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Abstract 

This paper presents a burst detection methodology that utilizes distributed real time sensor data in a district metered area using a 
data assimilation method and a hydraulic model. A sensitivity analysis was applied to evaluate the performance of various burst 
detection metrics under different conditions, and to identify appropriate thresholds for online burst detection using artificial 
generated burst events. It was found that the best performing metrics are the corrected flow residual and normalized corrected flow 
residual. This metric can be effective to detect bursts in a timely and reliable manner within a district metering area under assumed 
test conditions. 
© 2014 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

Water is one of the most important resources in both developed and developing countries. Due to the growing 
concern of rapid climate change and increasing urban population, there is a need to reduce the loss of treated water 
from Water Distribution System (WDS) to the environment. Water loss is mainly caused by pipe bursts and high 
leakages due to aging and deteriorating assets of WDS. This water loss damages the environment including nearby 
infrastructures [1], causes service disruption to the customer and increases unnecessary energy cost and carbon 
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footprint. Therefore, the United Kingdom water utilities aspire to use a combination of cost-effective technologies that 
can reduce water loss via early detection of the abnormal flows [2].  

Many researchers attempt to use a state estimation approach to evaluate the current state of the WDS section for 
diagnosing and identifying abnormal flows. Such an approach can be affected by erroneous WDS observations, 
disaggregation of nodal demand and limited number of hydraulic sensors in the WDS due to financial constraint. Noisy 
WDS observations and the simplification of the WDS hydraulic model induce uncertainties in the estimated system 
state. Detection of abnormal flows with a WDS hydraulic model are mostly based on either the residual analysis or 
WDS state estimates pattern evaluation. The residual analysis makes use of the difference between the WDS hydraulic 
model predictions and the WDS observations [2]. The WDS state estimates ‘pattern evaluation compares the existing 
pattern to the expected or past pattern of flow or pressure data [3]. 

Artificial Intelligence (AI) based techniques with a hydraulic model such as the combination of Artificial Neural 
Network (ANN) and fuzzy logic [2] and Support Vector Machine (SVM) [3] to evaluate the WDS state estimates’ 
patterns for abnormal event detection and identification have shown some promising results. However, a large amount 
of data is required to train either an ANN or a SVM based method to detect abnormal flows. Jung and Lansey (2013) 
explain how the Extended Kalman filter (EKF) can be used to detect a pipe burst online when an operational has 
change occurred. Compared to the conventional method of using a combination of statistical analysis and AI tools, the 
EKF method has the benefit of utilising small quantities of calibration data and lowering the computational time to 
detect pipe bursts in near real-time [4] [7]. The application of using the EKF with a hydraulic model for burst detection 
is not reliably established since it is only applied on a trunk main with synthetic flow data. Only two burst detection 
metrics have been used in the literature to identify abnormal flow events with Kalman filtering procedure, 1) 
standardised innovation sequence and 2) flow residual between the observed and corrected flow data. 

The objective of this paper is to compare the performance of the various burst detection metrics relating to the 
Kalman Filtering procedure. This paper presents a burst detection methodology that makes use of a water demand 
forecasting model, a WDS hydraulic model and a modified Kalman filter method to detect pipe bursts with distributed 
noisy flow data. The report is organised as follows: section 2 explains the burst detection methodology, burst 
simulation, burst detection metrics and its sensitivity analysis; section 3 describes the case study area and the data 
used; section 4 discusses the results obtained and section 5 summaries the report and provides the concluding remarks.   

2. Methodology 

The goal of the burst detection methodology is to detect any pipe bursts in near real-time utilising various burst 
detection metrics by linking distributed noisy flow observations with a recently calibrated WDS hydraulic model that 
solves the nonlinear hydraulic relationships. The burst detection methodology comprises three major components: 
Water Demand Forecasting Model (WDFM), a Hydraulic Model, and the Kalman Filter (KF). The detection 
methodology proceeds as follows: 

1. The historic inflows and outflows from the DMA boundary are used to derive the historical DMA 
demands. 

2. The WDFM for the DMA is developed based on the historic DMA demands.  
3. The WDFM forecasts demands using the  historic demands,  
4. The forecasted demands are then used to drive the hydraulic model and derive predicted hydraulic state 

estimates (i.e. predicted flow rates and pressure heads) corresponding to forecasted demand.  
5. The KF is then applied to calculate the corrected demands at the current time step driven by the difference 

between the predicted hydraulic state estimates and the corresponding WDS observations.  
6. The corrected demands are inserted into the hydraulic model to obtain the corrected hydraulic state 

estimates. 
7. The burst detection metrics (see section 2.4) are calculated and converted into a dimensionless metric 

value. 
8. Compare the dimensionless metric value against the threshold; if and when a burst is detected, a burst 

alarm is raised. 
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The methodological steps 3 - 8 are repeated at subsequent time steps for the application of online burst detection in 
a WDS. 

2.1. Water Demand Forecasting Model 

The objective of the WDFM is to forecast demands every 15 minutes with a 15 minute lead time. The forecast 
demand is the function of the historical demands from the previous time steps. These demands are estimated using the 
DMA boundary flow meters (i.e. historic DMA inflows and outflows). The WDFM is calibrated offline using a 
historical time series of demands. The WDFM is based on Multi-Linear Regression (MLR) approach which requires 
associated weight coefficients to determine the WDFM outputs. The cross-correlation between the demand at the time 
step, t-n (n =0 and n is the number of time steps) and demand from previous time steps, t-n (n = 1, 2, 3) was performed 
from times  t-n (current time step) to t-n-2016 (3 weeks ago) at the intervals of 15minutes. Based on the cross-
correlation results, the WDFM was developed using a combination of demands from time step, t-1, t-2 and t-672. The 
Maximum Likelihood Estimation (MLE) is used to derive the weight coefficients. The WDFM use previous demands 
at DMA level as input to forecast demand and it can be written as: 

dwdwdwd 672t672t2t2t1t1tt    (1) 

where dt is the forecasted demand at the time step, t; dt-1 is the corrected demand from a previous time step 
(15minutes ago), dt-2 is the corrected demand from 30 minutes ago; dt-672 is the corrected demand from a week ago; wt-

1, wt-2 and wt-672 are the associated weight for dt-1, dt-2 and dt-672 respectively. 

2.2. Kalman Filter 

The Kalman Filter [5] is a recursive data processing algorithm for the linear stochastic dynamic system. The KF 
uses the combination of observed hydraulic states and hydraulic model predictions of WDS along with the associated 
uncertainties to obtain the corrected hydraulic states. The hydraulic model predictions of the WDS are obtained by 
simulating the hydraulic model based on the forecast demands. The relationship between system observations and 
hydraulic model predictions can be modelled by: 

t t tz h d e    (2) 

where zt is the system observations (i.e. flow rates, pressure heads) vector at time step, t; h(.)is the nonlinear network 
hydraulic model of WDS and et is the observations error vector. The residual between the system observations and the 
hydraulic model predictions are used to correct the forecast demands and attain posterior error covariance matrix: 

c
t t t t td d HK z h d    (3)  

c
t t tP I K P    (4)  

where Kt is the Kalman gain matrix at time step, t; H is the observation operator that map from flow space to 
demand space; I is the identity matrix; Pt is the prior error covariance matrix; dt 

c is the corrected demand at time step, 
t and Pt 

c is the posterior error covariance at time step, t. 
The Kalman gain is the weight factor based on the prior and observation error covariance matrix: 

t t t tK P P R    (5)  

and 
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1
Qc

t ttP P P    (6)  

2
Q

t tP qH h d    (7)  

2
t tR rH z    (8)  

where Rt is the observation error covariance matrix; q and r are the average percent error of the hydraulic model 
predictions and the system observations respectively and PQ

t is the process error covariance. 
For the purpose of detecting bursts, the above standard Kalman Filter is modified here by adding the adjustment 

factor and the modified Kalman gain can be written as: 

2
t t t t tK P P R a    (9)  

where at is the adjustment matrix.  
The adjustment factor is the ratio of the observed flow rate from the current time step to corrected flow rate from 

the previous time step and it is calculated as: 
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where ai,t  and an
i,t  are the adjustment factor and second adjustment factor  at flow meter i, at time step, t 

respectively; Qc
i,t-1 and Qo

i,t are the corrected flow rate at flow meter i from the previous time step and the observed 
flow rate from the current time step t, respectively. 

The adjustment factor is incorporated into the Kalman gain to minimise the influence of the sudden change in flow 
observation (due to e.g. burst) so that the corrected demand can be within its expected range. Hence, the sudden change 
in flow can be seen in the flow residual between the observed and corrected flow rate. This flow residual is then 
analysed to check if the flow residual is normal or abnormal. When the adjustment factor is negative, the second 
adjustment factor (equation 11) is used instead to ensure influence of the unexpected negative flow observation (due 
to an unusual large demand e.g. large burst) do not affect the quality of the corrected demand.   

2.3. Burst Modelling 

The bursts are modelled as pressure-dependent emitter flows [6] located at system nodes:  

pCq e
i,it,i    (13)  
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Where qi,t is the burst flow at node, i at time step, t; C is the emitter discharge coefficient; pe
i,i is the nodal pressure 

at node, i at time step, t; and e is the emitter pressure exponent. 

2.4. Burst Detection Metrics 

The following metrics are used for the burst detection analysis here: 

 Flow/pressure residual 
 Normalised flow/pressure residual 
 Moving Average (MA) of flow/pressure residual 
 Normalised Moving Average (NMA) of flow/pressure residual 

The flow/pressure residual (equation 13) is the difference between the observed flow rate/pressure and predicted 
flow rate/pressure (from the hydraulic model). The flow/pressure residual is then normalised (equation 14) by dividing 
the residual by the current observed flow rate/pressure. The flow/pressure residual and normalised flow/pressure 
residual can be calculated as:  

QPQPQP c
t

o
t

r
t    (14)  

QP/QPnPQ o
t

r
t

r
t    (15)  

where PQt
o is the observed flow rate/pressure at time step, t;  PQt

c is the predicted flow rate at time step, t (via the 
hydraulic model); PQt

r is the current flow residual and nPQt
r is the normalised flow residual at the time step, t. 

MA (equation 16) of flow/pressure residual is the mean of the previous n flow/pressure residuals and n is the 
number of time steps selected. The MA value is also divided by its current observed flow/ pressure value to obtain the 
NMA value (equation 17) of the flow/pressure residual. The flow/pressure residual and normalised flow/pressure 
residual is written as: 

1 1
r r r

t t t t nMA PQ PQ PQ n    (16)  

o
tt t PQnMA MA    (17)  

where PQt-1
r is the flow/pressure residual from the previous time step, t; MAt is the moving average of 

flow/pressure residuals at the time step, t and n MAt  the normalised moving average of flow/pressure residuals at 
the time step, t. All the burst metrics’ values are converted into a dimensionless metric value by using the one of the 
following equations (equation 18 and 19): 

max
, ,

avg avg
i i ii i i iNMV MV MV MV MV MVMV avg

iiif   (18)  

min
, ,

avg avg
i i ii i i iNMV MV MV MV MV MVMV avg

iiif   (19)  

and  

, ,
avg

i i j i j totMV MV MV m   (20)  

min
, , 0.5 0.5i i j i j mMV MV MV m    (21)  
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max
, 0.5 , 0.5i i j m i j totMV MV MV m   (22)  

where is the normalised burst metric value at the hydraulic sensor, i at time step, t; is the burst metric 
value at the hydraulic sensor, i at time step, t; m is the total number of burst metric values  used; is the burst metric 
value for the hydraulic sensor, i; is the maximum average value of the burst metric for hydraulic sensor, i; 

is the average value of the burst metric for hydraulic sensor, i and is the minimum average value of the 
burst metric for hydraulic sensor, i. The averages (equation 20 - 22) of the burst metric values for the individual 
hydraulic sensors in step 2 must be obtained offline before the burst method is applied online. Equation 21/22 is used 
at each time step to obtain the dimensionless metric value at step 7 of the burst detection method. The performance of 
the burst metrics depends on the number of detected bursts; false alarms raised and undetected bursts. 

2.5. Sensitivity Analysis and Threshold 

In this paper, a sensitivity analysis is performed to develop thresholds for bursts detection based on the different 
detection metrics. The steps to conduct the sensitivity analysis of the burst detection metric are as follows: 

Step 1: The step 3-7 of the burst detection method is repeated at the subsequent time step offline to generate burst 
metric values for various normal conditions due to the uncertainties in the DMA demand and nodal base demand.  

Step 2: All the burst metric values obtained under various normal conditions are then sorted in ascending order to 
estimate the burst metric values’ average and the average of the minimum, maximum burst metric values for the 
individual hydraulic sensors (see equation 20-22). 

Step 3: The burst metric value is then normalised into a dimensionless metric value using the one of the following 
equations (equation 18 and 19). 

Step 4: The average of dimensionless burst metric value is estimated and the dimensionless burst metric value that 
are above their respective dimensionless burst metric value average is considered as a burst metric outlier. However, 
the average of the flow-based dimensionless burst metric is estimated with the exclusion of values that are below 1 to 
prevent unusual high number of burst metric outliers.  

Step 5: The number of burst metric outliers in the last k time steps (k is the number of selected time steps , i.e. 4 
time steps (1hour), 8 time steps (2hours) ) is then estimated and used to suggest the minimum number of dimensionless 
burst metric outliers for the individual previous k time steps for burst detection. 

3. Case Study 

3.1. Case Study Description 

The case study area is a real-life District Metered Area (DMA) which renamed as DMA001 and it is located in 
North-West of England (see Fig. 1). The DMA001 supplies water to approximately 1145 customers under gravity 
with an average daily demand of 9l/s. The DMA001 model consists of 305 nodes, 238 pipes and 87 valves. 

3.2 Observed Data  

The difference between the real-life inflows and outflows data of the DMA001at intervals of 15 minutes between 
16th September 2013 and 24th November 2013are the DMA net flows. The net flow is considered as the DMA demand 
which is divided by the total base demand to obtain the demand coefficients. The base demand is the allocated demand 
for the catchment area of the node. The product of the demand coefficients and base demand at the individual nodes 
represents the amount of water required at the node. The DMA demand data obtained for the time period between 16th 
September 2013 and 13th October 2013 (4 weeks) are used to develop and calibrate the WDFM offline. The calibrated 
parameters are the weight coefficients used in the WDFM (see equation 1). 

The hydraulic model of the DMA is calibrated offline by using the demand and pressure data between 30th Sept 
and 13thOct 2013. There is one pressure sensor within the DMA and it is located at the highest elevation point in the 
DMA. All the plastic pipes’ roughness and the base demand remain unchanged. The hydraulic model calibration 
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parameters (adjusted using the trial and error technique) are: 1) the roughness value of the cast iron and ductile iron 
pipes; 2) the relative opening (i.e. tau value) of the Throttle Control Valve (TCV) located at the DMA inlet was 
increased; 3) the demand coefficients at 15minutes intervals were modified so that predicted flow rates match the real-
life inlet and outlet flow rates. All these modifications were made to ensure the pattern of the predicted pressure heads 
closely match the observed pressure heads’ pattern. Due to the limited number of flow and pressure observations used 
for the DMA001 hydraulic model calibration, it is rational to say that the DMA001 hydraulic model is probably not 
calibrated offline sufficiently well. 

 

 

Fig. 1: The DMA001 hydraulic model and the location of hydraulic sensors 

The demand coefficients between 14th and 28th October 2013 are inserted into the hydraulic model to obtain 
synthetic flow and pressure observations within the DMA. The burst detection method was run for a week without 
step 5between 14th and 20th October 2013 offline to produce the corrected demands. These corrected demands are used 
as input dataset for the WDFM when for online hydraulic modelling of the DMA between 21st and 27th October 2013 
to produce burst metric values under various normal conditions. The sensitivity analysis is performed on the burst 
metric value to develop thresholds for the individual bursts detection metrics. The synthetic flow and pressure 
observations on the 28th October 2013 are used for burst detection analysis. 

Table 1: The type of flow observation noises  

Case No Type of error Error 

1 Random noise N(0, 0.005Qi,t) 

2 Random noise  N(0, 0.01Qi,t ) 

3 Systematic errors and random noise +0.01Qi,avg and  N(0, 0.01Qi,t) 

4 Systematic errors and random noise -0.01Qi,avg and N(0, 0.01Qi,t) 

 
The bursts are synthetically generated on the 28th October 2013 based on equation 12 using a hydraulic simulation 

model. The emitter exponent of 0.5 in the hydraulic model is applied [7]. Various emitter discharge coefficients have 
been tested to find the acceptable emitter discharge coefficient to represent the 5 burst flows. The 5 burst flows used 
in this case study are approximately 5%, 10%, 20%, 30% and 50% of the daily average DMA demand. The bursts are 
simulated at 3 different time periods (morning peak (6.30am – 10.30am), evening peak (4.30pm – 8.30pm) and night 
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(1.30am – 5.30am)). All the bursts are assumed to last for 4 hours. Bursts are simulated at 5 different burst locations 
(see Fig. 3). The ‘perfect’ flow/pressure observations obtained from the corresponding hydraulic model outputs were 
altered by adding random noise and/or systematic errors, as shown in Table 1. Qi,t represents the flow rate at the flow 
meter, i at time step, t; and Qi,avg is the average flow rate at flow meter, i at the time step, t. The location of the 5 
synthetic flow meters and pressure sensors (refer to Fig. 1) are selected based on a modified methodology of optimal 
sensor placement for event detection [8].  

4. Results and Discussion 

The performance of the dimensionless burst metric’s thresholds is tested on the different type of bursts on 28th 
October 2013. The summary of all the burst metrics’ performance are shown in table 2 and 3.The MA value of the 
residuals in this paper is the average of the residual within window size of 8 time steps (2hours). The window size of 
8 time steps is selected because the pipe bursts are noticeable with a window size between 4 time steps (1hour) and 
16 time steps (4hours).  

Table 2: The overall burst detection rates 

Dimensionless Burst metric Detected bursts Undetected bursts False alarms 

Corrected flow residual 319 (85%) 56 (15%) 19 (5%) 

Normalised corrected flow residual 319 (85%) 56 (15%) 18 (5%) 

MA of corrected flow residuals 319 (85%) 56 (15%) 21 (6%) 

Normalised MA of  corrected flow residuals 319 (85%) 56 (15%) 17 (5%) 

Corrected pressure residual 189 (50%) 186 (50%) 10 (3%) 

Normalised corrected pressure residual 105 (28%) 270 (72%) 11 (3%) 

MA of corrected pressure residuals 175 (47%) 200 (53%) 7 (3%) 

Normalised MA of corrected pressure residuals 192 (51%) 183 (49%) 14 (4%) 

 
Table 2 and 3 showed the flow residuals-based burst metrics seem to detect more bursts when compared to the 

burst metrics based on pressure residuals, probably the pressure-residual burst metrics are not sensitive to low-medium 
burst magnitude (e.g. 5% - 20% of average daily DMA demand ). However, the pressure residual- based burst metrics 
tend to have a lower number of false alarms raised compared to the flow residuals-based burst metrics due to low 
sensitivity to demand change. As it can be seen from Table 3, the detection rate of each detection metric improves as 
the burst magnitude increases and all the flow residual-based detection metrics have the same detection rate. However, 
the MA of corrected flow residual have the highest number of false alarms raised due to the accumulation of high 
corrected flow residuals caused by the sudden increase in flow observations that are not related to the burst. 

Based on the detection rates reported in Table 2, it seems that the corrected flow residuals and the normalised 
corrected flow residuals are the best performing burst metrics because they have the lowest number of false alarms 
raised among the flow residuals-based detection metrics. 

5. Summary, Conclusion Recommendations for Further Work. 

This paper has presented a burst detection methodology based on the Kalman filtering of flow observations and 
predictions (from the hydraulic model).All the flow and pressure observations are artificially generated from the 
hydraulic model. The KF corrects the forecast demand of the DMA from the WDFM using the flow residual between 
the flow observations and model predictions. The proposed sensitivity analysis of burst metric is utilised to develop 
the threshold(s) for the individual dimensionless burst metrics.  

The methodology makes use of different burst detection metrics to detect pipe bursts online. Each of the burst 
detection metrics are analysed and compared to assess their capabilities. The best performing burst metrics are 
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corrected flow residuals and normalised corrected flow residuals. However, the flow residuals-based burst metric 
tends to have higher number of false alarms compared to the pressure residuals-based burst metrics.  

Further research will analyse different number/location combination of hydraulic sensors comparison to the 
existing detection method(s) to improve the robustness of the current burst detection methodology. The effectiveness 
of using different combinations of burst detection metrics will be analysed too. The burst detection methods will be 
applied on real-life bursts/measurement data. The relationship between the location of the burst location and the 
hydraulic sensors will also be studied for burst location approximation.   

Table 3: The summary of detection rates for different burst magnitudes 

Burst magnitude  5% of average daily 
DMA demand) 

10% of average 
daily DMA demand) 

20% of average 
daily DMA 
demand)  

30% of average 
daily DMA 
demand) 

50% of average 
daily DMA 
demand) 

 Dimensionless 
Burst metric 

detected 
bursts 

undetecte
d bursts 

detected 
bursts 

undete
cted 
bursts 

detected 
bursts 

undete
cted 
bursts 

detected 
bursts 

undetec
ted 
bursts 

detected 
bursts 

undete
cted 
bursts 

Corrected flow 
residual 

34 
(45%) 

41 (55%) 65 (87%) 10 
(13%) 

65 
(87%) 

10 
(13%) 

75 
(100%) 

0 (0%) 75 
(100%) 

0 (0%) 

Normalised 
corrected flow 
residual 

34 
(45%) 

41 (55%) 65 (87%) 10 
(13%) 

65 
(87%) 

10 
(13%) 

75 
(100%) 

0 (0%) 75 
(100%) 

0 (0%) 

MA of corrected 
flow residuals 

34 
(45%) 

41 (55%) 65 (87%) 10 
(13%) 

65 
(87%) 

10 
(13%) 

75 
(100%) 

0 (0%) 75 
(100%) 

0 (0%) 

Normalised MA 
of  corrected 
flow residuals 

34 
(45%) 

41 (55%) 65 (87%) 10 
(13%) 

65 
(87%) 

10 
(13%) 

75 
(100%) 

0 (0%) 75 
(100%) 

0 (0%) 

Corrected 
pressure residual 

0 (0%) 75 
(100%) 

25 (33%) 50 
(67%) 

40 
(53%) 

35 
(47%) 

56 
(75%) 

19 
(25%) 

68 
(91%) 

7 (9%) 

Normalised 
corrected 
pressure residual 

0 (0%) 75 
(100%) 

0 (0%) 75 
(100%) 

15 
(20%) 

60 
(80%) 

30 
(40%) 

45 
(60%) 

60 
(80%) 

15 
(20%) 

MA of corrected 
pressure 
residuals 

0 (0%) 75 
(100%) 

15 (20%) 60 
(80%) 

41 
(55%) 

34 
(45%) 

59 
(79%) 

16 
(21%) 

60 
(80%) 

15 
(20%) 

Normalised MA 
of corrected 
pressure 
residuals 

0 (0%) 75 
(100%) 

33 (44%) 42 
(56%) 

39 
(52%) 

36 
(48%) 

60 
(80%) 

15 
(20%) 

60 
(80%) 

15 
(20%) 
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