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a  b  s  t  r  a  c  t

ˇ-d-Galactosidase  from  Kluyveromyces  lactis  was  immobilized  on  glutaraldehyde-activated  chitosan  and
used  in  a  packed-bed  reactor  for the  continuous  hydrolysis  of  lactose  and  the  synthesis  of galactooligosac-
charides  (GOS).  The  biocatalyst  was  tested  for its optima  pH and  temperature,  thermal  stability  in  the
presence  of  substrate  and  products,  and  operational  stability.  Immobilization  increased  the  range  of oper-
ational  pH  and  temperature,  and  the  enzyme  thermal  stability  was  sharply  increased  in the  presence  of
eywords:
ontinuous enzymatic packed-bed reactor
-d-Galactosidase
hitosan macroparticles
alactooligosaccharides
actose  hydrolysis

lactose.  Almost  complete  lactose  hydrolysis  was achieved  for  both  milk  whey  and  lactose  solution  at  37 ◦C
at  flow  rates  up  to 2.6 mL  min−1. Maximal  GOS  concentration  of 26  g L−1 was  obtained  at  a  flow  rate  of
3.1  mL  min−1,  with  a productivity  of 186  g  L−1 h−1. Steady-state  operation  for  15  days  showed  the reactor
stability  concerning  lactose  hydrolysis.

© 2013 Elsevier Ltd. Open access under the Elsevier OA license. 
. Introduction

Lactose (�-d-galactopyranosyl-(1→4)-d-glucopyranose), the
ain sugar of milk, can be hydrolyzed by ˇ-d-galactosidase liberat-

ng d-glucose and d-galactose, making possible the consumption of
ilk and other dairy products by lactose-intolerant people (Haider

 Husain, 2009). In the presence of highly concentrated lactose,
his enzyme can also produce galactooligosaccharides (GOS), by
ransferring galactosyl residues to lactose molecules. The GOS pro-
uced (for example, Gal (� 1→4) Gal (� 1→4) Glc), usually has
he structure Galn–Glc, where n indicates the degree of polymer-
zation, which is typically 1–5 (Gosling, Stevens, Barber, Kentish, &
ras, 2010; Mussatto & Mancilha, 2007). GOS are non-digestible
ligosaccharides, which are used as prebiotics food ingredients.
he regular consumption of GOS can promote the growth and
etabolism of intestinal bifidobacteria, microorganisms that are

ssociated with positive health effects (as the reduction of the
evel of cholesterol, anticarcinogenic properties, and production

f vitamins), when applied in human and other animals diets
Grosova, Rosenberg, & Rebros, 2008). Therefore, the enzyme ˇ-
-galactosidase, in its free or immobilized forms, has an important

∗ Corresponding author. Tel.: +55 51 3308 7094; fax: +55 51 3308 7048.
E-mail  address: plinho@ufrgs.br (P.F. Hertz).

144-8617     ©  2013 Elsevier Ltd. 
ttp://dx.doi.org/10.1016/j.carbpol.2013.02.044

Open access under the Elsevier OA license. 
application in the food industry for lactose hydrolysis and for GOS
synthesis.

For the industrial-scale applications of immobilized enzymes,
where large amounts of biocatalyst are required, the immo-
bilization protocol must be simple and preferably make use
of inexpensive materials as supports (Garcia-Galan, Berenguer-
Murcia, Fernandez-Lafuente, & Rodrigues, 2011). Moreover,
concerning food applications, nontoxicity and biocompatibility are
also required. In this context, chitosan [(1→4)-2-amino-2-deoxy-
�-d-glucan],  which is a natural polyaminosaccharide derived from
chitin [(1→4)-2-acetamido-2-deoxy-�-d-glucan], a by-product of
the seafood processing industry, is both safe and cheap (Krajewska,
2004; Muzzarelli, 1980). Another unique property of chitosan is
its low propensity for microbial contamination, a problem asso-
ciated with the immobilization of ˇ-d-galactosidase for lactose
hydrolysis (Benhabiles et al., 2012). Chitosan is soluble in acid
solutions, and can be precipitated in alkaline pH, thus chitosan
particles can be readily obtained dripping an acid chitosan solu-
tion into an alkaline coagulation solution (Krajewska, 2004). Prior
to enzyme immobilization, chitosan particles can also be easily
activated using various agents such as glutaraldehyde (Muzzarelli,

1980), genipin (Chiou, Hung, Giridhar, & Wu,  2007; Muzzarelli,
2009), glycidol or epichlorohydrin (Rodrigues, Mendes, Adriano,
Gonç alves, & Giordano, 2008) in order to generate specific groups
for enzyme attachment.

dx.doi.org/10.1016/j.carbpol.2013.02.044
http://www.sciencedirect.com/science/journal/01448617
http://www.elsevier.com/locate/carbpol
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Reactors configuration for continuous operations is another
mportant aspect in designing industrial enzymatic processes.
acked-bed reactors (PBRs) are widely and successfully used in
any industrial processes. Some of the advantages of using this

ype of reactor are the reuse of the enzyme without the need of a
rior separation; the continuous production of the desired prod-
ct; the easiness of handling substrates of low solubility by the use
f large volumes containing low concentrations of substrate; and
he long-term runs and industrial-scale operations. Therefore, PBRs
re more cost effective than batch operations (Chang, Shaw, Yang,

 Shieh, 2007; Halim, Kamaruddin, & Fernando, 2009).
The  main objective of this research was to set up a packed-

ed reactor filled with chitosan-immobilized ˇ-d-galactosidase
or the continuous hydrolysis of lactose and the synthesis of
alactooligosaccharides. The immobilized enzyme was also char-
cterized for its operational optima pH and temperature, and
iocatalyst thermal stability, assayed in the presence of substrates
nd products. Process performance was evaluated in terms of lac-
ose hydrolysis and GOS synthesis as a function of flow rate of
ubstrate feeding. Finally, continuous lactose hydrolysis was car-
ied out in order to evaluate the operational stability of the PBR
nder steady-state operation.

. Materials and methods

.1.  Materials

Whey powder was obtained from a local supplier (Elegê
aticínios S.A., Teutônia, Brazil), Kluyveromyces lactis ˇ-d-
alactosidase was the liquid formulation of Maxilact LX 5000, with

 declared activity of ≥5000 NLU/g (DSM Food Specialties, Heerlen,
etherlands). Chitosan (from shrimp shells, ≥75% deacety-

ated), o-nitrophenyl-ˇ-d-galactopyranoside (ONPG), d-glucose,
-galactose, lactose, and raffinose (�-d-fructofuranosyl �-d-
alactopyranosyl-(1→6)-�-d-glucopyranoside) were obtained
rom Sigma–Aldrich (St. Louis, USA). A d-glucose determination kit
as purchased from Labtest Diagnóstica SA (São Paulo, Brazil). All

olvents and other chemicals were of analytical grade.

.2.  Methods

.2.1. Preparation of ˇ-d-galactosidase immobilized on chitosan
acroparticles

ˇ-d-galactosidase was covalently immobilized on
lutaraldehyde-activated chitosan macroparticles as described
n a previous work (Klein et al., 2012). The amount of protein
ttached on chitosan macroparticles was 46.2 mg  g−1 of dry
upport, presenting an activity of 230 U g−1 of dry support. The
hitosan-ˇ-d-galactosidase derivative was stored at 7 ◦C in 0.1 M
f phosphate–potassium buffer (pH 7.0) containing MgCl2 1.5 mM
activity buffer).

.2.2.  Activity of free and immobilized ˇ-d-galactosidase
Free ˇ-d-galactosidase activity was assayed by incubating

he diluted enzyme (50 �L) with 0.5 mL  of activity buffer con-
aining ONPG (10 mM)  at 37 ◦C during 2 min. For immobilized
-d-galactosidase, 1.5 mg  (dry support) was incubated with 1 mL  of
ctivity buffer containing ONPG (10 mM)  at 37 ◦C during 2 min. The
eactions were stopped with the addition of borate buffer pH 9.8.
eleased o-nitrophenol (ONP) was spectrophotometrically deter-
ined at 415 nm.  One unit of ˇ-d-galactosidase activity (U) was
efined as the amount of enzyme that hydrolyze 1 �mol  of ONPG to
-nitrophenol per minute under the conditions previously stated.
rotein content of the enzyme solutions was determined by the
owry assay.
lymers 95 (2013) 465– 470

2.2.3. Optima pH and temperature for free and immobilized
ˇ-d-galactosidase

The optimum operational pH of ˇ-d-galactosidase activity was
studied by monitoring enzyme activity of both free and immo-
bilized preparations in 0.1 M of phosphate–potassium buffer (pH
5.7–8.0) containing MgCl2 1.5 mM,  at 37 ◦C, while the optimum
temperature was  determined by measuring the activity between
10 ◦C and 70 ◦C at pH 7.

2.2.4. Thermal stability of the immobilized ˇ-d-galactosidase
Thermal stability of the immobilized enzyme was  evaluated

incubating the biocatalyst in sealed tubes in a thermostatically con-
trolled water bath at 55 ◦C. Thermal stability was  performed under
the following conditions: activity buffer, different concentrations of
lactose (50 g L−1 and 400 g L−1), d-glucose (200 g L−1), d-galactose
(200 g L−1), or d-glucose plus d-galactose (200 g L−1 of each sugars).
Samples were withdrawn at different time intervals and placed
in ice bath to stop the thermal inactivation instantaneously. The
remaining enzyme activity was determined as described above.

2.2.5.  Packed-bed reactor setup
The column type packed-bed reactor (12 cm × 3 cm)  was

composed of a water-jacketed glass column, flow-rate con-
troller, and water bath. The reactor was  packed with 4 g (dry
weight) of chitosan-immobilized ˇ-d-galactosidase 2 mm diameter
macroparticles, corresponding to approximately 920 U of ˇ-d-
galactosidase total activity. The substrate solution was fed through
the bottom of the column using a peristaltic pump. The topside
and the bottom of the column were fitted with a sintered glass
disc (4 mm thick). The total volume of the packed-bed reactor was
29 mL.

2.2.6.  Lactose hydrolysis
The  hydrolysis of lactose was performed by flowing through

the reactor either buffered lactose solution or whey, both contain-
ing 50 g L−1 of sugar. The lactose solution was prepared in activity
buffer, while the whey solution was  prepared by suspension of
whey powder in distilled water and adjusting the pH to 7. Previ-
ously to starting the reaction, the packed-bed reactor was washed
with activity buffer. Flow rates were tested from 0.26 mL  min−1 to
3.4 mL  min−1. Samples were collected after the steady state was
reached and analyzed for d-glucose formation. Previously to the d-
glucose quantification, samples of hydrolyzed whey were diluted
and filtered through a 0.22 �m acetate cellulose membrane in order
to remove proteins that may  cause interference in the analysis. The
hydrolysis was carried out at two different temperatures, 37 and
7 ◦C, in order to simulate real industrial conditions and to avoid
possible microbial contaminations.

2.2.7.  Continuous synthesis of galactooligosaccharides (GOS)
GOS  synthesis was performed by flowing through the reactor

buffered lactose solution at high concentration (400 g L−1). Flow
rates were tested from 1 to 15 mL  min−1 for GOS synthesis at 37 ◦C.
Samples were collected after steady state was reached and the
reaction product was analyzed by HPLC.

2.2.8. Analytical procedures
Lactose  and products from the transgalactosylation reaction

(GOS, d-galactose and d-glucose) were analyzed by HPLC (Shi-
madzu, Tokyo, Japan) equipped with refractor index and Aminex
HPX-87C (300 mm × 7.8 mm)  column. Ultra-pure water was  used
as eluting solvent at a flow rate of 0.6 mL  min−1, at 85 ◦C. The

concentration of saccharides was  calculated by interpolation from
external standards. Standards were used for lactose, d-glucose, and
d-galactose. GOS concentration was  calculated as raffinose equiva-
lents from an external raffinose standard, as described by Gosling,
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ig. 1. Effect of pH (A) and temperature (B) on the activity of free ˇ-d-galactosidase
©)  and chitosan-immobilized ˇ-d-galactosidase (�).

tevens, Barber, Kentish, and Gras (2011). The commercial product
ivinal GOS® (Friesland Foods, Netherlands) was  used to compare

he retention time of the obtained GOS, and its yield (%) was defined
s the percentage of GOS produced compared with the weight of
nitial lactose in the reaction medium.

.2.9. Operational stability of the packed-bed reactor during
actose  hydrolysis

The  operational stability of the PBR under steady-state regime
as evaluated during 15 continuous days at 37 ◦C using a flow

ate of 2.6 mL  min−1 containing 50 g L−1 of lactose. Aliquots were
eriodically collected and analyzed for d-glucose formation.

.  Results and discussion

.1.  Properties of the immobilized ˇ-d-galactosidase

.1.1. Optima pH and temperature
The  effect of pH on the relative activity of the free and immo-

ilized ˇ-d-galactosidase was evaluated in the range of 5.7–8.0
Fig. 1A). After immobilization on chitosan macroparticles, the opti-

um  pH of ˇ-d-galactosidase was enhanced from 6.5 to a broader
ange between 6.5 and 8.0. Even at acidic pH, the enzyme activity
as remarkably enhanced, with more than 70% remaining at pH 5.5,

ompared to less than 25% for the free form, suggesting the strong
tabilization effect on enzyme molecules, provided by the covalent

inding to the support. Bayramoglu, Tunali, and Arica (2007), in
heir studies with Escherichia coli ˇ-d-galactosidase immobilized
nto magnetic poly(GMA–MMA) beads, found a shift of optimum
H of the enzyme from 7.5 to 7 after immobilization. The authors
Fig. 2. Thermal stability at 55 C of chitosan-immobilized ˇ-d-galactosidase in the
presence of 400 g L−1 lactose solutions (�), 50 g L−1 lactose solutions (�), and activity
buffer  (�).

reported that this effect was probably due to the basic nature of
the amino functionalized surface of the magnetic beads. Similarly,
ˇ-d-galactosidase from K. lactis immobilized by adsorption on a
mixed-matrix membrane containing zirconium dioxide presented
a shift in the optimum pH from 6.5 to 7 (Jochems et al., 2011). The
authors suggested that this change was  due to the microenviron-
ment in the vicinity of the membrane. The support, indeed, can
change the pH value around the enzyme catalytic site by chang-
ing the concentration of the charged species (e.g. hydrogen and
hydroxyl ions) in respect to the bulk solution (De Maio et al., 2003).

Changes in activity related to temperature of immobilized ˇ-d-
galactosidase were investigated in the range of 10–70 ◦C (Fig. 1B).
The free and immobilized forms presented maximum activities at
45 ◦C, while the immobilized enzyme was more active in a wider
range of temperatures. Similarly to the changes in pH, the wider
range of temperatures with higher activities can be attributed to
the effect of immobilization, the protection offered by the chi-
tosan macroparticles to the enzyme. Song, Lee, Kang, and Kim
(2010) reported similar results and a broader range of activity was
observed for pH and temperature after immobilization of K. lactis
ˇ-d-galactosidase pretreated with lactose on the surface of silica
gel using glutaraldehyde as linker. According to Pereira-Rodríguez
et al. (2012), the tetramer of ˇ-d-galactosidase from K. lactis is an
assembly of dimers, with higher dissociation energy for the dimers
than for its tetrameric structure, causing an equilibrium between
the dimeric and tetrameric forms of the enzyme when in solution.
The binding of the enzyme to the support can prevent the dis-
sociation of subunits of either forms (Fernandez-Lafuente, 2009),
consequently causing it structure to be stabilized. Although immo-
bilized enzymes are heterogeneous catalysts, the widened range
for pH and temperature can configure another advantage of using
immobilized enzymes over the use of their free forms by allowing
their applications under different conditions, improving industrial
uses.

3.1.2. Thermal stability
Thermal  inactivation is an important, limiting factor for pro-

longed use of enzymes in industrial processes. Inactivation in the
presence of substrate and products (reactive conditions) should be
evaluated, since this reflects the reaction in an enzyme reactor.
Fig. 2 depicts the thermal stability of chitosan-immobilized ˇ-d-
galactosidase under different reactive conditions (substrate type

◦
and concentration) at 55 C.
Activity  of the immobilized enzyme under nonreactive con-

ditions (in activity buffer) was  approximately 43% after 5 min of
incubation at 55 ◦C, which is consistent with the fact that K. lactis
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Fig. 4. Effect of the flow rate on the lactose hydrolysis by chitosan-immobilized
ig. 3. Thermal stability at 55 ◦C of chitosan-immobilized ˇ-d-galactosidase in the
resence of mixture of d-glucose and d-galactose (each 200 g L−1) (�), 200 g L−1 d-
alactose solution (�), and 200 g L−1 d-glucose solution (�).

-d-galactosidase is relatively thermolabile. According to Jurado,
amacho, Luzon, and Vicaria (2004), experiments conducted at
0 ◦C and 35 ◦C, it was found that this ˇ-d-galactosidase preserved
ractically all its activity after 3 h of reaction, while at higher tem-
eratures it was virtually deactivated.

In order to assay operational conditions, it was evaluated the
hermal stability of the immobilized enzyme in the presence of lac-
ose 50 g L−1, which is the average concentration of lactose present
n milk and whey. In the same way, thermal stability test was
arried out in presence of whey and lactose 400 g L−1 (the con-
entration used in the GOS synthesis). The results showed that in
0 g L−1 of lactose the enzyme retained around 51% of its activity
fter 15 min  at 55 ◦C, while in 400 g L−1 the activity was  consider-
bly improved (100% after 15 min  and approximately 55.8% after

 h of incubation) at the same temperature, suggesting that lac-
ose stabilizes the enzyme. According to Jurado et al. (2004), Jurado,
amacho, Luzon, and Vicaria (2005) and Ladero, Santos, and Garcia-
choa (2006), lactose (and possibly d-galactose) can stabilize the
verall structure of the enzyme by the coupling of the substrate
nto the active site.

The  products generated during the reaction can also play some
mportant role in the enzyme stability. Binding reaction products
nd other ligands to a protein is a simple way to stabilize its confor-
ation, which is a widely used strategy for stabilizing proteins and

nzymes during various operations including enzyme purification
nd enzyme immobilization (Illanes, Altamirano, & Zuniga, 1996).

Then, in an effort to accurately investigate the effect of substrate
nd products in the enzyme stability, the thermal stability in the
resence of products (d-glucose and d-galactose) was  analyzed. As
an be seen in Fig. 3, when only d-glucose (200 g L−1) was  present,
he chitosan-immobilized ˇ-d-galactosidase presented around 50%
f its activity after 11 min  of incubation; the stability was  not signif-
cantly increased compared to the inactivation under nonreactive
onditions (4.8 min). For K. lactis ˇ-d-galactosidase, d-glucose is
nown to be a non-competitive inhibitor (Kgli

i = 794 mM)  (Cavaille
 Combes, 1995), which means that lactose and d-glucose will

ndependently bind at different sites of the enzyme.
When inactivation was performed in presence of d-galactose

200 g L−1), the ˇ-d-galactosidase residual activity was  about 47%
fter 30 min  of incubation, which was higher than that obtained
hen d-glucose was used in the same concentration. d-Galactose

s a competitive inhibitor for this enzyme (Kgli
i = 42 mM)  (Cavaille
 Combes, 1995) and has a much higher inhibitory power than
-glucose. Since the only difference between d-glucose and d-
alactose lies on the binding site to the protein, it can be suggested
hat the protector effect promoted by d-galactose comes from
ˇ-d-galactosidase under different conditions: whey at 37 ◦C (�), 50 g L−1 buffered
lactose  solution at 37 ◦C (�), whey at 7 ◦C (�), and 50 g L−1 buffered lactose solution
at  7 ◦C (�).

the binding of this sugar to the active site of the enzyme. It was
recently reported the three-dimensional structure of K. lactis ˇ-
galactosidase and the complex structure of the molecule when
d-galactose is at the active site, showing that a tryptophan residue,
responsible for the binding of d-glucose in the active site of ˇ-
galactosidase from E. coli, is missing from the active site of K. lactis
ˇ-galactosidase (Pereira-Rodríguez et al., 2012).

When inactivation was carried out in the presence of d-
glucose and d-galactose, both at 200 g L−1, the enzyme stability was
improved with 47% of activity still remaining after 180 min  of incu-
bation at 55 ◦C, suggesting the stabilizing effect of osmolytes such
as sugars, amino acids, and trehalose (Sampedro, Cortes, Munoz-
Clares, Fernandez, & Uribe, 2001). Stabilization would be achieved
by an increase in the surface tension of the solution, causing the
exclusion of the saccharides from the protein domain and reduc-
ing backbone movements away from the fully folded protein form
(Bromberg, Marx, & Frishman, 2008; Butler & Falke, 1996; Lin &
Timasheff, 1996; Sampedro et al., 2001). The stabilizing effect also
depends on the type of carbohydrate used (Sola-Penna & Meyer-
Fernandes, 1998).

The  analyze of the sugars during inactivation in the presence of
lactose 400 g L−1 showed that lactose was  present during all exper-
iment, with the enzyme probably constantly hydrolyzing lactose
up to the moment that it was  inhibited by the high concentration
of produced d-galactose. After 54 h of inactivation at 55 ◦C, 63 g L−1

of lactose still remained.

3.2.  Effect of flow rate on lactose hydrolysis in a packed-bed
reactor

Since lactose proved to have the major protecting effect on
this ˇ-d-galactosidase, operations under conditions in which the
enzyme is constantly catalyzing lactose hydrolysis and avoiding
product inhibition could be interesting to test. The use of PBRs
for lactose hydrolysis and GOS synthesis could be advantageous
over batch operations. Substrates (lactose solution or whey) were
continuously pumped at different flow rates (0.26–3.4 mL min−1)
through the PBR. Fig. 4 shows the lactose conversion at 37 ◦C and
7 ◦C for whey and lactose solution at various flow rates.

At 37 ◦C, for both lactose solution (50 g L−1) and whey, more than
90% of lactose hydrolysis was reached at a flow rate of 2.6 mL min−1
(residence time, 11.3 min). Ansari and Husain (2010), reported 95%
of lactose hydrolysis during a 10-days steady-state operation of
a PBR filled with ˇ-d-galactosidase adsorbed on concanavalin A-
cellulose. However, their operation was conducted at slow flow
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Fig. 6. Effect of flow rate on GOS productivity. Experiments were performed using
400 g L−1 buffered lactose solution, pH 7 at 37 ◦C.
alactosidase, using 400 g L−1 buffered lactose solution, pH 7 at 37 ◦C. d-Glucose
�),  d-galactose (�), lactose (�), and galactooligosaccharides (�).

ate of 0.166 mL  min−1. A pilot scale module (108 cm × 14 cm),
acked with K. lactis ˇ-d-galactosidase immobilized on cotton fab-
ic, resulted in 30.23% hydrolysis of lactose from milk, at 37 ◦C and
esidence time of 11.8 min  (Li, Zhou, & Chen, 2007).

Increasing  the substrate flow rate to 3.4 mL  min−1 caused the
actose conversion to drop to 86 and 80% for lactose solutions
50 g L−1) and whey, respectively. This result can be explained by
he short residence time of the substrate inside the reactor.

In  order to simulate industrial conditions and reduce the pos-
ibility of microbial contamination, lactose hydrolysis was also
arried out at 7 ◦C. As expect, the degree of lactose hydrolysis was
educed for all flow rates when compared with the reaction at 37 ◦C.
or lactose solution (50 g L−1), approximately 90% of lactose was
ydrolyzed at a flow rate of 0.26 mL  min−1, while for whey 72% of
ydrolysis was achieved under same conditions. It is possible that,
t 7 ◦C, the difficulty of mass transfer caused by whey proteins is
ore pronounced than at 37 ◦C, which explain the lower lactose

onversion observed.

.2.1.  Continuous synthesis of galactooligosaccharides
Fig. 5 shows the changes in the concentration of d-glucose,

-galactose, lactose, and GOS as a function of the substrate flow
ate, under steady state operation. The maximum GOS concen-
ration of 26 g L−1 was achieved using a substrate flow rate of
.1 mL  min−1 (residence time of 9.4 min), corresponding to a yield
f 6.5% in GOS and 58% of lactose conversion. At lower flow rates
1–2.6 mL  min−1), lower concentrations of GOS were obtained,
robably due to the hydrolysis of the synthesized GOS, because
he longer residence times (11–29 min) allows for its subsequent
ydrolysis by the enzyme. Higher than 3.1 mL  min−1 flow rates
5–15 mL  min−1) causes the residence time to be insufficient for
est synthesis, reducing GOS concentration.

Comparatively, Nakkharat and Haltrich (2007) reported 16 g L−1

f GOS in a packed-bed reactor containing ˇ-d-galactosidase from
alaromyces thermophilus immobilized on Eupergit C, with 50% lac-
ose conversion and 200 g L−1 of initial lactose concentration. Neri
t al. (2009), worked with ˇ-d-galactosidase from Aspergillus oryzae
mmobilized on magnetic polysiloxane-polyvinyl alcohol, obtain-
ng 103.4 g L−1 of GOS, with lactose conversion of 47% and 500 g L−1

f lactose, in a batch reaction. Although K. lactis ˇ-d-galactosidase is
nown to show low transgalactosylation activity and thermal sta-

ility during the production of galactooligosaccharides compared
o A. oryzae enzyme (Park & Oh, 2009), when applied in a PBR,
he immobilized enzyme was able to work continuously, with high
roductivities of galactooligosaccharides.
Fig. 7. Operational stability of the PBR filled with chitosan-immobilized ˇ-d-
galactosidase, operated continuously using 50 g L−1 buffered lactose solution, pH
7 at 37 ◦C and flow rate of 2.6 mL min−1.

The GOS productivity in the PBR related to the operational
flow rate is shown in Fig. 6. It increased to a maximum of
484.5 g L−1 h−1 at 15 mL  min−1. Comparatively, Shin, Park, and Yang
(1998), reported oligosaccharide productivity of 4.4 g L−1 h−1 with
lactose solutions of 100 g L−1 in PBR with chitosan-immobilized
Bullera  singularis ˇ-d-galactosidase (970 U g−1 resin). The higher
GOS productivity so far reported, 6000 g L−1 h−1, was  obtained by
Albayrak and Yang (2002), using A. oryzae ˇ-d-galactosidase immo-
bilized on cotton cloth by polyethyleneimine and applied in a PBR
fed with lactose (400 g L−1) at 2.5 mL  min−1.

3.3.  Stability of immobilized ˇ-d-galactosidase in the packed-bed
reactor

The  operational stability of a system is an important parameter
in an industrial process, since it directly affects the costs (Nie, Xie,
Wang, & Tan, 2006). Fig. 7 shows the operational stability of the
immobilized enzyme in the PBR. The reactor was operated contin-
uously at 37 ◦C at a flow rate of 2.6 mL  min−1, mantaining 90% of
lactose hydrolysis for longer than 15 days.

4. Conclusions
One of the main objectives in immobilized enzyme technology
is to increase the enzyme stability, thus allowing the obtained
derivative to be repeatedly used, inclusive at different process
conditions, such as in continuous reactors. The use of PBRs for
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actose hydrolysis and GOS synthesis may  replace batch reactors,
ith several cost reductions and operation advantages, including

educed reaction inhibition by substrate and products. In the
resent study, using chitosan macroparticles, a relatively low cost
nd easily accessible support, improvements in the operational
ange of pH and temperature of the enzyme were observed as a
onsequence of the immobilization process. Furthermore, for the
rst time it was clearly shown that, the combination of continuous
ow with a high content of lactose can sharply increase the sta-
ility of K. lactis ˇ-d-galactosidase. Thus, Maxilact LX 5000, which

s generally used for lactose hydrolysis as a free enzyme, could be
dvantageously employed in its covalent immobilized form to the
ydrolysis of lactose and production of GOS in a continuous PBR.
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