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$1. INTRODUCTION 

We begin with a brief introduction. The most important of all Dirichlet series is 

(we write s = 0 + it as usual) studied by L. Euler and B. Riemann and the 

most important problem about it is to prove Riemann Hypothesis which 

asserts (I prefer to state it this way) that C(S) # 0 in 0 > 1. (Of course the 

well-known functional equation gives us the formulation that all the non-real 

zeros of c(s) lie on c = i). Next the Riemann-von-Mangoldt formula tells us 

that there are (T/27r) log( T/2rr) - (T/27r) + O(log T) zeros of <( & + it) in 

0 < t 5 T. All this has only the status of a conjecture. (It may be of some 

interest to mention here references to some unconditional results on c(s). Let 

N*(cY, T) denote the number of zeros of c(s) in (a > (Y, 0 < t 5 T). We have 

various unconditional upper bounds for N,(cu, T) valid for a 2 1 and all 

T > 0, (see chapter IX of [9]). All these are very far from N, (1, T ) = 0 (or 

even N, ( i, T ) = 0) for all T > 0. We mention two computational results. The 

first result due to J. van de Lune, H.J.J. te Riele and D.T. Winter is 

N,($, To) = 0 for TO = lO’(5.45439823215). Also they showed that the zeros 

of c(s) on the line segment ~7 = 4, 0 < t I TO are all simple. The second result 

due to A.M. Odlyzko is that if n = 10 *’ then the nth zero of c(s) in the cri- 

tical strip is 
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The second result is in a preprint with the title ‘The ( 1020)th zero of the Riemann 

zeta-function and its 70 million of its neighbours’. A.M. Odlyzko acknowledges 

some help by A. Schonage. The reference to the first result is ‘On the zeros of the 

Riemann zeta-function in the critical strip-IV’, Math. Comp. 46 (1986), 667- 

681). But in the present series of papers of which this is 15th, we are interested in 

proving some unconditional results about the zeros of a class of generalised 

Dirichlet series. Let us start with a generalised Dirichlet series (for precise defi- 

nitions see 42) 
33 

F&) = c u&S. 
n=l 

Let a0 denote the abscissa of absolute convergence of C,” 1 (LZ~X;“)~. Suppose 

that &i(s) can be continued analytically in (c 2 LYO - 6, t > to) and there 

IFo(s)I < tA, where A > 0, to > 0, 6 > 0 are some constants of which S can be 

arbitrarily small but fixed. The general question whether Fe(s) has infinity of 

zeros on 0 = a0 is not the right question since (although Hardy’s theorem, see 

chapter X of [9], tells us that C(s) has infinity of zeros on 0 = $) it is possible, 

using the functional equation, to prove that there exist uncountably many real 

numbers a for which c(s) - a has no zeros at all on cr = i (these and related 

questions will form the subject matter of a forthcoming paper). Several ques- 

tions can be asked about the zeros of&(s). For example does Fo(s) have infinity 

of zeros in (0 > QO - S, to)? (This is answered by us in the affirmative in the 

earlier papers I and II of this series. For references see the paper III[‘]). But the 

question whether E;o(s) has infinity of zeros in (oo - S 5 0 5 CYO + S, t > to) is 

very difficult and is very much open. Let &(a, T) denote the rectangle (0 > N, 

T 5 t 5 2T) and iVo(cr, T) the number of zeros of Fo(s) in it (of course we must 

have cr > CYO - 6, and T > to). Qualitatively speaking, the only method of prov- 

ing that NO(CYO - S, T) - NO(CYO + 6, T) IS unbounded as T -+ cc seems to be to 

prove first that No( CYO - 6, T ) >> T log T for a suitable sequence T = T, + cc 

and next to prove that No(ao + S, T) < T for all T. We cannot pretend to have 

solved this problem in this generality and we proceed to introduce some im- 

portant special results (of some what reasonable generality) which we have con- 

sidered in some previous papers and those to be considered in the present paper. 

The main difference between the previous papers and the present one is that in 

the present one (and also in the next paper XVI in this series to appear; see $6 for 

a reference to this forthcoming paper) functional equations play an important 

role. 

In a previous paper XIV[3] with the same title we considered ‘approximations’ 

to C(s) by a class of generalised Dirichlet series (or briefly GDS; precise defini- 

tions will be given in 92) and proved that the number of zeros of any member 

of the class in (a>;-S,T<t<2T) is >>TlogT and in (a>i+s, 

T < t 5 2T) is < T. (In fact we considered approximations to more general 

Dirichlet series than <(s), for example C,“=, ((-l)“-‘nP exp( &)) and 

proved the same results for any member of this class of approximations). To be 
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very precise we proved the lower and upper bounds mentioned above, for a large 

class of GDS of which a member is 

where {n,} is any sequence of real numbers with Icy,1 bounded above by a small 

positive absolute constant. (In $5 of the present paper we sketch a proof, fol- 

lowing the method of the present paper, that /a,l I lo-’ will be enough, and 

complete a nice theorem about algebraic number fields). In $6 we present a pro- 

liferation of the results of the earlier sections. Lastly in $7 we prove a result 

which figures in the note below the definition of the functional equation, namely 

that 0 < k < 1 is not possible. 

The main content of the present paper is that ‘If Z(s) is a GDS which has a 

functional equation of a certain type and P(s) is any member of a class of GDS 

which approximates to Z(s) then R’(s) has > T log T zeros in (a > i - S, 

T < t 5 2T) and sometimes < T zeros in (a > i + S, T 5 t 5 2T).’ As re- 

marked already precise statements will be made in $2. For example we will 

prove both the lower and upper bounds for the series 

and only the lower bound for the series 

(3) <k(s) + E &(n)((n + cXJY -HP), (g > O), 

where k > 3 is any integer. Here Ion I < $, but as will be clear from our proof we 

can relax this bound quite a bit. (Also we have defined &(n) for k L 2 by 

ck(s) = C,“=, dk(n)nps in c > 1 and d(n) = d*(n)). 

Notation. The notations are all standard. If g > 0 and IfIg-’ is bounded above 

we writef = O(g). Also we use IfI << g, whenever convenient to mean the same 

thing. When f > 0 and g > 0 we write f > g to mean g <f. Some times we 

write +& or >E or OE(...) to indicate that the constant depends on E (or the 

parameter or parameters in place of E). Another notation is f =: g which means 

f >> g > f and this is used when f > 0 and g > 0. 

$2. DEFINITIONS AND MAIN THEOREMS 

We will fix some absolute positive constants a, h with a < b throughout. 

Generalised Dirichlet series (GDS). Let {X,} be any sequence of real numbers 

with a < Xi < X2 < , XI < b, and a 5 Xn+t - X, < b for n > 1. Let {a,} be 

any sequence of complex numbers such that al # 0 and 

(4) Z(s) = E a&” 
n=l 

is convergent for some complex s. Z(s) is called a generalised Dirichlet series 
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(GDS). We remark that if Z(s) is convergent at SO it is absolutely convergent at 

so + 2. If Cnsx l&l2 = 0,(x Ifs) for every E > 0 then we say that Z(s) is a nor- 

malised generulised Dirichlet series (NGDS). If CnLx la,j2 = O(x) then we call 

Z(s) a special normalised generalised Dirichlet series (SNGDS). 

Note. For different functions Z(s), {A,}, {a,} may be different. The parameters 

{A,} and {a,> may d p e en d on T; but a and b are absolute positive constants. 

Functional equation (FE). Let Z(s) be an NGDS. It is said to have a functional 

equation if there exists Zt (s) which is a GDS such that Z(s) and Zt (s) can be 

continued analytically in 1 t 1 2 to and 

(5) Z(s) = X(S)Zl (1 - 3) 

where x(s) is holomorphic in ItI 2 to and there Ix(s)lt-k((1/2)-“) is bounded both 

above and below uniformly in every closed bounded a-interval. Here k is a real 

constant and to is a large positive constant. We assume further that [Z(s)1 < ltlA 

and IZI (4 < ItI A in every closed bounded a-interval where A (> 0) depends on 

the interval and 1 tl 2 to. 

Note. Trivially k < 0 is not possible by simple convexity considerations. In $7 of 

the present paper we prove that 0 < k < 1 is not possible. (Incidentally this gives 

the corollary that if n > 1 is any integer, the product of n Dirichlet L-functions is 

never the (n + I)th power of a holomorphic function in t > to, whatever to be). 

However k = 0 is possible since we can take Z(s) = (4)’ p-S + 2-’ for example. It 

is quite likely that k has always to be an integer and can never be non-integral. 

Perfect functional equation (PFE). Let Z(s) have a functional equation. It is 

said to be a perfect functional equation if Zt (s) is also an NGDS and further 

l<k<2. 

Special functional equation (SFE). Let Z(s) have a functional equation. It is 

said to be a specialfunctional equation if Z(s) is an SNGDS, and further k = 1. 

If Z(s) has a functional equation with k > 1, we will be interested in the zeros 

of F(s) which is a GDS of the form 

(6) F(s) = Z(s) + E u,((X, + c%Js - A,$), (a > O), 
il=l 

where Icy,1 =& n” for every fixed E > 0. Our main theorems are as follows. 

Theorem 1. Let N(cr, T) denote the number of zeros of F(s) in (CJ 2 cr, 

T 5 t < 2T) where LY > 0. Then for everyfixed 6 > 0, we have N( 1 + 6, T) << T 

tfat least one of the following two conditions is satisfied. 

(i) k = 1. 

(ii) Z(s) has a PFE. 
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Remark. The same upper bound holds good for the zeros of F(s) - ,B (in place 

of F(s)) where p is any fixed complex number, provided F(s) - 0 is a GDS. 

Theorem 2. With the same notation for N(a, T) and with 0 < 6 < 4 we have 

N( i - 6, T) >> T log T ifat least one of the following two conditions is satisfied. 

(i) k > 1. 

(ii) Z(s) has an SFE and further Icx,,~ does not exceed a certain small positive 

constant independent of 6. 

Remark 1. The same lower bound holds good for the zeros of F(s) - ,B (in place 

of J;(s)) where ,B is any fixed complex number, provided F(s) - p is a GDS. 

Remark 2. As will be clear from our proof Theorems 1 and 2 hold good for 

more general Dirichlet series than F(s) or F(s) - p. 

$3. PROOF OF THEOREM 1 

The following fundamental Theorem (see [5], see also equation 4.23 on page 

60 of [8]) will be used at several places in the rest of the paper. 

Theorem 3. (H.L. Montgomery and R.C. Vaughan). Let {x,,}, n = 1,2,3,. . . be 

any sequence ofcomplex numbers and {A,}, n = 1,2,3, . . be any increasing se- 

quence of real numbers such that X1 > 0 and X, + 1 - A, is bounded above and 

below. Then for H > 0, we have, 

(7) 

where I&/ 5 37rA;’ and A,, = min,fn 1 log(X,/X,)]. Also LHS isfinite if RHS is. 

We begin our proof of Theorem 1 by proving 

Lemma 1. Under the conditions of Theorem 1, we have, 

(8) f 7 lZ( 1 + it)l* dt = OE(TE). 
T 

Proof. Put s = i + it and let h (> 0) be a large constant. Then by standard 

arguments 

(9) E aJ;“exp(-($)h) = &2~~Z(~+~)x~r(X+I)$, 
n=l 

where X = T1+E (with a small arbitrary positive constant E) and w = u + iv is a 

complex variable. If k = 1 we ignore the small contribution to the integral from 

Iv] 2 (log T)2 and in the rest we move the line of integration to u = - 1 h. The 

pole w = 0 contributes Z(s). Thus ignoring a small error term we have 
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Now a simple application of Theorem 3 gives Lemma 1. 

If 1 < k 5 2, we write 21 (s) = C,“= 1 b,,u;” and as before s = 1 + it, h (> 0) a 

large constant, X = T ’ iE and Y = Tk - ’ +E. We proceed as before and obtain 

where we have ignored a small error term. Here we use Z(s + w) = 

x(s + w)Zt (1 - s - w) and then ignore the portion C,, > r b,pL,S+ w-’ which is a 

small term and then move back the line of integration to u = --E. Thus we obtain 

I Z(s) = fJ u,X;~ exp - 
n=l ( (37 

(11) 
1 

+?z S 
u= --E, ~v~~(log 7-y 

C b,p;++“r( ;+ 1) $. 
ll<Y 

Now a simple application of Theorem 3 gives Lemma 1. 0 

Remark. The method adopted above is due to the second of us (see [6] and [7]). 

Lemma 2. Under the conditions of Theorem 1, we have, 

(12) f 7 lZ( i + 6 + it)12 dt G& 1 
T 

un$ormly for 6 > E, for everyjxed E > 0. 

Proof. It suffices to prove that (8) implies (12), under the assumption E 5 S < 2. 

For this purpose we write s = $ + S + it. We have, with X = T ‘i2, 

where w = u + iv is a complex variable. In the integral in (13) we ignore the por- 

tion [VI > (log T)2 and in the rest we move the line of integration to u = -6. 

Since the pole w = 0 contributes Z(s), we now obtain Lemma 2 by a simple ap- 

plication of Theorem 3. q 

Lemma 3. Under the conditions of Theorem 1, we have, 

(14) f 7 IF(i +S+it)12dt Ke 1 
T 

uniformly for 6 2 E for every$xed E > 0. 
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Proof. Put s = 1 + 6 + it. It suffices to prove that 

(15) f 7 ]Z(s) - F(s))12 dt <<t 1, 
T 

where E 5 6 < 2. For this purpose we write 

(16) Z(s) - F(s) = Cl + c2 + c3, 

where 

(17) ci = c unXIS, c2 = - c an(Xn + oy,)-S 
ll<T ilST 

and 

(18) c3 = Z(s) - F(s) - c, - c2 

By a simple application of Theorem 3, it follows that 

(19) f 9 (IC, I2 + ]C212) dt <<E 1, 

Now 

(20) du 

and since the contribution from n > T lo is very small, 

(21) 

where ch(u, oln) = 1 if u E (0, a,) in case o, > 0 and ch(u, a,) = 1 if u E (on, 0) in 

case oy, < 0 and zero otherwise. Here n > 0 is an arbitrary small constant and 

T > To(q). By a simple application of Theorem 3, it follows that 

(22) 

f 7 ]Cs12dt < 213 + 2iT12(2T”) 
T 

x _iq ; T IT,og>T ;;“:‘:)$ I2 dudt + 2 
” 

< T1+2”n$‘T $$+2 
_ 

G 1, by a suitable choice of n, 

This proves Lemma 3. 

We are now in a position to prove Theorem 1. Actually from the inequality 

(14), the result N( i + 6, T) <<6 T for every 6 > 0 follows just as Theorem 9.15 

(A) on page 230 of [9] follows from the inequality 

(24) 7 ]<(a+ it)12dt = O&(T) 

uniformly in u (0 > 1 + 6, 6 > 0). The method of proof of Theorem 9.15 (A) 

mentioned above is due to J.E. Littlewood. 
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As a passing remark we mention that Theorem 1 is valid for all derivatives 

F(‘)(s) (I 2 0) of F(s) and also for F(‘)(s) - /3 provided these are GDS. This 

follows from a corollary to Lemma 3 obtained by a simple application of 

Cauchy’s theorem. q 

54. PROOF OF THEOREM 2 

The method of proof is best explained by recalling a theorem due to E.C. 

Titchmarsh (see Theorem 9.14 on page 227 of [9]). Let E (> 0) and S (> 0) be 

small arbitrary constants. Then the theorem states that the rectangle 

(cr> -1 -S,It-r] I ) E contains > log T zeros of c(s) for all T > ~o(E, S). To 

prove this Titchmarsh used IC( -1 + it)1 > t 3/2 for all t > 2 besides some com- 

plicated arguments. Motivated by this theorem of Titchmarsh we proved Theo- 

rem 4 (stated below) and to state this theorem we find it convenient to begin with 

two definitions. 

Definition. Let F(s) be a GDS and Q = o(r) > 2 (T 2 2) be real numbers with 

]F(cy + ir) 1 >> 7’ (where X is a positive constant independent of 7) for a set of 

points (Y + ir. Then we call Q + ir a Titchmarsh point and the rectangle 

(02 o-b,] - I t T 5 E )( h w ere E (> 0) and S (> 0) are small arbitrary constants) 

the associated rectangle. 

Definition. A set of complex numbers is said to be well-spaced if the difference 

between the imaginary parts of any two numbers is bounded below. It is assumed 

that there is more than one complex number. 

Theorem 4. Let r 2 Q(E, 6) and let QO + ir(ao = ao(~)) be a Titchmarsh point 

for a GDS F(s). Then the associated rectangle contains >> log r zeros provided 

F(s) is continuable analytically in the associated rectangle and there max IF(s)1 is 

less than tA for some constant A > 0. Next tfc~o(r) are bounded below by say LY, a 

constant independent of r and F(s) can be continued analytically in (o > a - 6, 

TIt<2T)andth ere max IF(s) 1 < T A andfurther tfthere are >> T well-spaced 

Titchmarsh points in (u > cy - 6, T 5 t < 2T), then F(s) has >> T log T zeros in 

(o>a-S,TLtI2T),i.e.N(a-6,T)>>~TlogT. 

Proof. See Theorem 3 on page 311 of our earlier paper III[‘I of this series. q 

Remark. If CY + ir is a Titchmarsh point for F(s), all derivatives F (‘j(s) (I > 0) 

have Titchmarsh points o(r) + ir where ~8) > (Y. This follows from 

IF(cy + ir) - F(crl + ir)l 5 7 IF’(u + ir)l dr 
oi 

(where cri 2 CX) and the iterations of this inequality. 

In the remainder of the proof of Theorem 2 we concentrate on producing >> T 
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well-spaced Titchmarsh points on (u = 1 - S, T 5 t < 2T), (0 < S < $) for the 

CDS in question namely F(s). We first consider the case k > 1. 

Lemma 4. Let s = i - 6 + it, 0 < S < 4. Then given any E > 0 there exist >>E T 

disjoint unit t-intervals Iall contained in [T, 2T] such that 

(25) J IZ(s)I dt >>E,a Tk’-‘. 
I 

Proof. By Theorem 1 on page 1 of our paper [4], we have 

(26) & IZlO - s)l dt ~E,6 to’ 
E 
) 

for a suitable constant C(E) > 0. Hence (26) is true with It - toi < C(E) replaced 

by some unit interval contained in (to - C(E) - 1, to + C(E) + 1). Functional 

equation gives (25). q 

Lemma 5. We have, 

(27) T s IZ(s) - F(s)1 dt G,J T1+6+E 

where the sum is over the unit intervals I of Lemma 4 

Proof. By a method similar to the proof of (15), we have 

(28) ‘s’ IZ(s) - F(s)12dt <<E,6 T1+26+2E. 
T 

This proves Lemma 5 by a simply application of Holder’s inequality. q 

Lemma 6. The number of intervals Z with 

(29) s IZ(s) - F(s)1 dt > T*+2e 
I 

is K~,J TlpE. 

Proof. Follows from Lemma 5. q 

Lemma 7. For >> T unit intervals I, we have, 

(30) J IF(s)1 dt >>E,6 Tk6-E. 
I 

Proof. From the intervals I of Lemma 4, we exclude the intervals which satisfy 

(29). The remaining intervals are >> T in number and for these, we have, 

; IF(s)1 dt 2 ; (Z(s)1 dt - ; IZ(s) - F(s)1 dt > CE,6Tk6-E - T6+2E 

for some CL,6 > 0. This proves Lemma 7 on choosing E to be small enough. q 

137 



Remark 1. Lemma 7 gives >> T well-spaced Titchmarsh points on (a = 4 - S, 

T < t 5 2T) provided k > 1. If FE is perfect (note that the condition 1 < k < 2 

is already in the definition of PFE) it is possible to have k6 in place of k6 - E in 

(30) as follows. By the FE and standard convexity arguments 

(31) f Tr“ IZ(s)I dt >> Tk6 
T 

and so by (28) we have 

(32) f ‘r’ IF(s)1 dt >> Tk6. 
T 

Using the PFE (and hence Lemma 2) and the result (28), we have 

(33) f y lF(s)12dt << T2k”. 
T 

By a simple but important principle due to us (see our earlier papers III[‘] and 

IV21 of this series) (32) and (33) imply (30) with kS in place of kS - E. 

Remark 2. The remaining case k = 1 is delicate and restricted. Of course FE 

gives 

(34) f ‘J“ IZ(s)I dt > T* and 
T 

f 7 IZ(s)12dt K T2”. 
T 

But to pass to 

(35) f 7 IF(s)Idt > T6 and 
T 

f r IF(s)12dt GC T2*, 

we need some restrictions. To prove the second inequality of (35) we need that 

(36) ; Tr” IZ(s) - F(s)12 dt << T2”. 
T 

This needs that Z(s) should have an SFE and that Icy, 1 < 1. But to prove the first 

of (35) we need that LHS of (36) should be less than a certain constant times T26. 

For this it is necessary to have IonI less than a small positive constant. It is pos- 

sible to make this constant independent of S by first taking S = $ and then ap- 

plying some convexity arguments. The proof of the inequalities (35) will be illu- 

strated in the next section by taking the special case Z(s) = c(s). 

$5. A THEOREM ON ALGEBRAIC NUMBER FIELDS 

In this section we prove 

Theorem 5. Let K be an algebraic numberfield of degree d and let f (n) denote the 

number of integral ideals of norm n. Let <K(S) denote the zeta-function of K and 
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{Nn} (n = 1,2,3,. .) b e any sequence of real numbers with JcY,] 5 10-5. Then for 

the function N(oc, T ) associated with the function 

(37) F(s) = &K(s) + 5 f(n)((n + Q,)-~ -n-‘), (0 > O), 
n=l 

we have the following inequalities. 

(38) (i) N( i + 6, T) <<n T if d 5 2. 

(39) (ii) N( 4 - 6, T) >>n T log T for all d. 

Remark. Note that k = d. If d > 2 then the theorem follows from Theorems 1 

and 2 even with the restriction Jcy,] C& n’ for every E > 0, provided F(s) is a 

GDS. Hence it remains to consider the case d = 1 i.e. the case when CK(S) is the 

Riemann’s zeta-function. Here (38) follows from Theorem 1 (even with the re- 

strictions IanI eE nE and that F(s) shall be a GDS) and so it remains to prove 

only (39) in case d = 1. 

Proof. We begin with the result 

which follows by a result (see Theorem 7.11 on page 1.55 of [9]) due to A.E. 

Ingham. From this result (and the functional equation for c(s)) it follows that for 

T > TO (a large positive constant), we have, 

(41) f ?(,(;+it)(dt> (&y”, 

Let IonI < lo-’ and 

(42) F(s)=<(s)+ E ((n+an)-S-nP), (a>O) 
n=l 

Then 

(43) IJ’b)l 2 lCb)l - P’(s) - Cb)l. 
We first check that, with s = $ + it, 

(44) f 7 IF(s) - c(s)1 dt 5 ( ;y’4 - vT1i4 
T 

for a small positive constant 7. This would prove that 

(45) ; 9 IF(s)1 dt 2 vT”~, 

and by convexity (see for example Theorem 7 on page 7 of [4]) 

(46) f 7 IF( i - 6 + it)1 dr >> T”, (0 < 6 < t,, 
T 

since we have by an easy computation 
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(47) ; 7 IF(c71 + q2 < T'-y (0 < g1 < f). 
T 

We now come back to proving (44). We write s = $ + it till the end of the 

proof. Let D (> 0) be a small constant (to be fixed later). Let 

(48) F(s) - C(s) = Cl + c2 + c3 

where 

(49) ci = - c 0, ,X2 = C (n + on)-’ and Cs = the rest. 
n<DT n<DT 

For any two complex numbers zt and z2 we have (zr + z21 5 fi(lzl I2 + 1~~1~)~'~. 

We now apply Montgomery-Vaughan Theorem. Note that A;’ = n + O( 1) and 
so 

(50) f jilEi+E~\dt<2~/‘( c 2+;;;T-1}‘!2+O(T~,~)~ 
T n<DT 

From now on we ignore terms like O( T1i4). If Io+l 5 C 5 3, we have 

(51) f ‘s’P3ldt 5 f ? 1 Is,zT ch(u,a,)(n+ u)-‘-l d+t 
T _ 

(with a meaning for ch(u, a,) similar to that in (21)), 

C 2T 

5 2 J J C ch(~,cv,)(n + u)-‘-’ dtdu 
-C T n_>DT 

< 2(2c)“2 (1 TT I~~Tch(u,a.)(n+u)“l/2dtdu)i/2 

5 4CT 
( 

C (1 + 37r~T -7~~‘~ 
n2DT > 

112 

5 (DT)-~/~ +$.2. (DT)-"~ 
> 

112 

Hence by ignoring terms which are o(l), we have, 

f 7 IF(s) - c(s)1 dr) T-1'4 
T 

5 23/2(D1/2 + &3/2p2 + 4c($-3/2 + 6nD-1/2)1/2 

< D1’4(8(n+ D))1'2 +4&(1 + 97rD)1’2D1/4 - 

(by choosing C = D), 

and this completes the proof of (44) and hence Theorem 5 is completely proved. 
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96. A PROLIFERATION 

On examining the paper one finds that (apart from equation (25)) the crucial 

equations are (15) and (28). We have assumed the FE condition 

El : C 1un12 <<E x ‘+‘forallx>2andall~>O. 
n<x 

The extra condition which we assumed was IonI G& nE for every E > 0. This lat- 

ter condition can be replaced by the following two conditions 

E2 : c la,c~,/~ <<xl+‘. 
n<x 

and 

E3 : la,l < (1 - 7)X, for some constant n > 0 and all n > no. 

Under the conditions El, E2 and Es we can prove (15) and (28) as we shall see 

below. (From this it follows that (15) (25) and (28) are true for 

F*(s) = (c*)-“Z(S) + E an((Xn + cyJS - x,s)(c*)-” +20(s) 
n=l 

where C’ (> 0) is any constant, ZO(S) = C,,< cS d,,u,-’ is any finite generalised 

Dirichlet series, and F*(s) is a generalised Diri:hlet series, Z(S) being the same 

as before). Hence we have the following 

Theorem 6. If N(cY, T) d eno es t the number of zeros of F*(s) in (a > cr, 

T 5 t < 2T) then (subject to one at least of the conditions (i) and (ii) of Theorem 

1) we have N(i +6,T) <<6 T, andfurther ifk> 1, N(i -6,T) >>6 TlogT 

where 0 < 6 5 a, provided Z(s) satisfies FE (note the condition El) and {cu,} 

satisjies E2 and E3. 

To prove this theorem we have only to prove the following two Theorems 7 

and 7’. 

Theorem 7. Put Q(s) = x,2 r a,((&, + a,)PS - A;“). Then 

;T lQ(o+ it)12dt G& Tle20fE 

(uniformly in f 5 CT < a) h o Id f s or every E > 0,provided the conditions El, E2 and 

E3 are satisfied. 

Proof. The contribution to Q(s) from n > T loo is negligible, and so it suf- 

fices to prove the assertion for Q*(s) = ~T<n<T,OO W(S) (where W(s) = 

a,((& + on))’ - A;“)) in place of Q(s). The range lo,,1 5 TE is covered already. 

We divide the range for n into O(log T ) intervals of the type (one of them being 

possibly smaller) U 5 n < (1 + (n/100)) U = Ut say. Then for every fixed U we 

divide the range for lo,,1 viz, (TE, T loo) into O(log T) intervals of the type (one 
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of them being possibly smaller) V 5 la, I < (1 + (v/100)) V = V, say. Hence it 
suffices to prove that 

where Q(U, V,s) = CUCnCU,(‘) W(S) and the range 

above. To prove this we write 
for 1~1~1 is as explained 

with the notation for ch(u, a,) same as in (21). A simple application of Mont- 

gomery-Vaughan theorem gives the required result stated above. Hence we ob- 

tain, for any fixed U, 

< T C la,,a,12n-20-‘. 
lJ<niU, 

Now summing over U, we have, 

q T’+“nFT la,(~,[*n-*O-l <<E T’-2flf2E, 
_ 

This proves Theorem 7. q 

Theorem 7’. Put Qz(s) = C,, 7‘ u,(X, + CX~)-~‘. Then 

$~~Q2(~+i~)~2dl<<,max(T1-2u”,T~) 

(uniformly in $ 5 u < i) holds for every E > Oprovided the conditions El, E2 and 

E3 are satisfied. 

Proof. The range n I exp(m) presents no difficulty. We split the range 

exp( m ) < n < T introducing as before U and V (similar to what we did in 

the proof of Theorem 7). Next we write (in an obvious notation) 

Q3(s) = CC’) C (‘I an(Xn + ~2,)~‘. 
% A” 

It suffices to prove 

7 g +i lQ3(a+ it)12dt G& max(T’~20+E, TE) 

To prove this we write 

m A 
Q3(s) = C’ 3 

no = I G” 
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where we have arranged the distinct X, + o,,, say vnO (no = 1,2,3, . .), in the in- 

creasing order and the sum is over those no for which A,, # 0. Since F(s) is a 

GDS, es(s) is a finite generalised Dirichlet series in a certain obvious sense and 

wehaveU<<uiandl<v,,+i- vnO. Since the distances between consecutive 

X, are bounded below it is easy to see that 

where v,,” = A,, + cy,, is a certain fixed representation of vnO. (Observe that if 

X,, + on, = X,, + LY,, with 111 # n2 then Ini - nzl < V and also if a,, = (Y,, then 
n1 = nz). Thus 

Now a simple application of Theorem 3 proves our assertion regarding the sum 

C r, CU , in view of the conditions El, E2 and Es. Thus Theorem 7’ is proved. 

Recently K. Ramachandra and A. Sankaranarayanan have proved a general 

theorem which implies that for every 6 > 0 we have N( i + 6, T ), the number of 

zeros of the function (3) in (a > $ + 6, T 5 t 5 2T), is Oh(T). It also implies 

similar new results on upper bounds for the function N( i + 6, T) for some 

functions (37) even when the degree of K is > 2. These results will be published as 

paper XVI with the same title and the remarks made above in the profilieration 

are also relevant in paper XVI. 

$7. IMPOSSIBILITY OF 0 < k < 1 

Let k be the real constant involved in the functional equation (5). We prove 

that 0 < k < 1 is impossible. Let E (> 0) be a small constant and put X = T ’ --E. 

Let h (> 0) be a large constant. We have with w = u + iv and s = ~7 + it (a > 0, 

T 5 t 5 2T, T 2 TO) the identity 

The contribution to the integral from [VI 2 (log T )2 is negligible. In the rest of 

the integral we move the line of integration to u = -(/z/2). We see that 

By Montgomery-Vaughan theorem we obtain for u > 0, T > To, 

(54) M(Z,a, T) = C m $exp(-2($)i)(l+O(:)) 
n=l n 

where 

M(Z,a,T) =fylZ(~+it)l~dt. 
T 
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Let M(Zr , CT, T) denote the mean-value of Zr (s) in place of Z(s). Since 

xI<,Y M2 G x ‘+Eforeverye > O,wehave,M(Z, i,T) =: M(Z1, i,T) G& TE. 

So it is not hard to see that 

(55) 1<<M(Z1,;+6,T)<,TE, (O<bI$), 

and so by FE, we have, 

(56) T2k” < M(Z, ; - 6, T) << T2k6+E. 

This with (54) gives (since k > 0) a sequence of numbers U = Ur , U2, 173, -+ CQ 

where 

and hence C la,l* 2 U’-26. 
x,52(1 

Now, since 1 < M(Zl, 1, T) ccE TE, we have, 

(58) M(Z,O, T) q Tk+E. 

We now use (54) and (57) and choose X = U, T = U ‘1’ -E, and we obtain 

This leads to a contradiction if 0 < k < 1, provided E and 6 are small enough. 

Thus we state 

Theorem 8. k 5 1 implies k = 0 OY k = 1. 
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