtained by a non-linear
Kaluza-Klein reduction of the so called * theories of Hull [8]. The
reduction of IIB* string theory and M* theory produced de Sitter
supergravities with vector multiplets in four and five space-time
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dimensions [9]. A new feature about these theories is that they
come with gauge fields with the non-conventional sign of kinetic
terms in the action. We shall refer to such gauge fields as anti
or phantom fields and gravitational solutions to such theories as
phantom solutions.

Phantom black hole solutions have been considered and anal-
ysed in [10]. Also, phantom solutions have been used by many
authors in astrophysics and in the field of dark matter (see for
instance [11] and references therein). In a recent work [12], met-
rics with space-like Killing vectors admitting Killing spinors in
four-dimensional Einstein gravity coupled to a phantom Maxwell
field were found. These solutions can be considered as the time-
dependent analogues of the IWP metrics of the canonical Einstein-
Maxwell theory. While the IWP metrics are expressed in terms of
a harmonic complex function, the phantom analogue is expressed
in terms of a complex function satisfying the wave-equation in a
flat (2 + 1)-space-time.

Generalisations of the IWP solutions in the context of N =2
supergravity action coupled to matter multiplets were found some-
time ago in [13]. These stationary solutions are generalisations of
the double-extreme and static black hole solutions found in [14].
In our present work, we will generalise the results of [12] to four-
dimensional N = 2 supergravity theory coupled to vector multi-
plets. We shall consider the action

1 _
e lL= SR- gapdpztorzt

2
K -
- (ImNUF’ FJ 4 ReNjF! - Ff) : (11)
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where we used the notation F'-F/ =F| F/* and F/ =x F/,
[=0,...,n. For ¥ =i, this is the action of the standard N=2, D =
4 supergravity theory coupled to vector multiplet. For k =1, this
represents the action of a fake theory where the gauge field terms
in the action come with the opposite sign. The n complex scalar
fields, z4, of N =2 vector multiplets are coordinates of a special
Kahler manifold and g,z = 94935K is the Kdhler metric with K
being the Kdhler potential. The structure of the scalar fields and
relations of special geometry remain unaltered in the fake case.
For details of special geometry, we refer the reader to [15] and
references therein.

In what follows, we give some details and relations of special
geometry which will be relevant to our discussions. A useful def-
inition of a special Kdhler manifold can be given by introducing
a (2n + 2)-dimensional symplectic bundle over the Kihler-Hodge
manifold with the covariantly holomorphic sections V),

V= L' =eK/2 X! [=0 n, D;V=0 (1.2)
“\M )™ Fp ) e TAT T '

where DV = (BA — %aAK) V and DyV = (8A + %BAI() V. These
sections obey the symplectic constraint

i(i’M, —L’M,) —1. (13)

The Kihler potential can be obtained from the holomorphic sec-
tions by

e K i (X'F, - x'F,) . (14)
The coupling matrix, N, can be defined by
Fi(2) =NyX!(2). DaFi(2) = NyDaX'(2). (15)
We also note the very useful relations

_ _ 1 _

g B DALM DL = = (ImMME— M1 (1.6)
Fia X' — X'9,F; =0, (1.7)
Also, one can derive the relations [16]

Dalldz? = d+iA) L', (1.8)
dM; — 2ImAjL! A = NydL? (1.9)
A=MdL' — L'dm;, (1.10)
where the U (1) Kahler connection A is defined by
i _
A:—E(E)AKdzA — d3Kkdz"). (111)
The Killing spinor equations we shall analyse are given by
i
(Vi + iAuVS
S imagy - F I—i J =0 12

+Zlm yy - F ([mL —iysRel )yM)s_ , (1.12)
and
K B - . B -

S mAyy - F/ [Im(gABDBL’) —iys Re(gABDBLI)] P
+yHa, (RezA—i)/s lmzA)a‘:O. (113)

Here V,, = (0, + }ly.a)ﬂ) and & are Dirac spinors. For k¥ =i,
those represent the vanishing of the supersymmetry variations, in
a bosonic background, of the gravitini and gaugini in the standard
N =2, D =4 supergravity theory coupled to vector multiplet. For

k =1, those represent the vanishing of fake supersymmetry trans-
formations for a theory where all the gauge fields terms in the
action come with the opposite sign.

In our analysis of the Killing spinor equations, we follow the
method of spinorial geometry. We write the spinors as complex-
ified forms on R2. A generic spinor, &, can therefore be written
as

e =11+ pie +oe'?, (1.14)

where e!, e2 are 1-forms on R%, and i=1,2; el2=e! Ae?. A, u;

and o are complex functions.
The action of y-matrices on these forms is given by

Yo=—€ A4, y1=el A+,
Va=e2A+ia, ys=ie! A—iy). (115)
and ys is defined by y5 =iyp123 where
ysl=1, yse?=e' ysel=—e i=1,2. (1.16)
Using the results of [17], we define
1 .
Y+ = E(Vz +y) = ﬁlez,
1
r-=5r-r= V2e 1,
1 . .
n="z0+tir =2ig,
1 .
Yi= ﬁ(m —iy3) =~/2e'A, (117)

where the non-vanishing metric components in this null basis are
given by g, =1, g;7 = 1. The canonical forms of the spinor are
basically representatives up to gauge transformations which pre-
serve the Killing spinor equation. Using Spin(3, 1) gauge transfor-
mations, it was shown in [17], that one finds the three canonical
forms:

g =¢e’. (1.18)

e=1+pu2e?, e=1+p1e,

As in [12], we shall focus on the first canonical form. Plugging ¢ =
1+ pe? in (1.12) and (1.13) and using (1.17), the Killing spinor
equations amount to two sets of equations:

wy 1=0,
w1,-1 =0,
w_ +1=0,
w1,+41 =0,

po— _1 +ikv2ImAyFL L =0,

iK _

poi g = ImAG (F{i n F’_+) I/ =o,
1

0-logu — 5 (w_q17+o- 1)

ik I pl Vi)
SA- luﬁlm/\fg(Fn+F7+)L =0,

1 i

o1 logu — 5 (a)],ﬁ +w1,_+) - 5./41 =0,

1 i
o4 logu — 5 (@417 +©+—4) — 5A+ =0,

W1,— — W17+ iAd; =0,
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O- 4 —w_4i+ iA_=0

1 i iK -
97 log . — (a)”]—i—w]_ )_5A1+ﬁlmMJFiiLJﬁ:0’
1 . .
3 (w7 _y — w7 +iA7) — uculm/\/’,ﬁhLR@: 0,
1 .
5 (@4~ — 0} 47 +iA4)

KL I I J_
_lﬁlm/\fy(F_Jr —Fﬁ)L =0,

- i/cMImJ\/UFﬂrlL]«/i= 0,
I I
B imag (Fl; = FL )1 =0,

W+, +1

0 4 +ie (119)

7

and

—ilchBDBI_,I(ImN)U (FLr - Flji) +a_z22uv2 =0,
—ik fig"DgL! Im Ay (F]fi — Fi+) 10,282 =0,
2 g’ Dy L AmN )y F! - + 9324 v2 =0,
2ic g’ By L Am Ny F), + 9128 uv2=0.  (120)

The analysis of the equations of (1.19) gives:
mAGF! L) = —% (95 +1.A7) L.

2|l
m A (L, — FI ) L = iev/2 (0 +1A0) i,

iK
—— (01 +iA)) [,
ﬁ(l DK

ImAyFL L) = (1.21)

with the condition

O [L + k20, log fi = —i (A,|M|2+K2A+). (1.22)

We also obtain the following relations for the spin connection

wi= (a+ log% - i.A+> et

+iA_e” +0;logue' — 9 log e’

2 .
0= (d1logp —iAr) e + (3_logu —iA_)e!,
w_y = (01 logu — iA1)e1

+ (97 log /i +iA;) €' + oy log fijce™,

ws1 = log L +iAp e k2 p @i +ihpet.  (123)
The vanishing of torsion implies the conditions
de! +dlogji ne! =0, (1.24)
det = (8 log X —2iA_ >e el
"
2
— (K_Ze_ — e+)
[l
A ((ai log i + iA;) el + (31 log st — iAy) e1) . (125)

and

de” =— (Eu log% + 2iA+> el nel + 9, log|ul2et ne™
— e A (ot + iAo e!
+ (g — il Ay e’ )
- ﬁe ((ﬂalﬂ —ipfiAr) el
+ (pdg i+ i|u|2Ai)ei). (1.26)

An immediate result of the torsion free conditions and (1.22) is

that (et — k2e”) is a total differential

d(lme+ —Kze_> —o0, (127)
and that the vector V,
V =|ulPet +x%e” = |ulfo_ + k20, (1.28)

is a Killing vector which is space-like for k2 =1 and time-like for
k% = —1. Note that these two special vectors are related to the
inner Hermitian products < yp€, Y€ > and < Y&, V5Y4€ >.

The above conditions enable us to introduce the coordinates

(t,x,y,z), such that

el = dx +id
M«/—( ¥),
+ = d 2| (dt ,
e Iulzﬁ(z+K 1412 ( +o))
2
e*:_%(dz—xzmﬁ(dwa)), (1.29)

and the metric is independent of the coordinate ¢ and is given by
ds® =2e'e! 4 2ete”

1
= k2|l dt +0)% + e (—K2d22 +dx® + dyz) . (130)
w
Here o is a one form, o = oxdx+ oydy + 0,dz, independent of the

coordinate t and satisfies

do = — (1.31)

2
K—2 *3 (idlog i + Z.A) ,
| el M
where 3 is the Hodge dual with metric (—«2dz? + dx? + dy?).

The first two equations in second set of conditions (1.20) imply
that

(W,a, + K28+) A =o0. (132)

Thus the scalar fields are also independent of the coordinate t.
Equations (1.32) and (1.11) imply that

K2 Ay + it A =0 (1.33)
Going back to (1.22), we then deduce that
o =0. (1.34)

Multiplying the relations (1.20) by D4LM and using the relations
(1.6) and (1.8), we obtain the relations
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'; (FM . FM) + ik (IMA)y (Fl+ -
+@O-+iA)IMuv2 =0,
—2i/z;1(1mN),,FfiiML’ iic FM. 1
+ (87 +147) LMV2 =0,
—2ik (AmN )y FL DML — i FY,
+ (01 +iA) Muv2 =0.

Using (1.21) and converting to space-time indices, we obtain for
the gauge field strength two-form

J TMyI
Fﬁ)L L

(1.35)

Fl=d(iK/,LLI ikl i )A(dt—i—o)

1
™ [KMdL’ —«Lldjp+icepdl! —icL du]

2i
RPTA (K/LLI —KLIM) A (1.36)
Using (1.31), (1.36) can be rewritten in the form
Fl=d [(ilc,uL’ - i/Zi’,a) (dt +0)]
L L
“w w

Calculating the dual F!, we obtain

Fl'= | l|2 *3d[KL’/L—IZ,uL’]

+ ((RL'dR — kpdL!) + (icL'dp — R dL') ) A (@t +0)

- (ZiA (K,uL] —;z;zi')) Adt+0). (1.38)
Again using (1.31) as well as (1.9), we obtain
ReNyF! —ImANyF! = d[(ix uM; — ik aM;) (dt + 0)]
M M
— w3d |:K (—’) +i <—’)} . (139)
w Hw
Then Bianchi identities and Maxwell equations
dF' =0, d(ReAyF/ —ImAYFT) =0, (1.40)
imply, respectively, the conditions
kL kLt kM; kKM
(—+T)=w’, <—'+T’)=w,, (141)
w 2 w w
where
V2 =07 + 05 — k%9 (1.42)
Using (1.41), (1.3), (1.7) and (1.10), we obtain
i
A= M (w dy' — v dw,) - 5dlog%. (143)
Substituting (1.43) back in the expression of do, we obtain
do = —k? %3 (w,dw v dw,) (1.44)

For k =i, we obtain the known solutions of [13,18] which are
generalisations of the solutions first obtained in [14]. The new
derivation here, based on spinorial geometry, reveals that these

are the unique solutions with time-like Killing vector as has also
been demonstrated in [19]. For x = 1, we obtain new phantom
solutions for theories with the wrong signs for the gauge kinetic
terms. In this case, the functions v/ and v; in (1.41) satisfy the
wave-equation

(22 +a3)w'=a2v'. (o2 +05)vs=02w.

These solutions are the unique solutions with space-like Killing
vectors admitting Killing spinors.

(1.45)

2. Examples: Quadratic prepotentials

Supergravity minimal models are characterised by quadratic
prepotentials F [20]. For these models we have

M| =8 F = QyL/, 1)

where Qy is symmetric. Static black holes for the minimal models
were considered in [20]. Without lack of generality, and as was
explained in [20], Qy can be taken to be purely imaginary. The
stabilisation conditions (1.41) for these models then give

kLl kL ;o [RLD kI I

— + — =1//, —_ — —— =Q 1//]. (2-2)

124 w w 124
This can be solved by
=R (vt ). 23)
The symplectic constraint (1.3), then implies that

1 i
— == Tyt —qlJ . 2.4
=3 (@l =) (24)
Using (1.37), the gauge fields are given by

—d[i|,u|2/<2Q”\/f, (dt+0)] — sadyr! (2.5)

For ¥k =1, as in [12], explicit solutions can be obtained if one
assumes that the solution depends on the coordinate z only. In this
case we have

2y =02y =0, (2.6)
and the solution can be given by

vl =Al+p'z, y
For A' =B, =

=B;+qiz. (2.7)

0, the solution is then given by
d 2 __ yz d 2 22 d 2 d 2 d 2
s_Z—z(t)—i-P—z-i—x—i-y, (2.8)

where we have defined y =2 = £ (Qp"p' — Q™qumq). Setting

—, X3= \/7 Xy = zx X1 = y, (2.9)
27/ 14

we get the Kasner metric [21]

ds? = —dt?®+ 1 (dxz) +7T (dxl) + — (dx3) (2.10)
where the gauge fields are given by

1 1
FI:EV (— QB/Z dt Adxs+p dxz/\dx1> (2.11)

In summary, we have obtained new phantom metrics admit-
ting Killing spinors in fake N =2, D =4 supergravity where the
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Abelian U (1) gauge fields have kinetic terms with the wrong sign.
The solutions found are expressed in terms of algebraic constraints
satisfied by the symplectic sections. The solutions are characterised
in terms of a set of functions satisfying the wave-equation in flat
(2+1)-space-time. Explicit solutions are constructed for the super-
gravity models where the prepotential is quadratic. We note that
our solutions for the fake supergravity cases are the only known
time-dependent solutions to be found which admit Killing spinors
and posess a space-like Killing vector. Moreover, our phantom solu-
tions contain a subclass which constitutes novel generalisations of
Kasner solutions of pure gravity to the models of N =2 supergrav-
ity with Maxwell and scalar fields. Our time-dependent solutions
should provide good models for the study of cosmological sce-
narios and could be of importance to the study of dark matter
and astrophysics. Our analysis can be generalised to fake gauged
supergravity theories as well as to the de Sitter supergravities con-
structed in [9]. Non-supersymmetric phantom solutions can also
be analysed using the general framework presented in [22]. We
hope to report on this in a future publication.

Acknowledgements

The work of W.A. Sabra is supported in part by the National
Science Foundation under grant number PHY-1415659. M. Bu Taam
would like to thank the American University of Beirut for funding
her Master’s degree during which this work took place.

References

[1] G.W. Gibbons, C.M. Hull, A Bogomolny bound for general relativity and solitons
in N =2 supergravity, Phys. Lett. B 109 (1982) 190.

[2] K.P. Tod, All metrics admitting supercovariantly constant spinors, Phys. Lett. B
121 (1983) 241.

[3] Z. Perj’es, Solutions of the coupled Einstein-Maxwell equations representing
the fields of spinning sources, Phys. Rev. Lett. 27 (1971) 1668;
W. Israel, G.A. Wilson, A Class of stationary electromagnetic vacuum fields,
J. Math. Phys. 13 (1972) 865.

[4] S.D. Majumdar, A class of exact solutions of Einstein’s field equations, Phys.
Rev. 72 (1947) 930;
A. Papapetrou, Proc. R. Ir. Acad. A 51 (1947) 191.

[5] H. Blaine Lawson, Marie-Louise Michelsohn, Spin Geometry, Princeton Univer-
sity Press, 1989;
McKenzie Y. Wang, Parallel spinors and parallel forms, Ann. Glob. Anal. Geom.
7 (1) (1989) 59;
FER. Harvey, Spinors and Calibrations, Academic Press, London, 1990.

[6] J. Gillard, U. Gran, G. Papadopoulos, The spinorial geometry of supersymmetric
backgrounds, Class. Quantum Gravity 22 (2005) 1033.

[7] D. Klemm, E. Zorzan, All null supersymmetric backgrounds of N =2, D =4
gauged supergravity coupled to abelian vector multiplets, Class. Quantum Grav-
ity 26 (2009) 145018;

S.L. Cacciatori, D. Klemm, D.S. Mansi, E. Zorzan, All timelike supersymmetric
solutions of N =2, D =4 gauged supergravity coupled to abelian vector mul-
tiplets, J. High Energy Phys. 05 (2008) 097;
J. Grover, J.B. Gutowski, C.A.R. Herdeiro, P. Meessen, A. Palomo-Lozano, W.A.
Sabra, Gauduchon-Tod structures, Sim holonomy and De Sitter supergravity,
J. High Energy Phys. 07 (2009) 069;
J.B. Gutowski, W.A. Sabra, Solutions of minimal four dimensional de Sitter su-
pergravity, Class. Quantum Gravity 27 (2010) 235017,
J. Grover, ].B. Gutowski, C.A.R. Herdeiro, W.A. Sabra, HKT geometry and de Sitter
supergravity, Nucl. Phys. B 809 (2009) 406;
J. Grover, ].B. Gutowski, W.A. Sabra, Null half-supersymmetric solutions in five-
dimensional supergravity, ]. High Energy Phys. 10 (2008) 103;
U. Gran, ]. Gutowski, G. Papadopoulos, Geometry of all supersymmetric four-
dimensional N =1 supergravity backgrounds, J. High Energy Phys. 06 (2008)
102.

[8] C.M. Hull, Timelike T-duality, de Sitter space, large N gauge theories and topo-
logical field theory, ]. High Energy Phys. 07 (1998) 021;
C.M. Hull, Duality and the signature of space-time, J. High Energy Phys. 11
(1998) 017;
C.M. Hull, De Sitter space in supergravity and M theory, ]. High Energy Phys.
11 (2001) 012.

[9] J.T. Liu, W.A. Sabra, W.Y. Wen, Consistent reductions of 1IB*/M* theory and de
Sitter supergravity, J. High Energy Phys. 01 (2004) 007.

[10] G.W. Gibbons, D.A. Rasheed, Dyson pairs and zero-mass black holes, Nucl. Phys.
B 476 (1996) 515.

[11] G.N. Gyulchev, Zh. van Stefanov, Gravitational lensing by phantom black holes,
Phys. Rev. D 87 (2013) 063005.

[12] W.A. Sabra, Phantom metrics with killing spinors, Phys. Lett. B 750 (2015) 237.

[13] K. Behrndt, D. Liist, W.A. Sabra, Stationary solutions of N = 2 supergravity,
Nucl. Phys. B 510 (1998) 264.

[14] S. Ferrara, R. Kallosh, A. Strominger, N = 2 extremal black holes, Phys. Rev. D
52 (1995) 5412;

S. Ferrara, R. Kallosh, Supersymmetry and attractors, Phys. Rev. D 54 (1996)
1514;

W.A. Sabra, General static N = 2 black holes, Mod. Phys. Lett. A 12 (1997) 2585;
W.A. Sabra, Black holes in N =2 supergravity and harmonic functions, Nucl.
Phys. B 510 (1998) 247.

[15] L. Andrianopoli, M. Bertolini, A. Ceresole, R. D’Auria, S. Ferrara, P. Fré, T. Magri,
N =2 supergravity and N = 2 super-Yang-Mills theory on general scalar mani-
folds: symplectic covariance, gaugings and the momentum map, J. Geom. Phys.
23 (1997) 111.

[16] J.B. Gutowski, W.A. Sabra, Para-complex geometry and gravitational instantons,
Class. Quantum Gravity 30 (2013) 195001.

[17] ]. Grover, ].B. Gutowski, W.A. Sabra, Maximally minimal preons in four dimen-
sions, Class. Quantum Gravity 24 (2007) 3259.

[18] F. Denef, Supergravity flows and D-branes stability, ]. High Energy Phys. 08
(2000) 050.

[19] P. Meessen, T. Ortin, The supersymmetric configurations of N =2, d =4 super-
gravity coupled to vector supermultiplets, Nucl. Phys. B 749 (2006) 291.

[20] K. Behrndt, W.A. Sabra, Static N = 2 black holes for quadratic prepotentials,
Phys. Lett. B 401 (1997) 258;

W.A. Sabra, Classical entropy of N =2 black holes: the minimal coupling case,
Mod. Phys. Lett. A 12 (1997) 789.

[21] E. Kasner, Geometrical theorems on Einstein’s cosmological equations, Am. J.
Math. 43 (1921) 217.

[22] ].B. Gutowski, W.A. Sabra, On non-extremal instantons and black holes, arXiv:
1505.05963 [hep-th].


http://refhub.elsevier.com/S0370-2693(15)00812-6/bib68756C6C676962s1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib68756C6C676962s1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib546F64s1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib546F64s1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib495750s1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib495750s1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib495750s2
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib495750s2
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib6D70s1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib6D70s1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib6D70s2
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib6C6177736F6Es1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib6C6177736F6Es1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib6C6177736F6Es2
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib6C6177736F6Es2
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib6C6177736F6Es3
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib6669727374s1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib6669727374s1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib726563656E746C6F776572s1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib726563656E746C6F776572s1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib726563656E746C6F776572s1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib726563656E746C6F776572s2
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib726563656E746C6F776572s2
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib726563656E746C6F776572s2
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib726563656E746C6F776572s3
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib726563656E746C6F776572s3
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib726563656E746C6F776572s3
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib726563656E746C6F776572s4
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib726563656E746C6F776572s4
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib726563656E746C6F776572s5
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib726563656E746C6F776572s5
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib726563656E746C6F776572s6
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib726563656E746C6F776572s6
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib726563656E746C6F776572s7
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib726563656E746C6F776572s7
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib726563656E746C6F776572s7
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib68756C6Cs1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib68756C6Cs1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib68756C6Cs2
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib68756C6Cs2
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib68756C6Cs3
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib68756C6Cs3
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib6A696D77656Es1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib6A696D77656Es1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib6479736F6Es1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib6479736F6Es1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib636F6D726566s1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib636F6D726566s1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib7068616E746F6D31s1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib424C53s1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib424C53s1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib736162s1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib736162s1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib736162s2
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib736162s2
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib736162s3
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib736162s4
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib736162s4
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib7370656F6E65s1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib7370656F6E65s1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib7370656F6E65s1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib7370656F6E65s1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib70617261s1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib70617261s1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib347370696E6F72s1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib347370696E6F72s1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib64656E6566s1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib64656E6566s1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib6F7274696Es1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib6F7274696Es1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib6D696E696D616Cs1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib6D696E696D616Cs1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib6D696E696D616Cs2
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib6D696E696D616Cs2
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib6B61736E6572s1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib6B61736E6572s1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib6E6F6E73757379s1
http://refhub.elsevier.com/S0370-2693(15)00812-6/bib6E6F6E73757379s1

	Phantom space-times in fake supergravity
	1 Introduction
	2 Examples: Quadratic prepotentials
	Acknowledgements
	References


