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a b s t r a c t

Motivated by the Ahrens–Szekeres Quadrangles, we shall present a
variation of the 4-gonal family method of construction introduced
by Kantor in 1980. The relation between generalized quadrangles
of order (s, s) and of order (s − 1, s + 1) has been known for a
long time. A geometrical description of this interrelation was given
by Payne in 1971 and rests on the notion of regular points or of
regular lines. In this paper we wish to develop these connections
algebraically in the hope of getting more insight into them from
the group-theoretical point of view. In this way we are able to
characterize two classes of known 4-gonal configurations.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

For all notions concerning groups we refer to Gorenstein [12] and in this paper dedicated to Toni
Machì we are pleased to refer also to his new book on groups [19] whose translation in English will
be published soon. The reader is referred to [24,25] for definitions, results, and references to the vast
literature on Generalized Quadrangles (GQs). An excellent survey on this is also [26].

Generalized quadrangles, as a special case of generalized polygons, were introduced by Tits [27]
in 1959. There he gave what are considered the classical examples. The first nonclassical examples
were also found by Tits in the mid-1960s and appeared first in [5]. Other nonclassical examples were
constructed in [1,13,20,22].

In the last fifty years there has been a great activity in the geometric and group-theoretical
construction and characterization of generalized quadrangles. Depending on the point of view the
main ingredients for these studies were nets or regular elements or flocks (see for instance [10] for
nets, [8,11,9] for regular elements, [26,2] for flocks and, obviously, all the references in [24,25]).

After 1980, starting with a construction of Kantor [16], several new families have been discovered.
As Payne pointed out in the survey [23] ‘‘the stories of these discoveries blend in an interesting way,

E-mail address: dina.ghinelli@uniroma1.it.

0195-6698/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ejc.2012.03.018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82499791?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.ejc.2012.03.018
http://www.elsevier.com/locate/ejc
http://www.elsevier.com/locate/ejc
mailto:dina.ghinelli@uniroma1.it
http://dx.doi.org/10.1016/j.ejc.2012.03.018


1558 D. Ghinelli / European Journal of Combinatorics 33 (2012) 1557–1573

connecting the study of translation planes, spreads of the 3-dimensional projective space over a finite
field, flocks of a quadratic cone, and even generalized hexagons!’’.

With the construction in [16], Kantor could obtain all the finite examples known in 1980 of
generalized quadrangles but the one with parameters (q − 1, q + 1) (for prime powers q) due to
Ahrens and Szekeres [1] and, independently, to Marshall Hall Jr. [13] for q even, but later included in
a more general construction by Payne now known as Payne derivation (see [20,21]).

Motivated by the Ahrens and Szekeres Quadrangles [1,13,20,22] we shall present here a variation
of the construction of Kantor [16], by introducing the notion of an AS-configuration (G, AS). This is a
finite group G of order n3, n ≥ 2, together with a family

AS : U0,U1, . . . ,Un+1,

of n + 2 subgroups of G, each of order n, such that

AS1 U0 E G is a normal subgroup of G,
AS2 UiUj ∩ Uk = {1} for pairwise different i, j, k ≥ 0.

An AS-configuration yields a generalized quadrangle admitting an automorphism group acting
regularly on the set of points, a theme already studied for instance in [7,4].

The connection between generalized quadrangles of order (s, s) and of order (s − 1, s + 1) has
been known for a long time. A geometrical description of this is given by Payne in [20] and depends
on the choice of a particular regular point of a quadrangle of order s or, dualizing the construction
in [20], of a particular regular line. In this paper, we will develop this connection algebraically in the
hope of getting more insight into it from the group-theoretical point of view. In this way we are able
to characterize two classes of known 4-gonal configurations, which are the two extremes of a scale
measuring the number of conjugacy classes.

If the underlying group G of an AS-configuration is abelian, then clearly the number of conjugacy
classes ismaximal. In this case, the factors G/Ui, i = 0, 1, . . . , n+1, admit a natural spread describing
translation planes. We shall prove in Section 4.1 that the AS-configuration is the classical example
given by a hyperoval in a desarguesian plane, provided that at least three of the planes given by the
spreads in G/Ui, i = 0, 1, . . . , n + 1, are desarguesian.

In contrast to the abelian case we study the possibility that the number of conjugacy classes is as
small as possible, by assuming that each conjugacy class different from 1 admits a representative in

n+1
j=0

(Uj \ {1}),

which is a partial difference set for the underlying strongly regular graph. We can prove that this
assumption characterizes the classical symplectic 4-gonal configuration.

2. 4-gonal configurations of Ahrens–Szekeres type

The following method was introduced by Kantor [16] to construct finite generalized quadrangles
admitting a group G of automorphisms fixing a point, say ∞, and acting regularly on the set of points
at distance 2 from ∞.

Let G be a finite group of order |G| = s2t, s, t > 1, together with two families

J : A1, . . . , At+1,

and

J⋆
: A⋆

1, . . . , A
⋆
t+1,

of subgroups of G such that

(i) |Ai| = s, |A⋆
i | = st and Ai ≤ A⋆

i for i = 1, . . . , t + 1;
(ii) Ai ∩ A⋆

j = {1} for i ≠ j;
(iii) AiAj ∩ Ak = {1} for pairwise different i, j, k ≥ 1.
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We call this a 4-gonal configuration (G, J, J⋆). Kantor proved in [16] that a 4-gonal configuration
(G, J, J⋆) yields a generalized quadrangle with parameters (s, t) having G as a group of
automorphisms fixing a uniquely determined point ∞ and acting regularly on the set of points at
distance 2 from ∞.

Definition 1. A 4-gonal configuration (G, J, J⋆) with parameters (s, t) splits (or is said to be
splitting), if there is a normal subgroup N E G of order t such that

A⋆
i = AiN, i = 1, . . . , t + 1.

We call a splitting 4-gonal configuration with parameters s = t a 4-gonal configuration of
Ahrens–Szekeres type, shortly an AS-configuration and we denote it (G, AS).

In other words, we have the following definition.

Definition 2. An AS-configuration (G, AS) of order n is a finite group G of order n3, n ≥ 2, together
with a family

AS : U0,U1, . . . ,Un+1,

of n + 2 subgroups of G, each of order n, such that

AS1 U0 E G is a normal subgroup of G,
AS2 UiUj ∩ Uk = {1} for pairwise different i, j, k ≥ 0.

Since Uj ∩ Uk ⊆ UiUj ∩ Uk and n ≥ 2, property AS2 implies immediately that

Uj ∩ Uk = {1} for j ≠ k. (1)

Using the above mentioned method of Kantor [16], an AS-configuration yields a generalized
quadrangle with parameters s = n = t . In the following theorem we shall prove that it also yields
another generalized quadrangle.

Theorem 1. Let (G, AS) be an AS-configuration of order n. Then the coset geometry of

AS : U0,U1, . . . ,Un+1,

that is, by definition, the geometry with points the elements of G, lines the left cosets (or the right cosets)
of the subgroups Uj, j = 0, . . . , n + 1 and incidence given by inclusion, is a generalized quadrangle with
parameters (n − 1, n + 1).

Proof. The proof of the theorem is divided in two parts. We start proving that

∆(AS) = ∆ =

n+1
i=0

(Ui \ {1})

is a partial difference set in G with parameters λ = n − 2 and µ = n + 2. By definition of partial
difference set (see for instance [3]), we must show that every element g ≠ 1 of G has exactly λ
(respectively µ) representations of the form

g = y−1x for g ∈ ∆(respectively g ∉ ∆),

with (x, y) ∈ ∆ × ∆, provided that

x ∈ ∆ ⇐⇒ x−1
∈ ∆.

In our case, the last condition is trivially satisfied. Let

Vj = U0Uj, j = 1, . . . , n + 1, (2)
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and note that Vj is a subgroup of G of order n2. We use property AS2 to prove that

Vi ∩ Vj = U0 for i ≠ j, (3)
n+1
i=1

Vi = G. (4)

By (2), U0 ≤ Vi ∩ Vj. On the other hand, each element x ∈ Vi ∩ Vj is represented as x = zixi = zjxj with
zi, zj ∈ U0 and xi ∈ Ui, xj ∈ Uj. Using AS2, we obtain that z−1

i zj = xix−1
j ∈ U0 ∩ UiUj = {1}, hence

xi = xj, and Eq. (1) gives xi = xj = 1. Thus x = zi = zj ∈ U0, as desired.
Then we haven+1

i=1

Vi

 = |U0| +

n+1
i=1

|Vi \ U0|

= n + (n + 1)(n2
− n)

= n3,

which proves (4).
Now, property AS2 yields

ViUj = U0UiUj = G, for 0 ≠ i, j and i ≠ j. (5)

We intend to compute the number of representations of the form

g = xy, x, y ∈ ∆,

for a given 1 ≠ g ∈ G.
If g ∈ ∆, Eq. (1) yields a unique index i such that

g ∈ Ui ⊆ ∆,

so that, choosing an arbitrary x ∈ Ui different from1 and g , there are at least n−2 such representations
for g . On the other hand, if x ∉ Ui or y ∉ Ui, (1) implies x ∈ Us, y ∈ Ut with pairwise different indexes
i, s, t , which contradicts property AS2 and we get the required result λ = n − 2.

Next, suppose that

g ∉ ∆.

By (4), there is an s such that

g ∈ Vs

and s is uniquely determined, because g ∉ U0. Thus g ∈ U0Us = UsU0, but g ∉ U0, and we already
obtain two representations

g = z1x1 = x2z2 with 1 ≠ z1, z2 ∈ U0, 1 ≠ x1, x2 ∈ Us.

We want to prove that these two representations are the only representations of the form g = xy
such that x ∈ U0 ∪ Us or y ∈ U0 ∪ Us.

If x ∈ U0 (respectively x ∈ Us), we obtain that y = x−1z1x1 ∈ U0Us. But then AS2 yields y ∈ U0 ∪Us.
Since g ∉ ∆, it follows y ∈ Us (respectively y ∈ U0) and therefore x−1z1 = yx−1

1 ∈ U0∩Us (respectively
yz−1

2 = x−1x2 ∈ U0 ∩ Us). By (1), we conclude that x = z1, y = x1 (respectively x = x2, y = z2), as
required. The remaining case y ∈ U0 ∪ Us is treated by almost the same argument.

Thus, apart from the twogiven representations, for every other representation there exists an index
i ≠ 0, swith x ∈ Ui. We claim that

(⋆) For 1 ≤ i ≤ n + 1 and i ≠ s there is exactly one representation of the form

g = xy with x ∈ Ui and y ∈ ∆. (6)
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Indeed, if xy = x′y′ with x, x′
∈ Ui and y, y′

∈ ∆, then x−1x′
= y(y′)−1

∈ Ui and again using AS2 we
conclude that x = x′, y = y′. Therefore there exists at most one representation of such a form.

Now denote by µ(g) the number of representations of the form g = xy with x, y ∈ ∆ and
x ∉ U0 ∪ Us. As we have just seen µ(g) ≤ n. Counting yields

g∉∆

µ(g) =


i≠j, i,j≠0

|(Ui \ {1})(Uj \ {1})|

= (n + 1)n(n − 1)2

= |{g | g ∉ ∆}|n

=


g∉∆

n

which implies that µ(g) = n. Then we find exactly n + 2 representations for g .
Thus we have found a partial difference set, which gives a strongly regular graph with parameters

v = n3, k = (n − 1)(n + 2), λ = n − 2, µ = n + 2.

We construct next a generalized quadrangle. Points are the group elements, lines are the left cosets (or
the right cosets) of the subgroups Uj, j = 0, . . . , n + 1 and incidence is given by inclusion. Obviously,
G acts as a regular automorphism group on the point set.

Clearly, each point is incident with exactly n+2 lines, and so we find t = n+1. By definition, each
line has exactly n points, thus s = n − 1. Suppose that

|xUi ∩ yUj| ≥ 2,

for two lines xUi and yUj. Since G acts as a group of automorphisms, we may assume that xUi = Ui. So
Ui contains two different elements in yUj, say yxj ≠ yx′

j ∈ Ui. But then 1 ≠ x−1
j x′

j ∈ Ui ∩ Uj. Using (1),
we obtain i = j, and so Ui = yUj. Therefore two distinct points (lines) are incident with at most one
line (point).

If A is a point and l is a line not incident with A, then we need to show that there is a unique line
through Ameeting l. By the transitivity of G, we may assume that A = 1. Setting

l = gUj, 0 ≤ j ≤ n + 1,

then g ∉ Uj and we shall prove that there is a uniquely determined subgroup Ui (0 ≤ i ≤ n+ 1) such
that

gUj ∩ Ui ≠ ∅.

First, we would like to see that Ui is uniquely determined. Suppose on the contrary that it is not; then

gUj ∩ Ui1 , gUj ∩ Ui2 ≠ ∅,

for i1 ≠ i2. Thus gxj = xi1 and gx′

j = xi2 with xj, x′

j ∈ Uj and xi1 ∈ Ui1 , xi2 ∈ Ui2 , which gives
immediately that x−1

j x′

j = x−1
i1

xi2 ∈ Uj ∩ Ui1Ui2 . Since g ∉ Uj, we find j ≠ i1, i2. Now AS2 yields
xi1 = xi2 , a contradiction.

If g ∈ ∆ then g ∈ Ui for a suitable i and the statement is trivial. Therefore we may assume that
g ∉ ∆. In order to prove the existence of Ui, we use property (⋆) holding for g ∉ ∆. But by (4), g ∈ Vs
for a suitable s ≥ 1. When j ≠ 0, s, then (⋆) says that there exists an i such that

g ∈ UjUi.

But this means that Ui ∩ gUj ≠ ∅. We are left just with the cases j = 0 or j = s. If j = 0, then
Us ∩ gU0 ≠ ∅. If j = s, then U0 ∩ gUs ≠ ∅, as desired. �

An AS-configuration

AS : U0,U1, . . . ,Un+1,
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of an abelian group G is called an abelian AS-configuration. In this case we denote by

K(AS)

the set of all endomorphisms σ : x → xσ of G satisfying

Uσ
i ≤ Ui, i = 0, . . . , n + 1.

We call K(AS) the kernel of the 4-gonal AS-configuration.

Lemma 1. Let σ ≠ 0 be in the kernel of the abelian AS-configuration

U0,U1, . . . ,Un+1.

Then σ is an automorphism. In particular, we find that the kernel of the configuration is a field.

Proof. Suppose that 1 ≠ x ∈ ker σ and that σ is not the trivial endomorphism. By (4), we get

x ∈ Vs,

for a suitable 1 ≤ s ≤ n + 1. Clearly, we may assume that s = 1.
We claim that there is an index i ≥ 2 such that σ is not trivial on Ui. By contradiction, assume that

Uσ
i = 1 for all i ≥ 2. Since G/Uj ( j = 0, 1) is generated by U2,U3, we see that σ induces the trivial

endomorphism on G/Uj, j = 0, 1; but then Gσ
≤ U0 ∩U1 = 1, which contradicts the assumption that

σ is not trivial. Therefore we can choose y ∈ Ui, i ≥ 2 such that

yσ
≠ 1.

There exists a suitable j such that yx ∈ Vj. We have

yσ
= yσ xσ

= (yx)σ ∈ V σ
i ∩ V σ

j = Vi ∩ Vj.

If Vi ≠ Vj, then yσ
∈ U0, a contradiction to 1 ≠ yσ

∈ Uσ
i ≤ Ui. Thus Vi = Vj. But then y, yx ∈ Vi gives

immediately that x ∈ Vi. Since y ∉ Vs, we have i ≠ s, which implies in turn that x ∈ Vi ∩ Vs = U0.
Thus ker σ ≤ U0.

Since the configuration is abelian, we can exchange the role of U0 and U1, and then (1) yields the
statement. �

3. Structure of an AS-configuration

In the following (G, AS) denotes an AS-configuration of order n. Let us remind that a partition π
of a finite group H is called a spread, if H = AB for all A, B ∈ π with A ≠ B. Let us consider the
homomorphism

G → G = G/U0, g → g = gU0.

We claim that

Ui, i = 1, . . . , n + 1, (7)

is a spread of G. Now, g ∈ Ui ∩ Uj, i ≠ j implies that g ∈ UiU0 ∩ UjU0. By relation (3) it follows that
g ∈ U0, and so g = 1, as desired. Using (5), we find G = UiUjU0 for i, j ≠ 0 and i ≠ j. Thus

G = UiUj,

as desired. Given a spread in a finite group H , it is well known that the coset geometry of the spread
yields an affine translation plane, whose translation group is isomorphic to H . Thus we obtain the
following two results (see [5]).

Theorem 2. The coset geometry given by the partition (7) is an affine plane of order n.
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Corollary 1. G is a p-group. In particular, G/U0 is an elementary abelian group and

[G,G], Φ(G) ≤ U0.

Another consequence is

Ug
i ≤ UiU0 E G, g ∈ G. (8)

Using the above results, we have the following.

Theorem 3. If (G, AS) is an abelian AS-configuration, then G is an elementary abelian 2-group.

Proof. Since G is abelian, we can replace the role of U0 by U1 and Corollary 1 gives Φ(G) = 1, hence
G is an elementary abelian p-group. We have to show that p = 2.

To beginwith, letQ be a subgroup of order p, not contained in a component of theAS-configuration.
Fix 0 ≤ i ≤ n+ 1. Since G/Ui admits the above mentioned spread, there is a uniquely determined f (i)
such that

Q ≤ Ui + Uf (i).

Clearly, f (f (i)) = i. Thus f is a bijection of {0, 1, . . . , n + 1}. By the choice of Q , we have f (i) ≠ i.
Hence f is an involution without fixed points. It follows that

n + 2 ≡ 0(mod 2),

and this yields the statement. �

For conjugacy classes we shall need the following.

Lemma 2. We have

(i) Each coset of U0 is an invariant complex.
(ii) An element xu ∈ U0u is conjugate to u if and only if there exists a g ∈ G such that x = [g, u−1

].

Proof. By Corollary 1, [G,G] ≤ U0. It follows that

(U0x)y = U0xy = U0xyx−1x = U0x,

since xyx−1
= [y, x−1

] ∈ U0, and (i) is proved.
Clearly, u is conjugate to xu if and only if there is a g ∈ G with ug

= xu, which is equivalent to

x = ugu−1
= [g, u−1

],

and the lemma is proved. �

4. Examples and characterizations

The two known classes of AS-configurations are the two extremes of a scalemeasuring the number
of conjugacy classes. Let us begin with the maximal number of conjugacy classes.

4.1. Abelian examples

Example 1. The classical example is given by a hyperoval in a projective plane over K = Fq, where q
is a power of a 2: the plane is represented by the nontrivial subspaces of K 3. A hyperoval H is a set of
q + 2 subspaces of dimension 1, each three of which generate K 3, which is equivalent to the fact that
(K 3, H) is an AS-configuration.



1564 D. Ghinelli / European Journal of Combinatorics 33 (2012) 1557–1573

By Theorem 3, we can regard the group of an abelian AS-configuration

AS : U0,U1, . . . ,Un+1,

as a vector space V = G of dimension n3 over F2. But by Lemma 1, we may regard V also as a vector
space over the kernel K = K(AS). Setting

|K | = q and dim
K

Uj = m, j = 0, 1, . . . , n + 1,

we have

n = qm, dim
K

V = 3m.

Obviously, the condition that the subspaces U0,U1, . . . ,Uqm+1 of dimension m form an AS-
configuration in V is equivalent to the fact that every three of them generate V . Thus for every K -linear
bijection Λ : V → V , x → xΛ, the images

ASΛ : U0Λ,U1Λ, . . . ,Uqm+1Λ,

form also an AS-configuration in V . Now by (5),

V = U0 ⊕ U1 ⊕ U2.

Identifying U0,U1,U2 with Km, we have V = K 3m and

U0 = {(x, 0, 0) | x ∈ Km
}, U1 = {(0, x, 0) | x ∈ Km

} U2 = {(0, 0, x) | x ∈ Km
}.

Moreover, each of the subspaces Uj, j ≥ 3 is represented as

Uj = {(x, xΣj, xΘj) | x ∈ U0 = Km
}, j = 3, . . . , qm + 1,

where Σj, Θj : U0 → U0 are K -linear bijections or regular m × m-matrices over K . Setting Λ =

1Km ⊕ Σ−1
3 ⊕ Θ−1

3 and replacing AS by ASΛ, we may assume that Σ3 = Θ3 = 1Km . In other words

U3 = {(x, x, x) | x ∈ Km
}.

Since the given AS-configuration induces a translation plane Π1 (respectively Π2) in V/U1
(respectively V/U2), the sets

Σ = {Σj | j = 3, . . . , qm + 1} and Θ = {Θj | j = 3, . . . , qm + 1}

are so called spreads of matrices (see [15]). For the convenience of the reader we remind that a spread
Γ ofm × m-matrices over K is a set of regular matrices such that

(i) If α, β ∈ Γ with α ≠ β then α − β is nonsingular.
(ii) Given a, b ∈ Km

\ {0} there exists an α ∈ Γ such that aα = b.

Again, there is an induced translation plane Π0 in V/U0. Thus

Γ = {Γj = Σ−1
j Θj | j = 3, . . . , qm + 1}

yields also a spread of matrices.
Our classification Theorem 4will be proved using some group theoretical theorems. Thuswe begin

with the following lemma.

Lemma 3. With the above notation, if Σ, Θ, Γ are groups. Then

Ξ = ΣΘ = ΘΓ = Γ Σ,

is a subgroup of GL(m, q).
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Proof. To prove that ΣΘ is a subgroup of GL(m, q) it is sufficient to show that ΣΘ = ΘΣ . Now Γ is
a group, hence

Σ−1
i ΘiΣ

−1
j Θj ∈ Γ ⊆ ΣΘ.

It follows that

ΘiΣ
−1
j ∈ ΣiΣΘΘ−1

j = ΣΘ,

since Γ , Θ are groups. But then

ΘΣ ⊆ ΣΘ.

Taking inverse elements, we get

ΣΘ ⊆ ΘΣ .

Thus ΣΘ = ΘΣ , as desired.
Similarly, one shows that ΘΛ and ΛΣ are subgroups of GL(m, q). Since

Σ, Θ, Γ ≤ ΣΘ, ΘΛ, ΛΣ,

it follows that

⟨Σ, Θ, Γ ⟩ = ΣΘ = ΘΛ = ΛΣ,

which proves the lemma. �

We remark that Σ is a group if and only if the corresponding translation plane Π1 is
coordinatized by a (regular) Dickson nearfield (see [5] or [15,6]). Moreover, the proof of the following
characterization rests on the well known result that Π1 is a desarguesian plane if and only if Σ is an
abelian group, and under this assumption Σ�

= Σ ∪ {0} is even a field, which means in particular
that Σ is a cyclic group (see for instance [15]).

The next theorem shows that it seems difficult to find abelian AS-configurations that are not
hyperovals.

Theorem 4. With the above notation suppose that three of the planes given by the spreads in G/Ui, i =

0, 1, . . . , n + 1 are desarguesian. Then the AS-configuration is isomorphic to the hyperoval given
in Example 1.

Proof. By the preparation for this theorem, wemay assume thatΠj, j = 0, 1, 2, are desarguesian.We
need to show that 1 = m = dimK Uj. For convenience we set Λ0 = Γ , Λ1 = Σ, Λ2 = Θ and

G = Λ0Λ1 = Λ1Λ2 = Λ2Λ0.

We wish to show that Λ0 = Λ1 = Λ2. By contradiction, suppose that this is false. Since all three
subgroups have the sameorder, it follows that the three subgroups are pairwise different. In particular,
for each permutation i, j, k of 0, 1, 2

∆k = Λi ∩ Λj,

is a proper subgroup of Λi and Λj. Since [∆k, Λi] = [∆k, Λj] = 1, the subgroup ∆k lies in the center
Z(G) of G.

By the above remark, Λ�

i is a field and Λ�

i
∼= Fqm . We find immediately that

CGL(m,q)(Λi) = Λi, i = 0, 1, 2. (9)

It follows that

Z(G) = ∆0 = ∆1 = ∆2. (10)

A theorem of Kegel ([18], Folgerung 2) states that a finite trifactorized group

H = AB = BC = CA,
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with nilpotent subgroups A, B, C ≤ H is itself nilpotent. Thus G is nilpotent. Since G/Z(G) is a product
of two cyclic groups, then Theorem 24a in [14] yields that at least one of the two factors contains a
nontrivial normal subgroup, which itself is cyclic of course. Therefore we may assume that there is a
normal subgroup N of G such that

Z(G) < N ≤ Λ0 and [N : Z(G)] = p,

with a certain prime p. Clearly,N is cyclic andΛ1 acts by conjugation onN as a groupof automorphisms
with kernel CΛ1(N). By (9), CΛ1(N) ≠ Λ1, because N is not contained in Λ1. Since NΛ1 is nilpotent
Z(G) ≤ Λ1, and because [N : Z(G)] = p, we have thatΛ1/CΛ1(N) is a nontrivial p-group. On the other
hand, N is cyclic and therefore the cyclic p-Sylow subgroup P = ⟨x⟩ of N has at least order p2. We find

p | |Z(G)| | |CΛ1(N)|. (11)

Since Λ1 acts trivially on xp ∈ Z(G), we conclude that Λ1/CΛ1(N) has order p. Thus

p =
qm − 1

|CΛ1(N)|
.

Now CΛ1(N) ∪ {0} is closed under addition, so it is a subfield of Λ�

1 . We find |CΛ1(N)| = qa − 1 with
m = ab, 1 < a < m and p | qa − 1 by (11). So

p =
qm − 1
qa − 1

= 1 + qa + q2a + · · · + q(b−1)a > qa > p,

a contradiction. Therefore we have proved that G = Σ = Θ = Λ.
Now we claim that for g ∈ Σ the K -linear map Ξg defined by the rule

(x, y, z)Ξg = (xg, yg, zg),

is in the kernel of the AS-configuration. Indeed, Ξg leaves U0,U1,U2 invariant. And since Σ is abelian,
for j ≥ 3

UjΞg = {(xg, xΣjg, xΘjg), | x ∈ Km
}

= {(xg, xgΣj, xgΘj), | x ∈ Km
}

= Uj.

Looking at the restriction of Σ to U0 we see that K acts transitively on U0 \ {0}, because Σ is a spread.
But then dimK U0 = 1, as desired, and the theorem is proved. �

4.2. The other extremal case

In contrast to the abelian case we study here the possibility that the number of conjugacy classes
is as small as possible. So we assume in the following that

AS : U0,U1, . . . ,Un+1,

is an AS-configuration for the group G satisfying the

Hypothesis. Each conjugacy class different from {1} has a representative in

∆(AS) =

n+1
j=0

(Uj \ {1}).

We call this a symplectic AS-configuration. We describe in some detail the only known class of
symplectic AS-configurations.
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Example 2. Let q be an odd prime power and G = F3
q . Furthermore, let M be a 2 × 2-matrix over Fq.

With respect to the multiplication

(α, z)(β, w) = (α + β, z + w + αMβ⊤), α, β ∈ F2
q, z, w ∈ Fq,

G becomes a group, denoted by GM .

One easily verifies that

M + M⊤is regular H⇒ Z(GM) = {(0, 0, z) | z ∈ Fq}.

Now, let GM1 ,GM2 be two such groups and suppose that there exists a regular matrixM such that

N = MM2M⊤
− M1

is a symmetric matrix and set 2Q (α) = αNα⊤. Then the application τ from GM1 onto GM2 defined by

(α, z)τ = (αM, z + Q (α))

is an isomorphism. In fact, we have

((α, z)(β, w))τ = (α + β, z + w + αM1β
⊤)τ

= (αM + βM, z + w + αM1β
⊤

+ Q (α + β))

= (αM + βM, z + w + αM1β
⊤

+ Q (α) + Q (β) + αNβ⊤),

and

(α, z)τ (β, w)τ = (αM, z + Q (α))(βM, w + Q (β))

= (αM + βM, z + w + Q (α) + Q (β) + αMM2(βM)⊤)

= (αM + βM, z + w + Q (α) + Q (β) + αMM2M⊤β⊤)

= (αM + βM, z + w + Q (α) + Q (β) + α(N + M1)β
⊤).

We are interested in

M1 =


0 0

−1 0


,

hence

(x, y, z)(a, b, c) = (x + a, y + b, z + c − ya).

It is not difficult to show that G = GM1 is isomorphic to the semidirect product of the translation
group of the affine plane corresponding to G/Z(G) ∼= F2

q with the group of shears having a fixed
center. Moreover, the commutator [α, β] is well defined on G/Z(G). We have

[α, β] = a2b1 − a1b2 = α


0 −1
1 0


β⊤

= αM2β
⊤,

for α = (a1, a2) and β = (b1, b2). We find that the group

G/Z(G) ⊕ Z(G) = GM2

is the group given by Kantor in [17], A.3.4. Setting

M =


1 0
0 −1/2


,

we have

MM2M⊤
− M1 =


0 1/2

1/2 0


,

hence the two groups are isomorphic under the above mentioned isomorphism. In accordance
with [17], A.3.4, this isomorphism yields the following AS-configuration for GM1 .

U0 = Z(G), U1 = {(0, z, 0) | z ∈ Fq}, U2 = {(z, 0, 0) | z ∈ Fq}.
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Modulo Z(G), the remaining components of the configuration are the lines (not equal to {(0, x) | x ∈

Fq}) through the origin of the affine plane given by G/Z(G), namely

Wc = {(x, xc, x2c/2) | x ∈ Fq}, c ∈ Fq.

In order to show that the hypothesis in Section 4.2 holds, we need to show that the conjugacy classes
laying in Vj \ U0 = U0Uj \ U0, ( j = 1, . . . , n + 1) are represented by the elements in Uj. By Lemma 2
this will follow if we can show that for some 1 ≤ i ≠ j ≤ n + 1,

[u,Ui] = U0 for each 1 ≠ u ∈ Uj, j = 1, . . . , n + 1,

and this is a straightforward computing argument.

Lemma 4. Each conjugacy class of the given AS-configuration is a subset of U0 or a coset of the form

U0u with u ∈

n+1
j=1

(Uj \ {1}) = ∆⋆.

In particular, we have

|CG(u)| = n2, u ∈ ∆⋆.

Moreover, for each u ∈ ∆⋆ the set

[u,G] = {[u, g] | g ∈ G}

of commutators equals U0, thus U0 = [u,G].

Proof. By hypothesis, each conjugacy class not contained in U0 is of the form uG with u ∈ ∆⋆. So
Lemma 2 yields

uG
⊆ U0u.

But u is the only element of ∆⋆ in U0u. Therefore the hypothesis implies that uG
= U0u, as desired.

Now let 1 ≠ u ∈ U1. As we have just seen, for u0 ∈ U0 the element u0u is conjugate to u. But then
there is a g ∈ G such that ug

= u0u, which is [g, u−1
] = u0. Thus [u,G] = U0. �

As an immediate consequence we find the following.

Corollary 2. The center of G is a subgroup of U0:

Z(G) ≤ U0.

Since G/U0 is elementary abelian, the above Lemma 4 implies that

U0 = [G,G] = Φ(G).

Corollary 3. For i, j ≥ 1 and i ≠ j, we have

⟨Ui,Uj⟩ = G.

Proof. If this is false there is a maximal subgroup M such that ⟨Ui,Uj⟩ ≤ M < G. Since U0 = Φ(G),
we have U0 ≤ M . But G = U0UiUj and this is a contradiction. �

Next we prove the following lemma.

Lemma 5. Let i ≥ 1. Then

NG(Ui) = CG(Ui) ≤ U0Ui = Vi.
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Proof. Clearly, CG(Ui) ≤ NG(Ui). Conversely, let g ∈ NG(Ui). For each x ∈ Ui it follows that

x−1xg = [x, g] ∈ Ui ∩ U0.

Since Ui ∩ U0 = {1} we get x = xg , x ∈ Ui. Thus g ∈ CG(Ui), as desired.
Now suppose that there exists an element g ∈ NG(Ui) \ U0Ui = CG(Ui) \ Vi. But then g ∈ Vj, 1 ≤

j ≠ i, say 1 ≠ g = u0uj with u0 ∈ U0, uj ∈ Uj. By Lemma 4, g is conjugate to uj. Thus we find an
element h ∈ G such that uj ∈ CG(Uh

i ), hence

1 ≠ uj ∈ CG(Uh
i ), CG(Uj).

Since Uh
i ≤ Vi,Uj ≤ Vj and Vi ∩ Vj = U0, it follows that Uh

i ∩ Uj = {1} and so

|Uh
i Uj| = n2.

Using Lemma 4 we obtain

CG(uj) = UjUh
i .

Choose 1 ≠ u0 ∈ Z(G) ≤ U0. Thus u0 ∈ UjUh
i , hence

u0 = xyh with x ∈ Uj, y ∈ Ui,

and xy = u0(y−1yh)−1
∈ UjUi ∩U0 = {1}. But then x = y−1

∈ Ui ∩Uj = {1}, and therefore x = y = 1.
We conclude u0 = 1, a contradiction to the choice of u0 and the lemma is proved. �

We set U = U1 and

Ω =


g ∈ G | g ∉


1≠u∈U

CG(u)


.

Since CG(U) ≤ CG(u), u ∈ U , we have
1≠u∈U

CG(u) ⊆


1≠u∈U

(CG(u) \ CG(U)) ∪ CG(U),

which implies 
1≠u∈U

CG(u)

 ≤

 
1≠u∈U

(CG(u) \ CG(U))

 + |CG(U)|

≤ (n − 1)(n2
− |CG(U)|) + |CG(U)|

≤ n3
− n2

− (n − 1)|CG(U)| + |CG(U)|

≤ n3
− n2

− (n − 2)|CG(U)|,

and therefore

|Ω| ≥ n3
− n3

+ n2
+ (n − 2)|CG(U)| = n2

+ (n − 2)|CG(U)|. (12)

Since U is abelian, CG(U) acts as a permutation group on Ω via left multiplication. Denote by Ω⋆ the
set of orbits of CG(U) on Ω and let

g1, . . . , gN ,

be a set of representatives of the orbits in Ω⋆. Formally, we set g0 = 1. By (12), we find

|N| ≥
n2

+ (n − 2)|CG(U)|

|CG(U)|
≥ n − 2 +

n2

|CG(U)|
≥ n − 1. (13)
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Lemma 6. Let 0 < i < j ≤ N. Then

Ugi ∩ Ugj = {1} and U0 ∩ Ugi = {1}.

Proof. The proof rests on the following property:

Uh
∩ Ug

≠ {1} ⇒ CG(U)g = CG(u)h.

Indeed, the assumption implies hg−1
∈ NG(U), then Lemma 5 gives gh−1

∈ CG(U), thus CG(U)g =

CG(U)h, as desired. It remains to show that

U0 ∩ Ugi = {1}.

But U0 ∩ Ugi = U
g−1
i

0 ∩ U1 = U0 ∩ U1 = {1}. �

Since Ug
≤ V1 for g ∈ G, Lemma 6 and (13) imply that

n2
≥ |U0| +

N
j=0

(|Ugj | − 1)

≥ n + (N + 1)(n − 1)
≥ n + n(n − 1)

≥ n2. (14)

Setting

Γ = {U0} ∪ {Ugi | i = 0, 1, . . . ,N},

we obtain the following results.

Corollary 4. With the above notation we have

(1) N + 1 = n.
(2) Γ is a spread of V1.
(3) V1 is elementary abelian.
(4) CG(u) = V1 for each 1 ≠ u ∈ U.
(5) We can choose U2 as the set g0, g1, . . . , gN = gn−1 of representatives.
(6) Γ \ {U0} is the conjugacy class of U.

Proof. By (14), it follows immediately thatN+1 = n. Thus |Γ | = n+1 and Lemma 6 shows thatΓ is
a spread of V1. But then V1 is the translation group of the corresponding affine plane, and this proves
(3).

From (3) we deduce CG(u) ≥ V1 and Lemma 4 yields (4).
For (5), we need to show that an element 1 ≠ u2 ∈ U2 does not commute with 1 ≠ u ∈ U . Now,

CG(u) ∩ U2 = V1 ∩ U2 = U0U1 ∩ U2 = {1}.
Finally, claim (5) together with the fact that NG(U) = CG(U) = V1 yields (6). �

Let us denote by A the affine plane corresponding to the spread of V1. Then, by definition, V1 acts
as a translation group on A. Furthermore by claim (6) of Corollary 4, an element u2 ∈ U2 acts as an
automorphism on A via the action

σu2 : V1 → V1, x → xu2 = u−1
2 xu2.

Since σu2 fixes U0 pointwise, and also fixes each line in the parallel class of U0, because

(U0g)u2 = U0gu2 = U0[u2, g−1
]g = U0,

the group U2 acts as a (linear) transitive group of shears (affine elations) with axes U0. In other words,
A is a semifield plane, coordinatized by a semifield S (see for instance [5] or [15]). In particular, we
have identified our group G: it is the semidirect product of the translation group with the group of
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shears of a semifield plane. Thus S is a semifield with q elements and A = S2. The translations are the
mappings of the form

τ(a,b) : (x, y) → (x + a, y + b) for (a, b) ∈ S2,

and the affine elations are

δa : (x, y) → (x, xa + y) for a ∈ S.

Setting

γ (a, c, b) = τ(a,b)δc : (x, y) → (x + a, (x + a)c + y + b)

we find

(x, y)γ (a, c, b)γ (u, w, v) = (x + a, xc + ac + y + b)γ (v, w, u)
= (x + a + u, (x + a + u)w + (x + a)c + y + b + v),

and

(x, y)γ (a + u, c + w, b + v − uc) = (x + a + u, (x + a + u)(c + w) + y + b + v − uc)
= (x + a + u, (x + a + u)w + (x + a)c + y + b + v).

We consider the group of order q3

G = S3

with the multiplication given by

(x, y, z)(u, v, w) = (x + u, y + v, z + w − uy).

With this identification the three subgroups Ui, i = 0, 1, 2, of order q are

U0 = {(0, 0, z) | z ∈ S}, U1 = {(x, 0, 0) | x ∈ S}, U2 = {(0, y, 0) | y ∈ S}.

Moreover, we know that

Z(G) = U0 and G = U0U1U2.

The remaining commutative subgroups of the AS-configuration are of the form

Uj = {(x, fj(x), gj(x)) | x ∈ S}, j = 3, . . . , q + 1,

where

fj : S → S, and gj : S → S

are twomaps.Wewish to deduce some relations for thesemaps. Clearly, (0, 0, 0) = (0, fj(0), gj(0)) ∈

Uj. So

fj(0) = gj(0) = 0, j ≥ 3.

A straightforward computation yields

(x, fi(x), gi(x))(y, fj(y), gj(y)) = (x + y, fi(x) + fj(y), gi(x) + gj(y) − yfi(x)).

Since Uj, j ≥ 3, is a commutative group, for i = j it follows that

fi(x) + fi(y) = fi(x + y), (15)
gi(x) + gi(y) − yfi(x) = gi(x + y), (16)
yfi(x) = xfi(y). (17)

Setting fi(1) = ci, Eq. (17) gives

fi(x) = xfi(1) = xci. (18)
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Furthermore,

gi(x + y) = gi(x) + gi(y) − x(yci).

Using (17) we obtain

y(xci) = x(yci). (19)

We claim that the elements c3, . . . , cq+1 are pairwise different, meaning that

S \ {0} = {c3, . . . , cq+1}.

If not, we may assume, without loss of generality, c3 = c4. We see that

(1, c3, g3(1)) ∈ U3 and (1, c3, g4(1)) ∈ U4

and conclude g3(1) ≠ g4(1), because U3 ∩ U4 = {1} = (0, 0, 0). Now

(1, c3, g4(1))(0, 0, −g4(1) + g3(1)) = (1, c3, g3(1)),

hence

U0 ∩ U4U3 ≠ {1},

a contradiction. In particular, without loss of generality wemay assume that c3 = 1. For i = 3 Eq. (19)
gives now the main conclusion.

Lemma 7. The semifield is commutative, and

y(xz) = x(yz) = x(zy) = z(xy) = (xy)z = (yx)z.

Hence we have the following.

Theorem 5. The semifield is a field.

We conclude that our AS-configuration is exactly the example GM1 given in Example 2. Therefore we
have proved the following classification theorem.

Theorem 6. An AS-configuration of symplectic type is classical.
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