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Abstract

This paper exploits the notion of “unfinished site”, introduced by Katajainen and Koppinen (1998) in the analysis
of a two-dimensional Delaunay triangulation algorithm, based on a regular grid. We generalize the notion and its
properties to any dimensign> 2: in the case of uniform distributions, the expected number of unfinished sites in
ak-rectangle is OQV1~1/%). This implies, under some specific assumptions, the linearity of a class of divide-and-
conquer schemes based on balanced k-d trees.

This general result is then applied to the analysis of a new algorithm for constructing Delaunay triangulations
in the plane. According to Su and Drysdale (1995, 1997), the best known algorithms for this problem run in linear
expected time, thanks in particular to the use of bucketing techniques to partition the domain. In our algorithm, the
partitioning is based on a 2-d tree instead, the construction of which &kgdog N) time, and we show that the
rest of the algorithm runs in linear expected time. This “preprocessing” allows the algorithm to adapt efficiently
to irregular distributions, as the domain is partitioned using point coordinates, as opposed to a fixed, regular basis
(buckets or grid). We checked that even for the largest data sets that could fit in internal memory (over 10 million
points), constructing the 2-d tree takes noticeably less CPU time than triangulating the data. With this in mind, our
algorithm is only slightly slower than the reputedly best algorithmsimiformdistributions, and is even the most
efficient for data sets of up to several millions of points distributedlursters 0 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction
1.1. General outline

The paper is divided into four distinct parts (notwithstanding a rather technical appendix at the end):
(1) Introduction.
(2) Study of a general probabilistic result on multi-dimensional Delaunay triangulations.
(3) Application to the planar case.
(4) Perspectives and conclusion.

1.2. A short survey of the past

The Voronoi diagram of a set &¥ distinct points in the plane is a well-studied problem [3], for which
Shamos and Hoey published the first optindatide-and-conquessolution [31]. Since the Delaunay
triangulation of the same set is(®)-reducible from the former structure by duality, the authors thus
proved that the (indirect) construction of the latter could be performedl(iN log N), which isworst-
caseoptimal under theeal-RAMmodel of computation. The first direct worst-case optimal 2D-Delaunay
construction divide-and-conquer algorithm was published by Lee and Schachter [23], to be later refined
by Guibas and Stolfi [20].

In 1984, Ohya et al. [21] proved thexpectedrunning time of these divide-and-conquer algorithms
to beQ(N log N) when the sites are uniformly distributed in the unit square. However, several authors
studied the possibility to break that bound: in 1984, Ohya et al. themselves [21] and Maus [27] published
independenfO(N), O(N?)] expected/worst-case methods based on the so-dalleketing technique
(partition of the domain intaV cells). In 1987, Dwyer published afO(N loglogN), O(N log N)]
expected/worst-case variant [13] of Lee and Schachter’s algorithm, in which the domain is partitioned
into N/logN cells, that are triangulated, the triangulations in each row are then combined, and the
resulting triangulations are combined together.

In their 1988 paper [22], Katajainen and Koppinen modified Dwyer’s algorithm to achieve linear
expected time (partition int®y cells, merge of cells in a quadtree-like order). Their average-case analysis
exploited the notion olunfinished sitesn a rectangular domain. Finally, Dwyer published the first
k-dimensional method with expected linear behaviour in 1991 [14], an incremental algorithm also based
on buckets.

1.3. Afiner outline of the paper

Section 2 goes one step further in this progression: after stating some definitions and general
assumptions on the distribution of sites (Section 2.1), we generalize the notion of unfinished site to any
dimension (Section 2.2), and we establish probabilistic results in the case of quasi-uniform distributions:
probability for a site to be unfinished, expected number of unfinished sites in a hyperrectangle
(Sections 2.3-2.5). The upper bounds we provide are valid in any dimension, and the constants we obtair
for the 2D case are tighter than the original ones established by Katajainen and Koppinen.

Next, we present a divide-and-conquer scheme based on a (balanced) k-d tree [5] (Section 2.6), anc
show that, in the case of a quasi-uniform distribution in a hypercube, the expected running time of
the whole multi-dimensional merge phase is linear, if merging two subsets is assumed to take time
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proportional to the number of unfinished sites they contain. These results may be used to analyze the
running times of some classes/eflimensional divide-and-conquer algorithms, for which the notion of
unfinished site has a meaning, and are hence more or less directly related to the Delaunay triangulation.

In Section 3, this general result is used to analyze a new algorithm to construct the Delaunay
triangulation in the plane [25,26] (Section 3.3), that is shown, in the first author's Ph.D. Dissertation
[24], to be among the most efficient. Section 3.4 then gives experimental results on this algorithm, and a
comparison with the best known algorithms, based on Su and Drysdale’s study [35,36].

The paper closes on potential extensions of the results presented in this paper, and other relatec
problems (Section 4).

2. A probabilistic result
2.1. Quasi-uniform assumption

Throughout this paper, we shall consider setgvopoints (also callediteg in a Euclidean space of
dimensionk > 2, and we shall assume the sites tagb@si-uniformlydistributed in a unit cubg/,. This
implies the existence of two strictly positive real constants< ¢,, and of a probability density’ such
that

{V(xl,Xz,...,xk)euk, c1 < f(x1,x2, ..., %) < €2,
V(xy, X2, oo X)) €U, fx1,x2,...,x¢) =0.

Accordingly, the probability for one given site to lie in domdhnis [, f. Uniform distribution may be
seen as a particular case of the more general definition of quasi-uniform distribution.

2.2. Unfinished sites

The notion ofunfinished sitevas introduced by Katajainen and Koppinen [22] for the analysis of
an algorithm to construct Delaunay triangulations in the plane, that partitions the domain according to
a regular grid. Consider, for instance, the planar Delaunay triangulddi®ns,), of the point setS;,
subset ofS (refer to Fig. 1). Several sites ify have the same adjacency list in the whole Delaunay
triangulation,DT(S), as in sub-triangulatio®T(S;): such sites are said to imishedin DT(S;) with
respect tdT(S). By opposition, the sites (white circles in the same figure) that receive or lose edges are
said to beunfinished(in DT (S;) with respect tadDT(S)). Intuitively, unfinished sites cannot lie very far
from the section of convex hull boundary BfT (S;) facing the complement df; in S. In the sequel we
shall give an upper bound on the probability for a site in a rectangular domain to be unfinished, in the
case of a quasi-uniform distribution. This upper bound increases as the site gets closer to the boundan
of the rectangle that contains it. We shall also give an upper bound on the expected number of unfinished
sites inside a rectangular domain.

We now present a generalization of these notions to any dimension, and their mathematical
formulation.DT(S) will denote thek-Delaunay triangulation of a set of sitds

Definition 2.1. Let T(S1) and T (S,) be the triangulations of sef and S,. We shall writeT (S1) <a
T (S,) wheneverS; C S, andT (S1) contains each edge iR(S,) the endpoints of which belong 1.
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® Finished site in DT(S1) with respect to DT(S).

© Unfinished site in DT(Sy) with respect to DT(S)

Fig. 1. Unfinished sites in a sub-triangulation.

Definition 2.2. Let T(S1) <a T (S») be two triangulations ansl € S;. We say that site is finishedin
T(S1) with respect tdl'(S,) if the set of edges adjacentdan T'(S;) andT'(S») coincide; otherwisey is
said to beunfinished(in 7'(S;) with respect tar'(S>)).

The first definition induces a partial order in the set of triangulations. NoticeTth&f) <A 7(S2)
does not imply that all edges IA(S;) belong to7 (S>). Also note thaDT(S;) < DT(S>) is equivalent
to §; C Sy if S1 has a unique Delaunay triangulation.

Proposition 2.3. Let T(S1) <a T(S2) be two triangulations. A site € S; is finished IinT (S;) with
respect tar (S,) if and only if S; contains the endpoints of all edges adjacent to 7'(S,).

Proof. Let (s, p1), ..., (s, pn) be the edges adjacent4an T(S,). If s is finished, therp;’s endpoints
are inS; by definition. Conversely, suppose thats endpoints are ir; but thats is not finished. Then,
(s, p),..., (s, pn) are inT(Sy) becauser (S1) <a T(S2), but T(S;) contains another edgg, r), at
least. Since the domain limited (S,) is convex, it contains edge, r) completely. Hences, r)\{s}
crosses either:

e one of the opeli-triangles fromT (S,) that share as vertex; since nb-triangle from7 (S,) contains
any site in its interior, none contaims and hence(s, r) crosses oné-face opposite; however, this
is impossible, since this-face also belongs td (S;), which is a triangulation,

e Or onek-face containings, which is not possible since thisface also belongs t@ (S;), which is a
triangulation. O

Corollary 2.4. LetT (S1) <a T(S2) <a T(S3) be three triangulations. A sitee S; is finished inT (S;)
with respect tal' (S3) if and only if it is both finished irf" (S;) with respect tar' (S,), and inT'(S,) with
respect tal'(Ss).
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Proof. That the latter implies the former is a consequence of Definition 2.2. Conversely, supjzose
finished inT (S;) with respect tar' (S3). If (s, ¢) is one edge irT'(S3), g € S1; sinceq € S,, and, using
Proposition 2.3, we may conclude thais finished in7T (S,) with respect tor'(Ss). Finally, because of
Definition 2.2,s is also finished irf" (S;) with respect tar'(S,). O

2.3. k-partition around an unfinished site

In order to compute probabilities related to a given site, it is necessary to ddiletd geometric
“paving” around this point. The volume of each paving block will then represent a probability, up to a
multiplicative constant.

Lemma 2.5. If 5 is an unfinished site ik-rectangleR,, at distancer from the boundary ofR;, then
there is ak-ball B, with radiust /2, centerp at distancer /2 from s, and no sites in its interior.

Proof. Referring to Fig. 2, ifs is an unfinished site ik-rectangleR,, there is a sitey belonging to
U \R; such that(s, ¢) is a Delaunay edge 1, . Sinceg lies outsidec-rectangleR,, the length of(s, ¢)
is greater tham. And since(s, ¢) is a Delaunay edge, we may find@all B3 with no sites in its interior,
ands andgq on its boundary. The diameter of thisball is thus greater than Let ¢ be the center 0B3,
and 3, be thek-ball with centerp lying on segmenfsc| at distance /2 from s (cf. Figs. 2 and 3)B; is
contained inB33, hence3; has no sites in its interior. O

Corollary 2.6 (Refer to Fig. 3).In the setting of Lemma 2.5, 184 (s, 1) be the ball centered in with
radiusr; < ¢, andC(sp, 0) be the cone with apex symmetry axis sp, and angle= arccosr,/r). Then,
Cp, =C N By is empty of sites.

R

Fig. 2. Ball B2 has no sites in its interior.
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cone Cg, (sp,0)

Fig. 3. Cone&p, (sp 6) has no sites in its interior.

Proof. Let m be any point on the intersection of the boundaries of b&llsand 13,. Let o be the
orthogonal projection ofz on segmen{sp], » diametrically opposites on ball 3,, and letd be the
angle formed by segmeniiso] and[sni.
sm r r1
cos) = —=— = 6 =arccos—.
sr ¢ t

The cone portior®€, (sp, 0) is included inB,, henceCp, (Sp, 6) is empty of sites. O

Notation conventionWe shall write{p1, p», p3) to denote the angle made by the three pojntsp, and
p3, With p, at the apex.

Lemma 2.7. Consider a hypercube inscribed in a b#\ (s, ;) with centers and radiusr,. Each face
F of the hypercube is partitioned into “cells(i.e., (k — 1)-cube$ by all the hyperplanes parallel to
otherfaces of the hypercube and containing the symmetry center offfatet us call pyramidP the
intersection with ballB; of the cone issued fromy and having one of the above “cells” as section. We
have

(1) ball By is partitioned into(k2*) pyramids that all have the same volume,

(2) VM1, Mz € P\{s},

k4+171k+11\ Y2
(=)

Proof. (1) In k-space, a hypercube is a regular polyhedron @) faces, that may be inscribed in a
k-ball, and this in any dimension [6,7]. Each faeundergoegk — 1) divisions and is thus decomposed
into 21 “cells” (i.e., (k — 1)-cubes). Hence, there aré 2 2¢~1 = k2* such cells, on each of which

one pyramid may be constructed. Thus, Wallis partitioned into(k2) pyramids, that, for symmetry

reasons, all have the same volume:

V(Bl) . T[k/zrllc

VP) =5 T kX (k/2+ 1)

1)
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Dimension 2 Dimension 3
(a) (b) (c)
/. ;I “cell” : . )
/ \ “cell” ' ; “ ' ' N
: | : : C
i : C A : (
I ' Do ' ¢
- Vo : o
/ } 1k
Bl /| B S s i D
S D ; : /ﬁ)i
F ¥ ; .
/’ A 'l, / !
R /l/ _________ - _/ --137
A ’ II ,Il
pyramid pyramid

Fig. 4. Decomposition of a ball into pyramids.

/ $(0,0,0)
T , A(1,0,0)
T e pyramid (s,A,B,C,D) B(1,0,1)
T —1C C(1,1,1)
: N D(1,1,0)
r A
LAY o cos{A,s,C) = % = (A,s,C) ~ 54.740
V _ 1 — 600
/1 ------------- COS<B757D>7§:><B7S7D>760

/l <B7 s7D> > <A7S7C>

7

Fig. 5. Maximum angle at the apex of a pyramid.

In dimension 2 (cf. Fig. 4(a)), each side of the square is divided into two equal segments, which yields
8 cells, each supporting an angular-sector pyramid. In dimension 3 (cf. Fig. 4(b)), each face of the cube
is divided into 4 equal squares, which yields 24 cells, each supporting one pyramid (cf. Fig. 4(c)), etc.
(2) Let (s,71, ..., 1) be an orthogonal system of coordinates, with axes perpendicular to the faces of
the hypercube and norms equal to half the side of the hypercube. Without loss of generality, consider
the “cell” contained in the hyperplane, = 1 and such that the coordinates of all of its vertices are
nonnegative. LeP be the pyramid associated to this cell (refer to Fig. 5 for dimension 3).
Let My (g, ap, az, ..., ar) andMy(B1, B2, Ba, ..., Bi) be any two points ifP\ {s}. We wish to compute
the maximum of angléM,, s, M,). To that effect, it suffices to le¥Z; and M, span all vertices of the
“cell”, section of the pyramid. This implies that = 8, = 1, while all otherw;’s and ;s are either 0 or
1,i €[2k].



76 C. Lemaire, J.-M. Moreau / Computational Geometry 17 (2000) 69—-96

Whatever the choice faf; and M5, there are, say; € [1, k] coordinates that are 1 in both (at least 1,
sincea; = By =1),v € [0,k —u] that are 1 inM; and 0 inM;, and finallyw € [0,k —u — v] that are O
in M, and 1 inM> (leaving out those that are 0 in bath).

Hence, the maximum gfM, s, M) corresponds to the minimum of

laﬁl

\/ﬁ S NETN RS o)

The numeratory, may take integral values in the rangk k]. Now, suppose: > 1 is fixed. Since
w € [0,k —u —v], w~ u -+ wis a strictly increasing function with maximum valde— v, and the
maximum ofv ~ /u + v4/k — v is reached fow = | (k — u)/2].

Finally, since

CO&Ml, S, M2

u
T T w2k [ w2
is an increasing function ofi, k] that reaches its minimum fer= 1, the minimum of (2) is
1
VI+Lk=-D/2Vk -1k =1/2]
After unifying cases odd and even, we find

1
Lk +1)/2|Y2[(k +1)/21Y/2
This result may be checked in the plane and in 3-space, in Figs. 4 and 5, respectively.

VM1, My € P\{s}, COSMz,s, Ms) >

®3)

Notation conventionin order to simplify the expression of subsequent resultg; letpresent expression
(Ltk 4+ 21)/2][(k + 1)/21)">.

Corollary 2.8. If s is an unfinished site insiderectangleR,, and at distance from its boundary, then
we may find a fixed-partition of the neighbourhood afwith (k2*) k-cells of equal volume,
k/2pk
k2*ekrk/2+ 1)
and such that at least one of these partitionirrgells is site-free.

Proof. In the setting of Corollary 2.6, let us fix the radius of b&jl to r; = ¢/¢. B, is partitioned into
pyramids as explained in Lemma 2.7. lgebe the intersection between segmpsg and the boundary
of ball B;. There exists one pyrami; such tha{sqg] C P;. Then, for allM in P;,
1 rq ry
MeP; = cosg,s,M)=> w1 = Meclgl(sp arccos;).
k

This implies that

P; CCp <sp arccosrt—1>.
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As the portion of con€p, is site free, so is the paving blodk;, with volume
k/24k

k2kckrk/2+1)°

2.4. Probability for a site to be unfinished

The paving we have constructed around sitdlows us to derive an upper bound on the probability
for sto be unfinished.

Lemma 2.9. Assume the probability densiffiyto be quasi-uniform with bounds andc,, and consider
rectangleR;, C U, in DT(S N Ry) <a DT(S). Lets € SN R, be a site at minimal distancefrom the
boundary ofR;, and letC; be the condition that is unfinished in DTS N 'R;) with respect to DTS),
then

k/2 .k N-1

PHC} < k2" {1_ ar ]
k2kgkr(k/2 + 1)

Proof. Consider ballB;, with centers and radius /¢, paved by pyramid®;, j € [1,k x 2¢]. Using

Corollary 2.8, conditiort’; — thats is unfinished irDT (S N ) with respect tdT(S) — implies condition

C, —that at least one of the open partitionikgells P; is void of sites. Hence,

k2K 2k N-1 . cln"/ztk N-1
P <P < PHSNP: =@ = 1- <k2°|1-— )
fC1} {Ca} ; HsNP; =0} ;( /f> { k2XeF T (kj2+ 1)

J

using propertyf (x1, xa, ..., x¢) = c1. O
2.5. Expected number of unfinished sites

We are now ready for the main result in this section: a bound on the expected number of unfinished
sites in a hyperrectangle.

Theorem 2.10. In the setting of Lemma 2.9,8}, is the surface oR,, and E (R;) is the expected number
of unfinished sites iR, then

N ¢ k2 okl (k/2+ )Yk
YN Y JT '
Proof. Letay, as, ..., a; be the lengths of the sides bfrectangleR . Leta; be the length of the smallest

side of R,. Consider the elementary volum¥ comprising the points oR, at a distance betweerand
t + dr from the boundary ok, (with 0 < ¢ < a;/2) (Fig. 6). Let us callS; the exterior surface of;,

k k
S :22(1‘[(@. - 2t)> <& =2 []a.

J=1Ni#] J=li#j
which implies
V, < S, dr < S; de.

E(Ry) < 4)
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ag

§ dt

Fig. 6. Expected number of unfinished sites ik-gectangle.

The probability for a given site to belong 19 is

/ f< < S dr.

Using Lemma 2.9, we have the following estimate:

k/24k

{ C1TT

N-1
Sy dt
K25 AT (k)2 + 1>} €2k

(/T JA%/e1) ) (G (kT (k/2+1)) Y/

k+1 1/k
k2 fk(kp(k/2+1)) (l—xk)N_ldx,

et N

with the change of variable

1
Clﬂk/Z /k

=1
k2kkr(k/2+ 1)

Sinceq; <1, c; < 1andk > 2, we may write

E(Ry < N-2 5 KLk (k/2 4 117K /1 (1—x"
k) X B k -
A/ C1 ﬁ 5

dx.

The integral on the right-hand side may be bounded above ¥{V1(a rather technical result proven in

Appendix A). Hence,
N ¢ 2. k2k+l§. kF<E+1>]l/k—O( N >=O(Nl—1/k)' 0
YN Ya T m 2 VN f

Note that the constant factor in this bound is tighter than the one obtained by Katajainen and Koppinen
in the plane [22].

E(Rk) X
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2.6. Average-case analysis of a clas&afimensional divide-and-conquer algorithms using the notion
of unfinished sites

In this subsection, we show how the previous result may be exploited to analyze certain classes
of multi-dimensionaldivide-and-conquemlgorithms. In what follows, we shall use the generic term
“conquer” for thek-dimensional generalization of the now well-understood merging process in the plane.
Intuitively, merging here means: take two subsets separated by a hyperplane and of about the same siz
and combine them into a unique one. In the sequel, we simply assume that such a process is linear in th
number of unfinished sites in the two subsets.

Please refer to Figs. 7 and 8 for the following result and its proof.

Theorem 2.11. Let S be a set ofV sites distributed in &-dimensional unit hyperculdg,, according to
a quasi-uniform density probability’, with boundsc; and ¢, (c1 < ¢;). Consider the following general
scheme

Divide step: divide U, until reaching cells, each containing one single site, using a balariced
tree[5];
Merge step: then re-construct/, through successive merges in reverse of@déthe divisionk

If merging two subsets takes time proportional to the number of unfinishedwitesespect td/,), then
the wholemergephase of the algorithm will be proportional 9.

Proof. Using Theorem 2.10, the running time of the whoiergephase will be proportional to
N ¢ k2L /Tk+D/21[(k + /2] ¥kT (k/2+ 1)

X ®)
JN Yeq JT
cube I DIVIDE CONQUER,
along i1
level 1
along i
level 2 [ [
. along i3
level p-1 I l l ‘ l ‘ I ‘
" along ip
level p [ T
along ipy1

B k-rectangle

Fig. 7. Tree representation of divides and conquers according to a balanced k-d tree.
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Slice S, unit hypercube U,

Np,j+1 =4

— : Tj+1

<—— k-rectangles merges

Fig. 8. Merges at levep: sliceS,, ; with all its (shaded) hyperrectangle constituents.

wherey represents the sum of the surfaces okakkctangles involved in the merges. We shall decompose
x into sub-sumsy,,, one for each merge level (Fig. 7).

Let (71, ...,1;) be an orthonormal basis, such that each axis is orthogonal to one hypertacérog
k-d tree produces a partition bf, with N k-rectangles.

Definition 2.12. Let us define sliceS, ; relative to directions; as one subset of the hyperrectangles
partitioning U, at mergep, such that the orthogonal projection 6%, ; on either hyperface o
orthogonal ta; constitutes a partition of this hyperface (Fig. 8).

During the construction of the k-d tree, the division of space — orthogonally to one direction — doubles
the number of slices relative to this direction. Moreover, note that the whole rectangular partitign for
may be itself partitioned into slices with the same direction, whatever this direction. Let ug,cathe
number of slices relative to directian at level p.

A simple induction argument yields

N, ;= 21(p=j+D/kT,
for each merge leveb, except the last — for which the right-hand side quantity is only an upper bound.

Let us now evaluatg, by groupingk-rectangles into slices, and this, relatively to all directions. Since
the surface of any hyperface &f is 1, the overall sum is equal tOZZ'jzl N, j, whence

k
1 Xp < S0 21D/  gpl/h1,
2
j=1

Summing over alk merge-levels yields
l 1 h
=32

=1

h h [h/k]
Xp < Zkz[p/ﬂ :kZpr/kW < k(k Z 2w> < k220h/K1+1 < 4) 2/ k-1
p=1 p=1 w=1
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Since the division scheme is supported by a balanced k-d tree, its own hagstich that 271 < N <
2", and hence

VN > 207D S KL =y L BPV/N.

This implies that the average running time of the merge stépear in the number of unfinished sites.
It is, more precisely, proportional to

Y k3264 Ttk + 1)/2T[(k + 1)/2] Yk (k/2+ 1)
Kz JT ‘

Remark. (1) The above proof shows more generally that the “conquer” phask-dfraensional divide-
and-conquer algorithm is globally linear if merging tiwectangles is proportional 8~/ times the
sum of their surfaces.

(2) It would be very pleasant if one could use such a scheme to conipditeensional Delaunay
triangulations. However, as of writing, there is no known algorithm for merging efficiently two Delaunay
k-triangulations, withk > 2.

3. Application: 2D Delaunay triangulation in linear expected time after two-directional sorting

We now present the application of our results to the divide-and-conquer construction of the Delaunay
triangulation in the plane, starting with a few definitions, and a commented overview of the algorithm.

3.1. Notations and definitions

In this section, let be either O or 1, and/|, denote the corresponding coordinate of any pafnin
the Euclidean plang? (0 ~ abscissa, 1~ ordinate).<(,; will denote the lexicographical order relations
between element® andN of E? defined as follows:

M <[0] N = ((M[o] < N[o]) or (M[o] = N[o] andM[l] < N[l])),

(6)
M <[1 N = ((M[l] < N[l]) or (M[l] = N[l] andM[o] > N[o])).

If A andB are two subsets d&2, we shall write
A<[8]B < VaecA, beB, (l<[8]b.

If |S| represents the number of elements in anysset 2, we shall say that subse$s and S, form an
[¢]-divisionof S if and only if

(1) S1US, =S andS; NS, =47,

(2) 1511+ 182l =181, 0< 181] — 182l < 1,

(3) S]_ <[e] S2.

In other words S is divided into two equally-sized subsets around[#jemedian. (Recall that the median

of a setS for a given order relation may be defined as the elememstwith rank | (|S| + 1)/2] in this

order; hence, equally-sized should be understood as “with a maximum difference of 1 in the number of
elements”.) Fig. 9 illustrates typicéd]-divisions.
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(A <[0] B) (A <[1] B)

Fig. 9.[0]- and[1]-divisions.

3.2. Overview of the algorithm

In the functional pseudo-code belaiaset  stands for the data structure encapsulating the Delaunay
triangulations returned by functioi3elaunay , Elementary Delaunay = andMerge, andv-set
is any appropriate organization of the data points (vertices), for instance list, array and so forth. Finally,
note that functiorMerge accepts three arguments: the two triangulations resulting from recursion, and
a direction.

At each recursion, functiobelaunay is handed a coupléS, ), wheresS is the current data (sub)set
ande a division direction. In the initial call§ is the whole set, andis, say, O (i.e., the very first division
is made along a vertical line through themedian of the whole database).

Delaunay
output: t-set
input: v-set S, ¢ ¢€{0, 1}
local variables: v-set  Sq, S
if (1S]1<1)
return Elementary-Delaunay S);
else
(S1; S2) < [e]-division (S);
return Merge (Delaunay (S1,1— ¢), Delaunay (S,,1—¢),¢);

> Divide: If S has at least two elements, it js]-divided into S; and S,, which are recursively
triangulated using the orthogonal directidd,— ¢]. Fig. 10 illustrates this principle: the root node of
the recursion tree (top left) divides the whole set into two equally sized subsets on either side of the
[0]-median. The two nodes at the next level divide each such ‘half set’ into two equally sized subsets
below and above thgl]-median, and so forth until the bottom-most level (not shown), corresponding to
elementary cells, containing single points.

In the sequel, we shall assume that the operatida Jeflivision is an Q1) process: this may simply
be achieved by using an auxiliary linear space structure, say a 2-d tree, constructed irifinog ©)
during preprocessing, to store the nodes marking the successive divisions.
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]

Fig. 10. The (initial steps of the) divide phase. Fig. 11. The (final steps of the bottom-up) conquer phase.

> Conquer The two resulting Delaunay triangulations are then “merged” into a single one, that is
returned to the calling function. Note that the merge phase is akin to the one described in Lee and
Schachter’s algorithm [23]; however, the latter is essentially “one-directional”, while the direction of
the former is dictated by the value efat each recursion level. In other words, to evetj+division
corresponds aft]-merge. Fig. 11 illustrates this principle.

This is possible mainly because Lee and Schachter’s (divide-and-)conquer technique only requires tha
the two sets to be merged be separable by a line, whatever its direction. As already noted by Edelsbrunne
[15, p. 146], the merge is highly facilitated if we store, for each triangulation to be merged, the point
closest to the separating line, according to the curigrorder. Such “cardinal points” are the (at most
four) extrema for the two<(,, order relations, and may be kept/retrieved with constant resources. Note
that the definitions of the order relations (6) are slightly asymmetrical, to allow the same procedure
to work in both vertical and horizontal directions. Practical considerations for implementing this two-
directional merge function may be found in the first author’s Ph.D. Dissertation [24].
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3.3. Computational complexity
In this section, we consider the analysis of both the worst-case and average-case running times.

Worst-case complexityWhatever method is chosen to perform fhag¢divisions (preprocessing sort in
two directions and construction of an auxiliary 2-d tree, or median extraction at each recursion), the
overall running time of this process ®8(N logN). We also know [20] that the upper bound of the
overall algorithm presented above i$XDlog N), since merging two sub-triangulations takes linear time.
Let us now show that the worst-case running time of the merge st@gAislog N), using a method
similar to the one devised by Katajainen and Koppinen [22] to compute the worst-case running time of
their algorithm.
Consider the logarithmic spirdl, with equationo = a€”’ in polar coordinates, and nodé; the point

of the curve associated with. This spiral has many properties, among which (Fig. 12) are the following:
(1) The tangent il makes a constant angléwith line OM(tanV = 1/m).
(2) Letw be the center of curvature at poibt. The circle throughvf and centered iro contains the

entire section of” beforeM; the rest of the spirdbeyondM lies entirely outside this circle.
(3) The circleC; ; x through three points/;, M; andM; (i < j < k) on the spiral contains in its interior

all points of I" before M;; the entire section of” beyondM; lies outsideC; ; x.
(4) The previous properties imply that constructing the Delaunay triangulation of/&f s#tsitesM;,

1 <i < N, on a section of spiral, consists in linkind; to all other sitesM; (j # 1), then linking

each siteM;, 1 <i < N, to its successal; 1. Hence, if one adds td1 a site from the spiral before

M., the previous triangulation has no more valid triangle (Fig. 13).

osculating circle losarithmic osculating circle in Mo .logarith.mic
in M spiral spiral section
w
T +
cuirent Delaunay triangles
A%
O M
1
Fig. 12. Properties of the logarithmic spiral. Fig. 13. Triangulation of a logarithmic spiral

section: inserting a new site may cause the
destruction of all already constructed Delaunay
triangles.
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partition induced by the 2-d tree ,

/ spiral section

_A
-

=

Fig. 14. Spiral partitioning induced by a 2-d tree: merging two adjacent cells may cause the destruction of all
triangles in either.

Consider, for example, the logarithmic spiral with equationp = €.

x(6) = & cosh x'(0) = v2€& cos(6 + ),
{y(9)=e"sin9 - {y/(e)zﬁé’ sin(6 + ).
Consider the sdtM, };c[1.n) Of Sites with—7/4< 01 < --- <Oy <m/4,0onI}. Clearly, if 1<i < j <N,
M; <oy M; and M; <y M.

The 2-d tree will partition this set into cells, any two of which will be such that all the sites in the first
are beforethose in the second (with respect to relatieng, and <(4;), or elseafter (Fig. 14). Hence,
whenever a couple of such cells are to be merged, all the triangles from the first or the second must be
destroyed. This implies the following recurrence equation:

N
T(N) = 2T<E) +aN

for some strictly positive constant, which means that the algorithm has worst-case running time
Q(NlogN). Note that this lower bound may also be reached for sites on a conic, or various convex
curves.

Average-case complexityLet us suppose that sites are quasi-uniformly distributed over a unit square.
First note that even if we use a linear expected time sorting algorithm [12] (which is possible thanks to the
quasi-uniform distribution assumption), the construction of the 2-d tree rerfgiNdog N). However,

the expected running time of the conquer phase is improved. That the arguments of Section 2.6 hold for
this algorithm is justified by the following theorem.

Theorem 3.1. The worst-case complexity of the merge phéeelLee and Schachter’'s algoritnis
bounded above by a linear function of the number of sites receiving new edges.
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This theorem — proven by Dwyer [13], using a previous result by Guibas and Stolfi [20] — implies
that, in the case of a quasi-uniform distribution, the more general result of Theorem 2.11 yiel@8)an O
expected running time for the entire merge phase, in a straightforward manner (the interested reader will
find a specific analysis for the 2D case in [26]).

3.4. Results and comparison with other algorithms

3.4.1. Setting

We conducted experimental comparisons between our 2-directional, divide-and-conquer 2-d tree
based algorithm (nickname2d from here on) and the following divide-and-conquer algorithms for
constructing 2-d Delaunay triangulations in the plane:

Author(s) Merge type
LS Lee and Schachter’s [23] 1-directional
Dw  Dwyer [13] 2-directional, rows and then columns

KK  Katajainen and Koppinen [22] 2-directional, quadtree order

a2d Adametal. [2] 2-directional, (adaptive) 2-d tree order

To make those tests as straightforward and objective as possible, the programs were all coded by the
first author (aSETRA), using a uniform programming style. None was favored nor disadvantaged. In no
case did we try to solve imprecision issues, as such was not the problem we were addressing. We simply
used elementary techniques to prevent precision-related failures for all the algorithms (see also [37] for
another robust method for constructing Voronoi or Delaunay diagrams in the plane):

e The point coordinates are stored using single precision, while computations are performed in double
precision.

e A given determinant is reputed to be null if its computed value lies withip, +¢], wheree is a
data-dependent constant computed once and for all, given the maximum and minimum coordinates
accepted as input.

A more sustained use of our implementations would have required well-known imprecision solving

techniques (including theeba [10,28],LN [18] or CGAL libraries [17,30], or eveneA (the Lazy Exact

Arithmetic library that the second author had taken part in the developmentio$sa) [4,29]).

In addition to the actual running times, we have chosen to measure performance through the total
number of edges created by the programs, since the running time for the triangulation (exclusive of
sorting) is proportional to this quantity. This scheme frees interpretations from considerations on the
speed of the processors, loading factors, and so forth. Extensive tests were conducted on sets of up t
seven millions sites, uniformly distributed in a square domain. B&rand2d were tested on a SUN
workstation, on a Silicon Graphics Indy (200 MHz), and finally on a Convex C3 super-computer with
2 GB memory.

3.4.2. Comparison with S
Fig. 15 illustrates the advantage of the bi-directional divide-and-conquer scheme over the one-
directional oneLS creates many more initial triangles that are too thin to survive in the final Delaunay



Fig. 15. Successive stages fd (solid arrows) an@d (dotted arrows) on 50 random sites.
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Created Destroyed
LS ~3NlogN + N ~ $NlogN — 2N
2d ~ 4N ~N

Fig. 16. Regressions on the average number of edges created and destrbfeaol?d for the triangulation of
N points.

EDGES CREATED/ N

y=05x+1.09

LS

L2 2d

. . . L log,(N
5 10 15 20 95(N)

Fig. 17. Comparison between Lee and Schachter’s algorit!8)y and our optimized versior2d), for a uniform
distribution.

triangulation tharRd does. The table in Fig. 16 illustrates the number of edges created and destroyed by
LS and2d for N distinct sites uniformly distributed in a square, for a final total of abadute®iges in
the triangulation. The statistics for a distribution in clusters were very similar, and are omitted. Fig. 17
illustrates the results obtained on the C3. These results strongly corroborate the theory, and show the
asymptotic® (N log N) and® (N) behaviour oS and2d, respectively (excluding preprocessing sorts).
The difference between the running times of both versions becomes perceptible from 60 sites on, and,
for 130,000 sites2d is already twice as fast asS. The difference increases witi.

On a 200 MHz Indy workstation, 200,000 sites are triangulated in 7 seconds, after a sorting phase of
3 seconds? The rate of triangulation (exclusive of sorting) is about 30,000 sites per second (between
50,000 and 60,000 triangles).

2Hence, although asymptotically slower than the merge phase, the preprocessing step is actually significantly faster in
practice, as the operations involved in the latter are so much simpler than those involved in the former. We could check this
phenomenon foRd in all the tests that we conducted on either machine, even with the largest sets that could fit into the 2GB
of internal memory.
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3.4.3. Comparison witkKK Dwand a2d

According to Su and Drysdale [35,36], the reputedly best algorithmdKrand Dw even for non
uniform distributions. Our tests confirmed this fact foniform distributions(see the top diagrams of
Figs. 18 and 19). Note th&d is only slightly slower. BottKK andDwuse hashing techniques, and it is
well known that hashing performs best on uniform data and is faster than seithd2] is based on an
adaptive 2-d tree [19], in which the direction of division is chosen in function of the greatest dimension of
the box bounding the sites. This algorithm is slightly slower because, although its merge phase is faster,
the construction of the adaptive 2-d tree takes somewhat longer.

Now, for a non-uniform distributionwith clusters (normal distributiorv (0, 0.01) at 10 randomly
chosen sites in the unit squar@y] performs better thaBwandKK, the behaviours of which resemble
that ofLS. 2d is more appropriate for these distributions (see the bottom diagrams of Figs. 18 and 19). Let
us also add that2d creates, on average, even fewer edges ugibut that the overall running times are
very close because the latter has a longer preprocessing step, as mentioned earlier. The interested reac
will find other comparisons with other algorithms, and for other distribution types, in Lemaire’s Ph.D.
Dissertation [24].

3.4.4. Shewchuk’s implementation

In [32], Shewchuk describes an idea similar to the one developed in this sexdpragd which led
him to an implementation that may be found on the Internet. This research was conducted independently
from ours, and Shewchuk does not analyze the performance of his method.

His program uses an exact adaptive arithmetic [33,34], allows the incremental insertion of constraint
edges, the deletion of edges inside or outside a given boundary, the incremental insertion of new sites
so the triangulation remains conforming. Shewchuk also shows experimentally that his algorithm is less
prone to imprecision errors than Lee and Schachter’s [23]. As a matter of fact, as the latter merges very
thin and narrow strips, it must often determine the position of a site with respect to a segment, while the
endpoints of the segments and the site are almost aligned. The error risk is hence much greater than i
the case for an algorithm based on a 2-d tree (as Shewchuk’s and ours), which forbids the major part of
such very flat triangles (see Fig. 15).

4. Perspectives and conclusion

Extension to other distributionslt would be interesting to investigate the extensions to other distribu-
tions of the probabilistic results established in Section 2 in the case of quasi-uniform distributions.

A conjecture on the linearity of a revisited version of Dwyer’s algoritim[13], Dwyer proposed a

2-d Euclidean Delaunay triangulation algorithm witliXJog logN) average running time foN sites
uniformly distributed in a square. His algorithm uses a regular grid witHog N cells, and may be
summarized as follows:

(1) Triangulate each cell, with the help of Lee and Schachter’s algorithm [23].

(2) Triangulate each row by merging pairs of adjacent cells.

(3) Merge rows by pairs until the triangulation of the set is completed.

We conjecture that, by using a grid with cells, this algorithm has a linear expected running time under
the same assumptions. The first stage is linear on average, since the number of sites in a cell is constan
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(seconds)

1000 —+

(thousands of sites)
1 I I ! !
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T
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65 262 524 1048 2097 4196

(seconds)

LS

Dw

1000 —
KK

a2d

500 —+

(thousands of sites)
i I I I I
+ +

T T T T
65 262 524 1048 2097 4196

Fig. 18. Comparison of the whole running time of Delaunay triangulation algorithms (including preprocessing
time): the algorithms are tested on a Convex C3 — a super-computer with 2 GB of memory — on data sets of up
to seven millions sites distributed uniformly (top diagram) or non-uniformly with clusters (bottom diagram) in a
square domain.
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Fig. 19. Comparison of Delaunay triangulation algorithms according the total number of edges created, in the same
conditions as for the previous figure.
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on average. Using Theorem 2.10, it is possible to show that stage 3 is linear on average. However, this
theorem does not allow to prove the expected linearity of stage 2 (triangulation of a row). There is a
strong experimental evidence that the triangulation phase of rows (containing up to 8 million sites) is
linear. The rigorous proof of such a conjecture remains an open problem.

Delaunay triangulation in any dimensioWVe have seen that the idea presented in this paper could be
applied to the two-dimensional case with an effective speed-up of Lee and Schachter’s optimal algorithm,
while preserving the worst-case optimality. In higher dimensions, the difficulty resides in the merging of
sub-triangulations. In the literature, the merge process is often described in dimension 2, very rarely in
dimension 3, and never in higher dimensions. Cignoni et al. [11] presdinicke-and-conquealgorithm

in any dimension, but the merge phase is incremental, and the problem of merging in any dimension is

not solved.

However, here are a few arguments that prove that there still is room for hope:

(1) The Ph.D. Dissertations of Elbaz [16] and Adam [1] presedivae-and-conqueilgorithm for
constructing Delaunay triangulations in 3-space. The process of merging sub-triangulations seems
to be correctly described; however, the expected running time analysis is not done. We hope that the
results presented in this paper may help in that respect.

(2) Buckley [9] suggests divide-and-conquemlgorithm to construct convex hulls in dimension 4,
which the author generalizes to any dimension. Recall the strong relation between convex hulls and
Delaunay triangulations: computing a Delaunay triangulation in dimensioray be reduced to
computing a convex hull ik + 1)-space; to that effect, it suffices to project the sites on a paraboloid
with axis orthogonal to the hyperplane containing them, to compute the convex hull of these projected
sites, and to project it on the initial hyperplane, which yields the sought triangulation.

(3) Merging sub-triangulations in dimension greater than two has never been proven impossible. It is
quite probable that many researchers have only been intimated by the complexity of the enterprise.

This paper is intended to give a new motivation for the design of an algorithm to merge sub-triangulations

in any dimension, that would allow the construction of multi-dimensional Delaunay triangulations in a

divide-and-conquer fashion.

By way of conclusionThe evaluation of the expected number of unfinished sites iarectangle,

under quasi-uniform distribution, is an interesting result in itself, which may be used to analyze various

algorithms, that must, however, be more or less related to Delaunay triangulations, since the notion of
“unfinished sites” only has a meaning in such a context. It may be added to the probabilistic results
already obtained by Bern et al. [8] on the Delaunay triangulation in any dimension.

The Delaunay triangulation algorithm presented in this paper has a provably good behaviour for
uniform distributions and seems to be the most efficient for cluster distributions. One of our future
research goals is to prove that this method may be generalizedk4idiraensional setting, to yield,
after multi-dimensional pre-sorting, a Delaunay triangulation algorithm, the expected running time of
which would be proportional to the number of sites. We have shown that, although there is no known
algorithm for efficiently merging two Delaunay sub-triangulationg-ispace, the expected running time
of the construction ipotentiallyproportional to the number of points, provided they are quasi-uniformly
distributed in a hypercube. On the basis of these results, the chances are great that such an algorithr
would be efficient, and might compete with Dwyer’s incremental algorithm [14], which uses a pre-
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partitioning of the sites by means of a regular grid. However, we are fully aware that merging sub-
triangulations in higher dimensions is a tantalizing task!
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Appendix A. A technical lemma for the proof of Theorem 2.10
We now give a justification of the bound used in the course of proving Theorem 2.10 of Section 2.5.

LemmaA.l. LetZ,; = fol(l — x*)" dx with integersn > 1 andk > 2. Then
1
NOES
Proof. We shall argue by induction an, for fixedk > 2.
Preliminary stepLet us first derive the recurrence equation
kn
kn+1

using the deep relation betwegp, and the beta functiod:settingu = x* in the integral defining, ;,
we may write

In,k <

NS “Tn-1k (A1)

Tk I'QUk+n+1)°

>_1<mymrm+n

1
17/ 1 /71
T = : / W11 — )ty = %5’(%, nal
0

This yields

3 The beta function is defined, for all strictly positive real numbers as
1
B(m,n) = / A 1o lde =
0

'(m)I” (n)
I'(m+n)’

whereI” stands for the gamma function, defined for any strictly positive real numbsr

o]

F(n):/x”*le*x dr.
0
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L _ TA/l)-Twm+1) IA/k+n)
Too1x T'(Yk+n+1) TQ/k)-T'(n)

_ nl'(n) I'l/k+n) . _
= T WEEmTF kT (sincel(t +1) =tI'(¢), Vt > 0)
1 kn

" Uk+n kn+1l

Inductive argumentRecall thatk is a fixed integer (strictly greater than 1); [Btn) denote the
inequality we wish to prove (i.eB(n): Z,; < 1/~/n+1). As

k 1
Vk>2, k+D =k 4k s 2k s —— <=
(k+1) + +.00> :>k+1<{/§

P(2) is clearly true.
Induction hypothesisSuppose: > 2 is some integer such th&tn — 1) is true, i.e.,

1

We now show that

z-n—ZI.,k <

Pn—1) = P(n),
starting with a classical binomial expansion and minorization,

1
(kn +DF = (kn)* + k- (kn)* 1 14+ > k*n* + k0"~ = (kn)* (i> .
n
Hence,
1 kn 1 kn
> —_— .
Yntl kn+l Yn kn+l
using the induction hypothesis and relation (A.1), successivaly.

Tn-1k=Zux,

Remark (Luc Devroye). The convexity of ~ log I" (x) yields

log(I"(n +2)) —log(I"(n +1)) 1
(n+2)—(mn+1 k

1
=log(I'(n+ 1)) + p log(n + 1),

Iog<F<n+1+%)> < log(I'(n+1)) +

which allows to write
I'n+1) < 1
Fn+1+1/k) " ¥n+1
Hence,Z, ;. differs from the upper bound we providé: + 1)~*/*) by a factor of at most AI" (1 + 1/k)

(the bound is reached far= 1 andk — 400). Fork in the rangdl, +oo[, 1< 1/I'(1+ 1/k) < 1.15,
and the difference betwedp and its majorization Av/n + 1 never exceeds 15%.
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