
Theoretical Computer Science 106 (1992) 135-181

Elsevier

135

Single-valuedness of tree
transducers is decidable in
polynomial time *

Helmut Seidl * *
Fachbereich I~formutik, Unicersitdt des Saarlandes, Im Stadtwsald 1.5. D-6600 Saarbriicken II,
Germanl

Abstract

Seidl, H., Single-valuedness of tree transducers is decidable in polynomial time, Theoretical Com-

puter Science 106 (1992) 135-181.

A bottom-up finite-state tree transducer (FST) A is called single-valued iff for every input tree there

is at most one output tree.

We give a polynomial-time algorithm which decides whether or not a given FST is single-valued.

The algorithm is based on:
. the freedom of the submonoid of trees which contain at least one occurrence of one variable *;

. the succinct representation of trees by graphs;

. a sequence of normalizing transformations of the given transducer; and

. a polynomially decidable characterization of pairs of equivalent output functions.

We apply these methods to show that finite-valuedness is decidable in polynomial time as well.

0. Introduction

A bottom-up finite-state tree transducer (FST) is a finite-state device which pro-

duces its output tree while consuming a given input tree in a bottom-up fashion. Since

multiple occurrences of variables in patterns are allowed, an FST is able to generate

several identical copies of images of subtrees. Since some variables can be missing, the

image of a correctly parsed subtree may be skipped again.

In compiler construction finite-state transducers are an important tool for manip-

ulating abstract syntax trees [7]. A good survey on tree automata theory

and its applications is found in [6]. Formally, FSTs can be viewed as one possible

*The present paper is a long version of the talk [14] presented at the Toyohashi Symposium on
Theoretical Computer Science.

** Partially supported by Deutsche Forschungsgemeinschaft SFB 124 and ASMICS.

0304-3975/92/$05.00 0 1992-Elsevier Science Publishers B.V. All rights reserved

136 H. Seidl

generalization of generalized sequential machines (GSMs). Therefore, the natural

question arises whether or not results about GSMs can be extended to FSTs.

Until recently, the knowledge about finite-valued finite tree transducers was com-

paratively poor. In 1978 Zachar showed that equivalence is decidable for determinis-

tic FSTs [20]. In 1980 Engelfriet exhibited a nice generalization (Tl) of a word lemma

by Schutzenberger [lo] to trees which allows to decide whether or not a given FST is

single-valued [4]. Note that any algorithm which decides single-valuedness can be

used to decide equivalence of single-valued FSTs. Both Zachar’s and Engelfriet’s

papers are not concerned with algorithmic complexity. In [13] a theory of finite-

valued FSTs is developed. Especially, it is proved that for every k 2 1 it is decidable in

nondeterministic polynomial time whether a given FST is not k-valued. Two neces-

sary and sufficient conditions (Fl) and (F2) are exhibited for an FST to be finite-

valued and it is shown that it also can be decided in nondeterministic polynomial time

whether they do not hold. It remained open whether or not these questions can be

decided even in deterministic polynomial time. Our interest in finite-valued FSTs in

[13] is due to the fact that equivalence of finite-valued FSTs is decidable [13],

although equivalence is undecidable in general.

In this paper we construct a deterministic polynomial-time algorithm which decides

whether or not a given FST is single-valued. Especially, this implies that the equival-

ence of deterministic FSTs can be decided in deterministic polynomial time as well.

This result is obtained by a rather involved investigation of the structural properties of

single-valued FSTs. We also succeed in constructing a deterministic polynomial-time

algorithm deciding finite-valuedness of FSTs. It remains open whether or not k-

valuedness for k> 1 is solvable in deterministic polynomial time as well.

The paper is organized as follows. As in [13] we start by an investigation of the

combinatorics of trees. Especially, we prove that the submonoid of trees containing at

least one occurrence of a variable x is free.

The efficiency of our algorithms is based on a succinct representation of trees of

possibly exponential size by graphs. Therefore, in Section 2 we formally introduce and

study (finite ordered acyclic rooted labeled) graphs together with their relation to

(tuples of) trees. We describe the basic algorithms for them. This section may be

skipped at first reading and only be consulted when wondering about the implementa-

tion of the algorithmic ideas.

In Section 3 we introduce bottom-up finite-state tree transducers (FSTs). We recall

the notion of reducedness from [13]. Additionally, we introduce an even stronger

normal form which says that an output is “delayed” as long as possible. FSTs with this

property are called strongly reduced. We show that for every reduced FST we can find

in linear time an equivalent strongly reduced FST.

Instead of considering one output function and two accepting computations it is

more convenient to study one accepting computation and two output functions. The

corresponding formal device Z7=(A, T,, T2) consisting of one finite tree automaton

together with two output functions is called pairing. Section 4 studies pairings. Es-

pecially, we exhibit necessary Properties (Ul) and (U2) of a strongly reduced pairing

Single-valuedness of tree transducers 137

n such that the outputs for every accepting computation w.r.t. T and & are equal.

In Section 5 we analyze the behavior of a strongly reduced pairing having Proper-

ties (Ul) and (U2) on paths of an input tree. The outputs now can be viewed as

elements in some finitely generated free tree monoid! This allows to give a third

necessary condition (U3’) for a strongly reduced pairing to have equivalent output

functions. It turns out that Properties (Ul), (U2) and (U3’) together are not only

necessary but also sufficient for the output functions Z to be equivalent. Finally, we

give an equivalent formulation (U3) of (U3’) as a graph property. Property (U3) is the

(by no means trivial) generalization of the usual equivalence of outputs of GSMs.

Since all three Properties (Ul), (U2) and (U3) can be decided in deterministic

polynomial time we obtain a deterministic polynomial-time algorithm deciding

whether or not an FST is single-valued. We apply this method to derive for every

m> 1 a deterministic polynomial-time algorithm which decides whether or not two

single-valued FSTs are equivalent provided the underlying tree automata are “m-
ambiguous”. Since every deterministic FST is unambiguous, this result especially

holds for deterministic FSTs.

Finally, in Section 6 we apply the methods of Section 5 to prove that it can be

decided in deterministic polynomial time whether or not an FST is finite-valued. This

is done by successively considering a sequence of sets of properties each of which

characterizes finite-valuedness.

1. Trees

In this section we give basic definitions and state some fundamental properties

about trees. We prove that the monoid fZ(x) of trees containing at least one occur-

rence of the variable x is free (Theorem 1.3). Moreover, we present some technical

propositions which will be used in the sequel.

A ranked alphabet or signature is a pair (C,p), where C is a finite alphabet and

p : C+No is a function mapping symbols to their rank. Usually, if p is understood, we

write C for short and define Cj = p-l (j). T, denotes the free C-algebra of (finite ordered

C-labeled) trees, i.e. G is the smallest set T satisfying (i) C,, c T, and (ii) if aEZ,,, and

t1, t,E T, then a(tl, . . . , t,)E T. Note: (i) can be viewed as the subcase of (ii) where m = 0.
The depth of a tree tEG, depth(t), is defined by depth(t)=0 if tE.Z,, and

depth(t)= l+max{depth(t,),depth(t.)} if t=a(tl, t,) for some aEZ,,,, m>O.
Thesizeoft,ItI,isdefinedbyItJ=1iftEC,,andItl=1+Cj”=,ItjIift=a(t,,...,t,)for

some aEC,, m>O.
The set of nodes oft, O(t) is the subset of N * defined by 0(t) = {E} u uj”= 1 j. 0(tj), where

t=a(tl,..., t,) for some aEC,, ma0. Note that the cardinality of O(t), #O(t), equals 1 tl.

t defines maps t(_):O(t)-+C and t/-:O(t)-+T, mapping the nodes o of t to their

labels or the subtree of t with root o, respectively. We have

and t/o=
t if o=e,

tj/O’ if o=j.o’.

138 H. Seidl

Let X denote a set of variables of rank 0. Define G(X) = Gvx. We use this different

notation in order to indicate which variables are to be substituted. (Clearly,

&G T,(X).) Assume tET,(X). For XGX the set 0,(t) of occurrences of x is the set

{o&(t)j t(o)=x}. t is called X-proper iff every xgX occurs in t exactly once, i.e.

O,(t) = 1 for every x. If X = { x } we write x-proper instead of {x)-proper and, if X is

understood, we skip the prefix X.

Every map 8: X-+T,(X) can be extended to a map 8: r’(X)+T,(X) by te=xt) if

t=x, and tfl=a(tlO, t,O) if t=a(t,, t,) with aE.Z. 8 is called X-substitution or

simply substitution if X is understood. If X = {xj, . . . , x,} (i.e. the variables are indexed

by some interval of natural numbers) and xie = ti, we denote to also by t [tj, . , t,]. Of

special importance is the case where the set X of variables which are to be substituted

consists of just one element x. Assume x0 = t2 and tl E 7”(x) = Tz({x}). Then we write

tl 8= tl t2. The set 7”(x) is a monoid w.r.t. x-substitution (the neutral element is x).

T,(x) is not a free monoid. Especially, tl t2 = tl if tl does not contain an occurrence

of x.

Proposition 1.1 (originating from [4] and cited from [131) states basic properties

of T,(x).

Proposition 1.1. Assume sI,sz, tl, t2, t;, t;ETz(x).

(i) Bottom Cancellation: Assume tI ft;. Then

s,tI=s2tl and s,t;=s2t; implies s1=s2.

(ii) Top Cancellation: Assume x occurs in sl. Then

s,tI=sIt; implies tI=t;.

(iii) Factorization: Assume ti # ti for i = 1,2. Then

sItI=s2t2 and sIt;=s2t; implies 3r:s,r=s2 or sI=s2r.

In case the second factors contain variables as well, both bottom cancellation and

factorization have a much simpler form. Let z(x) denote the submonoid of T,(x)

consisting of all trees t which contain at least one occurrence of x. Note that trees in

FZ(x) may contain not only one occurrence of x but also two occurrences or more. We

obtain:

Corollary 1.2. Assume sl, s2, f 1, t2E yz(x).

(i) Bottom Cancellation: s1 tI = s2 tl implies s1 = s2.

(ii) Top Cancellation: s1 tI =sl t2 implies tI = t2.

(iii) Factorization: s,t,=s2t2 implies 3rgFZ(x): s1r=s2 or s1 =s2r.

Call a tree ts z(x) x-irreducible iff t #x and t = uv implies either u =x or v = x. If x is

understood, we also skip the prefix x. So, for example, t=a(x, b(x)) is irreducible,

whereas t’=a(b(x), b(x))=a(x, x)b(x) is not. Also, trees a(x, t) or a(t, x) for all trees

Single-valuedness of tree transducers 139

JET, are irreducible. Let Ir(x) denote the set of irreducible trees in -T,(x). Note that

Iz(x) is infinite whenever Cj #(b for some j> 1.

Employing Corollary 1.2 we find the main result of this section:

Theorem 1.3. (i) Eoery tree t in z(x) can be written as a (possibly empty) product

t=u1... uk for x-irreducible trees ul, , uR~Iz(x).

(ii) Ift=uI...ukandt=z;,...v,,foru, ,..., uk,ul ,..., ~~~~l~(x),thenk=k’andu,=v,

for all K.

(iii) As a monoid, Fz(x) is freely generated from I,(x), i.e. ~z(x)=I,(x)*.

Consider for example the tree t = a(a(b(x), b(x)), c) for a, b, cs.Z. Then t = u1 ~2~3 for

irreducible trees Ui, where u1 = a(x, c), u2 = a(x, x) and u3 = b(x) (see Fig. 1).

Theorem 1.3 allows to define the x-length Itl, of a tree tEz(x): Itl,=n iff t=ul...un

for irreducible trees uj. Observe that 1 tJ,<depth(t) and I tl,= 101 if t contains exactly

one occurrence of x and o is the unique leaf with this label. If t = u1 u2s r?(x) = II(x)*

then ui is called an x-prefix of t. Accordingly, u2 is called x-sufJix of t.

The rest of this section is concerned with trees (possibly) containing occurrences of

more than one variable. It is for this case where we have to distinguish irreducibilities

corresponding to different variables. Define Xk = {xi, . . . , xk} and assume * is a vari-

able not in Xk. By the independence of substitutions into different variables we have:

Proposition 1.4. Assume VE Fzux ,(*) and ujE z(xj) for j= 1, . . . , k. Then the following

holds:

0) If uCuI, uk] = u1 v2 then v=s1s2 for suitable trees SiET~“x,(*) such that

ul=sl[ul, . ..) uk] and U2=S2[u1,...,uk].

(ii) v is *-irreducible iff v[ul, . , uk] is *-irreducible.

t= a

/\
a c

Fig. 1

140 H. Seidl

Proof. First consider statement (i). Define t = u[ul, . , uk]. Clearly, O,(or) c O(t) and

u2 = t(o) for every oEO,(ui). Since ~1~ contains at least one occurrence of *, v2 cannot

be a subtree of any of the uj. Hence, in fact,

O*(t’,) G O(u).

Moreover, u2 = s2 [u,, . . . , uk], where s2 = u/o for some o~O*(u). Let s’= v/o’ for some

other node o’ in O,(V~). Then

s’[ur, . .) UJ = v2 =s2 [u,, . ..) UJ.

Since Uj contains at least one occurrence of Xj, Xj occurs in u2 iff xj occurs in s2 iff

Xj occurs in s’. Therefore, s and s’ contain occurrences of the same variables. Without

loss of generality (w.1.o.g.) these are all variables xi,. . . , xk and k > 0. Applying bottom

cancellation according to Corollary 1.2 iteratively w.r.t. variables xi, . . . , xk we deduce:

(1) s2=u/o for all o~O,(u,).

ui is trivially obtained from t by replacing all subtrees at nodes in O,(vi) with *.

Therefore, define si as the tree obtained from u by replacing all subtrees at nodes in

O,(u,) with *. It follows that s,[u,, uk] =vl and, hence, by (1)

ucu,, ~,l=~=~~~C~~,...,~~l~~2C~~,...,~~l=~~~~2~C~~,...,~~l.

Again, v and s1s2 contain occurrences of the same variables. Hence, by bottom

cancellation, u = si s2, which proves statement (i). Statement (ii) follows from (i) and the

observation that for every .sEFz”~,(*), s=* iff s[ul,...,u,]=*. 0

Proposition 1.5. Assume tE T,(X,) contains at least one occurrence of some variable xj.
Then t = to t' for some t,,E r?;(*) such that the following hold.

(1) Zf t =sOs’for some s~E%(*) then t,, =sOrfor some rEyz(*), i.e. to is the uniquely
determined maximal prefix oft in g(*).

(2) Assume t contains also an occurrence of some variable xj, with j’#j as well,
u,EQx,)for K= 1 , . . . , k, then to is the maximal prefix oft [u,, . . . , uk] in z(*) as well.

Proof. Define S={uOsz(*)l t= uou’}. Then S#@ since *ES. Moreover, s is finite

since lul<ltl for every uES. For u ~,u~ES, t=u,t, and t=u2t2 for some t,,t,ET,(X,).
Since t contains an occurrence of Xj, both tl and t2 contain occurrences of Xj.

Therefore, we may apply factorization and obtain ui =u2r or u1r=u2 for some

t-E TI(*). Since Ui contain occurrences of *, r also contains an occurrence of *. Hence,

S is totally ordered by the *-prefix relation on & *)=ZZ(*)*. Consequently, S con-

tains exactly one maximal element. This proves (1).

For a proof of (2) assume t = t,u, where to is the maximal prefix according to

statement (1). Then t [ul , . , uk] = to u [u, , . . . , uJ. Hence, to is a prefix of t [uI , . . . , uk]

in yZ(*). For a contradiction assume that t,, is not maximal. Then u [u,, . . . , uk] = u1 uz

for some tjl in yZ(*) and USE FZ(Xk). By Proposition 1.4(i), v =si s2, where

s1cu1, ...> UJ = ul. Since u1 does not contain variables xj, si in fact equals vl. Hence,

t,,u, is a prefix of t in TZ(*), contradicting the maximality of to. 0

Single-valuedness of tree transducers 141

Similar to prefixes we can determine maximal xj-suffixes of a tree LEG. The

proof of the next proposition follows from the freedom of the monoids Tr”x,\;x,i(Xj),

j= 1,k.

Proposition 1.6. Assume tE T,(X,), where k > 1 and t contains at least one occurrence of
every variable Xj. Then t = s [t l,...,tk] with tj~~~(xj)forj=l,...,ksuch thatforevery
decomposition t = s’ [t; , . . . , t;], where t+ ?-,(Xj), ti is a Xj-SUfJiX of tj for j= 1, . . . , k.

Thus, every tree tE&(Xk), k> 1, which contains at least one occurrence of every

variable xj can be decomposed uniquely as t = to s [t 1, . . . , tk], where to is the maximal

prefix of t in z(*) and tj are the maximal xj-suffixes of t. The tree SE T,(X,) is called

kernel of t and the decomposition kernel decomposition. In case k= 1 we define the

kernel decomposition oft by t=tos[t,], where to=t[*], s=xl and tl=xl. For an

example consider tree t = b d(c, a(a(x2, x2), bxI), bxI). Then the kernel decomposition

oftist=t,s[t,,tz],wheres=d(c,a(xz,x,),x,)andt,=b*,t,=bx,,tz=a(xz,xz)(see
Fig. 2).

Trees t, t’E TJX,) are called comparable (t z t’) iff

(Cl trees Vj, VJE I, j= 1 , k exist with t[vI, vk] = t’[v;, v;].

Apparently, condition (C) is equivalent to

(C’) t=s[u,, . ..) uk] and t’ = s [u; , . . , uj,] for some SE T,(X,) and

uj, USE ?-,(xj), where for every j either Uj= Xj or U; = xj.

t= b

/1\6
a

‘/I /
A I x’

X2 22 Xl

b

to = 1 ; s= /;\ ; t1= f ; t2= /a\
*

= ja\ x1 x1 x2 x2
22 XI

Fig. 2.

142 H. Seidl

Thus, e.g., trees a(xl,bxz) and ~(~(x~,x~),x~) are comparable but the trees

a(a(xl, xl), x2) and @(xl, x2), x2) are not.

Especially, observe that tzt’ implies that XEX~ occurs in t iff x occurs in t’ iff

x occurs in s. We have:

Fact 1.7. Assume t, t’E T,(X,) are comparable and 1 <j< j’< k. Then no occurrence
oEO,,(t) is a prejix of an occurrence o’EO,,,(t’) and vice versa.

Fact 1.8. Assume tI, t2e&(X) contain occurrences of every XEX, and 8i, i= 1,2, are
X-substitutions with x8i~~(X) and either x0, =x or x02=x for every x. Then the
following three statements are equivalent:

(1) ti=S0ifOr some SET,(X);
(2) t,&=t20,.
(3) If ti = uisiOi is the kernel decomposition then u1 = u2, s1 =s2 and x0; O2 =x0; O1 for

every xEX.

Proof. Certainly, 8, O2 = 0201. Therefore, assuming (1) we can conclude:

Hence, (1) implies (2). The reverse implication follows with induction on the cardinal-

ity of X by bottom cancellation. Finally, the equivalence of (2) and (3) follows from

Propositions 1.5 and 1.6. 0

Fact 1.9. Assume tl,t2EfzUX(*), where tl=uI...uk and t2=v1...vkvk+1...vk+r are the
decompositions of ti into *-irreducible factors. If tl z t2 then:

(9 uj zvjforj=l,...,k;
(ii) vk+pEZy(*)for p=l,...,r.

Proof. Induction on k. If k= 0 then statements (i) and (ii) trivially hold. Therefore,

assume k > 0. For the inductive step we consider tl = u1 t; and t2 = v1 t;, where u1 and

v1 are *-irreducible. It suffices to prove that

(*) u1 z VI and t;ztt;.

Since t 1 z t, trees rig fz(*) and X-substitutions pi, i= 1,2, exist such that t,O,r, =
tz02ra, where for every XEX, XOieFl(x). We have

tle,r,=(u,t;)e,r,=(U,01)(t;e,T2)

and, likewise,

By Proposition 1.4(i), both u,O, and v202 are *-irreducible. Since F~,x(*) is free, it

follows that u,B, =v,02 and t;O,r, =t;02r2. This implies statement (*). 17

Single-duedness c$ tree transducers 143

2. Graphs

The efficiency of the algorithms to be explained in the following sections is based on

the succinct representation of trees of (possibly) exponential size by graphs. In this

section we give the theoretical justification for doing so. We introduce graphs and give

algorithms for basic tests and operations on trees which work on representations of

trees by graphs instead of trees themselves. Finally, in Propositions 2.2-2.5 we

describe the essential graph algorithms which serve as subroutines in our determinis-

tic polynomial-time algorithms deciding single-valuedness and finite-valuedness.

Assume C is a ranked alphabet. A (C-labeled, ordered, rooted) graph g is a 4-tuple

(V, r, i, E), where V is the set of vertices or nodes, rE V* is the root word, i : V+C is the

labeling, and E: V-+ V* is the successor function of g, where E(u)E V” iff A(u)EC,. If

E(u) = ui . . .u, for USE V then Ej(U) = Uj is the jth successor of u. The size of g, 1 g 1, is just

the number of its nodes plus the length of r, i.e. I g I = # I/+ 1 r 1. A graph homomorphism

h : g+g’ for graphs g = (V, r, /I, E) and g’ = (V’, r’, A’, E’) is a mapping h : V+ V’ such

that h(r) = h(r’); j_‘(h(u)) = it(v) and h(E(v)) = E’(h(v)) f or every UE V (i.e. h is compatible

with roots, labeling and successors). Two graphs g,g’ are isomorphic iff there is a

bijective graph homomorphism h : g+g’. We write (in abuse of the equality sign) g = g’.

Let Ctl= ((a,j)l ag:C, 1 <j,<p(a)). A triple (v, w, U’)E Vx C$ x V is called path in

g from u to v’ iff either w = E and v= v’ or w = w’(u,j) for some (a,j)~Z, such that

(v, w’,v”) is a path from v to some node v” labeled with a and Ej(v”)=v’. Assume

r=rl . .rm. g is called (root) connected iff for every node ~1 there is a path from some

root rj to u; g is called acyclic iff for every node v the only path from v to 2: is (v, E, c).

If not stated otherwise, we henceforth assume that our graphs are C-labeled,

ordered, rooted, connected and acyclic. Let G,” denote the set of all graphs

g=(V,r,&E),wherer~V”.DefineG,*=U,~o G,” and GZ = Gi . Graphs in GX are used

for succinct representations of trees in T,, whereas graphs from G,” are used to

represent sequences of trees of length m.

The subgraph of a graph gEG,* with root word w= wr...wk is the graph

g,=(V,,w,j”,,E,)EG~, where V,={wi ,..., w~)u~~=~&(~,,. i, and E, are the

restrictions of 1. and E to I’,, respectively. Since g is assumed to be acyclic, this is in

fact a definition.

For g =(I’, r, I., E)EG~ with rE V the tree t(g) represented by g is recursively defined

as follows. If V= (r} and 3.(r) = a then t(g) = a. If V/f {r}, A(r) = a and E(r) = vl.. .v, then

t(g) = a(t(g,,), . , t(g,,,,)). Accordingly, every graph g = (V, rl.. .r,, 2, E)EG,” with riE V

represents the m-tupie t(g) = (t(g?,), . . . , t(gr_))E(T1)“‘.

Any sequence of trees s= (si, . _. , s,) in TJ’ can also be viewed as a graph

Z=(V,r,A,E), where V={(j,o)Io~O(sj)}, r=(l,E)...(m,E), l.((j,o))=sj(o) and

E((j, 0)) = (j, 0. 1). . . (j, 0. m) provided sj(O)EC,. Clearly, s = t(s), i.e. s” is just an-

other description of s. Therefore, we will not distinguish between s and d and view

Tp as a subset of G,“.

Define a partial ordering 3 on G,” as follows. Assume g =(V, r, A, E) and

g’ = (V’, r’, A’, E’) are graphs. Then g 3 y’ iff there is a surjective graph homomorphism

144 H. Seidl

h : g-+9’. The maximal elements w.r.t. B are the sequences of trees in TF and t(g) 2 g

for every graph g. However, there are also unique minimal elements w.r.t. this

ordering.

Proposition 2.1. (i) There is a unique minimal element m(g) in the set {g’ 1 g > g’} for

every graph g. m(g) can be computedfrom g in linear time (on a RAM with uniform cost
measure).

(ii) For every two graphs g and g’, t(g) = t(g’) $f m(g) = m(g’).

Proof. For a proof of (i) observe that m(g) is obtained from g by “collapsing”

isomorphic subgraphs of g as much as possible. A detailed description of the algo-

rithm can be found in [3]. It works as follows.

(1) It levels the nodes according to the maximal distance to a leaf i.e. a node v with

E(v) = E.
(2) For every level it collects all nodes v having the same label A(v) and isomorphic

subgraphs gE, (V) and identifies them.

Step (1) can be executed by a RAM in linear time. Some kind of bucket sort can be

used to implement step (2). Provided max { p(a) 1 UEC} is bounded by some constant

(which always can be assumed in our context) and #C is polynomial in # V, step (2)

takes time 0(# V). This proves (i).

To prove one direction of (ii) assume t(g) = t (g’) = t. Both t 2 g and t > g’. Therefore,

m(t)=m(g)=m(g’). For the opposite direction simply observe that gag’ implies

t(g) = t(g’). 0

From Proposition 2.1 we conclude that any graph g with m(t) <g< t can be used to

represent the sequence t of trees. The minimal representative m(t) is also called subtree
graph of t.

Proposition 2.2. Assume tl, tm,sl, sk~Tx(Xk), where g=m((tl, t,)) and

g’=m((s,, Sk)). Then J=m((t, [sl, sk], tm[sl, Sk])) can be computed
from g and g‘ in linear time,

Proof. Assume r = r l...rm is the root word of g and r‘=r;...r; is the root word of g’.

Define g(r) as the graph obtained from g and g’ as follows. Forj= 1, . . . , m, identify the

node in g labeled with xj with r;. Choose (the equivalence classes of) rl.. .r,,, as the new

root word and remove all nodes no longer reachable from these. Finally, define
g=m(g(‘)). g(l) can be computed in linear time. Hence by Proposition 2.1, g can be

computed in linear time as well. 0

For this algorithm to work it is not necessary that g and g’ are disjoint graphs. In

fact, we may consider the case where g and g’ are identical. In this case we compute

“repeated substitution”.

Single-valuedness of tree transducers 145

Assume t = (t 1, t,)E T,(X,) and 8, is the X,-substitution defined by xjgt= tj.

Let G, denote the digraph (I/J) with V={l,...,m} and E={(i,j)lxj occurs in ti}.

For n> 1, define t” inductively by t’ = t and tn=(tn-l)Bt for n> 1. If G, is acyclic then

t” = t”’ for every IZ 3 m. The next proposition shows that this limit can be computed in

polynomial time as well.

Proposition 2.3. Assume tET,(X,)” and g =m(t). Zf G, is acyclic then a graph g” can be
computed in linear time with gm=m(tm). 0

The next proposition allows to factor a representation of trees tE TX(x) into repres-

entations of x-irreducible trees.

Proposition 2.4. (i) Assume tE G(*), g =m(t) and t = ul.. .uk is thefactorization oft into
x-irreducible factors ujE FI(*). Then m((u 1, . . .,uk)) can be computed from g in linear
time.

(ii) Assume t=(tI,t.), where tPEFz(xP)for every u, g=m(t), and tP=ug,l...up,k,
is the decomposition of tp into x-irreducible factors u,, Jo ?z(x,). Then

m((ul,l,...,Ul,kl,...,U,,l,...,U,,k,)) can be computed from g in linear time.

Proof. We only prove statement (i). Since g = m(t), g contains a unique leaf v labeled

by *. Let r be the root of g. A node u’ of g factors v iff every path (r, w, v) can be

factored into a path (r, wt, v’) and a path (v’, w2, v> with w1 w2 = w. We first consider

the following.

(1) If t=tl t2 then O,(t,)=m-‘(0’) for some node v’ factoring v.

(2) For a node u’ in g define g:, as the graph obtained from g by replacing node v’

with a node labeled * and removing all nodes which are no longer reachable from the

root. Then

t = t(gi,)t(g,,) iff v’ factors u.

(1): Since t/o=t/o’ for every o,o’~O*(t~), all nodes in O,(t,) are mapped to the

same node v’ in g. To show that U’ factors v consider a path (r, w, v) in g. Since m is

a surjective graph homomorphism a path (E, w, 1) in t exists, where 1 is a leaf labeled

with *. Since t = tl t2, this path can be factored into paths (E, wl, o) and (0, w2, 1) for

some node oEO*(tI) with w1w2=w. Clearly, m(o)=v’ and m(l)=v. Therefore, ap-

plying m to these paths we obtain paths (r, wl, v’) and (v’, wl, v) in g with w1 w2 = w.

Since the path (r, w, v) was arbitrary, u’ factors u.

(2): Consider graphs g1 = g;, and g2 = gUP. First assume t = t(gl)i(g2) but v’ does not

factor v. Then there is a path (r, w, v) in g which does not pass through v’. Hence, t(gl)

contains a leaf lgm-‘(v). Since t/l= * but t(gl)t(g2)/1=t(g2), it follows that f(g2)= *.

We conclude that v’= v. Hence, v’ factors v, in contradiction to our assumption.

Conversely, assume v’ factors u. Since g=m(t), this implies that

(*) VooEm-‘(u) 3 o’em-l(~‘): 0’ is a prefix of 0.

146 H. &id1

By definition of m, all subtrees t/o with oErn_l (0’) are isomorphic. Therefore, (*)

implies that t =tl t2, where ta= t/o for some oErn_‘(u’) and tl is obtained from t by

replacing all subtrees t/o, o~rn -‘(u’), with *. Since m(tl)=gl and m(t2)=g2, claim (2)

follows.

Now, let (Q,, . . , uk) be a maximal sequence of nodes of g factoring v on some path

from the root of g to V. Especially, z)~ is the root of g itself and vk = v. Define the graph

g’ as the graph obtained from g as follows:

Step I: Add new nodes sl,skP1 labeled by *;

Step 2: Redirect all edges in g to node vj to node sj for j= 1, . . . , k- 1; and

Step 3: Choose v~c’~... vk _ 1 as new root word.

Then, by (1) and (2), t(g) = t(gv,). .t(g”,) is a factorization oft into irreducible factors. It

remains to show that (uo, . . ., &) can be computed in linear time. Define the *-level of

a node v’ as the maximal length of a path from u’ to v if such a path exists and

otherwise as co. We have:

(3) Node v’ factors v iff the *-level of G’ is finite, and there is no other node in g with

the same *-level.

The *-levels of all nodes in g can be computed by post-order traversal through

g (before computing the *-level of a node v’ compute the *-levels of the successors of

v’) in polynomial (even linear) time. Therefore, (ZIP, . . . , uk) can be computed in poly-

nomial (even linear) time as well. 0

We use the above techniques for factorizations of trees to obtain:

Proposition 2.5. (i) Let k be ajixed constant, and assume tE z(xk) contains at least one
occurrence of every variable in Xk, g=m(t) and t = uos[u,, uk] is the kernel de-
composition oft. Then m((v,s, ul, IA)) can be computed from g in polynomial (even k
linear) time.

(ii) Assume ko<k, <... <k, with k, = 0, where k, - k, _ I is bounded by some con-

stant. Assume t=(tI ,..., t,), where tPETz((xkP_,+l ,,.., xk,}) isproperfor p=l,..“, m
andg=m((tI, t,)). Assume tP=U,s,[uk,_,+I, LQ] is the kernel decomposition oj

t,. Then m((u,, v,,sl, s,, ul, . , &,)) can be computed from g in polynomial

(even linear) time.

Proof. For simplicity, we again consider only a proof of statement (i). For j = 1, . . . , k
let Uj denote the node in g labeled with xk. For j = 1, . . . , k, define Sj as the set of nodes

v that factor vj. Since it contains the root r of g, Sj is not empty. Sj is totally ordered by

the reachability relation + on g. Therefore, Sj contains a minimal node w.r.t. this

ordering that is not contained in any of the sets Sj, with j’#j. Call this node vj. Finally,

let So denote the set of nodes v in g that factor all nodes aj, j= 1, . . . , k, i.e. So = nT= I Sj.

Since rESo, So is not empty. As a subset, e.g., of Si, So is totally ordered by -+ as well.

Therefore, SO contains a maximal node. Call this node vb. Define the graph g’ as the

graph obtained from g as follows:

Single-valuedness of tree transducers 147

Step 1: Add new nodes so, . . . , Sk, where so is labeled by * and Sj is labeled with Xj for

j=l,...,k;

Step 2: Redirect all edges in g to node vi to node sj for j = 0, . . . , k; and

Step 3: Choose r&v; .,.v; as new root word.

Using claims (1) and (2) of the proof of Proposition 2.4, one can prove that g’ indeed

represents (v, s, u 1 , . , uk). Also according to this proof, we observe that the sets Sj,

j= 1, .., k, together with the ordering, can be constructed in linear time. Therefore,

since k is constant, So can be constructed in polynomial (even linear) time as well.

Thus, nodes vb, . . . , v; can be computed in polynomial (even linear) time. For remain-

ing steps (l)-(3) of the construction it is not difficult to construct polynomial- (even

linear-) time algorithms. Therefore, assertion (i) follows. 0

3. Bottom-up finite state tree transducers

In this section we introduce finite tree automata (FTAs for short) and bottom-up

finite-state tree transducers (FSTs for short). Different to [13] we define an FST M as

a pair (A, T), where A is the finite tree automaton underlying M and T is the output

function. Similar to [131 we define the notion of a computation quite carefully in order

to fix our terminology for the composition and decomposition of subcomputations.

Outputs for subtrees which are not part of the final output are irrelevant. Therefore,

we consider tree transducers that are only allowed to skip “empty trees”. We recall

from [13] that this restriction can be imposed onto our tree transducers without loss

of generality (Theorem 3.1 (i)). As a new normal form we also want our transducers to

“delay” output as long as possible. These are called strongly reduced. We show that

for every reduced FST an equivalent strongly reduced FST can be computed in linear

time (Theorem 3.1 (ii)).

For Sections 3 and 4, X denotes the fixed denumerable set {xi 1 is N} of variables

and Xm=(xlr...,~,j.

A jinite tree automaton (FTA for short) is a 4-tuple A =(Q,Z,& QF), where Q is

a finite set of states, QF G Q is the set offinal states, C is the signature of input trees,

and 6 s urnaoQ x C, x Q” is the set of transitions of A; the transitions in

~n~Um~~{dxL,xQm are also called q-transitions.

Let t=u(tl,..., t& T,(x,) and 4, 41, . , C&&Q. A (4, ql.. .qk)-c#mputati#n $6 Of A for

t starts at variables Xj in states qj and consists of (pj, ql.. .qk)-computations of A for the

subtreestj,j=l,..., m together with a transition (q, a, pl.. .pm)eG for the root. We write

the state at the root to the left of the states at the variable leaves. This convention is

chosen in accordance with our prefix notation of trees and the left-to-right order of

substitutions. Formally, we represent 4 as a tree over signature 6 and set of variables

Xk as follows. If t=xjand q=qj then 4=Xj. If t=a(tl,t.) then 4=~(41,#.),

where z=(q,u,pl...p,)ES for suitable states pl,...,pm~Q and 4j is a (pj,ql...qk)-

computation for tj, j= 1, m. If 4(0)4X, the transition 4(o) also is called the

transition chosen at o.

148 H. &id

Assume TV T,(Xk) and r = to [t 1, . . ., tk]. Assume & is a (q, pl.. .Pk)-computation for

to, and 4i are (pi,ql... q,)-computations for ti, i= 1, . . . , k. Then &, [41, . . ., &,] is

a (q, q,...q,)-computation 4 of A for t. Conversely, if to contains exactly one occur-

rence of any xj, j = 1, . . , k (i.e. is X,-proper), then every (q. ql.. .q,)-computation $I for

t uniquely can be decomposed into a (q, p,...p,)-computation &, for to, and

(pi, ql.. .q,)-computations 4i for ti (for suitable states pi) such that 4 = 40 [$1, . . . , t#~~].

@i is called .&computation of 4 on ti.

A (q, &)-computation is also called q-computation. A q-computation is called accept-
ing iff qEQF. L(A)={~ET,I there is an accepting computation of A for t} is the

language accepted by A. The size of A, 1.41, is defined by JAI =C~4,a,q,...q,)E6(m+2).

For estimating the complexity of our algorithms we always assume that the input

signature C isjxed. Only the sets of states and transitions vary. Thus, the rank of C is

viewed as a constant.
A bottom-upfinite-state tree transducer (FST) is a pair M = (A, T). A = (Q, C, 6, QF) is

the FTA underlying M, whereas T:6 +Td(X), the output function of M, maps every

transition z =(q, a, ql.. .q,,,) to the output pattern T(~)E T,(X,) for z. Note that an FST

according to the definition in [13] is obtained by allowing several transitions

(q, a, ql.. .qm) of the underlying finite tree automaton, which are distinguished by the

different outputs they produce. The extension of the techniques explained in the present

paper to this slightly more general situation is straightforward and, therefore, omitted.

T is extended to computations as follows. Assume 4 is a (q, ql.. .qk)-computation

of A. If ~=xj for some j then T(+)=xj. If ~=T(@~,...,I&,,) then

T(4)= T(r)CT(&), . ..> T(4m)l. T(4) IS a so 1 called the output produced by 4. By this

definition, T(#C&,&I)= T(4)CT(41), T(hJl.
ForsometreeteG, T,(t)={T(@)j4 accepting computation of A for t} denotes the

set of outputs of M for t; valill(t)= # TM(t) denotes the number of different outputs of

M for t. T(M)=((t,s)I teL(A), sETM(t)} is the translation defined by M; and

val(M)=sup{val,(t) I tE Tr} is the valuedness. M is called

l single-valued, if val(M) < 1;

l k-valued, if val(M) < k;
l jinite-valued, if val(M)< CYJ; and

l infinite-valued, if val(M)= co.

As an example of an FST consider M =(A, T), where A =(Q, C, 6, QF), with

Q = (0, 1,2,3}, where QF= {O}; C= {a, b}, where a has rank 2 and b rank 0, and

6 consists of the transitions:

~~=(O,a,02), where T(z,)=x,,

t2=(0,a, 13), where T(T2)=d(c1,x2),

r,=(O,a, 12), where T(z3)=d(xI,c2),

t4=(l,a, 12), where T(z,)=x,,

~~=(l,a,32), where T(z5)=x2,

z6 = (2, b, E), where T(T~) = cl,

Single-ualuedness of tree transducers 149

and

77 = (3, b, E), where T(r7) = c2

An accepting computation 4 of A for t = a(a(a, b), b), b) is, e.g., 4 = ~~ (rz(ts(z7, zg), z7),

t6), where T(4)= d(c,, c2). In general, T(M) consists of all pairs (a(~~, b)k b, d(c, , cz)),
where k > 1. Hence, M is single-valued. If we add a transition zs = (1, a, 2 3), where

T(z8)=x2, then the resulting transducer is no longer single-valued.

To measure the computational complexity of our algorithms we need some notion

of size of our transducers. For this we refer to the following internal representation of

the output function T. For every transition z we introduce a distinct set of variables

x,, j as pattern variables. Assume t, is obtained from T(T) by renaming variable leaves

xj with x,,~. Then T is represented internally by the subtree graph

of the output-pattern forest. Therefore, the nodes of m(r) correspond to the

(isomorphy classes of) subtrees of output patterns. Since we made the variable sets for

distinct output patterns disjoint, m(T) contains for every transition T a “disjoint copy”

of all paths in m(T(t)) from the root to the variable occurrences of this pattern. Note

that this internal representation can be computed in linear time from a representation

where the outputs T(T) are given by trees and not by graphs.

Since our algorithms always operate on this internal representation, we define the

size IMI of M by

IMI= 1 (m+ l)+lNT)l.
(q,~.q,...aJ~~

A state qEQ is called useful iff an accepting computation 4 and a node o in C#J exists

such that 4(o) is a q-transition. If this is not the case, q is called useless. Useless states

can be removed without changing the “behavior” of A (and, hence, also M). An FTA

A is called reduced iff A has no useless states.

The rest of this section is concerned with further and more sophisticated normaliz-

ations of transducers. Especially, outputs for subcomputations which are not parts of

the final output uniformly should equal a special output tree, namely 1. I is a new

symbol (i.e. l$d) of rank 0. Accordingly, we consider FSTs M =(A, T), where the

range of T is Td(X) u { I}. However, we consider in fact only FSTs (A, T) where an

output tree I is always substituted for a variable Xj which does not occur in the

corresponding output pattern. Therefore, I does not occur as the leaf of an output

tree s # 1, i.e. the output of every (q, ql.. .&)-computation 4 of A either equals 1 or is

in TA(xk).

The FST M = (A, T) is called reduced iff the following hold:

(i) A is reduced;

(ii) there is some subset U(M) of states such that for every T = (4, a, ql.. .q,)E6 the

following holds:

if q&U(M) then T(T) # I and (qjEU(M) iff xj does not occur in T(T)),
if qsU(M) then T(s)=1 and qjEU(M) for allj;

150 H. Seidl

(iii) if,feQF thenf#qj for every transition (q, a,ql...q,)eb and every j.

The states in U(M) are exactly those which are used by subcomputations $J which

produce 1. If a computation has reached some state not in U(M), we can be sure that

the output for the corresponding subcomputation is part of the final output.

It should be noted that in [13] reducedness does not include property (iii) above.

However, property (iii) can be achieved with little extra computational effort; more-

over, it simplifies the constructions in the present context.

Considering the example of a single-valued transducer above we find that we need

a stronger normal form of FSTs. This normal form should allow transitions with

output patterns #I for nonfinal states q only if the outputs produced by q-
computations depend on the input trees. Assume M =(A, T) is a reduced FST with

A =(Q,Z,& QF). A state qEQ is called constant iff for all q-computations $J,+‘:

T(d)= T(e5’). Const(M) denotes the set of constant states of M, whereas

Cw : Const(M)+ & u { _L } the map defined by C,(q) = T(4) for some q-computation

4. Observe that always U(M) G Const(M). In general, this inclusion is proper; also,

CM(q) possibly has exponential size. However, the number of difSerent subtrees of ail

the trees C,(q), qEConst(M), is only linear in the size of M. In fact, this is the reason

why we are forced to employ graph representations of trees in order to make our

algorithms run in polynomial time.

The FST M =(A, T) is called strolzgly reduced iff M is reduced and

U(M)=Const(M)\Q,. We prove:

Theorem 3.1. (i) For every FST M a reduced FST M, exists such that T(M,)= T(M).
M, can be constructed from M in linear time.

(ii) For every reduced FST M =(A, T) a strongly reduced FST M, =(A, K) exists
such thut T(M) = T(M,).

M, can be computed in linear time.

Statement (i) of Theorem 3.1 is essentially taken from [13]. Consider, e.g., the FST

M =(A, T), where A= (Q, C, 6, QF) and T are defined as follows:

Q = (q,p) with QF = (4);
,X2 = {a) and .Z, = {b}, whereas

6={r,,r2,r3,r4} and Tare given by

rl=(q,a,qp), where T(ri)=d(xi,c),

rz=(q,a,qq), where T(rZ)=d(c,X&

73 = (4, b, ~1, where T(zj) = c,

~4 = (P, b, 4 where T(T~) = c.

Then, the corresponding reduced FST is obtained in two stages. First, we add a tag

from (0, l> as a new component to Q which indicates whether the present output is

part, of the final output or not. Hence, we define

Qr=Qx {(I 1) with QF=Ck 1));

Single-valuedness of tree transducers 151

6,={z;, . ..) &} and Tare constructed as follows. The first four transitions which are

(_, 1)-transitions generate the same outputs as the corresponding transitions in 6, but

the jth successor state is tagged with 0 iff variable Xj does not occur in the output

pattern. The second half of transitions all produce output I, all states involved have

tag0. These transitions mimic computations of A for subtrees whose output is

abandoned.

First group:

r;=(<q, l),a,(q, l)<p,O)), where T(z;)=4xI,c),

G=((q, 1>,a,(q,O)(q, I)), where T(~)=+,Q),

~j = ((q, l), b, E), where T(T;) = c,

TL, = ((p, l), b, E), where T(&) = c.

Second group:

z;=((q,O),a,(q,O)(p,O)), where T(T;)=~,

Tb=((q,O),a,(q,O)(q,O)), where T(G)=J-,

T’, = ((q, 0), b, E), where T(T;) = I, and

~k=((p,O),b,~), where T(r’,)=J_.

Now, the reduced FST is obtained by adding a new final state and removing useless

states (like (p, 1)).

In order to prove statement (ii) we first show tha1 for every reduced FST M = (A, T)

the set Const(M) together with (a representation of) the map C, can be computed in

linear time.

Proposition 3.2. Let M =(A, T) be a reduced FST. Then

(i) Const(M) can be computed in linear time;

(ii) the graph m(C,)=m((CM(q))qEConst(M)) can be computed in linear time.

Proof. Define the reachability and connectivity relations dA, ++* c Q x Q. q is reach-

able from p w.r.t. A (p -‘A q) iff there is a proper (p, q)-computation of A. q is connected

with p w.r.t. A (p f-*~ q) iff p +A q and q ‘A p. ++A is an equivalence relation on Q. The

equivalence classes Q 1, . . . , Q k W.r.t. ++a are also called the strong components of A.

A strong component Qj, is reachable from a strong component Qj iff p -)A q for some

PEQj and qEQj(. The following facts can easily be shown:

0 p&onst(M) and p +A q implies qeConst(M);

l p&onst(M) and ptfiq implies T(~)E{ I, x 1 } for every proper (p, q)-computation

(and, hence, C,(P) = C,(q));

l U(A, T) c Const(A4).

152 H. Seidl

We construct Const(M) and CM according to reachability. Assume Q1, . . . , Qk are

the strong components Qj of A such that for every strong component Q’ reachable

from Qj, either Q’ 5 U(M) or T(4) = x1 for every proper (p,q)-computation with

p,q~Q’. Provided Qj c Const(M), define C,(Qj)= CM(q) for some qEQj. Computing

the set Const(M) and CM is done in two steps.

Step 1: For every jE{l, k}, select a transition Ij =(4(j), a(j), 4’1”. . .q$)E6, where

q”‘EQj but either qp’$QjU U(M) for at least one p or qf’EU(M) for all p. Define

t=(t1, . ..) tk), where tj is the tree obtained from T(Zj) by replacing x,

with xjf provided q:j),Qjr. By definition of t, the digraph G, in the assumption of

Proposition 2.3 is acyclic. Define (C&(l), . . . , C&(k)) = tk. Then the following holds for

every j:

(*I C$(j) = C,(Qj) provided Qj c Const(M).

By Proposition 2.3, g(l)= m((C&(l), . . . , C&(k))) can be computed in linear time.

Step 2: We compute the set of those j such that Qj c Const(M). Let 6’ be the set of

all q-transitions where qEQl u ... uQk. For z=(q, a,q, . ..q.,,)~b’ define t, as the tree

obtained from T(r) by replacing x, with xj, provided qpEQj’. Then Qj E Const(M) iff

the following hold:

(1) VT=(q,a,ql...q,)ES’with qEQj: Ct(j)=t,[C$(l),...,C&(k)];

(2) whenever Qj, is reachable from Qj then Qj, s Const(M).

By Proposition 2.2 the graph g’2’=~((t,[C$(1), C&(k)]),,,,) can be computed

in linear time. For g , (‘) Properties (1) and (2) can be tested in linear time.

Finally, knowing Const(M), the graph m(C,) can be extracted from g(l) in linear

time as well. This finishes the proof. 0

Having computed the set Const(M) together with the graph m(C,) it is no longer

difficult to compute (a representation of) the output function T such that M, = (A, z)

is strongly reduced.

Proof of Theorem 3.1 (ii). For z = (q, a, ql.. .qm)E6 define

if q$Const(M),

if qeConst(M)nQ,,

if q&onst(M)\Q,,

where

CM(qj) if qjEConst(M),
xj otherwise.

x produces the output “as late as possible”. Especially, z(4)= T(4) for every

accepting computation 4. By Proposition 2.2 we find that, given Const(M) and

m(C,) the graph m(x) can be constructed in linear time. 0

Single-valuedness of tree transducers 153

4. Pairings

Instead of comparing two computations w.r.t. one output function T, it is tech-

nically more convenient to consider only one computation but two output functions.

Therefore, we introduce the notion of a pairing which consists of one FTA and two

output functions. For every FST M, we construct the canonical pairing M2. Then,

M is single-valued iff the two output functions of M2 are equivalent (Proposition 4.1).

We give necessary conditions (Ul) and (U2) for a strongly reduced pairing to have two

equivalent output functions (Proposition 4.3). For the proof of necessity we employ

Proposition 4.2, which describes the relation between the outputs produced by

equivalent output functions for a proper computation. Proposition 4.2 will be used

a second time in Section 5 to prove necessity of a third Property (U3), which, together

with Properties (Ul) and (U2), precisely characterizes equivalence of output functions.

Assume A = (Q, C, 6, Qr) is an FTA and Ti, & : 6 -+ q(X) u { I } are maps such that

(A, 7J is an FST for i = 1,2. Then 17 = (A, T, , T2) is called pairing. As the size of n, 1 n 1,

we simply define IIZ(=I(A,T,)I+I(A,T,)I.

If (A, T,) and (A, T2) are reduced (strongly reduced), then Li’ is also called reduced

(strongly reduced).

Assume vi, USER. We say Tl is (v,,v,)-equivalent to T2 w.r.t. A (ui T, =u2 T2 for

short) iff ui Tl (4) = u2 T,(4) for every accepting computation 4 of A.

We defined the notion of equivalence somewhat more generally as necessary in our

algorithm deciding single-valuedness. Our procedure deciding single-valuedness only

refers to (*, *)-equivalence (see the next proposition). This important case of equival-

ence is denoted by T, = T2. However, our polynomial algorithm deciding finite-

valuedness also makes use of the more general notion (see Section 6).

Assume A =(Q, C, 6, QF) is a reduced FTA. Consider the FTA Ack’=(Qk, C, dk, QE),

where z=((q(‘) ,..., qCk)),u,(q’,‘) ,..., qik))...(qt) ,..., q$)))Esk iff r(i) = (q(i), a,

qy). . .q$))& for all i. .reGk can be viewed as the k-tuple r = (t(l), . . . , T(~)) and z(j) as its

jth component. Accordingly, every computation 4 of Atk’ for some tree t represents

a k-tuple (4(l), . . . , g5’“‘) of computations 4 (j) of A for t; and vice versa. The kth power

of A, Ak, is the reduced FTA obtained from Ack) by removing all useless states and

transitions. Assume M =(A, T) is a reduced FST. The kth power of M, Mk, is the

(k + 1)-tuple (Ak, &, . . . , T,), where Z produces the output pattern according to the ith

component of transitions. Since (A, T) is reduced, (Ak, q) is reduced for j = 1, . . , k. In

the sequel, we use powers Mk only for k = 2 or k = 3. M2 is also called canonical pairing

of M. We find:

Proposition 4.1. Assume M =(A, T) 1s a reduced FST and M2 =(A’, T,, T2) is the

canonical pairing of M. Then val(M)= 1 ifs Tl = T2 w.r.t. A2.

Since M2 can be computed from M in polynomial (quadratic) time it suffices, by

Theorem 3.1, to deal with (strongly) reduced pairings. The proof of necessity of

our characterization of (ui, u2)-equivalence is based on the following (technical)

proposition.

154 H. Seidl

Proposition 4.2. Assume II=(A, T,, G) is a reduced pairing with v1 Tl =v2 T,.

(i) If 4 and I$’ are q-computations for some state q of A then q (&)= T,(q5’) ifs

T,(4)= T,(4’). Hence, especially, Const(A, T,)=Const(A, T,).

(ii) Assume 4 is an X,-proper (J; q1 . ..qk)-computation of A with &QF and

ql,q&Const(A. z). Then vl~(~)~u,T,(q5).

Proof. First consider statement (i). Since Ii’ is reduced, there is a proper (f;q)-

computation$ofAwithfEQ,. W.l.o.g.assume T,(4)=T,(@)but T,(4)#T,(&).By

assumption, v1 Z ($4) = v2 T,($4). However,

~lT,(IcI~)=~l~(~~‘)=v2T2(Ic/~‘)=~2T2(IcI)Tz(~’)

#v~&($)~(~)=u~&($~): contradiction.

Next, we prove (ii). Since qj$Const(A, 7J, we also have qj$ U(A, T). Hence xj occurs

both in & (4) and &(4). By (i), qj-computations $j, 4; exist with T (4j) # T (4;) and

T,(+j)# G(4;). Define Si=Ui~(~), si,j= T(4j) and S~,j=~(+~) for i= 1,2 and

j=l , . . . , k. Then

S1C~1,1,...,~1,kl=S2C~2,1,...r~Z,kl,

whenever ~i,j~{Si,j,S;,j} and s”l,j=si,j iff s”z,j=sz,j.

Consider the equations

~~C~~,1~~~~~~l,j~~~~~S~,kl~S2CS*,1~~~~~S2,j~~~~~S2,kl~

~1C~~,1~~~~~~~,j~~~~~S~,kl~S2CS2,1~~~~rS~,j~~~~~S2,kl~

Factorization w.r.t. xj yields some tree UjEz(xj) such that either (1) or (2) holds:

(1) Ujsl,j=sz,j and Ujs;,j=si,j,

(2) sl,j=“js2,j and s;,j=ujs;,j.

Let J1 denote the set of j where (1) holds and J2 the set of the remaining ones.

Consider the equations

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

S1CS1,1,...,S”l,k-1,S;,kl=S2CS2,1,...,SZ,k-1,S;,kl. 

If keJ, then bottom cancellation yields 

~1CS”I,1,...,~1,k-l,Xkl=~2C~2,1~~~~,S”2,k-l~~kl 

and, otherwise, 

s,cs,,,, . . ..s” l,k-1,Ukl=S2CS2,1,...,S2,k-1,Xkl. 

Continuing bottom cancellation for &_ i, . . . , x1 we obtain 

S1C~~,~,‘.~,V~,kl=S2CV2,~,~~.,~2,kl with fJi,j= 
Uj if jEJi> 

Xj otherwise. 

This proves (ii). 0 



Single-caluedness of tree transducers 1.55 

As an application of Proposition 4.2 we find: 

Proposition 4.3. Assume I7 = (A, c, G) is a strongly reduced pairing. If v1 Tl = v2 T2 

then Ill has Properties (Ul) and (U2): 

(Ul) Const(A, T,)=Const(A, T2). 

(U2) Assume z = (q, a, q 1.. . q,)&, T(r) contains variables xj,xj. for j#j’ and 

T(T)= uiyi, where ui is the maximal prejix in z(*). Then yl~y,. 

Since II is strongly reduced, Property (Ul) implies U(A, T,)= U(A, G). Especially, 

for every transition t, the sets of variables occurring in the output patterns r,(r) and 

T, (5) coincide. 

Proof. Property (Ul) immediately follows from Proposition 4.2(i). Therefore, it re- 

mains to prove that 17 also has Property (U2). Since A is reduced, there is a proper 

(f,q)-computation 4 of A for somefEQF. By Proposition 4.2(ii), 

01 T,(#)u,Y, =vl C(~~(XI, ...,x,))~:v2T2(4~h, . . ..xm))=u2 G(4)u2~2. 

Therefore, 

for substitutions Bi with xjOi~~(xj) for all i and j. Since both v1 T,($)u, and 

u2 T2( 4)u2 are maximal prefixes of s in pA( *) they are, by Proposition 1.5, equal. 

Therefore, we can apply top cancellation and deduce that y, 8i = y, 02. Hence, y, % y,, 

which we wanted to prove. 0 

5. Translations of paths 

In Section 4 we found Properties (Ul) and (U2) of a strongly reduced pairing 

I7=(A, Tl, T,), where u1 Tl = v2 T2 w.r.t. A. In this section we exhibit a third Property 

(U3’). Property (U3’) for (vi, v2) is concerned with computations along paths of input 

trees. Provided 17 has Properties (Ul) and (U2), we give a reformulation of Property 

(U3’) by a suitable graph property (U3) (Proposition 5.1). We show that Properties 

(Ul), (U2) and (U3) for (v1,u2) are not only necessary but also sufficient for (vr, v2)- 

equivalence of output functions (Theorem 5.2). Since (Ul), (U2) and (U3) for (v1,v2) 

can be decided in deterministic polynomial time, we obtain a deterministic poly- 

nomial-time algorithm deciding (vi, u,)-equivalence (Theorem 5.3). 

Assume w =(a1 ,j,)...(a,,j,)EC~. If (E, w,j,. . . j,) is a path in tET,, then t can be 

factored according to w, t = ul.. .uk t’, where t’ = t/j,. . . j, and u, = aK(tK, 1, . . . , t,,,,) with 

p(aK)=mK and tK,i= 
t/j,...j,_,i if i#j,, 

* if i=j,. 



156 H. Seidl 

By definition, the u, are *-irreducible. Assume n = (A, Ti, T2) is a strongly reduced 

pairing and 4 = ~$i.. .& c$’ is the corresponding decomposition of an accepting com- 

putation of A for t, where 4( j, . ..j.) is a q-transition with q$U(A, T). Assume 

vi T, -v2 T, w.r.t. A. Applying Proposition 4.3 to 4i. ..&, we deduce that either 

u1 TI(+l)...q(&J is a *-prefix of v2 G(c$~)...T~(c#J ) k or vice versa. Note that this may 

be wrong if II is not strongly reduced. In general there is no finite subalphabet of Zd( *) 

by which these outputs can be spelled. Therefore, we “strip off” the trees t,,j, i.e. we 

replace them in the factorization oft according to w by variables x,,j. We make use of 

doubly indexed variables merely for convenience in order to distinguish between the 

variables at different levels of the tree. We may as well have used variables from some 

variable set X,. 

Formally, let now X denote the set of variables (xi,j 1 i, jE N}. X is supposed to be 

disjoint from any set Xk = {xi, . . . , ~~}.Forw=(a~,ji)...(a,,j,),thetreetr(w)~Tr,~(*) 

is defined by tr(w)= * provided k=O (i.e. w =E), and tr(w)=yl...y, otherwise, where 

Y~=u~(u~,~, . . ..u%.~,) with aKEC,,,x and 

UK. 
i 

X,,i if i #j, 
i= 

* if i=j,. 

So, e.g., for w=(d, l)(a, l)(a, 2)(b, l), with UEC,, ~EC, and ~EC,, tr(w) is the tree 

tr(w)=d(a(a(X3,,,b*),X2,2),X1,2,X1,3). 

For SEG(X,,,) and ldj<m we introduce the abbreviation s[rc,j]=s[~~,i,..., 

X E,j-l)*)XK,j+l,...)XK,m 2 ] i.e. the variable xj is replaced by *, whereas the others get 

the additional index K. Observe that s[Ic, j] E c:,,x( *) iff s contains Xj. 

Let M = (A, T) be an FST with A = (Q, C, 6, QF). We want M to consume w via tr(_) 

and produce output in the free monoid ?d”x(*). S’ mce we are not interested in the 

states of computations corresponding to variables X,,j, we only specify those at the 

root of tr(w) and at the variable leaf *. Therefore, for states p,q~Q, a partial 
(p, q)-computation rt of A for w is a computation of A for tr(w), where p = q and Z(E) = * 

provided w =E; otherwise, Z.(E) is a p-transition and rc( j, . ..j._ i)=z for some 

transition 2=(q0,ak_,,q,... q,,,), with qjk=q. Because of the special structure of the 

tree tr(w), we can represent 71 as the sequence (zr ,jl). . .(zk, jk)E(8 x N)k, where r, is the 

transition chosen in rc at node j r...j_i. We have T(~)=T(z,)[l,j,]...T(zk)[k,jk]. If 

some variable x,,j occurs in T(x) then the state q’ corresponding to X,,j is given by 

q’=qj provided ~(jI...j,_l)=(qO,a,qI...q,). If ~C=E then T(n)=*. If rr#~ then 

T(z)E&~x(*) iff T(Zk) COIltaiIlS Xj,. 

A transition z is called T-initial iff T(~)E&. 
Assume the pairing ZI = (A, q, &) has Property (Ul). Then T (7) contains variable 

Xj iff T2(t) contains xj for every transition t of A. Especially, r is T,-initial iff z is 

G-initial. We say 17 has Property (U3’) for (vl,vZ) iff 



Single-valuedness of tree transducers 157 

(U3’) For every partial (f, q)-computation n withfEQ, and qE[Q\U(A, T)] u QF, 
the following holds: Let Ui denote the maximal *-suffix of Vi z(rc) in FA( *). 

Then for every transition r =(q, a, ql.. .q,)E6, 
(1) If z(r) contains variables xj and xj. with j#j’, and ui is the maximal 

prefix of z(z) in fA;d( *), then uru; =uzu;. 

(2) If r is z-initial then ui 7”(r)=u2 T,(r). 

Observe that the trees ui, u; occurring in (U3’) for (ul,uZ) can be spelled over aJinite 

subalphabet I c Id(*). However, we still have to consider possibly infinitely many 

partial computations. Therefore, we represent the set of all partial computations by 

a graph called the trace graph G(A) of A, and transform Property (U3’) for (ur, u2) into 

a property of G(A). 

The trace graph of A is the (directed unordered edge labeled) graph G(A)= (V, E) 

where V=[Q\U(A, z)]uQr, and E consists of all edges (q, (z,j), q’) with 

r = (q, a, ql.. .q,)E6 and qj= q’. The paths in G(A) describe the partial computations 

of A. 
To every node q of G(A) we attach the “difference” between outputs when reaching 

this state q during a partial computation. Formally, the deference diff(t,, t2) of trees 

tl , t2E FA( *) is defined as follows. Assume r is the maximal common *-prefix of tl and 

tZ. Then diff(t,,t,)=(s,,s,) iff tl=rsl and t2 = rs2. Clearly, diff(t,, t2) = (*, *) iff 

tl =tz. 

Property (U3) for (ul, u2) is divided into four assertions. Assertions (1) and (2) give 

the initial and the final conditions for the outputs produced along such a path. 

Assertion (4) describes the situation at “branching points” i.e. at nodes o where the 

output depends on at least two subtrees at o. It states that such nodes are “synchroniz- 

ing”, i.e. both the outputs produced above and below agree. To complete, Assertion (3) 

describes what happens on paths without branching points. 

Assume n has Property (Ul). Then Il has Property (U3) for (ui, u2) iff 

(U3) There is a map diff: V+ FA( *)2, with: 

(1) If qEQF then diff(q)=diff(ul,02). 

(2) If diff(q)=(s,, s2) and there is some z-initial q-transition then 

Sl r, (7) = s2 G(7). 

Assume (q,(z,j),q’)EE and diff(q)=(s,,s,). 

(3) If z(r)Ez(xj) and Ui= T(z)[*] then diff(q’)=diff(s,u1,s2u2). 

(4) Assume r(r)+ FA(xj) and 7,‘(s) = Uiyini, where uic FA( *), USE FA((xj) and yi is 

the minimal subword in Z~“X( *) containing all variable occurrences xj, with 

j’#j. Then diff(q’)=diff(u{*,&); and diff(s,u1,s2u2)=(*,*). 

Property (U3) is an appropriate generalization of a corresponding property for 

GSMs characterizing equivalence of two output functions. However, for words 

(viewed as monadic trees with one special leaf) the situation of (4) never occurs. This 

observation was exploited by Karhumaki et al. [S] to construct linear sized test sets 

for regular word languages. 



158 H. Seidl 

All trees in the image of diff(_) contain at least one occurrence of *. They can be 

spelled by a jinite set I of irreducible trees which can be computed from II in 

polynomial time. Observe again that these trees may have exponential size, although 

they can be represented as a word over I of polynomial length. 

The next (technical) proposition relates Properties (U3’) and (U3) for (vi, u2) to 

compatibility of outputs of computations. It, therefore, will be used to prove suffi- 

ciency of our characterization of (ui , u,)-equivalence. 

Proposition 5.1. Assume ZT=(A, T,, G) is strongly reduced. ZfIZ has Properties (Ul) 

and (U2) then the following three statements are equivalent: 
(1) For every partial (A q)-computation z with feQF and qE[Q\U(A, z)]uQr, 

u1 TI (rt) zz u2 T,(z) and u1 TI (7~) TI (z) z v2 T2(rt) T,(z) for every r-initial q-transition r; 

(2) I7 has Property (U3’)for (vl, vz); 

(3) Z7 has Property (U3)for (vI,uz). 

Observe that by Proposition 4.3, statement (1) holds true whenever vi TI = u2 T2 
w.r.t. A. 

Proof of Proposition 5.1. (1) implies (2): Assume rc is a partial (f; q)-computation of 

length k withfEQ,, qE[Q\U(A, z)]uQ r, and Ui T’(Z) = SiUi, where ui is the maximal 

*-suffix in fA(*), i-1,2. Assume t=(q,a,qI...q,)E6. By (l), trees rl,r2EFA(*) and 

X-substitutions 81,82 exist with (~~t3~)u~r, =(szg2)u2r2=s, where for every variable 

x# * in si, XBi~ FA((x) and either xB1 =x or xe2 =x. Since both ulrl and u2r2 are 

maximal *-suffixes of s in ?A( *), we deduce that u1 rl = uzrz and si 0, = s2&. First, 

consider the case where r is T-initial. By (l), 

for X-substitutions 0; with x&E z(x) for every x # * in si. By Fact 1.8 we may choose 

0; = ei. Thus, we find 

and, hence, by top cancellation, ui TI (7) = u2 T,(z). 
Now assume z(r) contains occurrences of variables Xj, xj* with _i#j’. Let 

T(T)[k + l,j] = Ufyi, where ui is the maximal prefix in z( *), i= 1,2. By (l), there are 

trees ri, Y2~ FA( *) and X-substitutions gl, g2 such that 

(S1U1U;Y1)~~rl=(S2U*U;Y2)~~2r2r 

where for every variable x # * in si, X~iE FA(x) and either x&i =x or xgZ =x. Moreover, 

for every variable x occurring in si, xg=xei. Hence, 

(s1e1)u1u;(k8;)6 =(s2e2)aZa;(YZ&)r2. 

Therefore, again by top cancellation, 

~l4(Yl81)~, =u*u;(Y2m2> 



Single-oaluedness of tree transducers 159 

where both uIu; and uZu; are maximal *-prefixes in FA:d( *). Hence, by Proposition 1.5, 

uIu; =u2u$, in accordance with Property (U3’) for (II~,z+). 

(2) implies (1): Assume n is a partial (1; q)-computation of length k withfEQF and 

qE[Q\U(A, T)] uQF and Oi~(~)=SiUi, where Ui is the maximal *-suffix in fA(*). We 

proceed by induction on the length of 7~. 

Assume rc=~. Then z(n)= *, and Vi itself is the maximal *-suffix of Ui T(n). There- 

fore, (2) implies 

u~~(n)=v,~v~=V2~(71), 

in accordance with (1). Also, if r is a T-initial q-transition then by (2), 

v1 rI(r)=uI T(z)=z.i2 T2(r)=v2 T2(z) 

and therefore, trivially, 

Now, assume 7~ = rc’(rk,jk), where rc’ has length k - 12 0. Then T(K) = Z(R’) T(Tk)[k, j,]. 

Assume vi ~(7L’)=SiUi, where Ui is the maximal suffix in c(*). By the inductive 

assumption (sI O,)u,rI =(s28,)u2r2 for substitutions Bi of the variables x,,j, 

?c=l , . . . . k- 1, where X,,jeiE~~(X,,j), and trees rl, r2E yA( *). We distinguish two cases. 

Case 1: z(Tk)$z(Xjk). Then q(zJ contains some variable Xj with j#j,. Assume 

T(Tk)[k, j,] = uIyi, where ui is the maximal *-prefix in c( *). By assertion (1) of 

Property (U3’), we have aI u; = u24. By Property (U%), y, 0; =y,& for substitutions 

t$, where X&E z(x) for every variable x occurring in yi. Since the set of variables 

occurring in yi are disjoint from the set of variables #* occurring in si, we can 

combine Bi and Si to obtain substitutions $i of the variables X,,j with K= 1, __., k and 

* such that 

Moreover, assume r is a z-initial q-transition. We factorize yi = y; Wi, where wi is the 

maximal *-suffix of yi in FA(*). Since the maximal *-suffix of z(n) in F4(*) is wi, we 

obtain by assertion (2) of Property (U3’) that w1 TI(~)= w2 T,(z). Hence, also 

ul(TI(n)TI(~))g2 =~~(T~(n)T~(r))f?~, and statement (1) holds true. 

Case 2: z(Tk)Ez(Xj,). This case causes some (technicai) trouble since Property 

(U3’) for (vl, v2) does not speak (explicitly) about patterns containing a single variable 

at all! First, we show 

For a proof of (+), we again distinguish two cases. 

Case 2.1: A partial (q, p)-computation nl and a transition 7 = (p, a, ql.. .q,)ed exist 

such that ~(nl)~Td(*), and x(z) contains occurrences of variables xj,Xj,, with j#j’. 

Assume ~(Z)=Ujyi, where u( is the maximal *-prefix in z(*). Define r; = 7Jn1)u;. 



160 H. Seidl 

Then by Property (U3’) for (ol,uZ), a1 T,(r,)[k,j,]r; =u2G(~,J[k,jk]r;, which we 

wanted to prove. 

Case 2.2: A partial (q, p,)-computation rr 1, a partial (pi, p,)-computation nz, and 

z-initial pj-transitions zj, j= 1,2, exist such that ~(71j)E~(*) and T,(r;)# 

r,(%)TN). 
We claim that also &(r;)# &(rc*) T,(r$). 

To prove this assume, for a contradiction, G(r\)= T,(n,)T,(z;). 

Then by assertion (2) of Property (U3’), substitutions Or, t12 exist with 

X,,jeiE ~(X,,j) such that both 

a1 q(&j))ei r,(~,)T,(z;)=~,T,(~(z,j))e,T,(71~)T2(t;), and 

By assumption, the two left-hand sides are equal, whereas the two right-hand sides are 

not: contradiction. 

Therefore, z(r;)# ~(7r2)~(r;) for i= 1,2. Define rI= T(rrr)~z(*), si= T(r;), and 

si = T(7r2) T(r;) for i= 1,2. By assertion (2) of Property (U3’), u1 T,(z,)[k,j,]r;s, = 
u2~2(r,)[k,jk]r;s2 and ui T,(z,)[k,j,]r\s; =u2T2(tk)[k,jk]r;s;. Therefore, we can 

apply factorization and obtain that either u1 T (Sk)[k, j,] is a *-prefix of u2 T2(Tk)[k, j,] 
or vice versa. From this follows assertion (+). 

Applying (+) we conclude that (s18i)u1 T,(r,)[k,j,]r’, =(s2f12)u2 &(z,)[k,jJr$ for 

suitable r:E yd( *). Hence, Tl(n)z T,(n). Moreover, if there is a z-initial q-transition 

z then Property (U3’) for (u1,u2) yields u1 T,(r,)[k,j,] q(z)=~~T~(~~)[k,j~] T,(z). 
Hence, 

Therefore, & (rc) T,(T) z T,(n) T2 (T), in accordance with assertion (1). 

For a proof that (2) and (3) are equivalent observe that whenever f=qEQF or 

q#U(A, 7J, the set of partial (A q)-computations rr=(rl,jl)...(rk,jk) of A equals the set 

of sequences of labels of paths in G(A) from nodefto q. Therefore, Property (U3) for 

(vi, u2) implies Property (U3’) for (ui, u2). For the opposite implication assume II has 

Property (U3’) for (ul, u2). Then, a map diff(_) with Property (U3) exists and is 

uniquely defined iff for every &QF and qE[Q\U(A, z)] uQF, every partial (1;q)- 
computation rc has the following property: 

(+ +) If ui is the maximal suffix of Viz(Z) in z(*) then diff(ui, uz)=diff(q). 

So, assume rc and 7~’ are partial (f, q)-computations where, for i = 1,2, Ui is the maximal 

suffix of Ui~‘(71) in FA(*) and u; is the maximal suffix of Uiz(X’) in FA(*). 

Assume diff(u,,u2)=(s1,s2) and diff(u;,u;)=(s;,s;). As above, we distinguish two 

cases. 

Case 1: A partial (q, p)-computation rci and a transition r = (p, a, ql.. .q,,,)ed exist 

such that T(nl)~Td(*), and T(r) contains occurrences of variables xj,xj, with j#j’. 



Single-valuedness of tree transducers 161 

Define ri= x(x,)uf, where uj is the maximal prefix of T’(T) in c(*). By Property (U3’) 

for (vl,vZ), u1r1=u2r2 and u;rI=u;r2. Hence, by the definition of diff(_,_), 

s1r1=s2r2 and s;rl=s;r2. W.1.o.g. assume sl=*. Then rl=s2r2, which implies 

s; s2r2 =s;r2. By bottom cancellation we obtain s; s2 = s;. By the definition of 

diff(_, _), either s; = * or s; = *. Therefore, s; = * and s; = s2. Consequently, (sl, s2) = 

(s;, s;), which we wanted to prove. 

Case 2: A partial (q,pl)-computation 7c1, a partial (p1,p2)-computation x2, and 

two z-initial pj-transitions zj, j= 1,2, exist such that ~(~j)E~(*) and T,(z;)# 

T,(lr,)T,(z;). As above, we conclude that also &(T;)# T,(n2)T,(z;). 

Define ri= z(nl) z(tl) and rl= z(7r1 7r2) z’(~~). Then, by Property (U3’) for (ul, u2), 

ulrl =u2r2, uIr; =u2r;, u;rl=u;r2 and u;r;=uir;. 

Hence, by the definition of diff(_,_) and top cancellation. 

sly1 =s2r2, sIr; =szr;, s;rI=s;r2 and s;r;=s;r;. 

By factorization we, w.l.o.g., assume that s1 is a *-prefix of s2. Then s1 = * and, 

therefore, rl = s2 r2 and r; = s2 ri. Again, substituting this result into the equations for 

si and using bottom cancellation we obtain s\ s2 = s; . Consequently, s; = * and s; = s2. 

Hence, (sl, s2) =(s\, s;), which we wanted to prove. 0 

We are now ready to prove the main theorem of this section: 

Theorem 5.2. For a strongly reduced pairing Il=(A, q, T,) and vl, QE z(*) the 

following two statements are equivalent: 

(1) v1 T1 -v2 G w.r.t. A; 

(2) Ii’ has Properties (Ul) and (U2) and Property (U3)for (vl, vz). 

It can be decided in polynomial time whether or not v1 q = o2 T2 w.r.t. A. 

Proof. (1) implies (2): Assume statement (1) is true. Then by Proposition 4.3, Il has 

Properties (Ul) and (U2). From Proposition 4.2, we deduce that for every partial 

(f;q)-computation 7~ with &QF and qE[Q\U(A,T)]uQF, ~(7c)zG(x) and 

T,(x)T’(T)z T2(71) T2(z) for all z-initial q-transitions 5. Hence by Proposition 5.1, 

n has Property (U3) for (vl,v2). Thus, statement (1) implies statement (2). 

(2) implies (1): For a proof of the converse implication assume Il has Properties 

(Ul), (U2) and (U3) for (ul, v2) but u1 7”(4)#v2 T,(4), where 4 is an accepting 

computation of A for some tree t. Since v1 T1(4)#u2 T,(4), there is some node o in 

O(vl T,(6))nO(v2 G(4)) with u1 T,(4)(o)Zo2 G(~)(O). 
Let (E, wi, Oi), i = 1,2, be paths in t of minimal length with the following property. 

Assume ~~ is the transition chosen in q5 at node Oi and 71i the subcomputation of 4 on 

tr(wi) with Ui=ui T(7ci)z(zi). Then for i= 1,2, o is a node in ui with label in A. 

Especially, 



162 H. &id1 

Let wo=(al,j,)...(u,-,,j,-,) be the maximal common prefix of wr and w2. Let rco be 

the subcomputation of $ on tr(wo) with ui = ui z(rro), and z = 4( j,. . .j,_ i). 

First assume w1 #w. #w2. Then, wi= w,(a,j@))w; for some jC1)#jC2). Since ZI has 

Properties (Ul), (U2) and (U3) for (vi, u2) we deduce from Proposition 5.1 that 

(+) u;T,(z)[k,jc1’]=v,T,(?lo(Z,j(1)))~:U2T2(~0(Z,j(1)))=U~T2(~)[k,j(1)]. 

Moreover, u1 =u; T,(z)[k,j(r’]r, and u2=u$T,(r)[k,j’2’]r2 for some trees r1,r2. 

Hence, node o can be factored o = o1 0; = o o’ 2 2, where o1 is a node in u; T,(r)[k,j”‘] 

labeled with *, and o2 is a node in u; T2(r)[k,jc2)] labeled with *. Either o1 is a prefix of 

o2 or vice versa. In u; T2(r)[k,jc1)] however, o2 is labeled with xk,j(z). Applying Fact 1.7 

to (+), we conclude that neither ol is a prefix of o2 nor o2 a prefix of ol: contradiction. 

It remains to consider the case where w. = w1 or w. = w2. W.1.o.g. assume w. = wr, 

and consider z2 = 4(02). 

By Property (Ul), z2 is either both c-initial and G-initial or both T(r,) and &(z2) 

contain occurrences of variables. Assume z2 is both T,-initial and T2-initial. Since o 

is a node in UC z(7t2) 7i(22) for i = 1,2, ui Tl (7~2) Tl (z2) and u2 T2 (7~2) T2 (72) are not com- 

parable. Hence by Proposition 5.1, n cannot have Property (U3) for (ul,u2): 

contradiction. 

If r2 is not z-initial for i = 1,2, then K(z2) contains an occurrence of a variable xj. 

Again, since o is a node in Ui T(rco) z(r2) for i = 1,2, ul Ti (7c2(r2, j)) and u2 &(rr2(t2, j)) 

cannot be comparable. Now Proposition 5.1 applied to rc(r2, j) implies that ZZ cannot 

have Property (U3) for (ul,u2). This finishes the proof, 

The algorithm deciding (ul, u,)-equivalence is as follows: 

(0) Input: strongly reduced pairing TZ=(A, &, G). 

(1) Decide whether or not TZ has Property (Ul). 

If II does not have Property (Ul) then return: “ul T, + v2 T2 w.r.t. A”. 

(time: 0( 1 III)). 

(2) Decide whether or not Zl has Property (U2). 

If T7 does not have Property (U2) then return: “ul T, + v2 T2 w.r.t. A”. 

(time: O(lT71)). 

(3) Decide whether or not TZ has Property (U3) for (vi, u2). 

If II does not have Property (U3) for (vl, u2) then return: “vi Tl f u2 T2 w.r.t. A” 

otherwise return: “vi Tl E v2 T2 w.r.t. A” 

(time: ~~l~l~~~g~l~lI+I~21+l~l~~~. 

It remains to prove that all three steps can be executed within the given time 

bounds. By Proposition 3.2, Property (Ul) can be decided in linear time. By Proposi- 

tion 2.5, we can compute the kernel decompositions of all output patterns containing 

at least one variable. This gives a linear-time procedure deciding (U2). Moreover, 

using the kernel decompositions we can, by Proposition 2.4, compute the subset 

I c z(*) needed to spell the trees occurring in the description of Property (U3) for 

(vl, u2). It remains to show that Property (U3) for (vi, up) can be decided within the 



Single-valuedness of tree transducers 163 

given time bounds. Clearly, the graph G(A) can be constructed in linear time. By 

a depth-first traversal through G(A) the values diff(q) can be computed where every 

edge is considered only once. The lengths of words from I * occurring are bounded by 

1 u1 I+ ) u2 I+ I Il I. Therefore, the map diff(_) with the given properties can be shown to 

exist or not to exist in time 0( I I7( .( I u1 ) + 1 u2 I+ In\)). However, using the same 

algorithmic idea as in [S] for implementing the necessary comparisons of occurring 

strings one can improve this upper time bound to 0( 1 II I . log( 1 u1 I + I u2 I + ) IZI)). 0 

The complexity bounds for the given algorithm are remarkable since it meets the 

best-known upper bound for the corresponding problem for words [S]. Hence, an 

improvement of the given result is only possible if one finds a more efficient algorithm 

for the word case as well. 

Applying the algorithm of the proof of Theorem 5.2 to the problem of single- 

valuedness we obtain: 

Theorem 5.3. For every FST M =(A, T) it can be decided in polynomial time whether or 

not val(M)b 1. 

Proof, The algorithm is as follows: 

(0) Input: FST M =(A, T) with n states. 

(1) If L(A)=@ then return: “val(M)=O”; 

otherwise construct an equivalent reduced FST (time: 0( I M I)). 

W.1.o.g. M is reduced. 

(2) Compute the canonical reduced pairing M 2 = (A2, q, G) (time: 0( I M I “)). 

(3) Compute the sets Const(A2, z) and the functions GT, (time: O(lMI’)). 

Compute the equivalent strongly reduced pairing II = (A2, T;, T;) (time: 

O(lM12)). 
(4) Decide whether or not T; = T; w.r.t. A2. 

If T; = T; w.r.t. A2 then return: “val(M)= 1”; 

otherwise return: “val(M) > 1” (time: 0( I M) 2 . log I MI)). 0 

Theorem 5.3 should be seen in contrast to the result of Engelfriet in [4]. Engelfriet 

proves a polynomial upper bound on the depth of a witness for nonsingle-valuedness. 

From this upper bound, it is not difficult to derive a nondeterministic polynomial- 

time algorithm deciding nonsingle-valuedness. This algorithm can roughly be de- 

scribed as follows: 

(1) Guess a node in the output where the two output values differ from each other; 

(2) Guess two nodes of the witness which produce this output node; 

(3) Verify that these guesses have been reasonable. 

This method gives no hint how a deterministic polynomial-time algorithm may look 

like. However, as pointed out in [13], it allows for a ‘generalization to construct 

a nondeterministic polynomial-time algorithm which decides whether an FST is not 



164 H. Seidl 

k-valued. So far, it is open whether a deterministic polynomial algorithm exists for this 

problem for any k > 1. 

As further applications of Theorem 5.2 we obtain: 

Corollary 5.4. Assume Mi=(Ai, TJ are single-valued FSTs such that L(A,)= L(A,). 

Then it can be decided in deterministic polynomial time whether or not T(M,)= T(M,). 

Observe, however, that by 17123, deciding the equivalence of the underlying FTAs 

Ai is deterministic exponential-time-complete in general. Nevertheless, there are 

important subclasses which admit faster algorithms. If, e.g., the underlying FTAs are 

deterministic then equivalence of AI and A, is decidable in polynomial time. In fact, 

by the results in [12] it suffices that AI and A2 are m-ambiguous for some constant m, 

where m-ambiguous means that for every input there are at most m different accepting 

computations (e.g., for deterministic FTAs there is at most one accepting computation 

for every input). Thus we have: 

Corollary 5.5. Assume m 2 1 is a constant, Ai are m-ambiguous FTAs, and Mi =(Ai, Tt), 

i = 1,2, are single-valued FSTs. Then it can be decided in polynomial time whether or not 

T(MI ) = T(Mz ). 

6. Finite-valuedness 

In this section we show how the ideas and algorithms of the last two sections can be 

used to construct an algorithm deciding finite-valuedness in deterministic polynomial 

time. We start with the two Properties (Fl) and (F2) of [13] that characterize 

finite-valuedness and derive an equivalent set of properties, each of which can be 

decided in deterministic polynomial time. The derivation is done in three steps. First, 

we subdivide the Properties (Fi) into pairs of Properties (Fi.0) and (Fi.1) (Proposition 

6.2) from which (Fi.0) are easy to decide. Secondly, we reduce Properties (Fi.l) to 

properties of partial computations on paths of input trees. We start with a property 

(FO.l) which is implied by Property (F1.l). We give three Properties (Gl), (G2) and 

(G3) which, together with a length property (LO), characterize (FO.l) (Theorem 6.6). 

Properties (Gi) correspond to the Properties (Ul), (U2) and (U3) characterizing 

single-valuedness. In the third step we consider FSTs M having Property (FO.l). We 

find that then M already has Property (F2.1) (Theorem 6.4). Moreover, Property 

(F1.l) is equivalent to a simple length property (Ll) (Theorem 6.7), which generalizes 

(LO). Since (Fl.O), (F2.0), (Gl), (G2), (G3) and (Ll) are decidable in deterministic 

polynomial time we conclude that finite-valuedness can be decided in deterministic 

polynomial time (Theorem 6.9). 

For this section, assume M = (A, T) is a reduced FST with A= (Q, C, 6, QF). All 

properties are formulated for pairs of states (q,p)EQ’. First, we reformulate criteria 

from [ 131 by means of MC3’= (AC3’, TI, T2, T3) and proper ((q, q, p), (q, p, p))-com- 

putations 4 of AC3’. 



Single-valuedness of tree transducers 165 

M has Property (Fi) for (q, p), i = 0, 1,2, iff the corresponding statement (Fi) holds: 

(FO) For every proper ((q, q, p), (q, p, p))-computation C$ of AC3), 

r,(4)T,(4)= r,(4)&(4). (0) 

(Fl) For every proper ((q, q, p), z)-computation 4r, (z, z)-computation 4z and 

(z, (q, p, p))-computation 43 of AC3’, 

T,(~,~z~3)T2(~1~3)=T2(~1~2~3)T3(~1~3). (1) 

(F2) For every proper ((q, q, p), (q, p, p)z)-computation $i, (z, z)-computation 

C#J~ and (z,E)-computation 43 of AC3’, 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (2) 

Observe that Property (FO) for (q,p) is a special case of (Fl) for (q,p) (choose

&=x1).

Theorem 6.1 (Seidl [13]). For a reduced FST M =(A, T), the following two statements

are equivalent:

(1) val(M)< a3;

(2) M has Properties (Fl) and (F2) for all (p, q).

For i=O, 1,2, Property (Fi.0) for (q,p) is obtained from Property (Fi) for (q,p) by

replacing the conclusion (i) with (i.0):

G($)E(~,x~) 3 T3(4)4~,~1), (0.0)

Z(+Z)E{~,X~) iff T,(&)EC~,XI)~ (1.0)

~(&)E{~,x~} 3 G(&)E{~,xI). (2.0)

Observe that Property (FO.0) for (q, p) is implied by Property (F1.O) for (q, p). Using

size arguments as in [131, it can be shown that for i = 0, 1, (Fi.0) for (q, p) is implied by

(Fi) for (q, p), whereas (F2.0) for (q, p) is implied by (FO) and (F2) for (q, p). If p# U(A, T),

then the corresponding output trees T’(4) in the formulation of Property (FO) and

~(~j) in the formulation of (Fl) are in z(x,). The versions of Properties (Fi) for (p, q)

dealing only with T,(4), T,(4)+{ 1,x,} and TI(&), T2($2)${ 1,x1}, respectively, are

called (Fi.1) for (4,~). We have:

Proposition 6.2. Assume M is a reduced FST.

(i) M has Property (FO) for (q, p) iff M has Properties (FO.0) and (FO. 1) for (q, p).

(ii) Assume M has Property (FO) for (q, p). Then for i = 1,2, M has Property (Fi) for

(q,p) ijfs M has Properties (Fi.0) and (Fi.l)for (q,p).

Assume q, ~EQ. The reduced FST M = (A, T) has Property (GO) for (q, p) iff

166 H. Seidl

(GO) A proper ((4, q,p), (q,p,p))-computation of Ac3) exists; and a proper

(<q,p), <q,p))-computation 6= (#1, &) of A’2)exists with T(&)#x~ and

T(42)ZXI.

If (GO) does not hold for (q,p) then Properties (Fi.1) for (q,p) trivially hold.

Therefore, for testing Properties (Fi.1) for (q,p), we always can, w.l.o.g., assume that

M has Property (GO) for (q, p). Clearly, (GO) for (q, p) can be decided in deterministic

polynomial time.

If M has Property (GO) for (q, p) then especially p, q#Const(A, T).

Note that neither (q, q, p) nor (q, p, p) are necessarily useful for Ac3). Therefore, we

modify A(3) as follows. For Mc3) =(Ac3’, T, , T2, T3) with Ac3’ =(Q, C, 6, QF), we define

M~~~=(A~~~, T;, T;, Ti). We first add a tag 0 or 1 to the states of Ac3’. The states

tagged 1 are those occurring on partial computations from (q, q,p) to (q,p,p); the

remaining ones are tagged 0. The output functions are modified accordingly. To

enforce that ((q, q,p), 1) = (qqp, 1) and ((q, p, p), 1) = (qpp, 1) are useful we intro-

duce a new transition ((qpp, l), #, E) for some new symbol # of rank 0 and include

(qqp, 1) into the set of final states. Thus, @b=(Q x (0, l}, Zu { #}, a’, { (qqp, l)}),

where

l ((qpp, l>, #,sH’ with Z(((qpp, l>, #,s))= #; and
0 if t=(z,a,z 1.. .z,)E~ then

ro=((z,0),a,(z,,0)~~~(z,,0))~6’; and whenever m>O,

rj=((z,l),~,(~,,O)..~(zj-~,O)(zj,l)(zj+~,O)..~(~,,O))E6’, j=l,...,m, with

T,‘(Zj)=~(~) forj=O,...,m.

Let @,,=(A&, T;, T;, T;), where Ai,p is obtained from AiT; by removing all

useless states, and the output functions of M& are the output functions of

Mifj, restricted to the set of remaining transitions.

Then, (z, 1) is a state of A:,,, iff a proper ((q, q, p), z)-computation and a proper

(z, (q, p, p))-computation of Ac3) exist. Moreover, the proper ((qqp, l), (z, l))-com-

putations 4 of A& are in one-to-one correspondence to the proper ((q,q,p), z)-

computations of Ac3’. Also, if 4 corresponds to (+r, cp2, c$~) then T,‘(cj)= T(@i).

Therefore, we also write @= (#1,42,43). A ccordingly, (ql q2q3, 0)-computations

$ of 2 are in one-to-one correspondence to (ql, q2, q3)-computations of Ac3’ when-

ever (qlq2q3,0) is a state of A&. We allow ourselves to decompose II/ into a triple of

qi-computations as well.

For the following, let M,,, 3 =(A, T,, T2, T,). Since we do not know how to handle

the infinite alphabet 1,(x1) necessary to spell the outputs z’(4) of a proper

((qqp, l), (qpp, 1))-computation 4 of A we try to find equivalent formulations of the

given properties by means of partial ((qqp, 1), (qpp, 1))-computations x of 2. rc cor-

responds to a partial ((q, q, p), (q, p, p))-computation (ni , 7c2, 7-c3) of Ac3’. For con-

venience, we write: 7c= (7c1,n2,7t3).

Assume u1,v2,u3~fA(*) and (z,O) is a state of A. For i=l,2, we write

Ui~i’-_Ui+l~+r iff UiT(4)=Ui+rT+i(4) f or every (z,O)-computation 4 of A. By

Theorem 5.2, it can be decided in polynomial time whether or not Ui z = Z Ui+ 1 z+ 1.

Sinyle-ualuedness of tree transducers 167

The following fundamental proposition must be seen in analogy to Proposition 4.2 for

single-valuedness.

Proposition 6.3. Assume M =(A, T) is a reduced FST. If M has Property (FO.l)for (4, p)

then for every proper (<qqp, 1 >, (~1, 1)(z2,0)~~~(~,,0))-computation C$ of A thefol-

lowing holds:
(i) For all j=2, m, and (zj, 0)-computations $1, $2 of ii,

&Wl)=TW2) i$fG(lc/l)=GW~) ~;fsT3Wl)=T3Wd.

Especially,

(Zj,O)ECOnSt(A, T) ifs (Zj,O)EConst(A, G) iff(Zj,O)ECOllSt(A, &).

(ii) Assume m> 1, zj#Const(A, ZJ for ~11 j> 1, and ~(~)=viyi[Uil,Uim] is the
kernel decomposition of TJ#). Then

l yl =y2=y3.

0 Vl=Vz; #21=U31; U11ZU21;

l ifzl=qpp then ZL~~V~=UZ~V~.
l For every j= 2, . . . , m, Ulj Tl E =, Uzj Tz and Uzj Tz E zj U3j T3.

Proof. Let 4=(41,&,@3). Let m>l. W.1.o.g. we assume z,=qpp and m=2. We

start with a proof of statement (i).

Let $j=($jI,$j2,$j3). First assume Tl($l)=Tl($z) but T~($,)#T,($z). Assume
the maximal depth of a node in T2(#) with label x1 is n. Consider

4
cn+l,=($;+l

,db4JLdG+‘>>

where the x,-substitution is written as concatenation. From Property (FO.l) for (q, p)

we deduce that

By assumption, T,(~[x,, I)~])= TI(4[xl, $z]); therefore,

Since T,(f$)#x,, equation (1) and the definition of n imply that some node o exists

such that TI(@‘“f” [xl, +bi])/o= r,(~i) for both i= 1 and i=2. Therefore, (2) implies

that T2(t,bl)= T2(ti2): contradiction.

Now assume T($ll)#T($zl) but Vjlz)=T($,,). Define #1)=(~~,6~,&) and

~‘2’=~~1C~1~~31~~2C~lr~31~~3C~l~~31~.

By Property (FO. 1) for (q, p),

168 H. Seidl

or equivalently,

T(4~CX~~ICli~l)T(4~C~~~~j~l)T(4~Cx~~~i~l)T(42~x~~~j2l)

~T(4~Cx~~Si~l)T(42Cx~~~j2l)T(43Cx1t~i31)T(43Cxl~~j31)

for every i,je{ 1,2}. Thus, top cancellation yields:

(1) T(41Cxl~$jll)T(41Cxl~~ill)T(42Cxl~$j21)

=T(42Cx~~~j21)T(43CX~~$i31)T(43Cx~~~j31) for every W{L2}.

If T(ijl,) = T($23) then the right-hand side of (1) is independent of any choice of i and

j, which immediately gives a contradiction. Therefore, T($, 3) # T($23). It follows that

we can apply factorization and deduce that

(2) T(41Cxl~x31)T(41Cxl~x21)T(42~xl~~j21)

~T(42CXl~1C/j21)T(43CXlrX21)T(43CXl~X31)~

‘Especially, the first x,-irreducible factor of the left-hand side of (2) containing an

occurrence of x3 is to the left of the first x,-irreducible factor containing an occurrence

of x2, whereas the first x,-irreducible factor of the right-hand side containing an

occurrence of x3 is to the right of the first x,-irreducible factor containing an

occurrence of x2. By Fact 1.9, this is impossible. We conclude that z (11/i) = Tl (~+b~) iff

G($1)= T&2).
To prove the last equivalence of (i) first assume T($,i)= T($zi) for i= 1,2 but

TW13)# T($23). Hence, also

T,(4C~,,IC/~1)=T(43C~~,~~31)2T(43C~~,~231)=T3(4C~~~~21)~

since M is reduced. It follows that

~(4c~,,~,1)Tz(4c~,,~,l)=~(4c~~~~21)T2(4c~~~~21)

but

T,(4c~,,Ic111)T3(4c~~,~~1)zT2(4c~~~~2I)T3(4c~~~IcI21)

Therefore, either 4[x,,4Gl] or (P[x~,$~] gives a contradiction to (FO.l) for (4,~).
SO, finally assume T(ll/,i)# T($,i) for i= 1,2 but T($i3)= T($23). Define

4”‘=(4i,42,43) and 4(2)= ~4~C~~,~31,43C~~,~31,43~~~~~31~~

By Property (FO.l) for (q,p),

Single-valuedness of tree transducers 169

or equivalently,

for every i,j~ { 1,2}. By assumption, the right-hand side is independent ofj, whereas the

left-hand side is not. This gives a contradiction and finishes the proof of (i).

For a proof of (ii) let T(~i)= riyi[Uii, uzi] be the kernel decompositions of T(4i),

i= 1,2,3. Consider (z,,O)-computations $i=(Ic/ii,$i2,$i3), i= 1,2, of A with

T($,i) # T($zi) for i = 1,2.

Define 4(i) = (&,&,+3) and ~‘2’=(~~Cx~~x31~~3Cx1~x31~~3Cx1rx31). AP-
plying Property (FO.l) for (q,p) to (cj”‘~‘2’)[~l, $il $j] we deduce that T(c#J~[x~, $i2])

isax,-prefixbothofT(~,Cx,,lClill)T(~,Cx,,~lll)and T(~1Cxl,~ill)T(~1Cxl,~211).

It follows that T(c#~)[x~, T($i2)] is a x,-prefix of T(~,)[u,, T($ii)]. Accordingly,

T(41)[x1, T(ll/ii)] is a x,-prefix of T(&2)[u3, T(ICIi1)]. We conclude that rl,r2EFA(x1)

exist with

(1) T(b)CrI, r($il)l=T(b2)Cr2, T($i2)1 for i= 1,2.

Therefore, we can apply factorization and deduce that

(2) T(~,)Cr,,s,l=r(~2)Cr2,S21 for SOme h,~2ECdx~).

By Fact 1.8, vi = u2 and y, =y,. Since also

Y1Cxl~U12T(IC/il)1=Y2CXlrU22T($i2)lr

we can apply top cancellation to obtain:

(3) ~ii~(~2Cx~~~i21)~u2~~(~3Cxl~Icli31) fori=L2.

Applying again factorization we derive from (3)

(4) ullT(~2)~xl~~ll=u21 T(63)[x19t21 for SOme tl,tZE~(xl).

Hence, again by Fact 1.8, ul 1 v2 = u2 1 u3. It remains to show that for every (z2,0)-

computation $1 42 6($)=u22 G(G) and u22 &($)=u32 G($).

For a contradiction assume a (z2, 0)-computation $ exists with u12 T,($)#

r422 T,($). (The proof for a (zl, 0)-computation II/ with u22 Tl ($) # ~32 T2($) is analog-

ous and therefore omitted.) By assumption, there is a node o both in Tl($) and q(4)

such that T1(#)/o=u12 and G(~)/o=u~~. It follows that

~(~cxl,lcII)T2(~cx~,~l)I~=~l2~(~)z~22T2(~)

=~(~cxl~IcII)~(~cx~~~l)/~

Hence, especially, ~(~Cxl,~l)T2(~Exlr~l)ZTZ(~Cx~,~I)T3(~Cx~,1//1) in contra-

diction to (FO.l) for (q,p). 0

170 H. Seidl

A somewhat surprising consequence of Proposition 6.3 is that Property (F2.1) for

(q,p) is already implied by Property (FO.l) for (q,p).

Theorem 6.4. If M has Property (FO. 1) for (q, p) then also Property (F2.1) for (q, p).

Proof. Let +r be a proper ((qqp, 1), (qpp, 1) (z, 0))-computation, 42 a proper

((z,O), (z,O))-computation and 43 a (z,O)-computation of 2, where Tr(4z)$

{ I, x1 }. Hence, especially, (z, 0) $Const (A, Tr) and, therefore, by Proposition 6.3 (i),

also (z, O)$Const(A, TZ) and (z,O)$Const(A, T,). For i=1,2,3, let
z(qS1)= Oiyi[Uil, Uiz] be the kernel decomposition of z(dl). From Proposition 6.3(ii)

we deduce that

(1) v,=v2; Yl =Y2 and u~~v~=u~~v~.

Moreover,

(2) u12TI =zu22G, and uz2T2 zzuS2T3.

It follows that

and

Hence. we conclude

which we wanted to prove. 0

M has Property (Gl) for (q,p) iff

(Gl) Const(& T)=Const(& &)=Const(A, &).

By Proposition 3.2, the sets Const(A, T& together with mappings Ci = C,-, ?;, i = 1,2,3,

can be computed in polynomial time. For a transition t =((z, l), a, (zr, 0). . .

(zj, l)...(zm,O)) of A define z(z)= z(z)[sI, s,], where

Sj =

Ci(Zfl) if z,EConst(A, 7J,

XP

otherwise.

Single-valuedness of tree transducers 171

We extend z to partial ((qqp, l), (z, 1))-computations rc of 2 in the natural way.

Recall that by our assumption (GO), (qpp, l)#Const(& T). Therefore, the same holds

for every state (z, 1) of A.

The modification of T to z contains a peculiarity. Assume rc = (rci, x2, x3) is

a ((qqp, l), (qpp, 1))-computation of A. Then clearly, n(i)= (rci, nl, x3) is

a ((qqp, l), (qqp, 1))-computation of A. However, although T1 (z(i))= Tl(n), neither

ri(rr(l)) and r,(n), nor T3(7rc1)) and T3(rc) are necessarily equal, since a state

(qlqlq3,0) may not be constant in (2, z) even if (qlqzq3,0) is. Therefore, z(rrn”‘)

may contain some variables which do no longer occur in r,(z).

Assume the reduced FST M has Property (Gl). If (r,j) occurs on a partial

((qqp, l), (qpp, 1))-computation of 2 then ?;(r) contains variable xj, with j’#j iff

z(r) contains xj. Especially, z (r)E z(xj) iff T,(r)E z(xj). M has Property (G2), (G3’)

or (LO) for (q, p) iff the corresponding statement holds:

(G2) Assume r=((z, l),a, (z,,O) . . . (Zj, 1) . . . (z,,O)) is a transition of A and

z(r)=uiy,Bi is the kernel decomposition of z(r). Then

(1) Yl=Y2;

(2) If xj, occurs in z(r) for j’ #j and Vi =(Xj,ei)[*] then ~1 z E zj, ~2 G.

(G3’) For every partial ((qqp, l), (z, l))- computation rc of A, where ni is the

maximal *-suffix of T(z) in rT,(*) the following holds:

(1) Assume r is a (z, 1)-transition of A such that 7,‘(r) contains occurrences

of variables Xj and Xj’ with j#j’, let uf be the maximal *-prefix of T(r) in

z(e). Then

u1u; =uzu;.

(LO) For every partial ((qpp, l), (qpp, 1))-computation rc of A with ME c(*),

Ir,(r4*=IT2(r4,.

Statement (1) of Property (G3’) is rather similar to statement (1) of Property (U3’). It is

simpler in that it does not speak about z-initial transitions. Also note that the trees

Ui, ui, Ui occurring in (G3’) can be spelled over ajinite subalphabet I G I,(*). Again, we

would like to reformulate (G3’) as a graph property (G3) which can be tested in

polynomial time.

Let G,,,=(V, E) denote the subgraph of the trace graph G(A) that contains all paths

from (qqp, 1) to <qpp, 1). Hence G,,, is the maximal subgraph of G(A) containing

only nodes (z, 1). Property (G3) is formulated in analogy with Property (U3).

However, now the map diff no longer consists of a single pair of trees but of

a compatible set of pairs. A set S of pairs (si ,s~)E fA(*) is called compatible iff

u1,u2~FA(*) exist such that for every (sl,s2)~S,

l either sl = * or s2 = *,

l sl is a prefix of vi and s2 is a prefix of v2.

172 H. Seidl

Observe that the cardinality of S is bounded by 1 o1 I* + 1 u2 I* + 1.

Property (G3) for (q, p) is divided into three assertions. Assertion (1) gives an initial

condition for the outputs produced along paths in G,,,. Assertion (2) describes what

happens on paths with branching points, whereas Assertion (3) deals with paths

without branching points.

M has Property (G3) for (q,p) iff

(G3) There is a map diff: V-+22(*)’ such that

(0) Every set diff(q) is compatible;

(1) diff(<qqp, l))= {(*, *)>;
(2) Assume (si,sz)~diff((z, 1)) and G,,, contains an edge ((z, l),(r,j),

(z’, 1)), where z(t) contains an occurrence of a variable Xj, with j’ #j. Let

ui be the maximal *-prefix of z(r) in FA(:,(*), and ui the maximal xj-suffix of

z(t). Then

slul =s2u2 and diff(u;*,u;*)Ediff(z’);

(3) Assume (.s1,s2)~diff((z, l)), ((z, l),(r,j),(z’, l))~_!?, $(r)ETA(Xj) and

Ui = z(r) [*]. Then

diff(s1u1,s2u2)Ediff((z’, 1)).

The following example shows that the sets diff(u) in fact can contain more than one

element. Let M =(A, T) be the (reduced) FST, where A =((p, q}, C, 6, q), with

Co = d, = { # >; C1 = {c, d} and d1 = {a, b}; 6 consists of the transitions:

zO=(p, #,E) with T(r,)= #;

sr=(p,c,p) with T(zl)=ababxl;

~~=(p,d,p) with T(r2)=ababx,;

~~=(q,c,p) with T(rJ)=bubxl;

r4 =(q,d,p) with T(~~)=bububx,;

r=,=(q,c,q) with T(r5)=bubux1;

r6 = (q, d, q) with T(t,) = bubuxl.

Then M has Property (G3’) but diff((qqp, l))= {(*, *)} and diff((qpp, l))=

{(q,*),(*,N).
The above Property (G3) can be tested for (q,p) in polynomial time only if we

succeed to give polynomial upper bounds to the maximal *-lengths of trees occurring

in diff(z). It turns out that such bounds can be derived from Property (Ll) for (q,p)
below.

The next proposition relates Properties (G3’) and (G3) for (q, p) to comparability of

outputs of partial computations.

Single-valuedness of tree transducers 173

Proposition 6.5. Assume the reduced FST M has Properties (Gl) and (G2)for (4,~).
Then the following three statements are equivalent:

(1) For every partial ((qqp, l), (z, l))- computation of 2, the following holds: if
EELS then TI(x)z TV; ifz(x)$fA(*) and ~(~)=v~yiCIi is the kernel decompo-
sition of I,‘(n) then

l vI=v2,yl=y2, *81z*62, and
l for every variable x’#* occurring in r(n) with corresponding state z’,

(x’8,)C =,, (x’Q,)r,.

(2) M has Property (G3’) for (4,~).

(3) M has W)for (ad.

Observe that by Proposition 6.3, statement (1) holds true whenever M has Property

(FO. 1) for (4, P).

Proof of Proposition 6.5. (1) implies (2): Assume statement (1) holds. Let z be a partial

((qqp, l), (z, 1))-computation of length k, and z(lr)=siui, where UC is the maximal

*-suffix in ?A:,(*), i= 1,2. Then especially, u1 zu2 in accordance with assertion (2) of

(G3’). To deduce also assertion (1) of Property (G3’), assume t =((z, l), a, (zl, 0).

(zj, 1) . . . (z,, 0)) is a transition of A, where z(z) contains occurrences of some

variable xj, for j’ #j. Let z(z)[k + 1, j] = visf, where vf is the maximal prefix in FA(*).

First, assume z(z) =ui. Then applying (1) to the partial computation z(T,j) yields

u1 vi = ~2 V; in accordance with Property (G3’). SO, assume si # *. Let Si = Vi y,Qi be the

kernel decomposition of si, and viy;& be the kernel decomposition of z(z)[k+ l,j].

By Property (G2) for (q, p), y; = y;. Moreover, by (l),

Yl =Y2 and y,u1v~y~=yzu2v~y~.

Therefore, by top and bottom cancellation, u1 vi = u2v;, which we wanted to prove.

(2) implies (1): Let 7~ be a partial ((qqp, l), (z, 1))-computation of length k. We

proceed by induction on the length of 71.

If 7~ = E, statement (1) trivially holds. Therefore, assume 7~ =x1(2, j), where 7~’ has

length k- 120. Then z(z)= z(z’) z(z)[k, j]. Assume z(7c’)=siui, where Ui is the

maximal suffix in fA:d(*).

First assume si = *. If $(z)E z(xj) then statement (1) for 7c is immediately implied by

assertion (2) of Property (G3’). If z(t) contains at least one occurrence of some

variable xj’ with j’ #j then let z(z)[k,j] = vi yiOi be the kernel decomposition of

?j(r)[k,j]. Hence, the kernel decomposition of z(n) is ?i(~)=(uivi)yiei. By Property

(G3’) for (q,p), ulvl =uzv2, whereas the remaining identities are implied by (G2)

instantiated with 5.

Now assume Si # *. Let si = viyiO, be the kernel decomposition of si. We distinguish

two cases.

If z(r)Ez(Xj) then ?i(71)=siUi, where Ui = uiz(z)[k,j]. By Property (G3’) for

(4, P), u1= u2. The remaining assertions of statement (1) follow from the inductive

assumption.

174 H. Seidl

If z(r)$ z(xj) then z(z) contains some variable xj,, with j #j”. Assume r(z)[k, j] =
oi yffl; is the kernel decomposition of z(~)[k,j]. Then, the kernel decomposition of

T(X) is T(Z)= Uiji&, where yi=yiuiu;yi and 6 is defined by

X@i=
~0; if x=* or X=Xk,j',

X0, X=XK,j' with IC< k.

By induction hypothesis we have vi =v 2, Y~=YZ and (xK,j,@i)q -.,(x,,j,g~)T,
whenever x,,j’ occurs in yi with K < k and (z’, 0) is the state of 2 corresponding to

x,,j,. By Property (G3’) for (q, p) applied to rc’ and z we have a1 vi = uzz&. Moreover,

by Property (G2) for (q,p), y; = yi. Hence, we deduce that also y1 =yz. Finally,

Property (G2) for (q, p) also implies that (xk, j’ gl) Tl = zI (xk, j’gz) T2 whenever xk, j’ oc-
curs in yi, (z’, 0) corresponds to xk, j’ in n(t,j), and also * @I % * gz. Hence, all

assertions of statement (1) hold. Therefore, (2) also implies (1). Since there is a one-

to-one correspondence between the paths in G,,, from (qqp, 1) to (qpp, 1) with the

partial ((qqp, l), (qpp, I))-computations of 2, Property (G3) for (q, p) implies Prop-

erty (G3’) for (q,p). The harder part is the reverse direction.

(2) implies (3): Assume z is a node of G,,,. From the definition we deduce that for

every partial ((qqp, l), (z, 1))-computation 71, diff(z) contains diff(u,, u2), where ui is

the maximal *-suffix of z(rc) in TA(*). Thus, it remains to show:

(+) Assume n and rt’ are partial ((qqp, l), (z, 1))-computations of 2 and ui

and U; are the maximal *-suffixes of z(n) and E(z’), respectively. Then

the set S = { (si, s2), (s;, .s;)} is compatible, where (sr , s2) = diff(u,, u2) and

(s;, s;) = diff(u;, u;).

To prove this, we distinguish two cases.

Case I: A partial ((z, l), (z’, 1))-computation 71” and a (z’, 1)-transition

z=((z’, l),~, (zi,O) . . . (zj, 1) . ..(z.,O)) of A exist such that ~(rc”)~~~(*), and z(r)

contains an occurrence of some variable xj, for j#j’.

Let ai denote the maximal *-prefix of z(z) in fd(*), and define Ti = ?i(~“)Ui. Applying

assertion (1) of Property (G3’) to rrrc” and ~‘rc” we find:

ulrl =u2r2 and u;rl =u;r2.

Hence, by top cancellation also

slrl =s2r2 and sirI =&r2.

Therefore, either s1 = * or s2 = *. Moreover, similar to the proof of Proposition 5.1 we

find that (~1, s;) =(sl, s2). Hence, set S is compatible.

Case II: The condition of Case I does not hold. Then, a partial ((z, l), (qpp, l))-

computation rc” exists with ~(~c’~)E~~(*). By assertion (2) of Property (G3’),

Single-valuedness of tree transducers 175

and, hence, by top cancellation,

s1 T1(rc”)zs2~z(rr”) and s; ~r(n”)=s;~,(n”).

Again, either sr = * or s2 = * and, likewise, s; =* or s;=*. If sr =* and s;=*,

S trivially is compatible. The same holds when s2 = * and s; = *.

BY assumption (GO) for (q,p), some ((~PP, I>, <qpp, 1))-computation

ti = (x,, x3, x3) exists such that T,(it)# * # ?i2(71). Since the condition of Case I does

not hold, T(%)E?~(*). For k>O, consider r&k)=~“71k-1. First, assume si =* and s; =*.

Then some k exists such that both s2 and s; are prefixes of T,(~c’~‘). Hence, S is

compatible. Analogously, if s2 = * and s; = * then some k exists such that both s1 and

s; are prefixes of ?;,(7rck)), which proves S compatible. 0

The key observation is that Properties (Gl)-(G3) together with (LO) for (q, p) give an

equivalent characterization of (FO. 1) for (q, p). We have:

Theorem 6.6. Assume M = (A, T) is a reduced FST and condition (GO) holds for (q, p).
Then, the following two statements are equivalent:

(1) M has Property (FO.l)for (q, p);
(2) M has Properties (Gl)-(G3) and (LO)for (q,p).

Proof. (1) implies (2): Assume M has Property (FO.l) for (q, p). Then by Proposition

6.3, M also has Properties (Gl), (G2) and (G3’) for (q,p). To prove that M also has

Property (LO) consider a partial ((qpp, l), (qpp, l))-computation rc = (rrr, 7c2, 7c3) of

Asuch that z(rr)~z(*). Define i?= (rtl, 7c3, rc2) which is a partial ((qpp, l), (qpp, l))-

computation of A as well. Since 2 is reduced, some ((qpp, l), (qpp, 1))-computation

4 exists such that 4 = it [. , ~K,j, . . .] for some i//K,j and K(4) = z(E). Moreover, some

((qqp, l), (qpp))-computation (p’ of A exists such that

The first equation yields 1 T,(c$‘)I~, = 1 T3(~‘)lx1. From this and the second equation

above we obtain

which we wanted to prove.

(2) implies (1): Assume M has Properties (Gl))(G3) and (LO) for (q,p). Consider

a ((qqp, l), (qpp, 1))-computation 4 of 2. Then, $J=x[. . . , $K, j, . . .] for some partial

((qqp, l), (qpp, 1))-computation n = (7cr , n2, 7c3) and (ZK,j) 0)-computations

(//K,j=<tiK,j, t,tiK,j,~)(I/~,j,3). Define

d1)=(7c~,71~,n3); 7+2)=<~l,n3,~3h and

116 H. Seidl

First, assume ~(@))E~(*). Then also ~(r&‘))~~(*) and ?i(z)~z(*). Hence, by

Property (LO) applied to rc@),

IT,~~~l~,=1T,~~‘2’~l*=l?;,~~‘2’~l*=lT3~~~lx,.

Therefore, especially,

(+) Ir,(~)T,(~)I,,=IT,(~)T,(~)I,,.

By Property (G3’) for (q, p), some k > 1 exists such that c(4) T,(4)= &(rr(i)rc) is

a prefix of T1(fj)‘= ~i(rc(‘)z(~(~~)~-~) and, likewise, T2(4) T3(4) = T2(7c7c(2)) is a prefix

ofT,(~)k=~(71(71(2))k-1).Therefore,by(+),T,(~)T,(~)=T2(~)T3(~),inaccordance

with Property (FO.l) for (q,p).
Now, assume ~(7~(~))$~(*). Let ~(71’2’)=Si~i, where Ui is the maximal *-suffix of

z(zc2)) in yA(*), and Si= Viyi~ be the kernel decomposition of Si.

Case I: z(rc)~ FA(*). Consider the partial ((qqp, l), (qpp, I))-computations rc7~(~)

and rr~(~)rc(~). Proposition 6.5 for the first one gives

T,(7r)V1 = T,(rc)V, and ji =j2.

Therefore, Proposition 6.5 for the second one, together with top cancellation, gives:

ulul=u2v2.

It follows that some TV c(*) exists with

T,(n)t=?;,(z); fi1=tfi2 and hence tilt=U2,

T,(n)= T2(7t)t; tc, =U2 and hence U1 =u2t.

For convenience, assume the former to be the case. The proof for the second

possibility is analogous. Since z(rc) = z(4) *, we have

T,(#)T,($)t= T,(4)%(4)*.

Moreover, Proposition 6.5 applied to r&2) yields

where Bti,i is the substitution which inserts ~(~K,j,) into variable x,,j,. Hence, we

conclude

which we wanted to prove.

Case II: ~(n)$~(*). Let z(rc)=~~y,0~ be the kernel decomposition of z(rc). Con-

sider the partial ((qqp, l), (qpp, 1))-computations rc, rrrc(2) and rcrc(2)rc(2). Proposition

6.5 for the first, the second and the third partial computation, respectively, yields

l v1 =v2 and y, =y2,

l u1V1=u2U2 and y1=j2,
-- --

0 24lVi =uzvz.

Single-valuedness of tree transducers 11-I

Again, some tEf,(*) exists such that

u1t=uz and iii t = ii2;

or

u2t=u1 and ii,t=ii,.

For example, assume the latter to be the case. The proof for the first possibility is

analogous. Let fIti,i denote the substitution which inserts ~(~K,j,) into variable x,,~..

Applying Proposition 6.5 to rr we find:

Hence,

(1) r,(4)T,(4)* = T(4)T2(4)t.

Moreover, Proposition 6.5 applied to XX(~) yields

(2) r,(~)T,(~)*=~~(Y~~,,~)(~,~~)(~,~,,,)~,=~2(Y2~,,2)(~2~2)(~2~,,2)(~2t)

=G(dJ)T3(4)t

Hence, (1) and (2) together yield

T,($)T,(4)t= T,(4)&(4)* = T2(4)T3(4)r,

from which we derive the conclusion according to (FO.l) for (q,p) by bottom

cancellation. Cl

Assume M has Properties (Gl)-(G3) and (LO) for (q,p). We give two equivalent

characterizations (G4) and (Ll) for Property (F1.l) by means of paths. As (LO),

Property (Ll) is a length property. M has Property (G4) or Property (Ll) for (q, p) iff

(G4) For every partial ((qqp, l), (z, 1))-computation x1, every partial

((z, l), (z, 1))-computation rr2 and every partial ((z, l), (qpp, l))-computa-

tion p3 of A,

(1) If ~(r~,n~n,)~?~(*) then

r,(711n27C3)T2(711X2)=T2(711712713)T3(711712).

(2) If z(ni), $(7c3)~z(*) but Z(n,)$c(*) then

u1 r,(~3)?;,(71,713)=“2T2(713)T3(711713),

where Ui is the maximal *-suffix of z(n,).

v-1) Im-c2)l* = I T2@2)1*.

(Ll) is the generalization of a corresponding criterion for finite-valuedness of [16].

Property (Ll) for (q,p) implies Property (LO) for (4,~). To see this, consider a partial

(<qpp, I >, (qpp, 1))-computation 7~. By assumption (GO) for (q,p), a partial

((qqp, l), (qpp, 1))-computation rc’ of 2 exists. Then, apply the conclusion of (Ll) for

(q,p) to rcr=rc’, x2=71 and 7c3=*.

178 H. &id

Theorem 6.7. Assume M =(A, T) is a reduced FST, and condition (GO) holds for (q, p).
Then, the following three statements are equivalent:

(1) M has Property (Fl. 1) for (q, p);
(2) M has Properties (Gl)-(G4)fir (q,p);
(3) M has Properties (Gl)-(G3) and (Ll)jor (q,p).

Proof. (1) implies (2): Assume M has Property (F1.l) for (q,p). Then M also has

Property (FO.l) for (q,p). Hence by Theorem 6.6, M has Properties (Gl)-(G3) and

(LO). Let 7c1, z2, x3 as in the assumption of Property (G4). If forj= 1,2,3, ME ~~:d(*)

then for (q, p), the conclusion of (G4) trivially follows from the conclusion of (F1.l). So,

let I, Z(~C~)E~(*) but z(n,)$Zj(*). Let ~(rt2)=Viyiui, where vi is the maximal

*-prefix and Ui is the maximal *-suffix in yA(*). Assume 4i are x,-proper computations

with pi= 71i[. .., ~~~j, . ..I. Let 8i denote the substitution with XK,jei= z($kT;). From

Proposition 6.5 we deduce that K($J~)= vi(yi8i)Ui, where

Therefore, applying top cancellation to the conclusion of (F1.l) for 4i yields

ulT,(713)T2(711713)=u2~(713)?;3(7117c3),

which we wanted to prove.

(2) implies (3): The proof is a case distinction on whether or not z(Xj) are in z(*).

In most of these cases equality of the *-lengths of the outputs for the partial

computations in question already follow from (Gl)-(G3) for (q,p) by means of

Proposition 6.5. Only for two remaining cases Property (G4) is needed explicitly.

Again, the case where ~(71j)E ~:d(*) for j= 1,2,3 is trivial. So, assuming $(rci), T(x~)E

YA(*) but z(n,)~$f~(*), we argue as follows. Assume ~(7~2)=viyi~i, where Vi is the

maximal *-prefix and ui is the maximal *-suffix in F*(*). Then by Proposition 6.5,

-
Ir,(711)~1l~=lTz(711)~21~ and IY~I,=IY~I,.

From Property (G4) we know

lu,T,(~~)T,(~,713)I*=I~2T2(713)~i3(7(1713)1*.

Adding up all three equations and subtracting

1~(711713)T2(71,713)l*=lT2(711713)~;3(711713)1*

we obtain

which we wanted to prove.

(3) implies (1): Assume M has Properties (Gl))(G3) and (Ll) for (q, p). Then M also

has Property (LO) for (q, p) and, hence, by Theorem 6.6, also Property (FO.l) for (4, p).

Let c$~, c$~, q53 be three proper computations as in the assumption of Property (F1.l)

Single-valuedness of tree transducers 179

for (q,p). For ~y=(4y1,4y2,~y3), v=L2,3, define ~!‘)=(4y~,4y~,4y3) and
4!‘) = (&, A3, A3 >. BY assumption (GO) for (a PI, SOme ((4, P>, (4, p))-computa-
tion (4;4;) of ,4@‘exists with r(4;)#* for i= 1,2. Define $‘=(4;,$;,&). Then

for every k, ~(k)=~,~,~,~:2’~:“~‘k and ~‘k’=~:1’~:1’~:1’~1~3~rk are proper

((qqp, l), (qpp, 1))-computations of A with

Since M has Property (FO.l) for (q, p), some k exists such that both

~l=T2(41~2d4m4142) and ~2=7i(4~4243)G(4142) are prefixes of
r,(~,~2~,)r,(~,~,)T(~;)k. Therefore, s1=s2 provided the x,-lengths of s1 and

s2 agree. By Property (FO. 1) for (q, p),

Hence, it remains to prove that

(+) I~(~2)lxl=lG(42)Ixl.

Let 4~~ =rc2[. . . . ~~,,j, . ..] for a partial computation 7r2 and define substitutions

Bi which substitute variables X,,j with z($K,j). By Property (Ll) for (q, p), (z (x2)1 * =

1?;2(7c2)1*. By Proposition 6.5, T(~E~)E~(*) iff G(~c~)E~(*).

If z(7r2)~E(*) then statement (+) trivially follows since T(c$~)= ~(n2)xl for

i= 1,2. If rr(~,)$ FA(*) then z(r~2)=viyi~i, where ai is the maximal *-prefix and Ui is

the maximal *-suffix in z(*). We have: ~(~2)=Ui(yi0i)Uixi. By Proposition 6.5,

Iyl I* = (y,l, and ylel =y28,. The first equation, together with (Ll) applied to 7c2,

gives

l~ll*+l~ll*=l~2l*+l~2l*.

Therefore, we can conclude that

which we wanted to prove. 0

Before we state the main theorem of this section we present an estimation of the sets

diff(o) in Property (G3) for (q,p), provided the given FST M has Property (Ll).

Proposition 6.8. Assume the reduced FST M =(A, T) has Properties (Gl), (G2) and (Ll)

for (4, ~1, and let G,,,= (K Q.
(i) Then M has Property (G3)for (q, p) ifSa map diff: V+2%(*) satisfying conditions

(0), (l), (2) and (3) ofProperty (G3) exists such thutfor every UE V, #diff(u) < 2.1 M I3 + 1.

(ii) It can be decided in polynomial time whether or not M has Property (G3)for (q, p).

180 H. Seidl

Proof. First, we prove statement (i). Assume M has Property (G3) for (4, p) and, hence,

by Proposition 6.5, also Property (G3’). Consider (z, 1)~ V.

Case I: A node (z’, 1) is reachable from (z, 1) for which a (z’, 1)-transition in

A exists such that z(z) contains occurrences of at least two distinct variables. Then

assertion (2) of Property (G3) implies that #diff((z, l))= 1.

Case II: The condition of Case I does not hold. Let (si ,sz)Ediff((z, I)), and

assume 71 is a partial ((z, l), (z, l))- computation of 2. Then, Ui= $(rc)~F~(*). We

prove

(+) diff(slul,szuz)=(sl,sz).

The observation of Case I and statement (+) together imply the upper bound given

in (i). To show (+), let diff(s,~,,s~u,)=(s;,s;). Then,

si ui s; = sz llz s; .

Since (~i,s~)~diff((z, 1)) either si = * or s2=*. By Property (Ll) for (q,p),
(u1(*=(u2(*. Therefore, sl=* implies s;=* and IsZl*=ls;l*. Accordingly, s2=*

implies s;=* and ~s,I.+=ls;I*. Since diff((z,l)) is compatible, we conclude that

(s1,s2)=(4,&).

(ii) Now, we can compute a map diff as follows:

(1) compute a maximal acyclic subgraph G’ =(V, E’) of G,,,;

(2) compute a map diff with Properties (0), (l), (2) and (3) of (G3);

(3) verify that for the given map diff(_), Properties (2) and (3) also hold for the edges

in E/E’.
The map diff constructed in steps (1) and (2) can be computed in polynomial time.

Considering the two cases in the proof of(i) we find that if M has Property (G3) then

this map also passes the test of (3). This finishes the proof of statement (ii). 0

The following theorem collects the properties which together give an alternative

characterization of finite-valuedness.

Theorem 6.9. Assume M is a reduced FST. Then the following two statements are
equivalent:
(1) M is finite-valued;
(2) M has Properties (Fl.O), (F2.0)for all pairs of states and, whenever condition (GO)
holds for (q, p), also Properties (Gl)-(G3) and (Ll) for (q, p).
It is decidable in deterministic polynomial time whether or not M is finite-valued.

Proof. (1) implies (2): Assume M is finite-valued. Then by Theorem 6.1, M has

Properties (FO), (Fl) and (F2) for all (4,~). Therefore, by Proposition 6.2, M has

Properties (Fi.0) for i = 1,2 and Properties (FO. 1) and (F 1.1) for all pairs (q, p). Assume

(GO) holds for (4,~). If M has Property (FO.l) for (q,p) then by Proposition 6.3, also

Properties (Gl)-(G3) for (q, p). If M has Property (Fl. 1) for (q, p) then, by Theorem 6.7,

also Property (Ll) for (4,~). Hence, statement (2) follows.

Single-valuedness of tree transducers 181

(2) implies (1): Assume M has Properties (Fl.O), (F2.0) for all pairs of states and

Properties (Gl)-(G3) and (Ll) for every pair of states (q,p) where (GO) holds. By

Theorem 6.7, M also has Property (F1.l) and hence also (FO.l) for (q, p). Then by

Theorem 6.4, M has Property (F2.1) for (4,~). Therefore, M has Properties (Fl.O),

(Fl. l), (F2.0) and (F2.1) for all (q, p). Hence statement (1) follows from Theorem 6.1. By

Proposition 6.8, Property (G3) for (q,p) can be decided in deterministic polynomial

time. Since the remaining Properties in statement (2) can be decided in deterministic

polynomial time as well we conclude that finite-valuedness is decidable in determinis-

tic polynomial time. 0

References

Cl1

c21

c31

M

c51
C61
c71

PI

c91
DOI

Cl11
WI
Cl31

Cl41

[I51

Cl61
Cl71

Cl81

Cl91

WI

B. Courcelle and P. Franchi-Zannettacci, Attribute grammars and recursive program schemes, part I,

Theoret. Comput. Sci. 17 (1982) 163-191.
K. Culik II and J. Karhumaki, The equivalence of finite valued transducers (on HDTOL languages) is

decidable, Theoret. Comput. Sci. 47 (1986) 71-84.
P.J. Downey, R. Sethi and E.R. Tarjan, Variations on the common subexpression problem. J. ACM

27 (1980) 758-771.
J. Engelfriet, Some open questions and recent results on tree transducers and tree languages, in:

R.V. Book, ed., Formal Language Theory (Academic Press, New York, 1980) 241-286.

Z. Esik, Decidability results concerning tree transducers I. Acta Cybernet. 5 (1980) l-20.
F. Gecseg and M. Steinby, Tree Automata (Akademiai Kiado, Budapest, 1984).

R. Giegerich and K. Schmal, Code selection techniques: pattern matching, tree parsing and inversion

of derivors, in: Proc. ESOP’1988, Lecture Notes in Computer Science, Vol. 300 (Springer, Berlin,

1988) 245-268.
J. Karhumaki, W. Rytter and S. Jarominek, Efficient constructions of test sets for regular and

context-free languages, in: Proc. MFCS, Lecture Notes in Computer Science, Vol. 520 (Springer,

Berlin, 1991) 249-258.

W. Paul, Komplexittitstheorie (Teubner, Stuttgart, 1978).

M. Schiitzenberger, Sur les relations rationelles entre monoides libres, Theoret. Comput. Sci. 3 (1976)
243-259.
H. Seidl, On the finite degree of ambiguity of finite tree automata, Acta Inform. 26 (1989) 527-542.

H. Seidl, Deciding equivalence of finite tree automata, SZAM J. Comput. 19 (1990) 4244437.
H. Seidl, Equivalence of finite-valued bottom-up finite state tree transducers is decidable. in: Proc.
CAAP ‘90, Lecture Notes in Computer Science, Vol. 431 (Springer, Berlin, 1990) 269-284; a full

version will appear in Math. Systems Theory.
H. Seidl, Single-valuedness of bottom-up finite state tree transducers is decidable in polynomial time,

in: Proc. of the Toyohashi Symposium on Theoretical Computer Science (1990) 69-73.
A. Weber, Ueber die Mehrdeutigkeit und Wertigkeit von endlichen Automaten und Transducern,

Doct. Thesis, Frankfurt/Main, 1987.

A. Weber, On the valuedness of finite transducers, Acta Inform. 27 (1990) 749-780.

A. Weber, A decomposition theorem for finite-valued transducers and an application to the equival-

ence problem, in: Proc. MFCS’1988, Lecture Notes in Computer Science, Vol. 324 (Springer, Berlin,

1988) 552-562; SIAM J. Cornput., to appear.

A. Weber, On the lengths of values in a finite transducer, in: Proc. MFCS’1989, Lecture Notes in

Computer Science, Vol. 379 (Springer, Berlin, 1989) 523-533.
A. Weber and H. Seidl, On the degree of ambiguity of finite automata, in: MFCS ‘1986, Lecture Notes

in Computer Science, Vol. 233 (Springer, Berlin, 1986) 620-629; also Theoret. Comput. Sci. 88 (1991)
325-349.
Z. Zachar, The solvability of the equivalence problem for deterministic frontier-to-root tree trans-
ducers, Acta Cybernet. 4 (1978) 167-177.

