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Abstract 

The notion of a default consequence relation is introduced as a generalization of both default 
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1. Introduction 

Investigations in the field of nonmonotonic and “commonsense” reasoning have given 

raise to a bewildering diversity of approaches and constructions. It seems that this di- 

versity is gradually becoming a burden for the subsequent development in this field. 
One of the main purposes of this paper is to show that a number of such approaches 
are actually different representations of the same basic ideas and intuitions. By showing 
this, we hopefully pave the way to a future general theory of nonmonotonic reason- 
ing. 

The present study2 pertains mainly to two approaches to nonmonotonic reasoning. 
One is a default logic, suggested by Raymond Reiter in [25], the other is a modal 

approach to nonmonotonic reasoning, initiated by McDermott and Doyle in [ 221. De- 

fault logic is based on the notion of a default rule holding between ordinary classical 
propositions, and the intended nonmonotonic theories representing plausible “views of 
the world” are defined via a certain fixed-point construction (see below). The approach 
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of McDermott and Doyle was based instead on the language of modal logic, though the 
intended nonmonotonic objects were defined using a similar fixed-point construction. 

This and the subsequent paper [23] gave rise to a study of autoepistemic logic [ 241 
and of a whole range of modal nonmonotonic logics based on “negative introspection” 

in the works of Marek, Truszczynski and Schwarz (see, e.g., [ 16-18,21,27,30]). 
Despite the difference in the underlying language, the similarity between the above 

two approaches to nonmonotonic reasoning were noticed early, and a number of attempts 
has been made to clarify their relationship. Thus, Konolige [ 131 attempted to translate 
default logic into Moore’s autoepistemic logic, though the attempt was only partly 

successful. As will become clear in what follows, the reason for this is that Moore’s 
stable expansions directly correspond not to Reiter’s extensions, but to nonmonotonic 

objects of a different kind. An adequate translation of default logic into a broad range 
of modal nonmonotonic logics has been proposed by Truszczynski [ 32,331. 

In this paper we will attempt a systematic study of the relation between default and 

modal formalizations of nonmonotonic reasoning. However, instead of translating these 
formalisms into each other, we will consider a reformulation of both default logic and 
modal nonmonotonic logics in the framework of a certain monotonic inference system 
that is based on rules, or sequents, with the form 

a : b IF A, 

where a and b are finite sets of propositions. An informal interpretation of such sequents 
will be 

If all propositions from a are assumed (or believed) to hold and no proposition 
from b is assumed to hold, then infer A. 

We will call such sequents default rules, due to their correspondence with the rules 
of Reiter’s default logic [ 251. Sets of default rules satisfying certain conditions will be 

called default consequence relations. The main distinctive feature of our formalization, 
as compared with that of Reiter’s, is an explicit use of “meta-rules” allowing to infer new 
default sequents from given ones. It turns out that for extensions and other “preferred” 

objects relevant to our study there are important structural rules that preserve these 
objects. Default consequence relations obtained by adding such rules can be seen as 
providing a logical (monotonic) basis for different kinds of nonmonotonic reasoning. 
In addition, they will allow us to give a very simple characterization of extensions and 

their relatives. 
As the next step, we introduce the notion of a modal default consequence relation. 

These consequence relations will be defined in a language with a modal operator, but 
otherwise will involve the same rules as general default consequence relations. Modal 

default consequence relations will turn out to be an especially suitable tool for studying 
modal nonmonotonic reasoning. Thus, both autoepistemic reasoning [ 241 and reasoning 
with “negative” introspection [ 16,18,23] will acquire a natural characterization in this 

framework. 
As has been shown in [ 21, under certain reasonable conditions modal consequence 

relations are reducible to the associated nonmodal default consequence relations in a way 
that preserves the associated nonmonotonic objects. These results will be used here in 



A. Bochrnan /Artt$ciul Intelligence 101 (I 998) l-34 3 

order to establish a two-way correspondence between modal and default formalizations. 
Thus, for a number of modal nonmonotonic logics that appear in the literature, we will 
give a representation in terms of modal default consequence relations. We will show also 
how and under what conditions objective default consequence relations can be faithfully 

embedded into modal ones. These latter results provide a natural generalization of 
the above mentioned Truszczynski’s results concerning modal translation of defaults. 

Finally, we will demonstrate that the modal logic K45, associated with autoepistemic 
reasoning, is in some strong sense equivalent to a certain nonmodal default consequence 
relation. As a result, we obtain a non-modal, default-type formalization of autoepistemic 

logic. 

2. Default consequence relations 

In this section we will introduce the notion of a default consequence relation. It will 

be defined as a set of default sequents satisfying certain rules that allow to infer new 
sequents from given ones. In fact, it is these rules that make a set of defaults a proof 
system. Defaults as such do not bear information about when and how they can be 
applied on their heads. For ordinary inference rules, this information can be embodied 
in the form of “meta-rules” that produce new inference rules from given ones (this is 
actually the main idea behind various sequent calculi). Default consequence relation is 
an attempt to extend this idea on inference rules that involve as their premises not only 

what is assumed to hold, but also what is assumed not to hold. 
We will assume in this paper that default consequence relations are defined in a clas- 

sical propositional language with a predefined classical entailment. The corresponding 

classical consequence operator will be denoted, as usual, by Th. 

Definition 2.1. A set of default sequents will be called a default consequence relation 

if it satisfies the following two rules: 

(Monotonicity ) If a : b IF A and a & u’, b C b’, then a’ : b’ IF A. 

(Deductive Closure) If A E Th(c) and a : b IF C;, for any C; E: c, then a : b It A 

Default consequence relations can indeed be considered as relations, that is relations 
between pairs of premise sets, on the one hand, and propositions in conclusions, on the 

other. Propositions from the first premise set of a default sequent will be called positive 

premises, while those from the second premise set-negative premises. 

Monotonicity and Deductive Closure provide a primary constraint on our under- 
standing of default sequents. Deductive Closure seems obvious; it says that deductive 

consequences of provable propositions are also provable. It implies also that if A is a 
classical tautology, then : IF A belongs to any default consequence relation. 

Monotonicity says, in effect, that default sequents are applicable in all contexts in 
which their premises hold. This makes a default consequence relation a fully mono- 
tonic (though somewhat unusual) inference system, and immediately distinguish it 
from, e.g., cumulative and preferential nonmonotonic inference (see [ 141) that are 
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not monotonic in this sense. As we will see later, the nonmonotonicity is introduced 

in our framework not by the default rules themselves, but rather by choosing some 
“intended” models as representing the meaning of a default consequence relation. It 

will be shown, however, that Monotonicity is an admissible rule with respect to such 
models. 

As for the classical sequent calculus, the definition of a default consequence rela- 
tion can be extended to arbitrary sets of propositions in premises of default rules by 
stipulating that for any possibly infinite sets of propositions u and U, 

u : u It- A if and only if a : b IF A, 

for some finite a, b such that a C U, b C u. This stipulation also ensures that default 

consequence relations will satisfy the compactness property. 

The general notion of a default consequence relation is rather uninformative. It is 
only a frame that can be “filled” with additional rules that would provide a more tight 

description of our intuitions about nonmonotonic reasoning. As we will see, there is no 
single system that reflects adequately all our intuitions. In fact, different nonmonotonic 
constructions admit different, even incompatible, reasoning paradigms. Below we will 
consider a number of rules and conditions that will form the basis for a subsequent 
classification of various kinds of default reasoning. 

To begin with, we introduce the following rule: 

(Cut) 
a:blkA a, A : b It- B 

a: bk B 

The rule Cut is nothing other than the usual Cut rule for the classical sequent calculus, 
though extended to default sequents. It permits the use of inferred propositions as 

additional positive premises in the proof. As we will see, the rule allows to avoid 
explicit iterative constructions commonly used in defining nonmonotonic objects (see, 
e.g., [ 17,251) . Accordingly, a default consequence relation will be called iterative if it 

satisfies Cut. 
The following axiom states that no proposition can serve as both a positive and 

negative premise in a proof: 

(Consistency) A : A IF I, 

where I denotes the proposition “False”. The axiom implies that consistent pairs of 

premise sets must be disjoint. Though this requirement is not universally acceptable (it 

does not hold, for example, in some semantics for logic programming-see [ 311, it will 
hold for all systems we will consider in this paper. 

The following pair of rules reflect the requirement of deductive closure for positive 

and negative premises, respectively. 

(Positive Closure) 
A E Th(a) a,A : b II- B 

a:bll-B ’ 

(Negative Closure) If B E Th(c) and a : b, C; IF A, for any Ci E C, 

then a : b, B It A. 
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Positive Closure implies that deductive consequences of positive premises can be 
used as additional positive premises, while Negative Closure says that if we reject a 
proposition, we must reject at least one proposition from any set of propositions that 
implies it deductively. Negative Closure is reducible to the following rule: 3 

a : b, A It C a:b,A-+BltC 

a:b,BIt-C 

One of the main consequences of the above closure rules is the possibility of replace- 
ment of deductively equivalent formulas both in positive and in negative premises. In 

addition, Positive Closure allows to replace sets of positive premises by their conjunc- 
tions, while Negative Closure implies the following rule: 

a : b, A IF C a : b, B IF C 

a:b,AABIkC 

The rule allows to conjoin different sets of negative premises leading to the same 

conclusion. 
A default consequence relation will be called basic if it satisfies the above four rules. 

In the next section we will provide a semantic characterization for such consequence 

relations. 

2. I. Semantics 

We introduce first some notation. For a set of propositions u, we will denote by U the 
complement of U. For a given default consequence relation, we will denote by Cn( U, U) 

the set of all consequences of the pair of sets (u, u), that is, the set {A ) u : L’ IF A}. 
By a semantics for a default consequence relation we will mean a set of models. A 

model is a triple (w, U, u), where w, U, u are sets of propositions and w is closed with 
respect to classical consequence. We will not give an informal interpretation of such 
models at this point, mainly because of the diversity of their potential interpretations 

used in the paper. 
Let S be a semantics. Then a default sequent a : b IF A will be said to be valid with 

respect to S if and only if 

a C u and b C V imply A E w, for any model (w, U, U) from S. 

For any semantics S, we will denote by IFS the set of all default sequents valid with 
respect to S. Then the following theorem shows that default consequence relations are 
complete with respect our semantics. 

Theorem 2.2 (Completeness Theorem). It- is a default consequence relation if and 

only if there is a semantics S such that It coincides with Its. 

The above Completeness Theorem will serve as a basis for a characterization of 

various extensions of the notion of a default consequence relation, described in what 

3 Similar rules can also be given for Positive Closure. 
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follows. To begin with, it is easy to show that Consistency amounts to the requirement 

that in any model (w, u, v), u is included in u, while Cut corresponds to the condition 
that w C u. Similarly, Positive Closure and Negative Closure correspond, respectively, 

to conditions that u and u must also be deductively closed sets of propositions. Com- 

bining all these conditions, we will obtain a semantic characterization of basic default 
consequence relations. 

A model (w, u, u) will be called basic, if w, u, u are deductively closed sets and 
w C u C u. By a basic semantics we will mean a set of basic models. It is easy to 

show that all the rules of a basic default consequence relation are valid with respect to 
such a semantics. Moreover, the following result shows that basic default consequence 
relations are complete with respect to such a semantic interpretation. 

Corollary 2.3. It- is a basic default consequence relation if and only if there is a basic 

semantics S such that It- coincides with IFS. 

Note. A more standard, though equivalent, description of a basic model were obtained, if 
we would “label” the relevant deductively closed sets by sets of worlds associated with 
them, just as this was done in [ 141 for cumulative consequence relations. However, 

in the context of this paper the suggested formulation seems to be more simple and 
illuminating (cf. also [ 71 for a discussion on the relationship between these two forms 

of representation). 

2.2. Kinds of default reasoning 

A common feature of both default logic and modal nonmonotonic logics is that they 
have two components. The first component is a logical framework, e.g., some modal 

logic or a set of defaults. The second, nonmonotonic, component involves a stipulation 

what set of potential models we should consider as intended, or “preferred” ones. For 
Reiter’s default logic these are extensions, while for autoepistemic logic it is stable 

expansions. The relation between these two components is usually more complex than 

in the monotonic case. In usual, monotonic, logical systems the set of all theories 
(that is, sets of propositions closed with respect to the rules of the system) determines 
in turn the source provability relation. Unfortunately, this useful property of mutual 
determination holds neither for default logic nor for modal nonmonotonic formalisms. 
In both these cases different systems may determine the same set of “preferred” objects 
and hence the same nonmonotonic inference. What complicates matters still further is 
that, in general, the set of such objects does not change monotonically with a change 
of the underlying system. However, we will show that both for default logic and modal 

nonmonotonic logics there are rules that preserve “preferred” models. Such rules can be 
considered as providing a logical basis for the corresponding systems of nonmonotonic 

reasoning. 
All the rules and conditions for a basic default consequence relation will hold in all 

systems discussed in the paper. Now we are going to consider rules that will make a 

difference. The first is the following Reflexivity axiom: 



A. Bochman/Artificial Intelligence 101 (1998) 1-34 

(Reflexivity) A : 8 It A. 

Despite its apparent plausibility, Reflexivity does not hold for some natural interpre- 
tations of default sequents (e.g., when the premises represent propositions that are or 

are not believed, while conclusions are assumed to be true). The semantic condition 
corresponding to this rule is that, in any model (w, U, u), w coincides with u (see 

below). 
There is an instance of the above axiom that will be assumed to hold in all cases: 

(Positive Consistency) _L : II- 1. 

Positive Consistency implies that consistent pairs of premise sets must include con- 
sistent sets of positive premises. The corresponding semantic condition is that w is 
consistent for any model (w, U, u). 

The second controversial rule is a rule that permits “reasoning by cases”: 

(Factoring) 
a, B : b IF A a : b, B Ii- A 

a:blt-A 

The rule implies, in effect, that contexts of reasoning are complete (two-valued) 
with respect to positive and negative assumptions. It turns out to be characteristic of 
autoepistemic reasoning (see below). This rule can be characterized semantically by a 

requirement that, in any model (w, U, v), u coincides with U. 
Again, there is an important weaker form of “factoring” that will hold for all systems 

considered in the paper. 

(Negative Factoring) 
a, B : b IF _L a:b,BIkA 

a:blkA 

The rule says that if it is inconsistent to assume a proposition as a positive premise, 

then it can be assumed as an additional negative premise. In fact, the rule can be seen 
as a realization of the “negation as inconsistency” principle suggested in [lo]. The 

semantic condition corresponding to this rule is that if (w, U, U) is a model, then there 

exists a set w’ such that (w’, U, v) is also a model. 
What will happen if we accept all the rules given above? Before we answer this 

question, let us introduce the following definition. 

Definition 2.4. A default consequence relation will be called stable if it satisfies Cut, 

Consistency, Reflexivity and Factoring. 

It can be shown that the above four rules imply both Positive Closure and Negative 
Closure. Hence, stable consequence relations are basic. Moreover, as follows from the 
semantic characterization of Reflexivity and Factoring, models of such a consequence 
relation should have the form (u, u, u), that is, all three their components are identical. 
The following theorem shows that a stable default consequence relation constitutes a 
limit case-it is already equivalent to an ordinary sequent calculus. 

A binary relation a t b between sets of propositions is called a Scott consequence 
relation (see [ 91) if it satisfies the following conditions: 
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(Reflexivity) A I- A; 

(Monotonicity) If a k b and a C a’, b C b’, then a’ t 0’; 

(Cut> 
at b,A a,Ak b 

atb 

Theorem 2.5. Let II- be a stable consequence relation. DeJne the following conse- 

quence relation between sets of propositions: 

a klk b G a : b IF i. 

Then kit is a Scott consequence relation and a : b It A if and only if a kit b, A. 

A distinctive feature of stable consequence relations, a feature that makes them inap- 
propriate as a basis for nonmonotonic reasoning systems, is the validity of the following 

rule: 

( Symmetry > 
a : b, B It A 

a:b,AIt-B’ 

It is this rule that actually reduces default-type sequents to disjunctive, or “multiple- 
conclusion”, rules. Nevertheless, we will see that stable consequence relations constitute 
an important “upper bound” on reasonable default-type systems. In other words, for 
reasons that will become clear from what follows, all such systems should contain only 
rules that are also valid for stable consequence relations. 

Thus, the main lesson from the theorem is that in order to obtain nontrivial default 

consequence relations, we must reject, or weaken, one of the four rules constituting the 

definition of a stable consequence relation. As we will show below, default logic and 

modal nonmonotonic logics give rise to two basic kinds of reasoning. One of them, which 
is associated with autoepistemic logic, involves rejection of Reflexivity. The second kind 
of reasoning is associated with default logic and modal nonmonotonic logics based on 

“negative introspection”; it is characterized by rejecting Factoring. Below we will give 

a brief description of the corresponding systems. 

2.3. Autoepistemic consequence relations 

We will begin with autoepistemic logic. Though the following description does not 
involve modal operators, we will see that it provides an adequate characterization of 

autoepistemic reasoning. 

Definition 2.6. A basic default consequence relation will be called autoepistemic if it 
satisfies Factoring and strongly autoepistemic if it also satisfies Positive Consistency. 

As we mentioned above, Factoring can be characterized semantically by a requirement 
that, in any model (w, u, u), u must coincide with U. This means, in fact, that such models 
are reducible to pairs of sets (w, u). This suggests the following alternative definition 
of the semantics for autoepistemic consequence relations. 
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A pair of sets of propositions (u, u) will be called a bimodel if u and u are deductively 

closed and u C_ U. 

Definition 2.7. A default sequent a : b IF A will be said to be A-valid with respect to a 

bimodel (u, U) if and only if A E u whenever a C v and b C 5. 

The above notion of validity reflects an autoepistemic interpretation of default rules 
according to which a : b IF A says that if all propositions from a are believed, while all 
propositions are not believed, then A should be true. 

By a binary semantics we will mean a set of bimodels; a default sequent will be 

said to be A-valid with respect to a binary semantics if it is A-valid with respect to all 
its bimodels. As before, for any binary semantics 9, we will denote by IF; the set of 

all default sequents that are A-valid with respect to S. It is easy to check that this set 
forms an autoepistemic consequence relation. Moreover, the following result shows that 

autoepistemic consequence relations are characterized by this semantics. 

Theorem 2.8. It is an autoepistemic consequence relation if and only if there is a 

binary semantics S such that IF coincides with It;. 

It can be shown that binary semantics restricted to bimodels of the form (a, u), 
where (Y is a world (maximal deductively closed set) are still adequate for autoepistemic 
consequence relations. This observation allows to establish a correspondence between 

our semantics and autoepistemic interpretations suggested by Moore in [24], since the 
latter are also defined as pairs consisting of a world and a theory. 

It turns out that autoepistemic consequence relations provide an adequate logical basis 

for reasoning about the key concepts involved in autoepistemic reasoning. The latter are 
described in the following definition: 

Definition 2.9. Let It be a default consequence relation. 
( 1) A set of propositions u will be called stable in IF if it is deductively closed and 

Cn(u,l?) C u; 
(2) u will be called an expansion in II- (or IF-expansion) if u = Cn(u, E). 

Recall that a default consequence relation is a certain set of default sequents. More- 
over, since all the rules for such consequence relations, described earlier, have a “Horn” 

form, for any set of default sequents r there always exists a least consequence rela- 
tion (in the sense of set inclusion) that includes r and is closed with respect to such 

rules. 
For an arbitrary consequence relation It, we let Itae (I?-, Its) denote the least 

autoepistemic (respectively, the least strongly autoepistemic and the least stable) con- 
sequence relation containing ll-. These consequence relations can be described alterna- 
tively as consequence relations obtained from IF by adding the appropriate rules and 
axioms. 

The following theorem (proved in [ 21) gives a characterization of default conse- 
quence relations that are appropriate for “intended” autoepistemic objects. 
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Theorem 2.10. For any default consequence relation IF , 
(1) Its has the same stable sets as It ; 
(2) IPe has the same stable sets and expansions as Ik ; 
(3) ItSae has the same stable sets and consistent expansions as It. 

An immediate consequence of this result is that addition of any of the rules involved in 
the definition of an autoepistemic consequence relation does not change stable sets and 

expansions. Similarly, Positive Consistency does not change stable sets and consistent 
expansions, and Reflexivity does not change stable sets. 

It is easy to show that, in any consequence relation satisfying Reflexivity, expansions 
coincide with stable sets (since for such relations u C @n(u, u), for any U, u). Thus, 
Reflexivity does not preserve expansions. Moreover, even a weaker form of reflexivity, 

Positive Consistency, always forces the set of all propositions to be an expansion, though 
it preserves consistent expansions. 

The main conclusion that can be made from the above results is that autoepistemic 
consequence relations provide an admissible framework for reasoning about stable sets 
and expansions. In the next section we will present a similar result for default logic. 

2.4. Default logic and reflexive consequence relations 

Reiter [ 251 defines a default theory as a pair d = (W D), where W is a set of 
propositions and D a set of default rules of the form4 A : B,, . . . , Bk/C. The con- 

nection between default theories and default consequence relations can be established 
by representing propositions from W as sequents : II- A and default rules from D as 

sequents 

A: 7B1,. . . , --$k IF c. 

This translation will be denoted by tr( A). As can be seen, it agrees with the informal 
meaning of default sequents given in the Introduction. Note also that the translation is re- 
versible: a default sequent Al,. . . , A,, : B1, . . . , Bk II- C is representable by a default rule 

A, A...AA,, :-B ,,..., TBk/C. 

Reiter’s default logic is based on the notion of extension. The latter can be defined 
using a certain iterative construction (see [ 25, Theorem 2.11). It turns out that this 
construction can be captured in our system through the use of the rule Cut given 

above. The following definition gives a formalization of the notion of extension in 
the framework of iterative consequence relations, that is, default consequence relations 

satisfying Cut. 

Definition 2.11. Let It- be an iterative consequence relation. A set of propositions u will 
be called an extension in IF (or It-extension) if 

u = Cn(0,Z). 

4 It is interesting to note that a “pseudo-modal” operator M that appears in the original formulation of default 

rules in [25] was later eliminated by Reiter as unnecessary. 



A. Bochman/Art@cial Intelligence IO1 (1998) I-34 I1 

Thus, extensions are sets of propositions that are provable in an iterative consequence 
relation by taking their complements as a set of negative premises. It can be shown (see 
[ 21) that if 11 is an iterative consequence relation, then any IF-extension is a It--expansion 
(and hence a It-stable set). The following theorem shows that iterative consequence 
relations and It--extensions provide a proper generalization of Reiter’s default logic. 

Theorem 2.12. Let A be a default theory and lkd the least iterative consequence 

relation containing tr( A). Then extensions of A coincide with IFA-extensions. 

The above result can be informally described as follows. First, we translate a default 

theory A into a set of default sequents tr( A). Then, for a set of propositions U, we 
check whether all propositions from u can be proved from tr( A) by taking U as a set of 
auxiliary negative premises and applying the two rules of a default consequence relation 
and Cut. If they are, u is an extension of the default theory A. 

Now we are going to describe a stronger default consequence relation that is ap- 
propriate for Reiter’s default logic. This consequence relation will play an important 
role in establishing a correspondence between default logic and modal nonmonotonic 

logics. 

Definition 2.13. A basic default consequence relation will be called reflexive if it satis- 
fies Reflexivity and Negative Factoring. 

As we mentioned, the semantic condition corresponding to Reflexivity is that, in 

any model (w, U, u), w coincides with U. Thus, models in this case are also reducible, 
in effect, to pairs of sets of propositions. This suggests that a semantics for such 
consequence relations can be given a simpler formulation. To this end, we will employ 
the notion of a bimodel used earlier in defining semantics for autoepistemic consequence 

relations. 

Definition 2.14. A default sequent a : b It A will be said to be R-valid with respect to 
a bimodel (u, U) if and only if A E u whenever a C u and b c 5. 

As can be seen, this definition of validity differs from the corresponding definition 
for A-validity only by the condition for positive premises a: while A-validity requires 

this set to be included in U, R-validity requires its inclusion in the smaller set, u. 
As before, by a binary semantics we will mean a set of bimodels, and a default 

sequent will be said to be R-valid with respect to a binary semantics if it is R-valid with 
respect to all its bimodels. However, in this case the presence of Negative Factoring 

imposes restrictions on admissible sets of bimodels. A binary semantics S will be called 
rejlexive if it satisfies the following additional condition: if (u, v) E S, then (u, U) E 

S. 
For a reflexive binary semantics S, we will denote by II-: the set of all default sequents 

that are R-valid with respect to S. It is easy to show that such a set always forms a 
reflexive consequence relation. The following theorem shows that reflexive consequence 
relations are complete with respect to this semantics. 
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Theorem 2.15. IF is a reflexive consequence relation if and only if there is a rejlexive 

binary semantics S such that IF coincides with I$. 

Let IF’ denote the least reflexive consequence relation containing It. The following 

result has been proved in [ 21. 

Theorem 2.16. For any iterative consequence relation It- , IF’ has the same stable sets 

and extensions as k. 

Thus, reflexive consequence relations are appropriate for reasoning about extensions. 
This means, in particular, that the semantics for reflexive consequence relations, de- 

scribed earlier, can thereby be considered as an adequate semantics for Reiter’s default 

rules. 
It can be shown that the rule Factoring does not preserve extensions. On the other 

hand, as we already mentioned, Reflexivity obliterates the distinction between stable 
sets and expansions. This indicates that expansion- and extension-based kinds of non- 
monotonic reasoning are in some sense incompatible-each admits inference steps that 
are inadmissible in the other. However, the rules common to both autoepistemic and 
reflexive consequence relations clearly preserve all the objects we have considered, i.e., 

stable sets, expansions and extensions. This suggests the following definition that will 

be used in what follows. 

Definition 2.17. A basic default consequence relation will be called introspective if it 
satisfies Positive Consistency and Negative Factoring. 

It is easy to see that all the rules of an introspective consequence relation belong 
both to autoepistemic and to reflexive consequence relations. Hence, it follows from the 

results, stated above, that introspective consequence relations form a representative class 
with respect to all three kinds of objects we have considered. So, they can be considered 
as a natural “common part” of autoepistemic and reflexive reasoning. 

3. Modal default consequence relations 

In this section we will introduce the notion of a modal default consequence relation. 
As we will see, modal default consequence relations provide a natural logical basis for 

modal nonmonotonic logics. 
Let CL be the set of all propositions in a classical propositional language with a 

modal operator L. For any set of propositions u from CL., we let Lu denote the set of 
all propositions of the form LA, where A E u. The notation 1~ will have a similar 
meaning. 

Definition 3.1. A default consequence relation in the language CL, will be called modal 

if it satisfies the following two modal axioms: 

A: IELA : A IF -LA. 
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In the context of modal nonmonotonic logics, the operator L is usually interpreted as 
an epistemic operator, that is, either as an operator of belief (see, e.g., [ 241) or as an 
operator of knowledge (e.g., in [ 301). In fact, the belief interpretation is appropriate for 

autoepistemic logic, while the knowledge interpretation is more appropriate for reflexive 
consequence relations. Still, to ease the presentation, we will stick for the time being to 
the term “belief” in describing the meaning of the operator. Then the above two axioms 
of a modal default consequence relation imply, in effect, that positive premises of any 
sequent include propositions that are believed and negative premises include propositions 
that are not believed.5 Consequently, the following understanding of default sequents 
a : b IF A in modal default consequence relations will be appropriate: 

If all propositions from a are believed and all propositions from b are not 

believed, then infer A. 

This interpretation is in agreement with the following strengthening of the notion of 

a modal consequence relation: 

Definition 3.2. A modal default consequence relation will be called regular if it satisfies 

the following two rules: 

a:blt-LA a, A : b It B 

u:bItB 

a : b IF 7LA a : b,A II-B 

u:blt-B 

The first rule says that believed propositions can serve as additional positive premises, 
while those that are not believed can be used as additional negative premises. 

Now we are going to give a semantic characterization of regular consequence relations. 
A model (w, U, U) in the language 13~ will be said to be regular, if it satisfies the 
following two conditions: 

u = {B 1 LB E w}, u = {B 1 -LB $ w}. 

Accordingly, a semantics will be called to be regular, if it consists of regular models. 
As the following proposition shows, regular semantics provide an adequate characteri- 
zation of regular default consequence relations. 

Theorem 3.3. It- is a regular modal default consequence relation if and only if there 

is a regular semantics 9 such that IF coincides with IFS. 

As can be seen, the last two components of any regular model are fully determined 
by modal formulas that belong to its first component, W. This fact can be used to 
give regular default consequence relations a natural semantic interpretation similar to 
an autoepistemic interpretation proposed for autoepistemic logic (see [ 13,241). By an 

’ Note that any modal default consequence relation satisfies Consistency. 
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MD-model we will mean any consistent deductively closed set in CL. For any MD-model 
w we define the following two sets: 

WL = {B / LB E w}, wL = {B ITLB E w}. 

The set WL can be naturally interpreted as the set of propositions that are believed in 
w, while wL as the set of propositions that are not believed in w. Note that, in contrast 

to autoepistemic logic, the interpretation is partial with respect to modal propositions. 
Now, a default sequent a : b It A will be said to be valid with respect to an MD-model 
w if and only if A belongs to w whenever all propositions from a are believed in w and 

all propositions from b are not believed in W, that is, 

aCwLAbCwL + AEW. 

As before, for a set of MD-models MI, we will define E-M as the set of all modal 

default sequents that are valid with respect to all MD-models from Ml. It is easy to check 
that lt~ is a regular default consequence relation. Moreover, it should be clear that any - 
MD-model w can be identified with a regular model (w, wt, wL.). Consequently, the 
above semantic interpretation turns out to be adequate for regular default consequence 
relations. 

Corollary 3.4. A default consequence relation II- in the language LL is regular if and 

only if there exists a set of MD-models M such that IF = /FM. 

Thus, regular default consequence relations are determined, in effect, by arbitrary 

deductively closed sets of modal formulas. This implies, in particular, that modal default 
consequence relations in general have no “modal content” in the sense that they impose 
no restriction whatsoever on the modal operator. However, we will see that additional 
rules of the kind described earlier correspond to well-known modal axioms for L. 

Now we are going to show how modal nonmonotonic logics are representable in this 

formalism. 
To begin with, note that the two modal axioms characterizing a modal default con- 

sequence relation imply that IF-stable sets in such consequence relations are stable sets 
in the usual sense, that is, they are deductively closed sets satisfying the following two 

conditions: 
l If A E u, then LA E u. 

l If A $! u, then 1LA E u. 

Let Ii-, denote the least modal default consequence relation containing a set of (modal) 
propositions u (that is, I’r A, for any A E u). Clearly, II-, is simply the set of all sequents 
obtained from u by applying the two axioms and two rules of modal default consequence 

relations. The following simple lemma was proved in [ 21: 

Lemma 3.5. a : b I!-, A if and only if A E Th(u U La U -Lb). 

As an immediate consequence of this lemma, we obtain that It-,-stable sets are those 

deductively closed sets of propositions s that satisfy the condition 
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Th(u u Ls u -L5) & s. 

Thus, It,-stable sets are exactly stable sets containing u (see [24] ). Similarly, It,- 
expansions are sets satisfying the condition 

s=Th(uULsuyLs), 

and hence they coincide with Moore’s stable expansions of u. Consequently, stable sets 

and stable expansions of any modal theory u coincide with the corresponding objects of 

the generated modal default consequence relation IF,. Thus, Moore’s autoepistemic logic 
can be adequately translated into the framework of modal default consequence relations. 

Furthermore, applying now Theorem 2.10, we can infer that autoepistemic logic can 

be faithfully represented by means of modal autoepistemic consequence relations. In 
the next section we will complete the picture by demonstrating that the latter exactly 

correspond to consequence relations based on the modal logic K45. 
Now we will turn to modal nonmonotonic logics in general. It is easy to show that 

the rule Cut in modal default consequence relations implies the following rule: 

(Necessitation) 
a:blkA 

a:bkLA’ 

(In fact, it can be shown that for regular consequence relations the two rules are 
equivalent.) Thus, Cut captures the effect of the necessitation rule A/LA in modal 

logics. 
Let S be a modal logic containing the necessitation rule. We will say that a modal 

default consequence relation is an S-consequence relation if it is an iterative consequence 
relation such that if A is an instance of a modal axiom from S, then Ii- A. For any 
set of propositions u, let IF? be the least S-consequence relation containing u. This 
consequence relation can also be described as the set of all sequents obtained from u 
by using the axioms of S, the axioms and rules of modal default consequence relations 
and the Cut rule. The following lemma was also proved in [ 21: 

Lemma3.6. a:bll-fAifandonly$AECns(uULaU~Lb). 

As a consequence of the lemma, we obtain that IF:-extensions are sets of propositions 

satisfying the following condition: 

s=Cns(uUlL?). 

Thus, IIf-extensions coincide with S-expansions of u as defined in [ 181 (see also 
[ 231) . It follows that a modal nonmonotonic reasoning based on “negative introspection” 
can be also represented in terms of modal default consequence relations and the notion of 
It--extension. Moreover, Theorem 2.16 implies that modal reflexive consequence relations 

provide an adequate framework for reasoning of this kind. It is interesting to note that, 
in the modal case, the inappropriateness of autoepistemic consequence relations for 
reasoning about extensions follows immediately from the fact (proved in [ 21) that for 

modal autoepistemic consequence relations extensions collapse to expansions. In view 
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of what will be shown below, this result is actually a generalization of the well-known 

result of Schwarz [26] saying that stable expansions are K45expansions. 
In the next section we will consider how and to what extent various modal axioms 

influence modal nonmonotonic reasoning. 

3. I. Modal consequence relations versus modal nonmonotonic logics 

In this section we will consider the correspondence between modal nonmonotonic 

logics and their associated default consequence relations. It follows from the results 
described above that both autoepistemic logic and modal nonmonotonic logics are rep- 

resentable via modal default consequence relations of a special kind, namely those 
generated by a set of modal formulas. Consequently, we can restrict our attention to the 
latter. The following definition provides a formal characterization for such consequence 

relations. 

Definition 3.7. A modal default consequence relation It- will be called prime if it coin- 
cides with the least iterative consequence relation containing Cn( 8,8). 

It is easy to show that a modal consequence relation is prime if and only if it is the 
least iterative consequence relation containing some set of propositions. As has been 
said, the rule Cut, that characterizes iterative consequence relations, is equivalent to the 

modal necessitation rule. Consequently, Lemma 3.6 could be replaced by a more general 
lemma: 

Lemma 3.8. IF is a prime consequence relation if and only if, for any a, b and A, 
a : b It A is equivalent to 

A E Cn,(@n(&@) ULaU7Lb), 

where CnN denotes the provability operator of the modal logic N. 

The lemma shows that, in general, prime modal default consequence relations corre- 
spond to modal nonmonotonic logics based on the pure logic of necessitation N, that is, 

a modal logic that has no proper modal axioms and the necessitation rule as the only 
additional modal rule (see [ 81). 

An important consequence of the lemma is the following corollary. 

Corollary 3.9. Any prime modal default consequence relation is regular. 

The set @n( @,0) may include all instances of modal axioms characterizing various 
modal logics. An important question that arises here is to what extent different modal 
axioms appearing in @n( 0,p)) influence the general properties of the corresponding 
consequence relation, since, as is well known, different modal logics may determine 
the same nonmonotonic inference-see [ 161. In the rest of this section we will give 
representation results for a number of well-known modal nonmonotonic logics. It will 
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turn out that most of them possess a simple and natural characterization in terms of 
different structural rules that hold in the associated default consequence relations. 

We begin with demonstrating that prime K4consequence relations can be character- 
ized as consequence relations that satisfy certain deduction rules. 

Theorem 3.10. Ii- is a prime K4-consequence relation if and only if it is iterative, 

satisfies Positive Closure and the following two modal deduction rules: 

(Positive Deduction) 
A,a:bll-B 

a:bIt-LA+B’ 

(Weak Negative Deduction) 
a : A, b It B 

a:bIk~LIAL~LA-+B’ 

The theorem gives an example of a correspondence between rules for default con- 
sequence relations and usual modal axioms. Note that, given Positive Deduction, the 

Positive Closure rule can be shown to be equivalent to the modal K axiom. In addi- 
tion, it can be shown that a prime S-consequence relation in general satisfies Positive 
Deduction if and only if the modal logic S satisfies the rule 

LA --) B 

LA--, LB’ 

The two deduction rules are rules that permit propositions to be transferred from 

premises to conclusions. Note that these rules are reversible. Consequently, by successive 
applications of these rules, any sequent can be transformed to a provable proposition: 

Corollary 3.11. For prime K4-consequence relations, any default sequent Al, , A,, : 

B,, . . , B,,, II- C is equivalent to a provable formula 

LA, A...A LA, A [ATLI] A LlLB1 A...A LTLB,, --f C 

(where the conjunct lL_L is present only if the set of negative premises is not empty). 

The above result shows that, for any modal logic S including K4, a prime S- 
consequence relation can be seen simply as an alternative representation of a modal 

S-theory. This alternative representation, however, will make vivid the structural rules 
that characterize the corresponding nonmonotonic logic. 

It can be shown that prime K4-consequence relations satisfy all the rules of introspec- 
tive consequence relations, except Positive Consistency and Negative Closure. Adding 
the first rule amounts to addition of the modal D axiom LA --) ~LTA: 6 

Theorem 3.12. The following conditions are equivalent: 
( 1) II- is a prime KD4-consequence relation. 

’ The next three theorems provide a correct replacement for Theorems 3.8 and 3.10 from [ I], which are 

wrong as stated. 
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(2) 

(3) 
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It is iterative, satisfies Positive Closure, Positive Deduction and the following 

rule: 

(Negative Deduction) 
a: A,blk B 

a:bIkLTLA--,B’ 

Ii- satisfies Positive Deduction and all the rules of an introspective consequence 

relation except Negative Closure. 

As can be seen from the above result, prime KD4consequence relations satisfy a 
stronger rule of negative deduction that does not include the conjunct 11. Consequently, 
we have: 

Corollary 3.13. For prime KD4-consequence relations, any default sequent At, . . , 
A,: B,,.. . , B,, II- C is equivalent to a provable formula 

LA, /I... A LA,, A LyLB, A . . . A LyLB,,, -+ C. 

As can be seen, taking into account the correspondence between default sequents and 
ordinary default rules described earlier as tr( A), the above transformation of default 
sequents into modal formulas is in fact identical with the modal translation of defaults 

suggested by Truszczydski in [33]. We will return to this translation below when 
studying the possibility of embedding default consequence relations into modal ones. 

Negative Closure corresponds in our context to the Geach axiom G: 

-L-LA + LTLTA. 

This axiom imposes a directionality condition on the corresponding accessibility re- 

lation. Consequently, modal introspective consequence relations correspond to modal 
nonmonotonic logics based on KD4G: 

Theorem 3.14. II- is a prime KD4G-consequence relation if and only ifit is introspec- 

tive and satisfies Positive Deduction. 

Replacing the D axiom by the more strong T axiom LA -+ A amounts to adding the 
(Reflexivity) rule. Note that KT4G is nothing other than a well known modal logic 
S4.2. Consequently, we obtain the following characterization of prime S4.Zconsequence 

relations: 

Theorem 3.15. IF is a prime SAZconsequence relation if and only if it is a reflexive 

consequence relation satisfying Positive Deduction. 

Now we will consider autoepistemic consequence relations. It turns out that for prime 

KCconsequence relations the rule Factoring, which is characteristic of autoepistemic 
reasoning, is equivalent to the modal 5 axiom TLA --+ L-LA. Moreover, we have that 
prime K45consequence relations actually coincide with modal autoepistemic conse- 

quence relations. 



A. Bochman/Artijcial Intelligence 101 (1998) l-34 19 

Theorem 3.16. The following conditions are equivalent: 
( 1) II- is a prime K45-consequence relation. 

(2) IF is iterative and satis$es Positive Deduction and the following rule: 

(Strong Negative Deduction) 
a:A,blk B 

a:bIklLA+B’ 

(3) IF is a modal autoepistemic consequence relation. 

Prime K45-consequence relations validate a still more strong rule of negative deduc- 

tion. Note, however, that, since prime K45-consequence relations coincide with modal 
autoepistemic consequence relations, this time both Positive Deduction and the new neg- 
ative deduction rule are consequences of the rules of a modal autoepistemic consequence 

relation. 

Corollary 3.17. Forprime K45-consequence relations, any default sequent Al, . . , A, : 
Bl,... , B, It C is equivalent to a provable formula 

LA, A . . . A LA,, A -LB1 A . . . A TLB,, --+ C. 

Viewed from the standpoint of our framework, the replacement of L-L by a simpler 

7L in the modal translation of default rules amounts precisely to admitting Factoring as 
an additional rule appropriate for autoepistemic reasoning. 

Since Positive Consistency is equivalent to the D axiom and Reflexivity is equiva- 
lent to the modal reflexivity axiom, an immediate consequence of the last theorem is 
the following characterization of strongly autoepistemic and stable modal consequence 

relations. 

Corollary 3.18. A II- is a prime KD45-consequence relation if and only if it is a 

strongly autoepistemic modal consequence relation. 

Corollary 3.19. IF is a prime SS-consequence relation if and only if it is a stable 

modal consequence relation. 

The equivalence of prime S5 and stable consequence relations can now be combined 
with Theorem 2.5, and we obtain that prime S5-consequence relations are equivalent 
to Scott consequence relations. This fact can be seen as the source of nonmonotonic 

degeneration of modal nonmonotonic reasoning based on S5 (cf. [ 311). 
To end this section, we introduce still another important consequence relation. 
As was proved by Schwarz in [27], nonmonotonic modal logics based on KD45 and 

SW5 (known also as S4.4) are maximal nonmonotonic logics satisfying certain natural 
conditions. Schwarz proposed to treat nonmonotonic SW5 as a plausible candidate for 

nonmonotonic logic of knowledge. 
As we have demonstrated, the first nonmonotonic logic corresponds to strongly au- 

toepistemic consequence relations. It turns out that the characteristic axiom of SW5, the 

so-called “weak” 5 axiom, 
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A A 7LA + LTLA, 

is equivalent in our system to the following “non-modal” rule: 

(Conditional Factoring) 
a, B : b IF A a: b,B IF A 

a:bII-B-A 

We will say that a default consequence relation is strongly reJexive if it is reflexive 
and satisfies Conditional Factoring. We have the following result: 

Theorem 3.20. IF is a prime SW5consequence relation if and only if it is a regular 

strongly reflexive consequence relation. 

The results of this section show that there is a remarkable correspondence between 
major structural types of default consequence relations and well-known modal nonmono- 
tonic logics. This correspondence can also be considered as a justification of the claim 

that particular modal axioms, as distinct from ordinary modal propositions, are impor- 
tant for modal nonmonotonic reasoning only to the extent they influence the structural 
properties of the associated default consequence relations. This claim will find further 

justification in the next section, where we consider the relationship between modal and 

objective default consequence relations. 

4. Modal versus objective consequence relations 

We let C, denote the subset of LL consisting of all propositions without occurrences 
of L; such propositions will be called objective. For any set of propositions u from CL, 
we let uO denote the set u n L, and U, the set L, \ U. Note that, for any modal default 
consequence relation IF, its restriction to C, is clearly an objective default consequence 

relation having the same structural rules as II-. We will denote this objective subrelation 

by &. 

All nonmonotonic objects we have considered in this paper are stable sets, and it is 
well known that the latter are uniquely determined by their objective subsets (kernels). 
This suggests a possibility of reducing modal nonmonotonic reasoning to nonmodal one. 
The only question here is whether the reasoning about the kernels can be accomplished 
entirely in a nonmodal framework. This was the question we considered in [2]. The 
main result proved there amounts to demonstrating that if II- is a modal introspective 
consequence relation and u a stable set, then 

l u is a It-stable set iff uO is a J--stable set, 
0 u is a IF-expansion iff uO is a &-expansion, 
l u is a ground II-extension if and only if U, is a &-extension. 

(Ground extensions are extensions which are stably minimal, that is, there is no It-stable 

set u such that u, c u,.) 

These results can be reformulated as saying that, for consequence relations that are 
introspective, the reduction of modal consequence relations to their objective subrela- 
tions provides an adequate translation with respect to stable sets, expansions and ground 
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extensions. As to extensions in general, it was shown that, for any introspective con- 
sequence relation It, we can construct an objective strongly autoepistemic consequence 
relation such that its stable sets coincide with kernels of I’r-stable sets and its expansions 
are exactly kernels of IF-extensions. 

Since introspective consequence relations form a representative class of consequence 
relations with respect to the key nonmonotonic objects, the above reduction provides, in 
fact, the crucial step in a general translation from modal nonmonotonic logics to default 

logics. It shows that objective subrelations of modal introspective consequence relations 
embody all the essential information about the corresponding modal nonmonotonic 

objects. 
We will consider below the reverse problem, namely the problem translating, or 

embedding, objective default consequence relations into corresponding (prime) modal 

consequence relations. 
It turns out that the maximal “host” modal logic for objective introspective conse- 

quence relations is the logic determined by the following Kripke frames: the set of 
worlds M is the union of three disjoint sets Ml, M2 and M3 (where M3 # 8) and the 

accessibility relation is [(Ml U M2) x (M2 U MS)] U (M3 x M3). In other words, the 
corresponding frames are directional frames of depth less or equal 3. We will denote 
this logic by KD41. This logic contains KD4 and is included in both S4F (see [ 321) 

and KD45. It is in fact equivalent to the logic KD4.3Bs in the classification of [ 61. 

Theorem 4.1. Any objective introspective consequence relation coincides with the ob- 
jective subrelation of some prime KDB-consequence relation. 

In view of the above mentioned results, the embedding is faithful with respect to stable 
sets, expansions and ground extensions. Note also that by Corollary 3.13 objective se- 
quents in KD41-consequence relations are equivalent to their Truszczynski’s translations. 
Thus, it can be said that Truszczynski’s translation of defaults generates an exact transla- 
tion of objective introspective consequence relations into prime KD41-consequence rela- 
tions. Moreover, it follows from Theorem 3.14 that prime KD4G-consequence relations 

are already introspective. Consequently, any modal logic in the range (KD4G-KD41) 
can serve as a host logic for such a translation. 

The importance of the above theorem lies not only in demonstrating that defaults can 

be translated into modal formulas. What is especially important for our present study 
is that it can be used to show that extension of objective introspective consequence 

relations to modal KD41-consequence relations is conservative with respect to provability 
of objective sequents. In other words, addition of the modal axioms of KD41 to an 
objective introspective consequence relation cannot result in provability of some new 

objective sequents. Formally, we have: 

Theorem 4.2. Let 5 be an arbitrary set of objective sequents, 11: the least objec- 

tive introspective consequence relation containing 5, and II-L the least modal KD41- 
consequence relation containing 5. Then 
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The theorem says that, given a set of objective sequents 5, an objective sequent 
is provable from s using all the rules and modal axioms that hold in prime KD41- 

consequence relations if and only if it is provable from 5 using only the basic rules of 
introspective consequence relations. This result complements the results about reduction 

of introspective consequence relations to their objective subrelations, discussed earlier 
in this section, by showing that the latter are autonomous with respect to provability of 

objective sequents. 
Another consequence of the above embedding theorem is the following result for 

reflexive consequence relations: 

Theorem 4.3. Any objective rej2exive consequence relation coincides with the objective 

subrelation of some prime S4F-consequence relation. 

Again, Theorem 3.15 implies that any modal logic in the interval (S4.2-S4F) is 

appropriate for such an embedding. 

It is useful to dwell upon the construction used in the proof of the above theorem (see 
below). As we have shown, reflexive consequence relations are characterized semanti- 

cally by pairs of deductively closed sets (u, U) such that u C u. We have mentioned also 
that such a bimodel can be represented alternatively by a pair of sets of worlds (U, V) 

(where V C U) that “label” the components of the bimodel Now, any such frame can 
be transformed into an S4F-model by way of defining an accessibility relation on it as 
follows: 

In some sense, the resulting models can be seen as a de$nitional extension of the 
notion of an objective bimodel. Note also that such models coincide with (unimodal) 

knowledge and belief models (K-B-models) from [30]. As follows from the results 

stated in that paper (see [ 30, Theorem 4.7]), S4F is a maximal logic that admits an 
adequate translation of defaults. Moreover, the results from [ 32,331 can be used to show 
that there is a one-to-one correspondence between extensions of an objective reflexive 
consequence relation and (objective kernels of) modal extensions of the corresponding 

modal consequence relation. 
The next theorem shows that, as can be expected, the logic SW5 is a modal counterpart 

of strongly reflexive consequence relations. 

Theorem 4.4. Any objective strongly re$exive consequence relation coincides with the 

objective subrelation of some prime SW5consequence relation. 

Theorem 3.20 can be used this time to show that SW5 is the only logic that permits 

the embedding. 
Note that the above two theorems also imply that the corresponding objective con- 

sequence retations are conservative with respect to their associated modal consequence 

relations. 
Finally, we will consider autoepistemic consequence relations. 
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Theorem 4.5. Any objective (strongly) autoepistemic consequence relation coincides 

with the objective subrelation of some prime K(D)45-consequence relation, 

As the following theorem shows, for autoepistemic consequence relations we already 
have a perfect match between objective and modal variants. 

Theorem 4.6. Two modal autoepistemic consequence relations having the same objec- 

tive subrelations coincide. 

The theorem implies, in particular, that there is a one-to-one correspondence between 
prime K45-consequence relations and objective autoepistemic consequence relations. 

In other words, we have a full-fledged equivalence between autoepistemic logic and a 
particular kind of objective default consequence relations. In fact, we have even more. As 
Konolige demonstrated, for any set of modal propositions there exists a K45-equivalent 
set of disjunctive clauses without nested occurrences of L (see [ 13, Proposition 3.91) . 

Now, taking into account the deduction rules that hold for prime K45-consequence 
relations (see Corollary 3.17), any such clause 

TLA, v.. . v -A, V LB1 V . . . V LB,, v C 

can be transformed into an objective sequent 

A ,,..., A,:B ,,..., B&C. 

Thus, any set of modal propositions can be assigned an “autoepistemically equivalent” 
set of objective sequents. For a set of propositions a, let as denote the corresponding set 
of objective sequents. The following theorem shows that provability in K45 is reducible 
to provability of objective sequents in autoepistemic consequence relations. 

Theorem 4.7. For any set of modal propositions a and any proposition A, A is provable 

from a in K45 if and only if any sequent from { A}S is provable from as using the rules 

of an (objective) autoepistemic consequence relation. 

This result shows, in fact, that the modal logic K45 itself is reducible to objective 

autoepistemic consequence relations. As a corollary, we also have a reduction of modal 
logics KD45 and S5 to objective strongly autoepistemic and stable consequence relations, 
respectively. 

Summing up the results described in this section, we can say that there is a two-way 
correspondence between objective default consequence relations and their modal coun- 
terparts. This correspondence establishes, in particular, an equivalence between objective 

stable sets, expansions and extensions, on the one hand, and modal stable sets, stable 
expansions and ground modal extensions, on the other. Note, however, that there is no 

direct correspondence between modal extensions in general and objective extensions. 
The results of Truszczyriski [32,33] stating that Reiter’s extensions are representable 
as modal S-expansions of the corresponding modal translation do not change this fact, 
since the relevant modal translation can be shown to generate modal theories that have 
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only ground modal expansions. In fact, this absence of correspondence should be ex- 
pected if we notice that objective kernels of modal extensions can be included into 
one another, which is impossible for ordinary Reiter’s extensions. In this respect, modal 

extensions behave rather as objective expansions. And indeed, it was shown in [2] 

that the set of (modal) extensions of any modal default consequence relation can be 
always represented as a set of expansions of some autoepistemic consequence relation. 
A nonmodular translation of a modal theory into an autoepistemic theory has been 

given, in fact, in [ 121 as part of a general translation of default logic into an autoepis- 
temic logic. Unfortunately, this translation is far from being simple or illuminating. 
Actually, an adequate objective representation of the reasoning about modal extensions 
requires an extension of the very framework of default consequence relations (see be- 

low). 

5. Conclusions and further issues 

We see the notion of a default consequence relation as the main contribution of the 
paper. As the results presented above demonstrate, it can be considered as a natural 
generalization of default logic, on the one hand, and modal nonmonotonic logics, on 

the other. Moreover, we show in [3] that default consequence relations can also serve 
as a proper logical basis of normal logic programs and hence provide, in effect, a 
unified framework for all these areas of nonmonotonic reasoning. Using this formalism, 
various translations and correspondences established between these fields can be recast 
in the form of straightforward results about equivalence between different nonmonotonic 
constructions in a single framework. 

Default consequence relations have given us a convenient common ground for studying 
the relationship between (objective) default and modal formalizations of nonmonotonic 
reasoning. It should be noted, that the suggested translation, or embedding, of different 

kinds of objective default consequence relations into the corresponding modal logics, 
as well as the reverse reductions described in [2], have an advantage over earlier 

attempts in that they are not restricted as such to particular “preferred” nonmonotonic 
objects. Rather, they establish a direct correspondence between modal and default-based 
formalizations of different kinds of nonmonotonic reasoning. 

Both default and modal nonmonotonic formalisms have advantages of their own. For 
nonmodal default systems it is mainly conceptual simplicity and avoidance of nested 
layers of modalities. For modal formalisms it is convenience of working with familiar 
modal constructions, for which the underlying theory and semantics already exist. As the 
results of the paper show, in most cases we can freely choose each of these formalisms. 

Note, however, that the results presented here (as well as corresponding results in 
[ 161) show that a modal formalism often introduce distinctions that are irrelevant 
for nonmonotonic reasoning about the associated constructions; different modal axioms 
influence such a reasoning only to the extent they change the structural properties of 
the corresponding default consequence relation. The above results also show why such 
otherwise esoteric modal logics as KD4G, K(D)45, S4.2, S4F and SW5 occupy a special 
place in studying modal nonmonotonic reasoning. 
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There is at least one aspect of the relation between modal and objective formalizations 
of nonmonotonic reasoning that points out to the need of extending the very formalism of 
default consequence relations. As we have mentioned, there is no direct correspondence 
between modal extensions, on the one hand, and objective extensions, on the other. We 
have shown, however, that modal extensions are naturally representable in the framework 
of objective biconsequence relations introduced in [4]. The latter involve sequents of 

the form a : b IF c : d that permit multiple conclusions, both positive and negative ones. 
Such a formalism has been shown to be adequate for representing a modal logic of 
belief and negation as failure (MBNF) , suggested by Lifschitz in [ 151. It allows also to 

represent default theories based on disjunctive defaults from [ 111. Default consequence 
relations can be seen as an important special case of biconsequence relations based 

on sequents that involve only singular positive conclusions. All this suggest that such 
biconsequence relations can serve as a plausible candidate on the role of a general 
theory of nonmonotonic reasoning. A preliminary description of such a general theory 

is presented in [ 51. 

Appendix A. Proofs of the main results 

We give here proofs of the new results presented in the paper. 

Proof of Theorem 2.2. To begin with, it is easy to check that any set It-a forms a 
default consequence relation. For the other direction, we construct a canonical semantics 

for It-. 
A pair of sets of propositions (x, y) will be called saturated with respect to IF if, 

for some proposition A, (x, y) is a maximal (with respect to inclusion) pair such that 
x : y W A. Then a triple (w, U, u) of sets of propositions will be called a canonical 

model, if (u, 5) is a saturated pair and w = Cn( U, E). It is easy to see that any canonical 

model is a model in our sense. 
Finally, we define a canonical semantics of a default consequence relation It- to be a 

set of all its canonical models. Now we are going to prove the following lemma: 

Auxiliary Lemma. If IF is a default consequence relation, then a default sequent be- 

longs to tt- if and only if it is valid in the canonical semantics of It . 

Proof. If a : b It A, for some a, b and A, then, due to Monotonicity A E w, for any 
canonical model (w, U, U) such that a c u and b C U. In the other direction, if a : b W A, 

then, due to compactness, it is easy to show that (a, b) can be extended to a saturated 
pair (u, 0) that does not imply A. Consequently, for a canonical model (w, U, u), where 
w = Cn(u,Z), we have a C U, b C U, but A $ w. 0 

If Sb+ denotes the canonical semantics of IF, then the above lemma shows, in effect, 
that the default consequence relation generated by $1~ coincides with lb. This completes 

the proof of the theorem. 0 
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Proof of Corollary 2.3. We only need to show that the canonical semantics (see the 

proof of the completeness theorem) of any basic default consequence relation is basic, 
Let (w, U, u) be a canonical model of a basic default consequence relation IF, that is, 

w = @n( U, U) and (u, is) is a saturated pair. Consistency implies that, for any saturated 
pair (x, y), x and y must be disjoint. Hence u C U. Cut implies that if (x, y) is a 
saturated pair that does not imply B, then, for any proposition A, either A belongs to 
y or x : y W A. Consequently, w 2 U. Positive Closure implies that if A is a deductive 

consequence of x and (x, y) is a saturated pair, then A must belong X. Hence, u is a 
deductively closed set. Similarly, Negative Closure implies that u must be deductively 
closed. Thus, (w, U, u) is a basic model, and we are done. 0 

Proof of Theorem 2.5. We show first that kit is a Scott consequence relation. Indeed, 

Reflexivity for tik follows from Consistency for IF, while Cut for ~IF follows from 
Factoring for IF. Now assume that a : b II- A holds. Since a, A : A, b IF _L by Consistency, 

we obtain a : A, b It _L by Cut. Thus, a tit b, A holds. In the other direction, if a : 

A, b It I, then a : A, b It A by Deductive Closure. But A, a : b It A by Reflexivity and 
hence a : b It A by Factoring. Thus, a : b It- A if and only if a t-1~ b, A. Cl 

Proof of Theorem 2.8. Let It be an autoepistemic consequence relation and (w, u, U) 
its canonical model. Note that, due to Factoring, if (x, y) is a saturated pair with 

respect to B, then, any proposition A belongs to either x or to y. Hence, x = y. 
Consequently, any canonical model has the form (u, U, u). Note also that, since any 
consistent pair of premises of the form (u, is) is already saturated, any such canonical 

model is determined by pairs (u, u) such that u = Cn( U, V) and u is a deductively closed 
set such that @n( U, U) C u. In other words, canonical models in our case are determined 

by pairs (@n( U, i7), u), where u is a Il--stable set. 
We will define a canonical binary semantics for IF as the set of all pairs (u, v) 

such that (u, u, U) is a canonical model. Note that a default sequent is valid with 
respect to a canonical model (u, u, u) iff it is A-valid with respect to the corresponding 

bimodel (u, u) , Consequently, due to the Completeness Theorem, a sequent belongs to an 
autoepistemic consequence relation iff it is A-valid in its canonical binary semantics. 0 

Proof of Theorem 2.12. Extensions of a default theory are defined as fixed points of 

a certain operator r (see [ 253, Definition 1). For any set of propositions U, r(u) is 
defined as the least deductively closed set of propositions that includes W and such that 

if A : b/C is a default rule, A E T(u) and lb 2 U, then C belongs to T(U). Now let 
@nd denote the provability operator corresponding to IFA. We will show that, for any 
set of propositions U, @nd( 0, U) coincides with r(u). 

Clearly, Cnd( 0, Z) is a deductively closed set. Moreover, it contains W, since we have 
: It A, for any A E W. In addition, if A : b/C is a default rule such that A E (Gnd (8, Z) 
and -b C U, then we have 8 : U It-A C by (Cut) and consequently Cnd( 8,G) is closed 
with respect to the default rules of A. Now, since T(U) is the least such set, we obtain 
r(u) C Cnd( 0, a). In order to prove the inverse inclusion, we will make use of the 
notion of a strong proof introduced in [ 171 (see also [21]). Generalizing slightly the 
original definition, we will define a strong proof of a proposition A from a set of 
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propositions a in a default theory A with respect to the context u as a finite sequence 

of formulas At,A:!,... , A, such that A, is A and, for every 1 < i 6 n, one of the 

following holds: 
( I) Ai belongs to W U a or is a tautology, 
(2) A; follows from the preceding formulas using modus ponens, 
(3) there is a default rule A,i : b/A; such that j < i and lb C ii. 

It follows from the results stated in [ 171 that, for any set of propositions U, T(U) 
is exactly the set of propositions possessing a strong proof with respect to the context 
u (that is, when a is empty). Now we will define the following default consequence 

relation: 

a : b Iti A iff A has a strong proof from a with respect to the context 6. 

The above result can now be formulated as saying that r(u) coincides with Cn”,( 8, U). 
It is easy to show that II-d, is an iterative consequence relation containing tr( A) 

(checking Cut is the only nontrivial step). Since It- d is the least such consequence 

relation, we have II-A & IFi and consequently Cnd(0, E) C Cnd,(0@, for any U. Hence 

Cnn(O,u) is included in T(U). 
Now, since @nd (8, U) = T(U), we immediately obtain that fixed points of r coincide 

with Ikd-extensions. 0 

Proof of Theorem 2.15. It is easy to check that any default consequence relation of 
the form It: is reflexive. Assume now that It is a reflexive consequence relation and 
(w, U, u) its canonical model. Due to Reflexivity, if (n, y) is a saturated pair that does 
not imply B, then, x C Cn(x, y). Hence, any canonical model has the form (u, U, u). 
Moreover, in this case (7, y) is also a saturated pair, namely a maximal pair that does not 

imply 1, and consequently (u, U, U) is also a canonical model. Indeed, in the opposite 
case 7 : y IF I and by Compactness there is a finite set a C 7 such that a, x : y IF _L. 

Let A denotes the conjunction of all propositions from a. Since 7 is deductively closed, 
we have A E 7 and A,n : y IF 1. In addition, we have n : y,A II- B, since (x,y) is 
a maximal pair that does not imply B. But then Negative Factoring implies x : y It B, 

which is impossible. 
We will define a canonical reflexive binary semantics for IF as the set of all pairs 

(u, c) such that (u, U, o) is a canonical model. Note that a default sequent is valid 
with respect to a canonical model (u, U, u) if and only if it is R-valid with respect to 

the corresponding bimodel (u, ZJ). Consequently, due to the Completeness Theorem, a 
sequent belongs to a reflexive consequence relation if and only if it is R-valid in its 
canonical reflexive binary semantics. 0 

Proof of Theorem 3.3. Let (w, U, U) be a canonical model of a regular modal default 
consequence relation It-. The first modal axiom implies that if A E u, then LA E w. 

Moreover, by the first regularity rule, either A belongs to u or u : i?W LA. Consequently, 
A E u if and only if LA E w. Similarly, using the second modal axiom and the second 
regularity rule, it can be shown that in this case A E u if and only if 7LA $! w. Hence 
the canonical semantics of IF is regular, and the assertion follows from the Completeness 
Theorem. 0 



28 A. Boclunan/Art~ciul Intellipm IO1 (1998) 1-34 

Proof of Lemma 3.8. We will show that a modal default consequence relation 

a : b It, A G A E Cn,(@n(8,8) U La U TLb) 

is a least iterative consequence relation containing Cn(0,8). Indeed, for any modal 

default consequence relation Il-i we have 

Th(Cn(8,8) U LaUlLb) C @ni(a,b) 

due to Deductive Closure and the modal axioms. Moreover, modal iterative consequence 
relations satisfy Necessitation and hence Cn(a, b) is closed with respect to CnN. Thus 

CnN(cn(@,@) U La U TLb) C @n(u, b). 

Hence, the result follows from the definition of a prime default consequence rela- 

tion. 0 

Proof of Corollary 3.9. It is easy to see that II-,, as defined in the proof of the preceding 

lemma, satisfies the two regularity rules. 0 

Proof of Theorem 3.10. (From left to right) If IF is a prime K4-consequence relation, 
then Positive Closure and Cut obviously hold. For Positive Deduction, assume a : b W 
LA + B. Then, in view of Lemma 3.6, there exists a KI-model M such that all formulas 

from La U TLb are valid in M, but there is a world LY E M such that LA --) B is false 
in LY. Let M, be a submodel of M generated by OJ. Clearly, A and all formulas from 
LuU TLb are valid in M,, while B is still not valid. Consequently we have A, a : b !Y B. 

Therefore, Positive Deduction is satisfied. For Weak Negative Deduction the proof is 

similar. 
(From right to left) We prove first the axioms of K4. By the first modal axiom, 

A, A -+ B, B IF LB, and hence A, A + B It- LB by Positive Closure. Applying Positive 

Deduction, we obtain 0 : 0 IF LA A L(A + B) -+ LB. Thus, the K-axiom is satisfied. 

Similarly, since A : fl IF LA, we have A : 8 It LLA by Necessitation and consequently 
0 : 0 IF LA -+ LLA by Positive Deduction. Thus, the 4-axiom also holds. 

In order to prove that IF is a prime consequence relation, it is sufficient to show that 
both deduction rules are reversible, that is, the following rules are also valid: 

a: bit- La+ B u:bI!r~L-LAL~LA+B 

A,u:bItB ’ u:b,AIkB ’ 

The first rule immediately follows from the first modal axiom. For the second rule, 

we need to show that : A IF 1LI is a valid sequent. We have 8 : 8 IF L(I -+ A) 

by Deductive Closure and Necessitation, and hence It 1LA -+ ll., since IF satisfies 

the K axiom. Using the second modal axiom and Deductive Closure, we finally infer 
0 : A II- -L_L. Now, the second rule above follows from the validity of this sequent and 
the sequent 0 : A IF LTLA (the latter follows by Necessitation from the second modal 
axiom). Note also that the above proof actually holds for all K-consequence relations. 

Now let Ii-’ be an arbitrary modal iterative consequence relation such that Cn(8,8) 
c It’, and assume that A1 , . . , A, : BI, . , B,, It C holds. Applying the two deduction 

rules, we obtain 
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0 : 0 II- [TL_LA]LA, A... A LA, A LTLB, A . . A LTLB,, --f C 

and consequently 

0 : (!J IF’ [ 7LIA] LA, A . . A LA,, A LlLB, A . . . A LTLB,, i C. 

Note that IF’ includes the K axiom, and hence the inverse deduction rules hold (see 
the proof above). Consequently Al,. . . , A,, : B1, . . . , B,, It’ C and hence IF C It’. Thus, 
Il- is a prime consequence relation. El 

Proof of Theorem 3.12. The proof will proceed in the following order: (1) =+ (3) =+ 

(2) =+ (1). 
( 1) + (3) By Theorem 3.10, prime K4-consequence relations satisfy Positive Closure 

and Positive Deduction. The rest of the rules can be easily checked using appropriate 
Kripke models of KD4. We omit details. 

(3) + (2) We only need to show that Negative Deduction holds. To begin with, 

we have A, TLA : 0 IF LA by the first modal axiom, and LA,A,lLA : 8 IF _L by 
Consistency. Applying Cut to these two sequents, we obtain A, -1LA : 8 II- 1. Now 

assume that a : 6, A II- B holds. Then by Negative Factoring -LA, a : b IF B, and 
hence by Positive Deduction a : b IF LTLA + B. Thus, Negative Deduction is a valid 

rule. 
(2) + ( 1) Weak Negative Deduction clearly follows from Negative Deduction. 

Hence, in view of Theorem 3.10, we only need to show that the D axiom holds. Since K 
holds, we have both It- Ll. 4 LA and II- LI -+ LlLA. But It LTLA -+ -LA follows 

by Negative Deduction from the second modal axiom. Hence IF -LI by Deductive 
Closure, which is equivalent to the D axiom. cl 

Proof of Theorem 3.14. In view of the previous theorem, we only need to show that in 
the framework of prime KDCconsequence relations, Negative Closure is equivalent to 
the G axiom. It is easy to check that prime KDLLG-consequence relations satisfy Negative 
Closure. In the other direction, the second modal axiom and Deductive Closure imply 

both : A IF LlLA V LTLTA and : -JA It LlLA V LTL~A. Applying Negative Closure, 
we obtain : i IF LlLA V LTLTA and by Negative Deduction IF LTLI + (LlLA V 
L-LlA). But LTLI is provable in KD4, and hence we have IF L-LA V LlL?A. Thus, 

the G axiom holds. 0 

Proof of Theorem 3.15. The result follows immediately from Theorem 3.14 if we 
notice that, given Positive Deduction, A : 8 It A is equivalent to IF LA + A. 0 

Proof of Theorem 3.16. ( 1) + (3) Theorem 3.10 implies that prime K45consequence 
relations satisfy Cut and Positive Closure. Thus, we need only to check the validity of 
Factoring; this can be easily done by constructing an appropriate Kripke model. 

(3) 3 (2) We must show that the corresponding deduction rules hold for autoepis- 
temic consequence relations. Assume that A, a : b It B holds. Then A, a : b It LA + B 

by Deductive Closure. Note also that the sequent a : b, A IF LA + B follows from the 
second modal axiom using Monotonicity and Deductive Closure. Applying Factoring to 
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these two sequents, we obtain a : b II- LA -+ B. Thus, Positive Deduction is satisfied. In 
the same way, a : b, A It B implies a : b,A II 1LA -+ B, while A,a : b It- TLA -+ B 

follows from the first modal axiom. Applying Factoring, we obtain a : b It- TLA + B. 

Hence, Strong Negative Deduction also holds. 
(2) + (1) In view of Theorem 3.10, we only need to prove the 5 axiom. Applying 

Necessitation to the second modal axiom, we obtain : A II- L-LA, and hence by Strong 
Negative Deduction II- 1LA -+ L-LA. 0 

Proof of Theorem 3.20. (From leji to right) In view of Corollary 3.9, any prime SW5 
consequence relation is regular. Moreover, in view of Theorem 3.15, we only need to 
show that such consequence relations satisfy Conditional Factoring. As before, this can 

be done using appropriate Kripke models. 
(From right to left) We prove first that Positive Deduction holds. Assume A, a : b It 

B. Since LA, a : b IF LA by Reflexivity, we can use the first of the regularity rules to 
obtain LA, a : b It B and Deductive Closure to obtain LA, a : b It- LA -+ B. Now we 

will show that a : 6, LA It- LA -+ B also holds. We have A : LA It LLA (by the first 
modal axiom and Necessitation) and A : LA Ii- 1LLA (by the second modal axiom). 
Hence A : LA II- I by Deductive Closure. In addition, the second modal axiom implies 
: A, LA IF TLA. Applying now Negative Factoring to these two sequents, we obtain 
: LA IF TLA. Finally, applying Deductive Closure, we have a : 6, LA IF LA + B. 

Applying Conditional Factoring to LA, a : b It LA -+ B and a : b, LA Ii- LA -+ B, we 

obtain a : b IF LA -+ B. Thus, Positive Deduction holds and consequently It- is a prime 

S4-consequence relation. Now we only need to prove the “weak” 5 axiom, A A TLA + 

L-LA. We have A : II- LA V LTLA by the first modal axiom and Deductive Closure and 
: A It LA V LTLA by the second modal axiom, Necessitation and Deductive Closure. 
Applying Conditional Factoring to these two sequent& we obtain IF LA + ( LAVLTLA), 

which is equivalent to W5. 0 

Proof of Theorem4.1. Let IF be an objective introspective consequence relation and Tr 
the set of Truszczynski’s modal counterparts of the sequents from It, that is, Tr is a set 

of all formulas of the form 

LA, A . A LA,, A LTLB, A . . A LTLB,, -+ C, 

where Al,. . . ,A, : Bl,. . . , B,, IF C. Define Ikrr to be the least KD41-consequence 

relation containing Tr. Clearly, Ikrr is a prime consequence relation and It- C II-T~. 

To show the reverse inclusion, assume that a : b W A, for some (objective) a, b and 
A. Then there is a basic canonical model (w, U, u) such that a C u, b 2 U and A $ w. 

Moreover, due to Negative Closure, there is w’ such that (w’, u, U) is also a canonical 
model. 

For any set of propositions x, let 2 be the set of all maximal consistent deductively 
closed sets (“worlds”) containing X. Now, for the above model (w, U, U) we define the 
following KD41-model (M, R): the set of worlds M = w^, while R is defined as follows 

for any a, ,L3 E M: 
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It is easy to see that R is the intended accessibility relation if M is taken to be the 
union of the following three disjoint sets: Ml = i3 \ i?, M2 = ii \ i? and M3 = 5. 

It immediately follows from the above definition that all formulas from LU U -Lu 

are valid in (M, R) and that A is not valid in (M, R). Now we will show that all 
Formulas from Tr are valid in (M, R). Assume that Ct , . . . , C, : 111, . . . , D,, II E, but 
LC,A...ALC,AL~LD,A...AL~LD,, --+ E is false in some (Y E M. Two cases will 

be considered: 
Case 1: LY does not belong to 5. Since all LC; must be true in a, the definition of 

the accessibility relation gives us that all Ci belong to U. Similarly, since all LlLDj are 

also true in cy, we have that all Dj belong to i7. But then u : U II- E and consequently E 
is valid in (M, R), which is impossible, since E must be false in LY. 

Case 2: LY belongs to 5. In this case the same considerations give us that all CL belong 
to u and all D,i belong to E. But @n(u,Z) C u and consequently E f u-a contradiction 
with the assumption that E is false in a. 

Thus, all formulas from Tr are valid in (M, R). An immediate consequence of this 
fact is that u : E !-FT~ A and hence a : b !FT~ A. Therefore, all objective sequents of 11~~ 
belong to IF and consequently II-= olkrr. 0 

Proof of Theorem 4.2. Since 5 C ,,I~~ and all rules of IF,” are also rules of ,lt~, 

we have It$c ,,lt6. Moreover, by the above embedding result, there exists a prime 

KD41-consequence relation such that its objective part coincides with IF,“. Consequently, 
,Jt-i 2 IF:, since IFi is the least prime KD41-consequence relation containing 5. 0 

Proof of Theorem 4.3. The proof is the same as for Theorem 4.1, but now Reflexivity 

implies that canonical models has the form (u, U, u), and the corresponding accessibility 
relation is definable on 2 as follows: 

As can be seen, the resulting Kripke models are S4F models. [7 

Proof of Theorem 4.4.. Again, the proof proceeds along the lines of that for Theo- 
rem 4.1. The only difficult point consists in demonstrating that possible worlds models 
generated by canonical bimodels are now SW5 models. In order to show this, we need 
the following lemma: 

Auxiliary Lemma. If (u, v) is a canonical bimodel of an objective strongly reflexive 

consequence relation II, then there exists a maximal deductively closed set (Y such that 

U=ann. 

Proof. Since IF is reflexive, if (u, u) is a canonical bimodel of It, then (u, v) is also a 
canonical bimodel. We show first that in our case there are no other bimodels (u’, u’) 
such that u C u’ and v’ C v. Indeed, an instance of Conditional Factoring is the following 
rule 

A-+B,a:bIkA a:b,A--+BIkA 

a:blkA 
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Consequently, if (u, U) is a maximal pair that does not imply A, then, for any B, either 
A + B E u or A -+ B E I?. Now let (u’,U’) be another saturated pair, distinct from 
(u, u), such that u & u’ and u’ C u. Then u’ : U’ II- A (since (u,i?) is a maximal pair not 
implying A) and hence A E u’. Now if B E u, then A ---f B E u and hence A --+ B E u. 

Consequently A + B E u’ and therefore B E u’ (since u’ is deductively closed). Thus, 

u C u’, and consequently (u’, u’) coincides with (u, u). 
Let us consider the following set: u U ~(u \ u). If this set is consistent, it can be 

extended to a maximal consistent set, say ,L?. It is easy to see that /3 is a required set, that 
is, u = /3 n u. Indeed, the inclusion from left to right is obvious. Assume that C E p n u, 
but C $ u. Then C E (u \ u) and hence 1C E ~(u \ u). Consequently +Z E p, which 
is impossible, since /I is consistent. 

Assume now that an appropriate cy does not exist. The above considerations imply 
that in this case the set uUl( u\u) must be inconsistent. This means that u\u contains a 

finite set of propositions {Al, . . . , A,,} such that their disjunction belongs to u. Clearly, 
this set contains at least one pair of propositions such that A; + Al $! u (otherwise all 

the set is included in u). Now by (Cut) we have u : U F A; + Aj, and Conditional 
Factoring implies that either A;, u : iT W A, or u : E, A; W Aj. In the first case we have 

that there exists a saturated pair (x, y) that extends (u, 0) and such that A; E x but 
Aj c$ n. However, this is impossible since neither Ai nor Al belong to u and both belong 

to u. Similarly, in the second case we would have A; E 5. Thus, an appropriate cy does 

exist. 0 

It follows from the above lemma that 2 = {a} U c, and hence the possible worlds 

model corresponding to (u, u) (defined in the proof of the preceding theorem) will be 
an SW5 model. 0 

Proof of Theorem 4.5. Let It be an objective autoepistemic consequence relation and 
S the set of its canonical bimodels, as defined in the proof of Theorem 2.8. For any 

deductively closed set of objective propositions x, we let x,,, denote the modal stable set 
having x as its kernel. 

Define the following modal consequence relation: 

a:blt,A E V(u,u) l S(aCu,&bcu,~A~Th(uuLu,u~L~)). 

It is easy to show that IF, is a modal autoepistemic consequence relation. Indeed, 
the modal axioms and Factoring are obvious, Positive Closure follows from deductive 
closure of urn, while Cut follows from the fact that Th(u U Lu, U d&J is included 
in u, (this, in turn, follows from the stability of u, and from the fact that u C: u). 
Moreover, the objective subrelation of Ii-, coincides with II. First, it is easy to see that 
It- is included in IF,. Assume that a : b W A, for some a, b, A from fZO. Since IF is 

autoepistemic, there exists a canonical bimodel (u, u) such that A $! u, a c u and b C U. 

Clearly, A $ Th( u U Lu, U -E&J, and consequently a : b Yt A by the definition of IF,. 

Thus, 11 coincides with .Ik,. 

Now the theorem follows from Theorem 3.16 which says that prime K45consequence 
relation coincide with modal autoepistemic consequence relations. The proof for strongly 
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autoepistemic consequence relations is the same except that instead of all canonical 
bimodels we must consider only bimodels in which u is consistent. 0 

Proof of Theorem 4.6. Let It,, II-2 be modal autoepistemic consequence relations such 

that, for some a, b, A from .f2~, a : b II-1 A and a : b W2 A. Using appropriate deduction 
rules, we obtain that there is a proposition, say B, such that IF1 B and W2 B. Now B is 
K45equivalent to a conjunction of disjunctive clauses without nested L’s. Hence there 

is at least one disjunctive clause C such that IF1 C and yIL2 C. Since the deduction rules 
are reversible, we finally obtain that there is an objective sequent that distinguish IF1 

from lk2. 0 

Proof of Theorem 4.7. For any set of propositions a let ad denote a set of disjunctive 

sequents without nested occurrences of L such that a is K45-equivalent to ad. Then 
a FK~S A if and only if all clauses from {A}d are provable from ud in K45. This means, in 

turn, that any clause from {A}d is provable in the least prime K45-consequence relation, 
containing ad. But prime K45-consequence relations coincide with modal autoepistemic 
ones, and in the latter any disjunctive clause of the above kind is equivalent to an 
objective sequent. This means, in turn, that all sequents from {,4}’ are provable in 
the least modal autoepistemic consequence relation containing us. Moreover, since all 

sequents in us and {A}S are objective, sequents from {A}S are provable already in the 
least objective autoepistemic consequence relation containing us. In other words, any 
sequent from {A}S is provable from us using the characteristic rules of autoepistemic 

consequence relations. q 
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