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In this paper we introduce two classes of Poisson brackets on algebras (or on
sheaves of algebras). We call them locally free and nonsingular Poisson brackets.
Using the Fedosov's method we prove that any locally free nonsingular Poisson
bracket can be quantized. In particular, it follows from this that all Poisson brackets
on an arbitrary field of characteristic zero can be quantized. The well-known theorem
about the quantization of nondegenerate Poisson brackets on smooth manifolds
follows from the main result of this paper as well. � 1997 Academic Press

1. INTRODUCTION

From an algebraic point of view to quantize a commutative associative
algebra A over a field k is to deform it as an associative algebra in such
a way that the deformed algebra is noncommutative. This concept of defor-
mation quantization was proposed in [1]. In many interesting cases an
algebra A has no nontrivial commutative deformations, for example,
algebras of functions on smooth or analytic manifolds. However these
algebras admit many nonequivalent noncommutative deformations.

A general theory of deformations of associative algebras has been
developed in the fundamental works of Gerstenhaber [2�5] (see also [6]).
The Hochschild 2-cocycles play the role of infinitesimal objects of such
deformations, hence, the tangent space (or deformations of order one) to
a ``versal family'' of deformations of an associative algebra A is the second
Hochschild cohomology space H2(A, A). In the case of commutative
algebra, it is natural to begin a ``pure'' noncommutative deformation with
a skew-symmetric Hochschild cocycle, which gives a deformation of order
one. Then, a skew-symmetric bilinear form A_A � A is a Hochschild
cocycle if and only if it defines a biderivation with respect to the original
multiplication, i.e. satisfies the Leibniz rule. This form must also satisfy the
Jacobi identity if there exists an extension of the deformation up to order
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two (see Section 2), so, the natural initial object for deformation (or quan-
tization) of a commutative algebra A is a Poisson bracket f on this algebra.
Given a Poisson bracket f on A, a natural question arises: whether there
exists a deformation of A over k[[�]] with f as tangent vector? The
author does not know any example of nonquantizable Poisson bracket on
``good'' algebras. However, there are lots of examples of Poisson brackets
admitting quantization. First of all, any Poisson bracket on a two-dimen-
sional smooth manifold can be quantized. Any nondegenerate Poisson
bracket on a smooth manifold of arbitrary dimension can be quantized as
well (see [14, 16�18]). Universal enveloping algebras are examples of
quantizations of linear Poisson brackets (degenerate, of course) on polyno-
mial algebras. It is shown in [8] that any quadratic Poisson bracket on the
polynomial algebra of three variables can be quantized. Note that qua-
dratic Poisson brackets correspond to deformations of polynomial algebras
as quadratic algebras. Quantum groups are quantizations of so-called
R-matrix Poisson brackets on Lie groups (see [7]). On the other hand, the
R-matrix Poisson brackets on Lie groups induce, in several ways, Poisson
brackets on some homogeneous spaces of these groups. In certain cases,
these Poisson brackets can be quantized (see [9�11]). Other examples of
quantizations can be found in [6].

In this paper we introduce two classes of Poisson brackets on algebras
(or on sheaves of algebras)��the class of locally free and its subclass of
locally free nonsingular Poisson brackets (see Section 5). We prove that
any locally free nonsingular Poisson bracket can be quantized. It should be
noted that the class of locally free nonsingular Poisson brackets includes
nondegenerate brackets on algebras of functions on manifolds and all
Poisson brackets on fields. The class of locally free Poisson brackets
includes almost everywhere nondegenerate Poisson brackets on a manifold.
In particular, the last class contains R-matrix brackets on symmetric spaces
(see [11]). The quantization of these brackets is given in [12].

I would like to underline that methods of the work [16] have influenced
this paper considerably.

2. POISSON BRACKETS AND DEFORMATIONS
OF COMMUTATIVE ALGEBRAS

Let A be an associative algebra with unit over a field k of characteristic
zero. We will consider deformations of A over the algebra of formal power
series k[[�]] in a variable �.

By a deformation of A we mean an algebra A� over k[[�]] that is
isomorphic to A[[�]]=A �̂k k[[�]] as a k[[�]]-module and A� ��A�=
A (the symbol �̂ denotes the tensor product completed in the �-adic
topology). We will also denote A as A0 .
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If A$� is another deformation of A, we call the deformations A� and A$�
equivalent if there exists a k[[�]]-algebra isomorphism A� � A$� which
induces the identity automorphism of A0 .

In other words, A� consists of elements of the form

x= :
�

i=0

xi�
i, xi # A.

The multiplication in A� is given by a k-bilinear map F� : A_A � A[[�]]
written as

F�(x, y)= :
i�0

�iFi (x, y), x, y # A,

where F0(x, y)=xy is the multiplication in A. The terms Fi , i>0, are
k-bilinear forms A_A � A. Associativity means that F=F� satisfies the
following equation

F(F(x, y), z)=F(x, F(x, y)).

Collecting the terms by the powers of �, we obtain

:
i+ j=n

(Fi (Fj (x, y), z)&Fi (x, Fj ( y, z)))=0, n�0. (1)

If the multiplication in A$� is given by a bilinear map F $� : A_A �
A[[�]], then the equivalence of A� and A$� can be given as a power series

Q=Id+ :
i�1

� iQi ,

where Qi are k-linear maps Qi : A � A, such that

F $(x, y)=Q&1(F(Q(x), Q( y))). (2)

Let us consider the element F1 . From Eq. (1) for n=1 we get the following
relation

xF1( y, z)&F1(xy, z)+F1(x, yz)&F1(x, y) z=0. (3)

This means that F1 is a Hochschild 2-cocycle. From (1) for n=2 we have

F1(F1(x, y), z)&F1(x, F1( y, z))

=xF2( y, z)&F2(xy, z)+F2(x, yz)&F2(x, y) z,
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i.e. the element F1(F1(x, y)), z)&F1(x, F1( yz)) is 3-coboundary. If the
series F $ gives an equivalent deformation of A, then we have from (2)

F $1(x, y)&F1(x, y)=xQ1( y)&Q1(xy)+Q1(x) y,

i.e. F $1(x, y) and F1(x, y) are cohomologous.
Throughout the remainder of this paper we will be interested in deforma-

tions of commutative algebras. If such is the case, we have

Proposition 2.1. Let A be a commutative algebra, F1(x, y), x, y # A a
Hochschild cocycle, then F $1(x, y)=F1( y, x) is a Hochschild cocycle.

Proof. Straightforward computation.

Thus, in the case of commutative algebra any Hochschild cocyle F1(x, y)
can be decomposed into two cocycles: F1(x, y)=:(x, y)+;(x, y), where
:(x, y)=(F1(x, y)+F1( y, x))�2 and ;(x, y)=(F1(x, y)&F1( y, x))�2. The
cocycle :(x, y) is commutative, i.e. :(x, y)=:( y, x), therefore it determines
an infinitesimal commutative deformation of A. We will consider noncom-
mutative deformations of a commutative algebra (or quantizations), so we
will put :(x, y)=0. Moreover, in many cases algebra A will have no com-
mutative deformations, and any commutative Hochschild cocycle will be a
coboundary, so in these cases any deformation is equivalent to a deforma-
tion with skew-symmetric F1 , i.e. we can suppose that F1(x, y)=;(x, y).
Put (x, y)=;(x, y). We have (x, y)=&( y, x).

Proposition 2.2. (a) A skew-symmetric bilinear map A�A � A,
x�y [ (x, y) is a Hochschild cocyle if and only if it obeys the Leibniz rule

(xy, z)=x( y, z)+ y(x, z).

(b) If ((x, y), z)&(x, ( y, z)) is a Hochschild 3-coboundary, then the
Jacobi identity holds:

((x, y), z)+(( y, z), x)+((z, x), y)=0.

Proof. (a) If (x, y) satisfies the Leibniz rule a straightforward computa-
tion shows that it is a Hochschild cocycle. Let (x, y) be a cocycle. Then

x( y, z)&(xy, z)+(x, yz)&(x, y) z=0,

y(x, z)&( yx, z)+( y, xz)&( y, x) z=0,

(&1)[x(z, y)&(xz, y)+(x, zy)&(x, z) y]=0.

Adding these equations, we will get the Leibniz rule.
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(b) Suppose, there exists a 2-cochain [x, y] such that

((x, y), z)&(x, ( y, z))=x[ y, z]&[xy, z]+[x, yz]&[x, y] z.

Let us also write five similar equations for permutations of x, y, z. Let
(abc) be a permutation of x, y, z. Multiplying the equation corresponding
to (abc) by sign(abc) and adding all these equations, we will get the Jacobi
identity. The proposition is proved.

The latter proposition shows that Poisson brackets are natural initial
infinitesimal objects for noncommutative deformations of commutative
algebras. The Leibniz rule and the Jacobi identity are needed for existence
of deformations of degrees one and two in �, respectively.

3. KOSZUL COMPLEX AND WEYL ALGEBRA

Let A be a commutative associative algebra with unit over a field k of
characteristic zero.

Let B be a bigraded A-algebra (noncommutative). We will regard B as
a super-algebra, an element of which x # B of degree ( p, q) is even (odd) if
the number q is even (odd). Denote by x~ the parity of x. Then the com-
mutator of two elements x, y # B is defined as [x, y]=xy&(&1)x~ y~ yx.

An A-linear operator in B is said to be of degree (r, s) if it sends elements
of degree ( p, q) into elements of degree ( p+r, q+s). So the set of A-linear
operators in B may also be considered as bigraded super-algebra: an
operator of degree (r, s) is even or odd depending on the parity of s.

An operator D is called a derivation of degree D� if the following equality
holds

D(xy)=D(x) y+(&1)x~ D� xD( y).

Note that all derivations form a Lie super-algebra with respect to (super)-
commutator. In particular, if D is an odd derivation, then D2 is an even
one, and the Bianchi identity holds:

[D, D2]=D3&D3=0.

Given an A-module E, we denote by T(E ), S(E), and � E the tensor,
symmetric, and exterior algebra over A, respectively.

Suppose u : E � F is a morphism of A-modules. Let us define an operator
du=d on the bigraded A-module T(E)�� F in the following way. If
x=x1� } } } �xm�y1 7 } } } 7 yn # T m(E)��n F, we put

dx=:
i

x1 � } } } � x̂i � } } } �xm �u(xi) 7 y1 7 } } } 7 yn .
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Similarly, we define an operator �u=� on the bigraded A-module
S(F )�T(E) assigning to x= y1 x } } } x ym �x1 � } } } �xn # SmF�T nE
the element

�x=:
i

(&1) i&1 y1 x } } } x ym x u(xi)�x1 � } } } � x̂i � } } } �xn .

Proposition 3.1. The operators d and � are A-linear derivations of
degrees (&1, 1) and (1, &1), respectively, on corresponding algebras con-
sidered as super-algebras with respect to the second degree. Moreover,
d 2=0, �2=0.

Proof. Straightforward computation.

Given a bilinear skew-symmetric form . : �2 E � A, denote by I the
ideal in T(E) generated by relations

x�y& y�x&.(x, y)=0. (1)

We will call W(E )=T(E )�I the Weyl algebra associated to .. The operator
d induces a derivation on W(E )�� F. Indeed, d applied to the left side of
(1) gives zero.

Analogously, given a bilinear symmetric form � : S 2(E) � A, denote by
J the ideal in T(E ) generated by relations

x�y+ y�x&�(x, y)=0. (2)

Since � applied to (2) gives zero, � induces a derivation on S(F )�C(E ),
where C(E )=T(E)�J (the Clifford algebra associated to �).

In particular, if .=0 we get Koszul complexes Kosv(u)=(S(E )�
� F, d ) and Kosv(u)=(S(F )�� E, �) (see e.g. [13], pp. 107�113).

Let us introduce an independent variable � and consider the modules
E[�]=E� k k[�] and F[�]=F� k k[�] over the algebra A[�]=
A� k k[�]. In this case we consider the following relations

x�y& y�x&�.(x, y)=0, (3)

x�y+ y�x&��(x, y)=0 (4)

rather than (1) and (2).
Let us form as above the algebras W(E[�]) and C(E[�]). If we now

regard � as being of degree two, then the relations (3) and (4) are
homogeneous and W(E[�]) and C(E[�]) become graded algebras.
Moreover, d and � become derivations of degrees (&1, 1) and (1, &1).
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Throughout the remainder of this paper we will often drop the reference
to � in our notations. Thus, we will write E, A rather than E[�], A[�],
and so on.

Consider in more detail the case in which u : E � F is an isomorphism of
free modules of finite rank. If such is the case, the Koszul complexes
Kosv(u) and Kosv(u&1) are equal to S(E)�� F as algebras and we get the
derivations d of degree (&1, 1) and � of degree (1, &1) on this algebra.

Proposition 3.2. Let u : E � F be an isomorphism of free modules of
finite rank. Then (�d+d�) x=( p+q) x for x # S p(E)��q F.

Proof. Straightforward computation.

In particular, (�d+d�) x=0 if and only if x # S0(E )��0 F=A.
Notice, that there is a natural embedding of A-modules

_ : S(E)� � F � T(E )�� F,

generated by the embeddings Sn(E) � T n(E ) for any n.
Let . be a skew-symmetric form on E, and W(E ) the corresponding

quotient algebra of T(E ), as above. Denote by ? the natural projection
T(E ) 7F � W(E ) 7 F. By the Poincare� �Birkhoff�Witt theorem the com-
position ?_ gives an isomorphism of A-modules S(E )�� F � W(E )�
� F. Due to this isomorphism, the operator � can be carried onto W(E )�
� F. Of course, it will not be a derivation, but the relation (�d+d�) x=
( p+q) x for x # W(E )�� F remains true.

Given a # W(E)�� F, we put s(a)=(?_)&1 (a) # S(E)�� F and call
s(a) the symbol of a. We say that a has s-degree (n, m) if s(a) # (Sn(E )�
�m F )[�]. We will also say that a has s-degree n if s(a) # (S n(E )�
� F )[�]. When a has s-degree n, then da and �a have s-degrees (n&1) and
(n+1), respectively. It follows from the fact that the operators d and �
commute with ?_ and from the explicit forms of d and � in S(E)�� F.

So, we get

Proposition 3.3. Let u : E � F be an isomorphism of free A-modules of
finite rank. Given a skew-symmetric form . on E, suppose W(E )=W(E[�])
is the corresponding graded algebra. Then there exist a derivation d on
W(E )�� F of degree (&1, 1) and an A-linear operator � of degree (1, &1)
such that the following equality holds

(�d+d�) x=( p+q) x if s(x) # W p(E )��
q

F. (5)

Moreover, d and � have s-degree (&1, 1) and (1, &1), respectively.
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Let us consider the complex

W v: W(E) w�d W(E)� �1 F w�d W(E )��2 F w�d } } } .

Corollary 3.4. In the hypothesis of Proposition 3.3 we have

H0(W v)=A, Hi (W v)=0 for i>0.

Proof. It follows from equality (5).

Remark. Let us assume that A is a sheaf of algebras over a topological
space M, u : E � F is an isomorphism of locally free sheaves of A-modules,
and . is a mapping of sheaves �2 E � A. Then all constructions above
make sense in this situation, including Proposition 3.3 and Corollary 3.4,
where W(E)�� F becomes a sheaf of A-algebras.

4. COMPLETED WEYL ALGEBRA AND DERIVATIONS

Suppose E is a free A-module of finite rank, . is a skew-symmetric form
on E. Let us construct the Weyl algebra W(E)&W(E[�]) with respect to
., as in the preceding section. This algebra is a graded algebra, in which
the elements from E have degree one and � is of degree two.

The gradation in W(E ) induces a decreasing filtration in this algebra
with submodules Wp(E), generated by elements of degree �p. A non-
homogeneous element a # W(E ) will be called of degree p, if p is the maxi-
mal number such that a # Wp(E ).

Let us form the completion W� (E) of W(E ) with respect to this filtration.
In this case W� (E) can be regarded as a module over the algebra A� =
A[[�]] of power series in �.

Let u : E � F be an isomorphism of modules. It is clear that one can
complete the complex W v=(W(E)�� F, d) defined in the preceding
section and get the complex W� v=(W� (E )�� F, d ). Moreover, the
operator � makes sense in this case and Propositions 3.2 and 3.3 remain
true. Further we will use the notations W(E ) and W v for the completed
algebras W� (E ) and W� v.

As in Section 3 we will consider W(E)�� F as a bigraded algebra and
as a super-algebra: an element of this algebra of the degree ( p, q) is even
or odd depending on the parity of q. Thus, by derivations of W(E )�� F
we mean super-derivations, by commutator of two elements from
W(E )�� F we mean super-commutator, and so on.

80 JOSEPH DONIN



File: 607J 162609 . By:CV . Date:17:04:97 . Time:07:58 LOP8M. V8.0. Page 01:01
Codes: 2659 Signs: 1730 . Length: 45 pic 0 pts, 190 mm

Later we will need the following description of A-linear derivations of
nondegenerate Weyl algebras. Assume . is a nondegenerate skew-sym-
metric form on E. This means that the mapping , : E � E*, x [ .(x, } ),
from E into the dual module is an isomorphism. The Weyl algebra W(E )
associated to such a . will be called nondegenerate.

Proposition 4.1. Any A-linear derivation D of a nondegenerate Weyl
algebra W(E) is an inner one, i.e. there exists an element v # W(E) such that
D(x)=(1��)[v, x] for any x # W(E). (Recall, that we use the form �. in the
definition of W(E)).

Proof. Let us consider the complex (W(E )�� E*, d ) associated to the
mapping , : E � E*, x [ .( } , x). Let ei be a basis in E over A and ei be
the dual basis in E*, ei (ej)=$i

j . It is easy to verify that the operator d has
the form 1��[d� , } ], where

d� =:
i

ei�ei # E� �1 E*.

One has the equalities

[Dei , ej]+[ei , Dej]=0 for any i, j.

Form the element

D� =
1
�

:
i

Dei�ei # W(E )��1 E*.

The last equation implies that dD� =0. It follows from the exactness of the
complex (W(E )�� E*, d ) that there exists an element v # W(E) such that

&dv=
1
�

:
i

[v, ei]�ei=
1
�

:
i

Dei�ei,

i.e. 1��[v, ei]=Dei for all i. Thus the operator 1��[v, } ] coincides with D.
The proposition is proved.

Let us consider derivations in the superalgebra W(E )�� F which
(super)-commute with the multiplication by elements from � F. Thus, the
operator d is such a derivation. It follows from the last proposition that
such derivations are inner.

Remark. As in the preceding section, all the constructions of this sec-
tion make sense in the global case as well, when A is a sheaf of algebras
over a topological space M, etc. In this case free A-modules are replaced
with locally free sheaves of A-modules. Proposition 4.1 is true locally.
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In order for any global derivation D in that proposition to be inner, one
needs to suppose that H1(A, M)=0, where H i (F, M) denotes the i th
cohomology of a sheaf F over M.

5. POISSON BRACKETS AND HAMILTONIAN DERIVATIONS

We recall that a Poisson bracket on a k-algebra A is a skew-symmetric
k-linear form f : �2 A � A which satisfies two conditions:
the Leibniz rule

f (ab, c)=af (b, c)+bf (a, c),

and the Jacobi identity

f ( f (a, b), c)+ f ( f (b, c), a)+ f ( f (c, a), b)=0.

It follows from the Leibniz rule that f defines a mapping f� : A � Der(A),
namely, f� (a)= f (a, } ) where Der(A) denotes the A-module of derivations of
the algebra A.

Note that the Jacobi identity implies that H=Im( f� ) forms a Lie algebra
over k. Indeed, let a, b, c # A and a� = f� (a), b� = f� (b). We have by definition
a� c= f (a, c), b� c= f (b, c), hence a� b� c= f (a, f (b, c)). Similarly, b� a� c=
f (b, f (a, c)). Therefore,

(a� b� &b� a� ) c= f (a, f (b, c))& f (b, f (a, c))= f ( f (a, b), c)

by the Jacobi identity. This means that

a� b� &b� a� =f (a, b),

i.e. a� b� &b� a� is the image of f (a, b) by the mapping f� .
It should be noted that H is not an A-module. We will call elements from

H strong Hamiltonian derivations. The bracket f forms a k-linear non-
degenerate skew-symmetric form . on H with values in A in the following
way. Let x= f� (a), y= f� (b), then we put .(x, y)= f (a, b). It is clear that
such a definition of . makes sense. Indeed, suppose xi # A, and x� i are the
corresponding strong Hamiltonian derivations. We must show that if
D=�i ai x� i=0, ai # A, then �i ai.(x� i , b� )=0 for any b # A. But that
follows from the following chain of equalities

:
i

ai.(x� i , b� )=:
i

ai f (xi , b)=Db=0.

Let us denote by E the A-submodule in Der(A) generated by H and call
the elements of it weak Hamiltonian derivations. It is easy to see that E
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forms a Lie subalgebra in Der(A) over A, and the form . can be extended
by linearity to E. So, we obtain on E an A-linear skew-symmetric form
. : �2 E � A associated to our Poisson bracket on A. We assume further
that E is an A-module of finite type.

Note that the mapping , : E � E*, x [ .(x, } ), is always a mono-
morphism. This follows from the fact that if .(x, y)=0 for a fixed x and
any y, x, y # E, then x=0. It is sufficient to prove the fact for all y of the
form b� , where b # A. But, if x=�i aix� i , ai # A, is zero, where x� i are strong
Hamiltonian derivations corresponding to xi # A, then

.(x, b� )=:
i

ai f (xi , b)=x(b),

for any b # A; i.e. the derivation x applied to b is equal to zero.
The module E need not be free (or locally free in the global situation).

We will call a Poisson bracket free (locally free in the global case) if the
associated module (or sheaf ) of weak Hamiltonian derivations E is
(locally) free. We will call a Poisson bracket f nonsingular if the corre-
sponding map , : E � E* is an isomorphism.

Given a locally free Poisson bracket f on A, let us construct the Weyl
algebra W(E ) and the algebra W v(E )=(W(E )�� E*, d ) associated to
the monomorphism , : E � E*, as in preceding sections.

The Lie algebra E acts on A as derivations, so one can associate to any
a # A the differential form {a, {a(x)=xa. Hence, { can be considered as
a mapping A � �1 E* with the property {(ab)=a{(b)+b{(a).

Moreover, the operator { can be extended to a derivation on the
exterior algebra � E* in the following way. Consider �n E* as the algebra
of A-linear skew-symmetric functions on E of n variables with values in A.
Then for \ # �n&1 E* we define {(\) # �n E* by

{(\)(x1 , ..., xn)= :
1�i< j�n

(&1) i+ j \([xi , xj], x1 , ..., x̂i , ..., x̂j , ..., xn)

+ :
1�i�n

(&1) i&1 xi \(x1 , ..., x̂i , ..., xn).

So the definition of { is the same as for the de Rham complex and for the
cohomology complex for Lie algebra. It is easy to verify that { is an odd
derivation of the algebra � E* and {2=0 on � E*. It turns out that { can
be extended to the whole algebra W v=W(E )�� E*.

Proposition 5.1. Let f be a locally free Poisson bracket on A. Then the
derivation { can be extended to a derivation on W v(E) of degree (0, 1) with
the property

d�=0, (1)
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where � # E��2 E* is the tensor of torsion defined as �(x, y)={x( y)&
{y(x)&[x, y] for any x, y # E (here [ } , } ] denotes the Lie bracket in E ).

Proof. First of all, reduce the proposition to the case in which E admits
a basis over A consisting of strong Hamiltonian derivations.

Let Spec(A) be the spectrum of A with Zariski topology and structure
sheaf A, i.e. the affine scheme associated to A. The sheaf A is a sheaf of
local algebras such that A=H 0(A). The Poisson bracket f induces in a
natural way the Poisson bracket f� on A. On the other hand, there is the
sheaf E on Spec(A) corresponding to E, which is a locally free A-module,
and E=H0(E). It is easy to see that E will be the sheaf of germs of weak
Hamiltonian derivations of f� . Denote by Ep and Ap the stalks of the sheaves
E and A over the point p # Spec(A). By definition, Ep is generated by
strong Hamiltonian derivations as Ap-module. Since Ep is a free module
over the local algebra Ap , one can extract from these Hamiltonian deriva-
tions a finite basis of Ep over Ap . This basis will be a basis of the AU -
module EU , where AU and EU denote the spaces of sections of A and E

over some neighborhood U of p. So, we see that any point of Spec(A) has
a neighborhood in which the module of weak Hamiltonian derivations
admits a basis consisting of strong Hamiltonian derivations. Consider a
covering Ui of M=Spec(A) by such neighborhoods and suppose that the
proposition is true for the algebras AUi with induced Poisson brackets fUi .
Now, let us apply the arguments from the proof of Proposition 5.2 below
to the Poisson bracket f� given on the sheaf A over the space M=Spec(A).
Note that in this case H1(T, M)=0, because T is a quasi-coherent sheaf
on affine algebraic space M (see the definition of T just before Proposi-
tion 5.2). So we conclude that the proposition will be true if it is true for
each pair AUi , fUi . Thus, it suffices to prove the existence of the required
derivation { in supposing that A-module E admits a strong Hamiltonian
basis.

Let ei be a basis in E over A consisting of strong Hamiltonian deriva-
tions. Let us define {ei (ej)=[ei , ej] (here we mean by [ } , } ] the bracket in
the Lie algebra E ). If x=�i aiei , ai # A, is an element from E we set
{ej (x)={ej (ai) ei+ai{ej (ei). If y is another element from E, it can also be
presented uniquely as a linear combination �i ciei with ci # A. Hence,
defining {y(x)=�i ci{ei (x), we get a linear mapping { : E � E��1 E*,
x [ { } (x). The operator { defined just above is a connection along weak
Hamiltonian derivations.

Let us prove now that the form . on E associated to the Poisson bracket
f is an invariant one relative to the connection {, i.e.

{z(.(x, y))=.({zx, y)+.(x, {z y) for any x, y, z # E.
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It is sufficient to verify it for the elements ei of our basis. Suppose ai # A are
such elements that ei= f (ai , } ). Then, if we take x=ei , y=ej , z=ek , the
previous equation will be equivalent to the relation f (ak , f (ai , aj))=
f ( f (ak , ai), aj)+ f (ai , f (ak , aj)), which is true by the Jacobi identity.

Now we can extend { on the whole algebra T(E )�� E* as an odd
operator by the Leibniz rule.

Let us prove that the ideal I/T(E ) generated by the relations

x�y& y�x=�.(x, y), x, y # E, (2)

is invariant under the action of {. Applying { to the left side of (2) we
obtain

{[x, y]=[{x, y]+[x, {y], (3)

where [x, y]=x�y& y�x, the commutator in T(E ). Applying { to the
right side of (2) we obtain

�{(.(x, y))=�(.({x, y)+.(x, {y)) (4)

because of the invariance of .. It is obvious that the difference between (3)
and (4) belongs to I, which proves the invariance of I under the action of
{. It follows from this that { induces a well-defined derivation on W v(E )=
T(E )�I�� E*.

To verify (1), note that for elements of the basis we have

�(ei , ej)={ei (ej)&{ej (ei)&[ei , ej]=[ei , ej]

by definition. On the other hand, the element � is obviously A-bilinear.
Hence, � has the form �=�i, j [ei , ej] ei 7 e j. Recall that the operator d
has the form 1��[d� , } ] (see the proof of Proposition 4.1). Using (2) we get
d�(ei , ej , ek)=Altijk .(ei , [ej , ek])=f (ai , f (aj , ak))+ f (aj , f (ak , ai))+ f (ak ,
f (ai , aj))=0, by the Jacobi identity. It implies that this equality holds for
any elements x, y # E. This completes the proof.

Now we want to extend the last proposition to the global situation.
Thus, let A be a sheaf of algebras over a topological space M endowed with
a Poisson bracket f, which is a global section of the sheaf Hom(� A2, A).
We construct as above the sheaf E of weak Hamiltonian derivations with
the A-linear form .. The k-linear differential operator { is defined on A as
well.

Let us denote by sp(E ) the sheaf of germs of symplectic A-linear
endomorphisms of E. By definition, such an endomorphism Q preserves the
form ., i.e. .(Qx, y)+.(x, Qy)=0, x, y # E. Denote by T the subsheaf
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of sections s of sp(E )�E* such that ds=0 for any x, y # E. (Here we
consider sp(E )�E* as a subsheaf of E�E* 7 E*.) Since d is A-linear
operator, T is a sheaf of A-modules.

Proposition 5.2. Given a locally free Poisson bracket on a sheaf of
algebras over a topological space M, suppose that H1(T, M)=0. Then the
operator { can be extended to a derivation on W v(E) of degree (0, 1) with
the property (1).

Proof. Let [Ui] be an open covering of M such that the sheaf E is free
over each Ui . By Proposition 5.1, there exist extensions {i of { over each
Ui . A direct check shows that the differences {ij={i&{j form A-linear
derivations of degree (0, 1) over Uij=Ui & Uj , and are sections of the sheaf
T over Uij . Moreover, they obviously form a C8 ech cocycle on M. The
condition H1(T, M)=0 means that there exist sections si of T over Ui

such that si&sj={ij={i&{j . Hence, {i&si={j&sj is a global operator
{$ on A. It is easy to see that the operator {$ is the required derivation on
Wv(E). The proposition is proved.

The operator { constructed above is a connection along weak
Hamiltonian derivations. This connection also determines derivations on
the algebras T(E )�� E and S(E )�� E in the same way. Moreover, this
connection commutes with taking of symbol, i.e.

s({(a))={(s(a)) for any a # W(E )� � E*.

It is easy to verify that the operators {2 and {d+d{ are A-linear deriva-
tions on W(E )�� E* (super)commuting with elements from � E*. Let us
assume that . is a nondegenerate form. Then, as was shown in the preced-
ing section, there exist such elements :, ; # W(E )��2 E* that {2 and
{d+d{ have the forms 1�� ad :=1��[:, } ] and 1�� ad ;=1��[;, } ],
respectively.

We will need the following.

Lemma 5.3. Let { satisfy the property (1). Then the elements : and ;
satisfy the following relations:

{:=0,

d;=0,

(d+{)(:+;)=0.

Proof. There are no difficulties in seeing that the operator { preserves
s-degree and that the elements : and ; have to be of s-degree (2, 2) and
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(1, 2). By the Jacobi identity, ad({:)=[{, {2]=0. It follows from this
that {: must commute with all elements from W(E ), i.e., be of s-degree
zero. But on the other hand, {: has s-degree 2. This implies that {:=0,
because the center of the algebra W(E) consists of elements of s-degree
zero, which proves the first relation.

Further, the operator d is realized as 1��[d� , } ] where d� =�i ei�ei, so
ad(;)=ad({d� ). This means that ;={d� +c, where c is some central
element. It implies that d;=d({d� ). But it is easy to check that {d� =
({ei ej&{ej ei&[ei , ej])�ei 7e j=�. So, the second relation follows from
the property (1).

To prove the third relation, note that a=(d+{)(:+;)=d:+{; due to
the first two relations. On the other hand, ad a=[d+{, (d+{)2]=0 by
the Bianchi identity (see 3). But the s-degree of a has to be equal to 1,
because two summands of a have this s-degree. So, a must be equal to zero,
which proves the third relation of the lemma.

6. A TOPOLOGICAL LEMMA

In this section we will denote by E an Abelian group with filtration
E= } } } #Ei } } } . We will assume that i runs over all the integers and
� Ei=E, � Ei=0. The degree of an element x # E is the maximal number
i such that x # Ei . We will suppose that any element from E has a finite
degree, and denote by deg(x) the degree of x.

The filtration defines on E a topology: the Ei form a fundamental system
of neighborhoods of zero. Every group with such a filtration can be completed
with respect to that topology. Henceforth we assume that E is complete.

Let 8 : E � E be an arbitrary mapping (in the set-theoretic sense).
The following simple lemma gives a criteria for the operator Id+8 to be
invertible.

Lemma 6.1. Let E be a complete Abelian group with filtration. Suppose
that an operator 8 : E � E satisfies the following condition:

deg(8(x)&8( y))>deg(x& y).

Then the operator Id+8 is invertible.

Proof. The lemma will be proved if we establish the existence and
uniqueness of a solution of the equation b=x+8(x), where b # E is given.
Put

x0=b&8(b), x1=b&8(x0), ..., xk=b&8(xk&1), . . .
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The sequence (xk) is convergent. Indeed, xk+1&xk=8(xk)&8(xk&1).
This implies that

deg(xk+1&xk)=deg(8(xk)&8(xk&1))>deg(xk&xk&1),

which proves the convergence. Let x be the limit of this sequence. Then it
is obvious that x is a solution of our equation. If x$ is an other solution,
then it should be deg(x&x$)=deg(8(x$)&8(x))>deg(x$&x), which is
impossible. This proves uniqueness and the lemma.

There are no difficulties in seeing that both operators Id+8 and its
inverse are continuous in the topology associated to the filtration.

7. COMPLEX ASSOCIATED TO POISSON BRACKET

In this section we will again suppose that A is an algebra with a Poisson
bracket f, and E is the module of weak Hamiltonian derivations of A. We
also suppose that f is locally free and nonsingular. This means that the
induced morphism , : E � E* is an isomorphism (see 5). So, we can con-
struct the completed complex

Wv(E )=\W(E )�� E*, d+ ,

as in 4. Recall that the operator � is well defined on this complex. It is clear
that the operator { constructed in 5 being of degree (0, 1) is well defined
in this complex as well. Denote by W2(E) the set of elements from W(E )
of degree �2.

Given r # W v(E), let us denote by ad r the inner derivation [r, } ] in
Wv(E), where the bracket [ } , } ] is regarded as a commutator in super-
algebra.

We want to construct such an element r # W2(E )��1 E* that the
derivation D=d+{+1�� ad r will satisfy the property D2=0. Let us find
such r.

We have

D2={2+d{+{d+
1
�

[d, ad r]+
1
�

[{, ad r]+\1
�

ad r+
2

. (1)

Using the fact that {, d, ad r are odd, and using the Jacobi identity in the
super-case, we get that [d, ad r]=ad(dr), [{, ad r]=ad({r), (ad r)2=
1
2 ad[r, r]. Moreover, a direct computation shows that the derivation
B={2+d{+{d is A-linear. So, by Proposition 4.1 (see also Lemma 5.3)
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there exists an element b=:+; # W1(E )��2 E* such that B=1��[b, } ]=
1�� ad b. So we can rewrite (1) in the form

D2=ad \1
�

b+
1
�

dr+
1
�

{r+
1
2 _

1
�

r,
1
�

r&+ . (2)

Therefore, if we will be able to find an element r such that the equations

1
�

b+
1
�

dr+
1
�

{r+
1
2 _

1
�

r,
1
�

r&=0 (3)

holds, then the condition D2=0 will be satisfied with this r.

Proposition 7.1. There exists r # W2(E )��1 E* such that Eq. (3)
holds.

Proof. At first, let us slightly modify the operator �. We set $(a)=
(1�p+q) �(a) for elements a # W v(E ) of s-degree ( p, q). Therefore, when a
is of s-degree ( p, q) with q>0 we have

(d$+$d ) a=a. (4)

Of course, $2=0 as well.
The element &$(b) obviously belongs to W2(E )��1 E*. Let us con-

sider the following equation in W2(E )��1 E*

&$(b)=r+$ \{r+
1

2�
[r, r]+ . (5)

It is easy to see that the operator 8(r)=$({r+1�2�[r, r]) satisfies the
hypothesis of Lemma 6.1, because $ increases degree by one with respect to
the filtration defined on W(E ). So, using this lemma we can find
r # W2(E )��1 E* satisfying (5).

Let us show that this r satisfies (3) as well. Denote by a the left side of
(3). Note that $r=0 by (5), so $ dr=r by (4). It implies that $a=0.

A direct computation shows that

\d+{+
1
�

ad r+ a=(d+{) \1
�

b+=
1
�

(d+{)(:+;).

But the right-hand side expression is equal to zero due to Lemma 5.3. So,

Da=da+{a+
1
�

[r, a]=0. (6)
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Since $a=0, $ da=a by (4), and we get from (6) a=&$({a+1��[r, a]).
But this is possible only if a=0, because the degree of the right side of this
equation is greater at least by one than the degree of the left side. It proves
that r satisfies the equation (3). The proposition is proved.

So, we have constructed a derivation on the algebra W v(E ) of the form
D=d+{+1�� ad r and such that D2=0. Therefore, one can write the
following complex

DW v: W(E ) w�D W(E )� �1 E* w�D W(E )��2 E* w�D } } } .

The cohomology H0(DW v) of this complex is a subalgebra A� of the
algebra W(E). In the next section we will show that the complexes DW v=
(W v, D) and (W v, d ) are isomorphic as k[[�]]-modules, so A� coincides
with A[[�]] as k[[�]]-module. Moreover, we will see that A� is a quan-
tization of A by our Poisson bracket f.

Remark. As in the preceding sections, note that in the case when A is
a sheaf of algebras over a topological space M construction of the deriva-
tion D can be realized globally.

8. QUANTIZATION

Proposition 8.1. There exists a k[[�]]-linear operator Q on W(E )
such that d=QDQ&1, therefore, this operator gives an isomorphism of the
complexes DW v=(W v(E ), D) and (W v(E), d ). (We assume here that Q acts
on W(E )�� E* as Q�1.)

Proof. Let us put Q=Id+$({+1�� ad r) and prove that it is an
operator as required in the proposition. First of all, Q is invertible by
Lemma 6.1, because $ increases degree. We have to show that dQ&QD=0,
i.e.

d(Id+$(D&d ))&(Id+$(D&d )) D=0. (1)

But $(D&d ) D=&$ dD=&$d(D&d ), because D2=d 2=0. Using this in
(1) we get d&D+(d$+$d )(D&d)=0, which is true because d&D is a
derivation of degree 1 with respect to the second degree, so (d$+$d )
(D&d)=D&d. Proposition is proved.

Thus, the subalgebras A[[�]] and A� of W(E) are isomorphic as
k[[�]]-modules and Q&1: A[[�]] � A� realizes this isomorphism.
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The operator Q&1 has the form

Q&1=Id&$ \{+
1
�

ad r++\$ \{+
1
�

ad r++
2

+ } } } .

Let us apply it to elements a, b # A. We obtain

Q&1a=a&${(a)+ } } } , Q&1b=b&${(b)+ } } } .

Taking into account that A lies in the center of W(E), we get

[Q&1a, Q&1b]=[${(a), ${(b)]+ } } } . (2)

But the first bracket in the right-hand side expression is equal to �f (a, b),
which follows from the definitions of action of { on elements from A and
commutation in W(E ). Using the operator Q, the algebra A� can be iden-
tified with A[[�]] as k[[�]]-module and the new multiplication in A has
the form a V� b=Q(Q&1(a) Q&1(b)). Taking into account that the operator
$({+1�� ad r) increases s-degree by one and the fact that the element
a V� b has s-degree zero, one can deduce, using (2), that the coefficient of
� in Q(Q&1a, Q&1b) is equal to f (a, b) and the other terms have order in
� greater than one. So, we have proved

Proposition 8.2. Let A be a sheaf of algebras on a topological space M,
f a locally free nonsingular Poisson bracket on A. Suppose that H 1(F, M)=0
for the sheaves of A-modules over M (mentioned in preceding sections). Then
there exists a quantization A� of A by the bracket f.

Remarks. (a) The construction of quantization shows that if a # A is
an element such that f (a, b)=0 for any b # A, then a lies in the center of
A� with respect to the new multiplication.

(b) If a family ft of Poisson brackets is given, the construction of
quantization shows that this family can be quantized simultaneously.

Corollary 8.3. Let K be a field of finite transcendence degree over k.
Then any Poisson bracket on K can be quantized.

Proof. Indeed, consider K as a sheaf over a point. Since K is of finite
transcendence degree over k, the weak Hamiltonian derivations E form
a finite-dimensional vector space over K, therefore E is a free K-module.
The mapping , : E � E* induced with the Poisson bracket, being a
monomorphism (see 5) of vector spaces of the same dimensions, is an
isomorphism. Hence, any Poisson bracket on the field is locally free and
nonsingular, by definition, and the corollary follows from Proposition 8.2.
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Corollary 8.4 ([14, 15, 16]). Let M be a smooth manifold. Then any
nondegenerate Poisson bracket on M can be quantized.

Proof. It is clear that any nondegenerate Poisson bracket on M will be
locally free and nonsingular. Moreover, H1(F, M)=0 for any sheaf of
modules over the sheaf of algebras of smooth functions on M.

The same argument shows that Corollary 8.4 remains true if one replaces
the smooth manifold M by a complex analytic Stein manifold or an affine
algebraic smooth variety. Indeed, all the sheaves F from Proposition 8.2
are coherent sheaves of modules over the structure sheaf. But, for these
classes of spaces H1(F, M)=0 for any coherent sheaf of modules.

We can also formulate an assertion on the quantization of an arbitrary
Poisson bracket on Stein analytic spaces or affine algebraic varieties.

For example, let X be a reduced (i.e. without nilpotent elements in the
structure sheaf) complex analytic space, and A the structure sheaf of X.
Assume that F is a coherent analytic sheaf on X. It follows from the existence
of a free resolution of F that one can find an analytic subset Y/X of
codimension one such that F will be locally free over AY . Here AY denotes
the sheaf of meromorphic functions on X with poles in Y (see [19]).

It follows from this that if f is an arbitrary Poisson bracket on X, then
there exists an analytic subset Y/X of codimension one such that the
corresponding sheaf E of weak Hamiltonian derivations is locally free,
and the monomorphism , : E � E* induces an isomorphism AY �A E �
AY �A E* of AY-modules. Therefore f determines a locally free nonsingular
Poisson bracket on AY . So, we obtain from Proposition 8.2.

Corollary 8.5. Let X be an reduced complex analytic Stein space.
Suppose f is a Poisson bracket on X. Then there exists an analytic subset Y/X
of codimension one such that the algebra AY can be quantized by this bracket.

A similar statement is valid for affine algebraic varieties.
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