
Computational Geometry 17 (2000) 69–96

A probabilistic result on multi-dimensional Delaunay
triangulations, and its application to the 2D case

C. Lemairea,1, J.-M. Moreaub,∗
a CEA, Bruyères, France

b LISSE/ENSM.SE, St-Étienne, France

Communicated by K. Mehlhorn; received 8 February 2000; revised 13 July 2000; accepted 24 July 2000

Abstract

This paper exploits the notion of “unfinished site”, introduced by Katajainen and Koppinen (1998) in the analysis
of a two-dimensional Delaunay triangulation algorithm, based on a regular grid. We generalize the notion and its
properties to any dimensionk > 2: in the case of uniform distributions, the expected number of unfinished sites in
a k-rectangle is O(N1−1/k). This implies, under some specific assumptions, the linearity of a class of divide-and-
conquer schemes based on balanced k-d trees.

This general result is then applied to the analysis of a new algorithm for constructing Delaunay triangulations
in the plane. According to Su and Drysdale (1995, 1997), the best known algorithms for this problem run in linear
expected time, thanks in particular to the use of bucketing techniques to partition the domain. In our algorithm, the
partitioning is based on a 2-d tree instead, the construction of which takes2(N logN) time, and we show that the
rest of the algorithm runs in linear expected time. This “preprocessing” allows the algorithm to adapt efficiently
to irregular distributions, as the domain is partitioned using point coordinates, as opposed to a fixed, regular basis
(buckets or grid). We checked that even for the largest data sets that could fit in internal memory (over 10 million
points), constructing the 2-d tree takes noticeably less CPU time than triangulating the data. With this in mind, our
algorithm is only slightly slower than the reputedly best algorithms onuniformdistributions, and is even the most
efficient for data sets of up to several millions of points distributed inclusters. 2000 Elsevier Science B.V. All
rights reserved.

Keywords:Delaunay triangulation; k-d tree; Worst-case complexity; Average-case complexity; Multi-dimensional
divide-and-conquer

* Corresponding author.
E-mail addresses:lemairec@bruyeres.cea.fr (C. Lemaire), moreau@emse.fr, jmmoreau@ligim.univ-lyon1.fr

(J.-M. Moreau).
1 Research conducted while the author was employed at SETRA.

0925-7721/00/$ – see front matter 2000 Elsevier Science B.V. All rights reserved.
PII: S0925-7721(00)00017-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82499702?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

70 C. Lemaire, J.-M. Moreau / Computational Geometry 17 (2000) 69–96

1. Introduction

1.1. General outline

The paper is divided into four distinct parts (notwithstanding a rather technical appendix at the end):
(1) Introduction.
(2) Study of a general probabilistic result on multi-dimensional Delaunay triangulations.
(3) Application to the planar case.
(4) Perspectives and conclusion.

1.2. A short survey of the past

The Voronoi diagram of a set ofN distinct points in the plane is a well-studied problem [3], for which
Shamos and Hoey published the first optimaldivide-and-conquersolution [31]. Since the Delaunay
triangulation of the same set is O(N)-reducible from the former structure by duality, the authors thus
proved that the (indirect) construction of the latter could be performed in2(N logN), which isworst-
caseoptimal under thereal-RAMmodel of computation. The first direct worst-case optimal 2D-Delaunay
construction divide-and-conquer algorithm was published by Lee and Schachter [23], to be later refined
by Guibas and Stolfi [20].

In 1984, Ohya et al. [21] proved theexpectedrunning time of these divide-and-conquer algorithms
to be�(N logN) when the sites are uniformly distributed in the unit square. However, several authors
studied the possibility to break that bound: in 1984, Ohya et al. themselves [21] and Maus [27] published
independent[O(N),O(N2)] expected/worst-case methods based on the so-calledbucketing technique
(partition of the domain intoN cells). In 1987, Dwyer published an[O(N log logN),O(N logN)]
expected/worst-case variant [13] of Lee and Schachter’s algorithm, in which the domain is partitioned
into N/ logN cells, that are triangulated, the triangulations in each row are then combined, and the
resulting triangulations are combined together.

In their 1988 paper [22], Katajainen and Koppinen modified Dwyer’s algorithm to achieve linear
expected time (partition intoN cells, merge of cells in a quadtree-like order). Their average-case analysis
exploited the notion ofunfinished sitesin a rectangular domain. Finally, Dwyer published the first
k-dimensional method with expected linear behaviour in 1991 [14], an incremental algorithm also based
on buckets.

1.3. A finer outline of the paper

Section 2 goes one step further in this progression: after stating some definitions and general
assumptions on the distribution of sites (Section 2.1), we generalize the notion of unfinished site to any
dimension (Section 2.2), and we establish probabilistic results in the case of quasi-uniform distributions:
probability for a site to be unfinished, expected number of unfinished sites in a hyperrectangle
(Sections 2.3–2.5). The upper bounds we provide are valid in any dimension, and the constants we obtain
for the 2D case are tighter than the original ones established by Katajainen and Koppinen.

Next, we present a divide-and-conquer scheme based on a (balanced) k-d tree [5] (Section 2.6), and
show that, in the case of a quasi-uniform distribution in a hypercube, the expected running time of
the whole multi-dimensional merge phase is linear, if merging two subsets is assumed to take time

C. Lemaire, J.-M. Moreau / Computational Geometry 17 (2000) 69–96 71

proportional to the number of unfinished sites they contain. These results may be used to analyze the
running times of some classes ofk-dimensional divide-and-conquer algorithms, for which the notion of
unfinished site has a meaning, and are hence more or less directly related to the Delaunay triangulation.

In Section 3, this general result is used to analyze a new algorithm to construct the Delaunay
triangulation in the plane [25,26] (Section 3.3), that is shown, in the first author’s Ph.D. Dissertation
[24], to be among the most efficient. Section 3.4 then gives experimental results on this algorithm, and a
comparison with the best known algorithms, based on Su and Drysdale’s study [35,36].

The paper closes on potential extensions of the results presented in this paper, and other related
problems (Section 4).

2. A probabilistic result

2.1. Quasi-uniform assumption

Throughout this paper, we shall consider sets ofN points (also calledsites) in a Euclidean space of
dimensionk > 2, and we shall assume the sites to bequasi-uniformlydistributed in a unit cubeUk . This
implies the existence of two strictly positive real constantsc1 6 c2, and of a probability densityf such
that {∀(x1, x2, . . . , xk) ∈ Uk, c16 f (x1, x2, . . . , xk)6 c2,

∀(x1, x2, . . . , xk) /∈ Uk, f (x1, x2, . . . , xk)= 0.

Accordingly, the probability for one given site to lie in domainD is
∫
D f . Uniform distribution may be

seen as a particular case of the more general definition of quasi-uniform distribution.

2.2. Unfinished sites

The notion ofunfinished sitewas introduced by Katajainen and Koppinen [22] for the analysis of
an algorithm to construct Delaunay triangulations in the plane, that partitions the domain according to
a regular grid. Consider, for instance, the planar Delaunay triangulation,DT(S1), of the point setS1,
subset ofS (refer to Fig. 1). Several sites inS1 have the same adjacency list in the whole Delaunay
triangulation,DT(S), as in sub-triangulationDT(S1): such sites are said to befinishedin DT(S1) with
respect toDT(S). By opposition, the sites (white circles in the same figure) that receive or lose edges are
said to beunfinished(in DT(S1) with respect toDT(S)). Intuitively, unfinished sites cannot lie very far
from the section of convex hull boundary ofDT(S1) facing the complement ofS1 in S. In the sequel we
shall give an upper bound on the probability for a site in a rectangular domain to be unfinished, in the
case of a quasi-uniform distribution. This upper bound increases as the site gets closer to the boundary
of the rectangle that contains it. We shall also give an upper bound on the expected number of unfinished
sites inside a rectangular domain.

We now present a generalization of these notions to any dimension, and their mathematical
formulation.DT(S) will denote thek-Delaunay triangulation of a set of sitesS.

Definition 2.1. Let T (S1) andT (S2) be the triangulations of setsS1 andS2. We shall writeT (S1) <1
T (S2) wheneverS1⊆ S2 andT (S1) contains each edge inT (S2) the endpoints of which belong toS1.

72 C. Lemaire, J.-M. Moreau / Computational Geometry 17 (2000) 69–96

Fig. 1. Unfinished sites in a sub-triangulation.

Definition 2.2. Let T (S1) <1 T (S2) be two triangulations ands ∈ S1. We say that sites is finishedin
T (S1) with respect toT (S2) if the set of edges adjacent tos in T (S1) andT (S2) coincide; otherwise,s is
said to beunfinished(in T (S1) with respect toT (S2)).

The first definition induces a partial order in the set of triangulations. Notice thatT (S1) <1 T (S2)

does not imply that all edges inT (S1) belong toT (S2). Also note thatDT(S1) <1 DT(S2) is equivalent
to S1⊆ S2 if S1 has a unique Delaunay triangulation.

Proposition 2.3. Let T (S1) <1 T (S2) be two triangulations. A sites ∈ S1 is finished inT (S1) with
respect toT (S2) if and only ifS1 contains the endpoints of all edges adjacent tos in T (S2).

Proof. Let (s,p1), . . . , (s,pm) be the edges adjacent tos in T (S2). If s is finished, thenpi ’s endpoints
are inS1 by definition. Conversely, suppose thatpi ’s endpoints are inS1 but thats is not finished. Then,
(s,p1), . . . , (s,pm) are inT (S1) becauseT (S1) <1 T (S2), but T (S1) contains another edge(s, r), at
least. Since the domain limited byT (S2) is convex, it contains edge(s, r) completely. Hence,(s, r)\{s}
crosses either:
• one of the openk-triangles fromT (S2) that shares as vertex; since nok-triangle fromT (S2) contains

any site in its interior, none containsr , and hence,(s, r) crosses onek-face opposites; however, this
is impossible, since thisk-face also belongs toT (S1), which is a triangulation,
• or onek-face containings, which is not possible since thisk-face also belongs toT (S1), which is a

triangulation. 2
Corollary 2.4. LetT (S1) <1 T (S2) <1 T (S3) be three triangulations. A sites ∈ S1 is finished inT (S1)

with respect toT (S3) if and only if it is both finished inT (S1) with respect toT (S2), and inT (S2) with
respect toT (S3).

C. Lemaire, J.-M. Moreau / Computational Geometry 17 (2000) 69–96 73

Proof. That the latter implies the former is a consequence of Definition 2.2. Conversely, supposes is
finished inT (S1) with respect toT (S3). If (s, q) is one edge inT (S3), q ∈ S1; sinceq ∈ S2, and, using
Proposition 2.3, we may conclude thats is finished inT (S2) with respect toT (S3). Finally, because of
Definition 2.2,s is also finished inT (S1) with respect toT (S2). 2
2.3. k-partition around an unfinished site

In order to compute probabilities related to a given site, it is necessary to builda fixedgeometric
“paving” around this point. The volume of each paving block will then represent a probability, up to a
multiplicative constant.

Lemma 2.5. If s is an unfinished site ink-rectangleRk, at distancet from the boundary ofRk , then
there is ak-ball B2 with radiust/2, centerp at distancet/2 from s, and no sites in its interior.

Proof. Referring to Fig. 2, ifs is an unfinished site ink-rectangleRk , there is a siteq belonging to
Uk\Rk such that(s, q) is a Delaunay edge inUk . Sinceq lies outsidek-rectangleRk , the length of(s, q)
is greater thant . And since(s, q) is a Delaunay edge, we may find ak-ball B3 with no sites in its interior,
ands andq on its boundary. The diameter of thisk-ball is thus greater thant . Let c be the center ofB3,
andB2 be thek-ball with centerp lying on segment[sc] at distancet/2 from s (cf. Figs. 2 and 3).B2 is
contained inB3, henceB3 has no sites in its interior.2
Corollary 2.6 (Refer to Fig. 3). In the setting of Lemma 2.5, letB1(s, r1) be the ball centered ins with
radiusr1< t , andC(sp, θ) be the cone with apexs, symmetry axis sp, and angleθ = arccos(r1/t). Then,
CB1 = C ∩B1 is empty of sites.

Fig. 2. BallB2 has no sites in its interior.

74 C. Lemaire, J.-M. Moreau / Computational Geometry 17 (2000) 69–96

Fig. 3. ConeCB1(sp, θ) has no sites in its interior.

Proof. Let m be any point on the intersection of the boundaries of ballsB1 and B2. Let o be the
orthogonal projection ofm on segment[sp], r diametrically opposites on ball B2, and letθ be the
angle formed by segments[so] and[sm].

cosθ = sm

sr
= r1
t
⇒ θ = arccos

r1

t
.

The cone portionCB1(sp, θ) is included inB2, henceCB1(sp, θ) is empty of sites. 2
Notation convention. We shall write〈p1,p2,p3〉 to denote the angle made by the three pointsp1,p2 and
p3, with p2 at the apex.

Lemma 2.7. Consider a hypercube inscribed in a ballB1(s, r1) with centers and radiusr1. Each face
F of the hypercube is partitioned into “cells”(i.e., (k − 1)-cubes) by all the hyperplanes parallel to
other faces of the hypercube and containing the symmetry center of faceF . Let us call pyramidP the
intersection with ballB1 of the cone issued froms, and having one of the above “cells” as section. We
have
(1) ball B1 is partitioned into(k2k) pyramids that all have the same volume,
(2) ∀M1,M2 ∈ P\{s},

cos〈M1, s,M2〉>
(⌈
k + 1

2

⌉⌊
k + 1

2

⌋)−1/2

.

Proof. (1) In k-space, a hypercube is a regular polyhedron with(2k) faces, that may be inscribed in a
k-ball, and this in any dimension [6,7]. Each faceF undergoes(k−1) divisions and is thus decomposed
into 2k−1 “cells” (i.e., (k − 1)-cubes). Hence, there are 2k × 2k−1 = k2k such cells, on each of which
one pyramid may be constructed. Thus, ballB1 is partitioned into(k2k) pyramids, that, for symmetry
reasons, all have the same volume:

V(P)= V(B1)

k2k
= πk/2rk1

k2kΓ (k/2+ 1)
. (1)

C. Lemaire, J.-M. Moreau / Computational Geometry 17 (2000) 69–96 75

Fig. 4. Decomposition of a ball into pyramids.

Fig. 5. Maximum angle at the apex of a pyramid.

In dimension 2 (cf. Fig. 4(a)), each side of the square is divided into two equal segments, which yields
8 cells, each supporting an angular-sector pyramid. In dimension 3 (cf. Fig. 4(b)), each face of the cube
is divided into 4 equal squares, which yields 24 cells, each supporting one pyramid (cf. Fig. 4(c)), etc.

(2) Let (s,Eı1, . . . ,Eık) be an orthogonal system of coordinates, with axes perpendicular to the faces of
the hypercube and norms equal to half the side of the hypercube. Without loss of generality, consider
the “cell” contained in the hyperplanex1 = 1 and such that the coordinates of all of its vertices are
nonnegative. LetP be the pyramid associated to this cell (refer to Fig. 5 for dimension 3).

LetM1(α1, α2, α3, . . . , αk) andM2(β1, β2, β3, . . . , βk) be any two points inP\{s}. We wish to compute
the maximum of angle〈M1, s,M2〉. To that effect, it suffices to letM1 andM2 span all vertices of the
“cell”, section of the pyramid. This implies thatα1= β1= 1, while all otherαi ’s andβi ’s are either 0 or
1, i ∈ [2, k].

76 C. Lemaire, J.-M. Moreau / Computational Geometry 17 (2000) 69–96

Whatever the choice forM1 andM2, there are, say,u ∈ [1, k] coordinates that are 1 in both (at least 1,
sinceα1= β1= 1), v ∈ [0, k − u] that are 1 inM1 and 0 inM2, and finallyw ∈ [0, k − u− v] that are 0
in M1 and 1 inM2 (leaving out those that are 0 in both. . .).

Hence, the maximum of〈M1, s,M2〉 corresponds to the minimum of

cos〈M1, s,M2〉 =
∑k
i=1αiβi√∑k

i=1α
2
i

√∑k
i=1β

2
i

= u√
u+ v√u+w. (2)

The numerator,u, may take integral values in the range[1, k]. Now, supposeu > 1 is fixed. Since
w ∈ [0, k − u − v], w u + w is a strictly increasing function with maximum valuek − v, and the
maximum ofv

√
u+ v√k− v is reached forv = b(k − u)/2c.

Finally, since

u u√
u+ b(k− u)/2c√k− b(k − u)/2c

is an increasing function on[1, k] that reaches its minimum foru= 1, the minimum of (2) is

1√
1+ b(k − 1)/2c√k − b(k − 1)/2c .

After unifying casesk odd and even, we find

∀M1,M2 ∈ P\{s}, cos〈M1, s,M2〉> 1

b(k + 1)/2c1/2d(k + 1)/2e1/2 . (3)

This result may be checked in the plane and in 3-space, in Figs. 4 and 5, respectively.2
Notation convention. In order to simplify the expression of subsequent results, letζk represent expression
(b(k + 1)/2cd(k + 1)/2e)1/2.

Corollary 2.8. If s is an unfinished site insidek-rectangleRk , and at distancet from its boundary, then
we may find a fixedk-partition of the neighbourhood ofs with (k2k) k-cells of equal volume,

πk/2tk

k2kζ kk Γ (k/2+ 1)
,

and such that at least one of these partitioningk-cells is site-free.

Proof. In the setting of Corollary 2.6, let us fix the radius of ballB1 to r1= t/ζk . B1 is partitioned into
pyramids as explained in Lemma 2.7. Letq be the intersection between segment[sp] and the boundary
of ball B1. There exists one pyramidPj such that[sq] ⊂ Pj . Then, for allM in Pj ,

M ∈Pj ⇒ cos〈q, s,M〉> 1

ζk
= r1
t
⇒ M ∈ CB1

(
sp,arccos

r1

t

)
.

This implies that

Pj ⊂ CB1

(
sp,arccos

r1

t

)
.

C. Lemaire, J.-M. Moreau / Computational Geometry 17 (2000) 69–96 77

As the portion of coneCB1 is site free, so is the paving blockPj , with volume

πk/2tk

k2kζ kk Γ (k/2+ 1)
. 2

2.4. Probability for a site to be unfinished

The paving we have constructed around sites allows us to derive an upper bound on the probability
for s to be unfinished.

Lemma 2.9. Assume the probability densityf to be quasi-uniform with boundsc1 andc2, and consider
rectangleRk ⊆ Uk in DT(S ∩Rk) <1 DT(S). Let s ∈ S ∩Rk be a site at minimal distancet from the
boundary ofRk , and letC1 be the condition thats is unfinished in DT(S ∩Rk) with respect to DT(S),
then

Pr{C1}6 k2k
[
1− c1π

k/2tk

k2kζ kk Γ (k/2+ 1)

]N−1

.

Proof. Consider ballB1, with centers and radiust/ζk , paved by pyramidsPj , j ∈ [1, k × 2k]. Using
Corollary 2.8, conditionC1 – thats is unfinished inDT(S∩ Uk)with respect toDT(S) – implies condition
C2 – that at least one of the open partitioningk-cellsPj is void of sites. Hence,

Pr{C1}6 Pr{C2}6
k2k∑
j=1

Pr{S ∩Pj = ∅} =
k2k∑
j=1

(
1−

∫
Pj

f

)N−1

6 k2k
[
1− c1π

k/2tk

k2kζ kk Γ (k/2+ 1)

]N−1

,

using propertyf (x1, x2, . . . , xk)> c1. 2
2.5. Expected number of unfinished sites

We are now ready for the main result in this section: a bound on the expected number of unfinished
sites in a hyperrectangle.

Theorem 2.10. In the setting of Lemma 2.9, ifSk is the surface ofRk , andE(Rk) is the expected number
of unfinished sites inRk, then

E(Rk)6
N
k
√
N

c2

k
√
c1
Sk
k2k+1ζk(kΓ (k/2+ 1))1/k√

π
. (4)

Proof. Let a1, a2, . . . , ak be the lengths of the sides ofk-rectangleRk . Letal be the length of the smallest
side ofRk . Consider the elementary volumeVt comprising the points ofRk at a distance betweent and
t + dt from the boundary ofRk (with 06 t 6 al/2) (Fig. 6). Let us callSt the exterior surface ofVt ,

St = 2
k∑
j=1

(∏
i 6=j
(ai − 2t)

)
6 Sk = 2

k∑
j=1

∏
i 6=j
ai,

which implies

Vt 6 St dt 6 Sk dt.

78 C. Lemaire, J.-M. Moreau / Computational Geometry 17 (2000) 69–96

Fig. 6. Expected number of unfinished sites in ak-rectangle.

The probability for a given site to belong toVt is∫
Vt

f 6 c2Vt 6 c2Sk dt.

Using Lemma 2.9, we have the following estimate:

E(Rk) 6 N

al/2∫
0

k2k
[
1− c1π

k/2tk

k2kζ kk Γ (k/2+ 1)

]N−1

c2Sk dt

= N c2

k
√
c1
Sk
k2k+1ζk(kΓ (k/2+ 1))1/k√

π

(al
√
π/4 k
√
c1)/(ζk(kΓ (k/2+1))1/k)∫

0

(
1− xk)N−1

dx,

with the change of variable

x = t
[

c1π
k/2

k2kζ kk Γ (k/2+ 1)

]1/k

.

Sinceal 6 1, c16 1 andk > 2, we may write

E(Rk)6N
c2

k
√
c1
Sk
k2k+1ζk[kΓ (k/2+ 1)]1/k√

π

1∫
0

(
1− xk)N−1

dx.

The integral on the right-hand side may be bounded above by 1/
k
√
N (a rather technical result proven in

Appendix A). Hence,

E(Rk)6
N
k
√
N

c2

k
√
c1
Sk

1√
π
k2k+1ζk

[
kΓ

(
k

2
+ 1

)]1/k

=O
(
N
k
√
N

c2

k
√
c1
Sk
)
=O

(
N1−1/k). 2

Note that the constant factor in this bound is tighter than the one obtained by Katajainen and Koppinen
in the plane [22].

C. Lemaire, J.-M. Moreau / Computational Geometry 17 (2000) 69–96 79

2.6. Average-case analysis of a class ofk-dimensional divide-and-conquer algorithms using the notion
of unfinished sites

In this subsection, we show how the previous result may be exploited to analyze certain classes
of multi-dimensionaldivide-and-conqueralgorithms. In what follows, we shall use the generic term
“conquer” for thek-dimensional generalization of the now well-understood merging process in the plane.
Intuitively, merging here means: take two subsets separated by a hyperplane and of about the same size,
and combine them into a unique one. In the sequel, we simply assume that such a process is linear in the
number of unfinished sites in the two subsets.

Please refer to Figs. 7 and 8 for the following result and its proof.

Theorem 2.11. LetS be a set ofN sites distributed in ak-dimensional unit hypercubeUk , according to
a quasi-uniform density probabilityf , with boundsc1 andc2 (c16 c2). Consider the following general
scheme:

Divide step: divide Uk until reaching cells, each containing one single site, using a balancedk-d
tree[5];

Merge step: then re-constructUk through successive merges in reverse order(of the divisions).

If merging two subsets takes time proportional to the number of unfinished sites(with respect toUk), then
the wholemergephase of the algorithm will be proportional toN .

Proof. Using Theorem 2.10, the running time of the wholemergephase will be proportional to

N
k
√
N

c2

k
√
c1

k2k+1√d(k + 1)/2eb(k + 1)/2c k√kΓ (k/2+ 1)√
π

χ, (5)

Fig. 7. Tree representation of divides and conquers according to a balanced k-d tree.

80 C. Lemaire, J.-M. Moreau / Computational Geometry 17 (2000) 69–96

Fig. 8. Merges at levelp: sliceSp,j with all its (shaded) hyperrectangle constituents.

whereχ represents the sum of the surfaces of allk-rectangles involved in the merges. We shall decompose
χ into sub-sumsχp, one for each merge levelp (Fig. 7).

Let (Eı1, . . . ,Eık) be an orthonormal basis, such that each axis is orthogonal to one hyperface ofUk . The
k-d tree produces a partition ofUk with N k-rectangles.

Definition 2.12. Let us define sliceSp,j relative to directionEıj as one subset of the hyperrectangles
partitioning Uk at mergep, such that the orthogonal projection ofSp,j on either hyperface ofUk
orthogonal toEıj constitutes a partition of this hyperface (Fig. 8).

During the construction of the k-d tree, the division of space – orthogonally to one direction – doubles
the number of slices relative to this direction. Moreover, note that the whole rectangular partition forUk
may be itself partitioned into slices with the same direction, whatever this direction. Let us callNp,j the
number of slices relative to directionEıj at levelp.

A simple induction argument yields

Np,j = 2d(p−j+1)/ke,

for each merge levelp, except the last – for which the right-hand side quantity is only an upper bound.
Let us now evaluateχp by groupingk-rectangles into slices, and this, relatively to all directions. Since
the surface of any hyperface ofUk is 1, the overall sum is equal to 2

∑k
j=1Np,j , whence

1

2
χp 6

k∑
j=1

2d(p−j+1)/ke 6 k2dp/ke.

Summing over allh merge-levels yields

1

2
χ = 1

2

h∑
p=1

χp 6
h∑
p=1

k2dp/ke = k
h∑
p=1

2dp/ke 6 k
(
k

dh/ke∑
w=1

2w
)
6 k22dh/ke+16 4k22dh/ke−1.

C. Lemaire, J.-M. Moreau / Computational Geometry 17 (2000) 69–96 81

Since the division scheme is supported by a balanced k-d tree, its own heighth is such that 2h−1 <N 6
2h, and hence

k
√
N > 2(h−1)/k > 2dh/ke−1⇒ χ 6 8k2 k

√
N.

This implies that the average running time of the merge step islinear in the number of unfinished sites.
It is, more precisely, proportional to

N
c2

k
√
c1

k32k+4√d(k+ 1)/2eb(k + 1)/2c k√kΓ (k/2+ 1)√
π

. 2
Remark. (1) The above proof shows more generally that the “conquer” phase of ak-dimensional divide-
and-conquer algorithm is globally linear if merging twok-rectangles is proportional toN(1−1/k) times the
sum of their surfaces.

(2) It would be very pleasant if one could use such a scheme to computek-dimensional Delaunay
triangulations. However, as of writing, there is no known algorithm for merging efficiently two Delaunay
k-triangulations, withk > 2.

3. Application: 2D Delaunay triangulation in linear expected time after two-directional sorting

We now present the application of our results to the divide-and-conquer construction of the Delaunay
triangulation in the plane, starting with a few definitions, and a commented overview of the algorithm.

3.1. Notations and definitions

In this section, letε be either 0 or 1, andM[ε] denote the corresponding coordinate of any pointM in
the Euclidean planeE2 (0 abscissa, 1 ordinate).<[ε] will denote the lexicographical order relations
between elementsM andN of E2 defined as follows:

M <[0] N ⇐⇒ (
(M[0] <N[0]) or (M[0] =N[0] andM[1] <N[1])

)
,

(6)
M <[1] N ⇐⇒ (

(M[1] <N[1]) or (M[1] =N[1] andM[0] >N[0])
)
.

If A andB are two subsets ofE2, we shall write

A<[ε] B ⇐⇒ ∀a ∈A, b ∈ B, a <[ε] b.

If |S| represents the number of elements in any setS of E2, we shall say that subsetsS1 andS2 form an
[ε]-divisionof S if and only if
(1) S1∪ S2= S andS1∩ S2= ∅,
(2) |S1| + |S2| = |S|, 06 |S1| − |S2|6 1,
(3) S1<[ε] S2.
In other words,S is divided into two equally-sized subsets around the[ε]-median. (Recall that the median
of a setS for a given order relation may be defined as the element ofS with rank b(|S| + 1)/2c in this
order; hence, equally-sized should be understood as “with a maximum difference of 1 in the number of
elements”.) Fig. 9 illustrates typical[ε]-divisions.

82 C. Lemaire, J.-M. Moreau / Computational Geometry 17 (2000) 69–96

Fig. 9.[0]- and[1]-divisions.

3.2. Overview of the algorithm

In the functional pseudo-code below,t-set stands for the data structure encapsulating the Delaunay
triangulations returned by functionsDelaunay , Elementary_Delaunay andMerge , andv-set
is any appropriate organization of the data points (vertices), for instance list, array and so forth. Finally,
note that functionMerge accepts three arguments: the two triangulations resulting from recursion, and
a direction.

At each recursion, functionDelaunay is handed a couple(S, ε), whereS is the current data (sub)set
andε a division direction. In the initial call,S is the whole set, andε is, say, 0 (i.e., the very first division
is made along a vertical line through thex-median of the whole database).

Delaunay
output: t-set
input: v-set S, ε ∈ {0,1}
local variables: v-set S1, S2

if (|S|6 1)
return Elementary-Delaunay (S);

else
(S1;S2)←[ε]-division (S);
return Merge (Delaunay (S1,1− ε), Delaunay (S2,1− ε), ε);

B Divide: If S has at least two elements, it is[ε]-divided into S1 and S2, which are recursively
triangulated using the orthogonal direction,[1− ε]. Fig. 10 illustrates this principle: the root node of
the recursion tree (top left) divides the whole set into two equally sized subsets on either side of the
[0]-median. The two nodes at the next level divide each such ‘half set’ into two equally sized subsets
below and above the[1]-median, and so forth until the bottom-most level (not shown), corresponding to
elementary cells, containing single points.

In the sequel, we shall assume that the operation of[ε]-division is an O(1) process: this may simply
be achieved by using an auxiliary linear space structure, say a 2-d tree, constructed in time O(N logN)
during preprocessing, to store the nodes marking the successive divisions.

C. Lemaire, J.-M. Moreau / Computational Geometry 17 (2000) 69–96 83

Fig. 10. The (initial steps of the) divide phase. Fig. 11. The (final steps of the bottom-up) conquer phase.

B Conquer: The two resulting Delaunay triangulations are then “merged” into a single one, that is
returned to the calling function. Note that the merge phase is akin to the one described in Lee and
Schachter’s algorithm [23]; however, the latter is essentially “one-directional”, while the direction of
the former is dictated by the value ofε at each recursion level. In other words, to every[ε]-division
corresponds an[ε]-merge. Fig. 11 illustrates this principle.

This is possible mainly because Lee and Schachter’s (divide-and-)conquer technique only requires that
the two sets to be merged be separable by a line, whatever its direction. As already noted by Edelsbrunner
[15, p. 146], the merge is highly facilitated if we store, for each triangulation to be merged, the point
closest to the separating line, according to the current[ε]-order. Such “cardinal points” are the (at most
four) extrema for the two<[ε] order relations, and may be kept/retrieved with constant resources. Note
that the definitions of the order relations (6) are slightly asymmetrical, to allow the same procedure
to work in both vertical and horizontal directions. Practical considerations for implementing this two-
directional merge function may be found in the first author’s Ph.D. Dissertation [24].

84 C. Lemaire, J.-M. Moreau / Computational Geometry 17 (2000) 69–96

3.3. Computational complexity

In this section, we consider the analysis of both the worst-case and average-case running times.

Worst-case complexity.Whatever method is chosen to perform the[ε]-divisions (preprocessing sort in
two directions and construction of an auxiliary 2-d tree, or median extraction at each recursion), the
overall running time of this process is2(N logN). We also know [20] that the upper bound of the
overall algorithm presented above is O(N logN), since merging two sub-triangulations takes linear time.
Let us now show that the worst-case running time of the merge step is�(N logN), using a method
similar to the one devised by Katajainen and Koppinen [22] to compute the worst-case running time of
their algorithm.

Consider the logarithmic spiralΓa with equationρ = aemθ in polar coordinates, and noteMi the point
of the curve associated withθi . This spiral has many properties, among which (Fig. 12) are the following:
(1) The tangent inM makes a constant angleV with line OM(tanV = 1/m).
(2) Let$ be the center of curvature at pointM . The circle throughM and centered in$ contains the

entire section ofΓ beforeM ; the rest of the spiralbeyondM lies entirely outside this circle.
(3) The circleCi,j,k through three pointsMi ,Mj andMk (i < j < k) on the spiral contains in its interior

all points ofΓ beforeMk ; the entire section ofΓ beyondMk lies outsideCi,j,k .
(4) The previous properties imply that constructing the Delaunay triangulation of a setM of sitesMi ,

16 i 6 N , on a section of spiral, consists in linkingM1 to all other sitesMj (j 6= 1), then linking
each siteMi , 16 i < N , to its successorMi+1. Hence, if one adds toM a site from the spiral before
M1, the previous triangulation has no more valid triangle (Fig. 13).

Fig. 12. Properties of the logarithmic spiral. Fig. 13. Triangulation of a logarithmic spiral
section: inserting a new site may cause the
destruction of all already constructed Delaunay
triangles.

C. Lemaire, J.-M. Moreau / Computational Geometry 17 (2000) 69–96 85

Fig. 14. Spiral partitioning induced by a 2-d tree: merging two adjacent cells may cause the destruction of all
triangles in either.

Consider, for example, the logarithmic spiralΓ1 with equationρ = eθ .{
x(θ)= eθ cosθ
y(θ)= eθ sinθ

⇒
{
x′(θ)=√2eθ cos

(
θ + 1

4π
)
,

y′(θ)=√2eθ sin
(
θ + 1

4π
)
.

Consider the set{Mi}i∈[1,N] of sites with−π/46 θ1< · · ·< θN 6 π/4, onΓ1. Clearly, if 16 i < j 6N ,

Mi <[0]Mj and Mi <[1]Mj.

The 2-d tree will partition this set into cells, any two of which will be such that all the sites in the first
arebeforethose in the second (with respect to relations<[0] and<[1]), or elseafter (Fig. 14). Hence,
whenever a couple of such cells are to be merged, all the triangles from the first or the second must be
destroyed. This implies the following recurrence equation:

T (N)= 2T
(
N

2

)
+ αN

for some strictly positive constantα, which means that the algorithm has worst-case running time
�(N logN). Note that this lower bound may also be reached for sites on a conic, or various convex
curves.

Average-case complexity.Let us suppose that sites are quasi-uniformly distributed over a unit square.
First note that even if we use a linear expected time sorting algorithm [12] (which is possible thanks to the
quasi-uniform distribution assumption), the construction of the 2-d tree remains�(N logN). However,
the expected running time of the conquer phase is improved. That the arguments of Section 2.6 hold for
this algorithm is justified by the following theorem.

Theorem 3.1. The worst-case complexity of the merge phase(in Lee and Schachter’s algorithm) is
bounded above by a linear function of the number of sites receiving new edges.

86 C. Lemaire, J.-M. Moreau / Computational Geometry 17 (2000) 69–96

This theorem – proven by Dwyer [13], using a previous result by Guibas and Stolfi [20] – implies
that, in the case of a quasi-uniform distribution, the more general result of Theorem 2.11 yields an O(N)

expected running time for the entire merge phase, in a straightforward manner (the interested reader will
find a specific analysis for the 2D case in [26]).

3.4. Results and comparison with other algorithms

3.4.1. Setting
We conducted experimental comparisons between our 2-directional, divide-and-conquer 2-d tree

based algorithm (nicknamed2d from here on) and the following divide-and-conquer algorithms for
constructing 2-d Delaunay triangulations in the plane:

Author(s) Merge type

LS Lee and Schachter’s [23] 1-directional

Dw Dwyer [13] 2-directional, rows and then columns

KK Katajainen and Koppinen [22] 2-directional, quadtree order

a2d Adam et al. [2] 2-directional, (adaptive) 2-d tree order

To make those tests as straightforward and objective as possible, the programs were all coded by the
first author (atSETRA), using a uniform programming style. None was favored nor disadvantaged. In no
case did we try to solve imprecision issues, as such was not the problem we were addressing. We simply
used elementary techniques to prevent precision-related failures for all the algorithms (see also [37] for
another robust method for constructing Voronoi or Delaunay diagrams in the plane):
• The point coordinates are stored using single precision, while computations are performed in double

precision.
• A given determinant is reputed to be null if its computed value lies within[−ε,+ε], whereε is a

data-dependent constant computed once and for all, given the maximum and minimum coordinates
accepted as input.

A more sustained use of our implementations would have required well-known imprecision solving
techniques (including theLEDA [10,28],LN [18] or CGAL libraries [17,30], or evenLEA (the Lazy Exact
Arithmetic library that the second author had taken part in the development of, atLISSE) [4,29]).

In addition to the actual running times, we have chosen to measure performance through the total
number of edges created by the programs, since the running time for the triangulation (exclusive of
sorting) is proportional to this quantity. This scheme frees interpretations from considerations on the
speed of the processors, loading factors, and so forth. Extensive tests were conducted on sets of up to
seven millions sites, uniformly distributed in a square domain. BothLS and2d were tested on a SUN
workstation, on a Silicon Graphics Indy (200 MHz), and finally on a Convex C3 super-computer with
2 GB memory.

3.4.2. Comparison withLS
Fig. 15 illustrates the advantage of the bi-directional divide-and-conquer scheme over the one-

directional one:LS creates many more initial triangles that are too thin to survive in the final Delaunay

C. Lemaire, J.-M. Moreau / Computational Geometry 17 (2000) 69–96 87

Fig. 15. Successive stages forLS (solid arrows) and2d (dotted arrows) on 50 random sites.

88 C. Lemaire, J.-M. Moreau / Computational Geometry 17 (2000) 69–96

Created Destroyed

LS ∼ 1
2N logN +N ∼ 1

2N logN − 2N

2d ∼ 4N ∼N

Fig. 16. Regressions on the average number of edges created and destroyed byLS and2d for the triangulation of
N points.

Fig. 17. Comparison between Lee and Schachter’s algorithm (LS), and our optimized version (2d), for a uniform
distribution.

triangulation than2d does. The table in Fig. 16 illustrates the number of edges created and destroyed by
LS and2d for N distinct sites uniformly distributed in a square, for a final total of about 3N edges in
the triangulation. The statistics for a distribution in clusters were very similar, and are omitted. Fig. 17
illustrates the results obtained on the C3. These results strongly corroborate the theory, and show the
asymptotic2(N logN) and2(N) behaviour ofLS and2d , respectively (excluding preprocessing sorts).
The difference between the running times of both versions becomes perceptible from 60 sites on, and,
for 130,000 sites,2d is already twice as fast asLS. The difference increases withN .

On a 200 MHz Indy workstation, 200,000 sites are triangulated in 7 seconds, after a sorting phase of
3 seconds.2 The rate of triangulation (exclusive of sorting) is about 30,000 sites per second (between
50,000 and 60,000 triangles).

2 Hence, although asymptotically slower than the merge phase, the preprocessing step is actually significantly faster in
practice, as the operations involved in the latter are so much simpler than those involved in the former. We could check this
phenomenon for2d in all the tests that we conducted on either machine, even with the largest sets that could fit into the 2GB
of internal memory.

C. Lemaire, J.-M. Moreau / Computational Geometry 17 (2000) 69–96 89

3.4.3. Comparison withKK, Dwanda2d
According to Su and Drysdale [35,36], the reputedly best algorithms areKK andDw, even for non

uniform distributions. Our tests confirmed this fact foruniform distributions(see the top diagrams of
Figs. 18 and 19). Note that2d is only slightly slower. BothKKandDwuse hashing techniques, and it is
well known that hashing performs best on uniform data and is faster than sorting.a2d [2] is based on an
adaptive 2-d tree [19], in which the direction of division is chosen in function of the greatest dimension of
the box bounding the sites. This algorithm is slightly slower because, although its merge phase is faster,
the construction of the adaptive 2-d tree takes somewhat longer.

Now, for a non-uniform distributionwith clusters (normal distributionN(0,0.01) at 10 randomly
chosen sites in the unit square),2d performs better thanDwandKK, the behaviours of which resemble
that ofLS. 2d is more appropriate for these distributions (see the bottom diagrams of Figs. 18 and 19). Let
us also add thata2d creates, on average, even fewer edges than2d , but that the overall running times are
very close because the latter has a longer preprocessing step, as mentioned earlier. The interested reader
will find other comparisons with other algorithms, and for other distribution types, in Lemaire’s Ph.D.
Dissertation [24].

3.4.4. Shewchuk’s implementation
In [32], Shewchuk describes an idea similar to the one developed in this section (2d), and which led

him to an implementation that may be found on the Internet. This research was conducted independently
from ours, and Shewchuk does not analyze the performance of his method.

His program uses an exact adaptive arithmetic [33,34], allows the incremental insertion of constraint
edges, the deletion of edges inside or outside a given boundary, the incremental insertion of new sites
so the triangulation remains conforming. Shewchuk also shows experimentally that his algorithm is less
prone to imprecision errors than Lee and Schachter’s [23]. As a matter of fact, as the latter merges very
thin and narrow strips, it must often determine the position of a site with respect to a segment, while the
endpoints of the segments and the site are almost aligned. The error risk is hence much greater than is
the case for an algorithm based on a 2-d tree (as Shewchuk’s and ours), which forbids the major part of
such very flat triangles (see Fig. 15).

4. Perspectives and conclusion

Extension to other distributions.It would be interesting to investigate the extensions to other distribu-
tions of the probabilistic results established in Section 2 in the case of quasi-uniform distributions.

A conjecture on the linearity of a revisited version of Dwyer’s algorithm.In [13], Dwyer proposed a
2-d Euclidean Delaunay triangulation algorithm with O(N log logN) average running time forN sites
uniformly distributed in a square. His algorithm uses a regular grid withN/ logN cells, and may be
summarized as follows:
(1) Triangulate each cell, with the help of Lee and Schachter’s algorithm [23].
(2) Triangulate each row by merging pairs of adjacent cells.
(3) Merge rows by pairs until the triangulation of the set is completed.
We conjecture that, by using a grid withN cells, this algorithm has a linear expected running time under
the same assumptions. The first stage is linear on average, since the number of sites in a cell is constant,

90 C. Lemaire, J.-M. Moreau / Computational Geometry 17 (2000) 69–96

Fig. 18. Comparison of the whole running time of Delaunay triangulation algorithms (including preprocessing
time): the algorithms are tested on a Convex C3 – a super-computer with 2 GB of memory – on data sets of up
to seven millions sites distributed uniformly (top diagram) or non-uniformly with clusters (bottom diagram) in a
square domain.

C. Lemaire, J.-M. Moreau / Computational Geometry 17 (2000) 69–96 91

Fig. 19. Comparison of Delaunay triangulation algorithms according the total number of edges created, in the same
conditions as for the previous figure.

92 C. Lemaire, J.-M. Moreau / Computational Geometry 17 (2000) 69–96

on average. Using Theorem 2.10, it is possible to show that stage 3 is linear on average. However, this
theorem does not allow to prove the expected linearity of stage 2 (triangulation of a row). There is a
strong experimental evidence that the triangulation phase of rows (containing up to 8 million sites) is
linear. The rigorous proof of such a conjecture remains an open problem.

Delaunay triangulation in any dimension.We have seen that the idea presented in this paper could be
applied to the two-dimensional case with an effective speed-up of Lee and Schachter’s optimal algorithm,
while preserving the worst-case optimality. In higher dimensions, the difficulty resides in the merging of
sub-triangulations. In the literature, the merge process is often described in dimension 2, very rarely in
dimension 3, and never in higher dimensions. Cignoni et al. [11] present adivide-and-conqueralgorithm
in any dimension, but the merge phase is incremental, and the problem of merging in any dimension is
not solved.

However, here are a few arguments that prove that there still is room for hope:
(1) The Ph.D. Dissertations of Elbaz [16] and Adam [1] present adivide-and-conqueralgorithm for

constructing Delaunay triangulations in 3-space. The process of merging sub-triangulations seems
to be correctly described; however, the expected running time analysis is not done. We hope that the
results presented in this paper may help in that respect.

(2) Buckley [9] suggests adivide-and-conqueralgorithm to construct convex hulls in dimension 4,
which the author generalizes to any dimension. Recall the strong relation between convex hulls and
Delaunay triangulations: computing a Delaunay triangulation in dimensionk may be reduced to
computing a convex hull in(k+1)-space; to that effect, it suffices to project the sites on a paraboloid
with axis orthogonal to the hyperplane containing them, to compute the convex hull of these projected
sites, and to project it on the initial hyperplane, which yields the sought triangulation.

(3) Merging sub-triangulations in dimension greater than two has never been proven impossible. It is
quite probable that many researchers have only been intimated by the complexity of the enterprise.

This paper is intended to give a new motivation for the design of an algorithm to merge sub-triangulations
in any dimension, that would allow the construction of multi-dimensional Delaunay triangulations in a
divide-and-conquer fashion.

By way of conclusion.The evaluation of the expected number of unfinished sites in ak-rectangle,
under quasi-uniform distribution, is an interesting result in itself, which may be used to analyze various
algorithms, that must, however, be more or less related to Delaunay triangulations, since the notion of
“unfinished sites” only has a meaning in such a context. It may be added to the probabilistic results
already obtained by Bern et al. [8] on the Delaunay triangulation in any dimension.

The Delaunay triangulation algorithm presented in this paper has a provably good behaviour for
uniform distributions and seems to be the most efficient for cluster distributions. One of our future
research goals is to prove that this method may be generalized in ak-dimensional setting, to yield,
after multi-dimensional pre-sorting, a Delaunay triangulation algorithm, the expected running time of
which would be proportional to the number of sites. We have shown that, although there is no known
algorithm for efficiently merging two Delaunay sub-triangulations ink-space, the expected running time
of the construction ispotentiallyproportional to the number of points, provided they are quasi-uniformly
distributed in a hypercube. On the basis of these results, the chances are great that such an algorithm
would be efficient, and might compete with Dwyer’s incremental algorithm [14], which uses a pre-

C. Lemaire, J.-M. Moreau / Computational Geometry 17 (2000) 69–96 93

partitioning of the sites by means of a regular grid. However, we are fully aware that merging sub-
triangulations in higher dimensions is a tantalizing task!

Acknowledgements

The authors wish to thank Olivier Devillers (INRIA, Sophia Antipolis, France) for his useful
comments on an early version of this paper, Luc Devroye (McGill University, Montreal, Canada) for
his help, encouragements and many comments, among which the remark in the appendix, Professor Kurt
Mehlhorn for his patience, perspicacity and kind help, and an anonymous referee for many judicious
remarks and pieces of advice that greatly helped improve an earlier version of this paper.

Appendix A. A technical lemma for the proof of Theorem 2.10

We now give a justification of the bound used in the course of proving Theorem 2.10 of Section 2.5.

Lemma A.1. LetIn,k = ∫ 1
0 (1− xk)n dx with integersn> 1 andk > 2. Then

In,k <
1

k
√
n+ 1

.

Proof. We shall argue by induction onn, for fixedk > 2.
Preliminary step.Let us first derive the recurrence equation

In,k = kn

kn+ 1
· In−1,k, (A.1)

using the deep relation betweenIn,k and the beta function:3 settingu= xk in the integral definingIn,k,
we may write

In,k = 1

k

1∫
0

u1/k−1(1− u)(n+1)−1 du= 1

k
B
(

1

k
, n+ 1

)
= 1

k
· Γ (1/k)Γ (n+ 1)

Γ (1/k + n+ 1)
.

This yields

3 The beta function is defined, for all strictly positive real numbersm,n as

B(m,n)=
1∫

0

xm−1(1− x)n−1 dx = Γ (m)Γ (n)
Γ (m+ n) ,

whereΓ stands for the gamma function, defined for any strictly positive real numbern as

Γ (n)=
∞∫

0

xn−1e−x dx.

94 C. Lemaire, J.-M. Moreau / Computational Geometry 17 (2000) 69–96

In,k
In−1,k

= Γ (1/k) · Γ (n+ 1)

Γ (1/k + n+ 1)
· Γ (1/k + n)
Γ (1/k) · Γ (n)

= nΓ (n)

Γ (n)
· Γ (1/k + n)
(1/k + n)Γ (1/k+ n) (sinceΓ (t + 1)= tΓ (t), ∀t > 0)

= n · 1

1/k + n =
kn

kn+ 1
.

Inductive argument.Recall thatk is a fixed integer (strictly greater than 1); letP(n) denote the
inequality we wish to prove (i.e.,P(n): In,k < 1/ k

√
n+ 1). As

∀k > 2, (k + 1)k = kk + kkk−1+ · · ·> 2 · kk⇒ k

k + 1
<

1
k
√

2
,

P(1) is clearly true.
Induction hypothesis: Supposen> 2 is some integer such thatP(n− 1) is true, i.e.,

In−1,k <
1
k
√
n
.

We now show that

P(n− 1)⇒ P(n),

starting with a classical binomial expansion and minorization,

(kn+ 1)k = (kn)k + k · (kn)k−1 · 1+ · · ·> kknk + kknk−1= (kn)k
(
n+ 1

n

)
.

Hence,

1
k
√
n+ 1

>
kn

kn+ 1
· 1

k
√
n
>

kn

kn+ 1
· In−1,k = In,k,

using the induction hypothesis and relation (A.1), successively.2
Remark (Luc Devroye). The convexity ofx logΓ (x) yields

log
(
Γ

(
n+ 1+ 1

k

))
6 log

(
Γ (n+ 1)

)+ log(Γ (n+ 2))− log(Γ (n+ 1))

(n+ 2)− (n+ 1)
· 1
k

= log
(
Γ (n+ 1)

)+ 1

k
log(n+ 1),

which allows to write

Γ (n+ 1)

Γ (n+ 1+ 1/k)
> 1

k
√
n+ 1

.

Hence,In,k differs from the upper bound we provide((n+ 1)−1/k) by a factor of at most 1/Γ (1+ 1/k)
(the bound is reached fork = 1 andk→+∞). For k in the range[1,+∞[, 16 1/Γ (1+ 1/k) < 1.15,
and the difference betweenIn,k and its majorization 1/ k

√
n+ 1 never exceeds 15%.

C. Lemaire, J.-M. Moreau / Computational Geometry 17 (2000) 69–96 95

References

[1] B. Adam, Construction des diagrammes de Delaunay dans le plan et dans l’espace, Ph.D. Thesis, Université
de Haute-Alsace, France, 1996.

[2] B. Adam, M. Elbaz, J.C. Spehner, Construction du diagramme de Delaunay dans le plan en utilisant les
mélanges de tris, in: Quatrièmes Journées de l’AFIG, Dijon, France, 1996, pp. 215–223.

[3] F. Aurenhammer, Voronoi diagrams – a survey of a fundamental geometric data structure, ACM Comput.
Surveys 23 (3) (1991) 345–405.

[4] M.O. Benouamer, P. Jaillon, D. Michelucci, J.-M. Moreau, A lazy arithmetic library, in: Proc. of 11th IEEE
Symposium on Computer Arithmetic, Windsor, Ontario, 1993, pp. 242–249.

[5] J.L. Bentley, Multi-dimensional binary search trees used for associative searching, Comm. ACM 18 (9) (1975)
509–517.

[6] M. Berger, Géométrie, 3. Convexes et polytopes polyèdres réguliers, aires et volumes, Fernand Nathan, Paris,
1974.

[7] M. Berger, Geometry, Vols. 1–2, Springer, Berlin, 1987.
[8] M. Bern, D. Eppstein, F. Yao, The expected extremes in a Delaunay triangulation, Internat. J. Comput. Geom.

Appl. 1 (1991) 79–91.
[9] C.E. Buckley, A divide-and-conquer algorithm for computing 4-dimensional convex hulls, in: Proc. of

Computational Geometry and its Applications, Lecture Notes in Computer Science, Vol. 333, Springer, Berlin,
1988, pp. 113–135.

[10] C. Burnikel, J. Könnemann, K. Mehlhorn, S. Näher, S. Schirra, C. Uhrig, Exact geometric computation in
LEDA, in: Proc. of 11th Annu. ACM Symposium on Computational Geometry, 1995, pp. C18–C19.

[11] P. Cignoni, C. Montani, R. Scopigno, Dewall: a fast divide-and-conquer Delaunay triangulation algorithm in
Ed , Technical Report 95-22, Instituto CNUCE-CNR, Pisa, Italy, 1995.

[12] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms, MIT Press/McGraw-Hill, Cambridge,
MA, 1990.

[13] R.A. Dwyer, A faster divide-and-conquer algorithm for constructing Delaunay triangulations, Algorithmica 2
(1987) 137–151.

[14] R.A. Dwyer, Higher-dimensional Voronoi diagrams in linear expected time, Discrete Comput. Geom. 6 (1991)
343–367.

[15] H. Edelsbrunner, Algorithms in Combinatorial Geometry, EATCS Monographs on Theoretical Computer
Science, Vol. 10, Springer, Heidelberg, Germany, 1987.

[16] M. Elbaz, Les diagrammes de Voronoi et de Delaunay dans le plan et dans l’espace, Ph.D. Thesis, Université
de Haute-Alsace, France, 1992.

[17] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, S. Schoenherr, On the design of CGAL, the computational
geometry algorithms library, Technical Report MPI-I-98-007, Max Plank Institute for Computer Science,
1998.

[18] S. Fortune, C. van Wyk, Efficient exact arithmetic for computational geometry, in: Proc. of 9th ACM
Symposium on Computational Geometry, San Diego, CA, 1993, pp. 163–172.

[19] J.H. Friedman, J.L. Bentley, R.A. Finkel, An algorithm for finding best matches in logarithmic expected time,
ACM Trans. Math. Software 3 (1977) 209–226.

[20] L.J. Guibas, J. Stolfi, Primitives for the manipulation of general subdivisions and the computation of Voronoi
diagrams, ACM Trans. Graphics 4 (1985) 74–123.

[21] M. Iri, T. Ohya, K. Murota, Improvements of the incremental method for the Voronoi diagram with
computational comparison of various algorithms, J. Oper. Res. Soc. Japan 27 (1984) 306–337.

[22] J. Katajainen, M. Koppinen, Constructing Delaunay triangulations by merging buckets in quadtree order, Ann.
Soc. Math. Polon. Ser. IV Fund. Inform. 11 (3) (1988) 275–288.

96 C. Lemaire, J.-M. Moreau / Computational Geometry 17 (2000) 69–96

[23] D.T. Lee, B.J. Schachter, Two algorithms for constructing a Delaunay triangulation, Internat. J. Comput.
Inform. Sci. 9 (1980) 219–242.

[24] C. Lemaire, Triangulation de Delaunay et arbres multidimensionnels, Ph.D. Thesis, ENSM.SE, Saint-Étienne,
France, 1997 (in French). Postscript version available at: http://lisse.emse.fr.

[25] C. Lemaire, J.-M. Moreau, Triangulation de Delaunay euclidienne dans le plan: optimisation du divide and
conquer à l’aide d’un tri selon deux directions, Technical Report 02D07669, SETRA, Bagneux, France, 1996.

[26] C. Lemaire, J.-M. Moreau, Amélioration de la complexité en moyenne de l’algorithme de Lee et Schachter
par division et fusion bi-directionnelles, Revue Internationale de CFAO et d’Informatique Graphique 12 (4)
(1997) 317–336.

[27] A. Maus, Delaunay triangulation and the convex hull ofn points in expected linear time, BIT 24 (1984)
151–163.

[28] K. Mehlhorn, S. Näher, LEDA: A Platform for Combinatorial and Geometric Computing, Cambridge
University Press, New York, 1999.

[29] D. Michelucci, J.-M. Moreau, Lazy arithmetic, IEEE Trans. Comput. 46 (9) (1997) 961–975.
[30] M.H. Overmars, Designing the computational geometry algorithms library CGAL, in: Proc. of 1st ACM

Workshop on Applied and Computational Geometry, Lecture Notes in Computer Science, Vol. 1148, Springer,
Berlin, 1996, pp. 113–119.

[31] M.I. Shamos, D. Hoey, Closest-point problems, in: Proc. of 16th Annu. IEEE Symposium on Foundations of
Computer Science, 1975, pp. 151–162.

[32] J.R. Shewchuck, Triangle: engineering a 2d quality mesh generator and Delaunay triangulator, in: M.C. Lin,
D. Manocha (Eds.), Proc. of 1st ACM Workshop on Applied and Computational Geometry, Lecture Notes in
Computer Science, Vol. 1148, Springer, Berlin, 1996, pp. 124–133. Program available at http://www.cs.cmu.
edu/˜quake/triangle.html.

[33] J.R. Shewchuk, Robust adaptive floating-point geometric predicates, in: Proc. of 12th ACM Annu.
Symposium on Computational Geometry, 1996, pp. 141–150.

[34] J.R. Shewchuk, Adaptive precision floating-point arithmetic and fast robust geometric predicates, Technical
Report CMU-CS-96-140, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, May
1996.

[35] P. Su, R.L.S. Drysdale, A comparison of sequential Delaunay triangulation algorithms, in: Proc. of 11th Annu.
ACM Symposium on Computational Geometry, 1995, pp. 61–70.

[36] P. Su, R.L.S. Drysdale, A comparison of sequential Delaunay triangulation algorithms, Computational
Geometry 7 (1997) 361–385.

[37] K. Sugihara, M. Iri, Construction of the Voronoi diagram for ‘one million’ generators in single-precision
arithmetic, Proc. of the IEEE 80 (9) (1992) 1471–1484.

