Unique Graph Homomorphisms onto Odd Cycles, II

Hong-Jian Lai
Department of Mathematics, Wayne State University, Detroit, Michigan 48202

Communicated by Adrian Bondy
Received June 24, 1986

Abstract

A natural generalization of graph colorings is graph homomorphisms. Let G and $I I$ be simple graphs. A map $\theta: V(G) \rightarrow V(H)$ is called a homomorphisn if θ preserves adjacency. The set of all homomorphism from G to H is denoted by $\operatorname{Hom}(G, H)$. A graph G is uniquely H-colorable if $\operatorname{Hom}(G, H) \neq \varnothing$, and if for $\theta_{1}, \theta_{2} \in \operatorname{Hom}(G, H)$, there is an automorphism φ of H such that $\varphi \theta_{1}=\theta_{2}$. In this paper, we investigate some necessary conditions of unique $C^{2 k+1}$ colorings and prove a best possible sufficient condition involving $\delta(G)$ for G to be uniquely $C^{2 k+1}$-colorable under some necessary conditions. This generalizes a result of Bollobás on unique C^{3}-colorings [J. Combin. Theory Ser. B 25 (1978), 55-61]. We also find best possible conditions on the connectedness of the subgraphs of G induced by the preimages of θ, for any $\theta \in \operatorname{Hom}\left(G, C^{2 k+1}\right)$. 1989 Academic Press, Inc.

We shall use the notation of Bollobás [1]. Let G be a graph. We use $\delta(G)$ to denote the minimum degree of G. For simple graphs G and H, a map $\theta: V(G) \rightarrow V(H)$ is called a homomorphism if θ preserves adjacency. The set of all homomorphisms from G to H is denoted by $\operatorname{Hom}(G, H)$. If $\varphi \in \operatorname{Hom}(G, G)$ is bijective, then φ is called an automorphism of G. Cycles of length m are denoted by C^{m} and occasionally by \mathbb{Z}_{m}, the set of integers modulo m, where i and j are adjacent if and only if $i-j \equiv \pm 1(\bmod m)$.

A graph G is H-colorable if $\operatorname{Hom}(G, H) \neq \varnothing$, and G is said to be uniquely H-colorable if $\operatorname{Hom}(G, H) \neq \varnothing$ and if $\forall \theta_{1}, \theta_{2} \in \operatorname{Hom}(G, H)$, there exists an automorphism φ of H such that $\varphi \theta_{1}=\theta_{2}$.

Graph homomorphisms are regarded as a generalization of graph colorings. If a graph G is K^{k}-colorable, then G is k-colorable in the usual meaning. For homomorphisms into odd cycles, see [4] and [5].

In 1978, Bollobás proved two theorems on unique graph colorings.
Theorem 1 (Bollobás [2]). If G is a graph of order $n, \operatorname{Hom}\left(G, K^{k}\right) \neq \varnothing$ and $\delta(G)>(3 k-5) /(3 k-2)$, then G is uniquely K^{k}-colorable.

It is shown in [3] that if $k=\chi(G)$ and if G is uniquely K^{k}-colorable, then for any $\theta \in \operatorname{Hom}\left(G, K^{k}\right)$, the following condition holds:

$$
\begin{equation*}
G\left[\theta^{-1}(i) \cup \theta^{-1}(j)\right] \text { is connected, for any } i j \in E\left(K^{k}\right) \tag{1}
\end{equation*}
$$

For graphs satisfying (1) for some $\theta \in \operatorname{Hom}\left(G, K^{k}\right)$, the bound in Theorem 1 can be improved.

Theorem 2 (Bollobás [2]). Let G be a graph of order n such that $\exists \theta \in \operatorname{Hom}\left(G, K^{k}\right)$ satisfying (1). If

$$
\delta(G)>n \frac{k-2}{k-1},
$$

then G is uniquely K^{k}-colorable.
Bollobás gave two classes of graphs to show that both bounds are best possible.

In a recent paper [6], we proved
Theorem 3. Let G be a graph of order n. If, for $k>1$,
(i) $\delta(G) \geqslant n /(k+1)$, and
(ii) $\exists \theta \in \operatorname{Hom}\left(G, C^{2 k+1}\right)$ such that $\theta(G)=C^{2 k+1}$,
then G is uniquely $C^{2 k+1}$-colorable.
This result is also best possible.
It is clear that Theorem 3 is analogous to Theorem 1 . In this note we obtain the corresponding analogue to Theorem 2 for $C^{2 k+1}$-colorings with $k \geqslant 2$ such that a condition analogous to (1) holds.

We note first that if G is a bipartite graph and $G \notin\left\{K^{1}, K^{2}\right\}$, then G is not uniquely $\mathbb{Z}_{2 k+1}$-colorable.

Let G be a graph with $G \neq K^{2}$. For any vertex $v \in V(G)$, let $\Gamma(v)$ denote the neighborhood of v in G. Suppose $\theta \in \operatorname{Hom}\left(G, \mathbb{Z}_{2 k+1}\right)$, where $\theta(G)=\mathbb{Z}_{2 k+1}$. If $|\theta(\Gamma(x))|=1$, for some $x \in V(G)$, then x can be recolored, and so G is not uniquely $C^{2 k+1}$-colorable.

From the above observations, we conclude that if $G \neq K^{1}, G \neq K^{2}$, and G is uniquely $\mathbb{Z}^{2 k+1}$-colorable, then for any $\theta \in \operatorname{Hom}\left(G, \mathbb{Z}_{2 k+1}\right)$, the following holds:

$$
\begin{equation*}
\theta(G)=\mathbb{Z}_{2 k+1} \quad \text { and } \quad|\theta(\Gamma(x))|=2, \quad \text { for all } x \in V(G) \tag{2}
\end{equation*}
$$

Theorem 4. Let G be a graph of order n and let $k \geqslant 2$ be an integer. If
(i) $\exists \theta \in \operatorname{Hom}\left(G, \mathbb{Z}_{2 k+1}\right)$ such that (2) is satisfied, and
(ii) $\delta(G)>3 n /(4 k+2)$,
then G is uniquely $\mathbb{Z}_{2 k+1}-$ colorable.
We start with some lemmas.

Lemma 1. Let G be a graph of order n. If $\exists \theta \in \operatorname{Hom}\left(G, \mathbb{Z}_{2 k+1}\right)$ such that $\theta(G)=\mathbb{Z}_{2 k+1}$, then

$$
\begin{equation*}
\theta_{M} \leqslant n-k(\delta(G)) \tag{3}
\end{equation*}
$$

where $\theta_{M}=\max \left\{\left|\theta^{-1}(i)\right|: i \in \mathbb{Z}_{2 k+1}\right\}$.
Proof. Let $n_{i}=\left|\theta^{-1}(i)\right|, i \in \mathbb{Z}^{2 k+1}$. We may assume that $\left|\theta^{-1}(0)\right|=\theta_{M}$. Suppose that k is even. Consider the following k inequalities:

$$
\begin{aligned}
& n_{1}+n_{3} \geqslant \delta(G), \\
& n_{2}+n_{4} \geqslant \delta(G), \\
& n_{5}+n_{7} \geqslant \delta(G), \\
& n_{6}+n_{8} \geqslant \delta(G), \\
& \ldots \\
& n_{2 k-3}+n_{2 k-1} \geqslant \delta(G), \\
& n_{2 k-2}+n_{2 k} \geqslant \delta(G) .
\end{aligned}
$$

Adding them all together with n_{0}, we get (3).
The proof when k is odd uses $n_{1}+n_{2 k} \geqslant \delta(G)$ as one of the k irequalities, and it is similar.

Lemma 2. Suppose that G satisfies the hypotheses of Theorem 4. For any $x \in V(G)$, there exists an $m(2 k+1)$-cycle of G containing x, where m equals 1 or 2.

Proof. Denote, for subsets V, V^{\prime} of $V(G)$.

$$
\left(V, V^{\prime}\right)=\left\{v \in V^{\prime}: \exists w \in V \text { such that } v w \in E(G)\right\}
$$

Pick $x \in \theta^{-1}(0)$. Let

$$
\begin{array}{rlrl}
V_{1} & =\left(\{x\}, \theta^{-1}(1)\right), & W_{2 k} & =\left(\{x\}, \theta^{-1}(2 k)\right), \\
V_{2} & =\left(V_{1}, \theta^{-1}(2)\right), & W_{2 k-1} & =\left(W_{2 k}, \theta^{-1}(2 k-1)\right), \\
\ldots & & \\
V_{i} & =\left(V_{i-1}, \theta^{-1}(i)\right), & W_{i} & =\left(W_{i+1}, \theta^{-1}(i)\right), \\
\ldots & & \\
V_{2 k} & =\left(V_{2 k-1}, \theta^{-1}(2 k)\right), & W_{1} & =\left(W_{2}, \theta^{-1}(1)\right), \\
V_{0} & =\left(V_{2 k}, \theta^{-1}(0)\right), & W_{0} & =\left(W_{1}, \theta^{-1}(0)\right) .
\end{array}
$$

Then we have, for all $i \in \mathbb{Z}_{2 k+1}$,

$$
\begin{array}{r}
\left|\theta^{-1}(i)\right|+\left|V_{i+2}\right| \geqslant \delta(G), \\
\left|\theta^{-1}(i+4)\right|+\left|W_{i+2}\right| \geqslant \delta(G) .
\end{array}
$$

Notice that condition (2) implies that $V_{i} \neq \varnothing$ and $W_{i} \neq \varnothing$ for all $i \in \mathbb{Z}_{2 k+1}$. If $V_{i} \cap W_{i}=\varnothing$, for all $i \in \mathbb{Z}_{2 k+1}$, then we would have

$$
\begin{aligned}
3 n & \geqslant \sum_{i \in Z_{2 k+1}}\left\{\left|\theta^{-1}(i)\right|+\left|\theta^{-1}(i+4)\right|+\left(\left|V_{i+2}\right|+\left|W_{i+2}\right|\right)\right\} \\
& \geqslant 2(2 k+1)(\delta(G)) \\
& >3 n
\end{aligned}
$$

a contradiction.
Hence for some $i \in \mathbb{Z}_{2 k+1}, V_{i} \cap W_{i} \neq \varnothing$. If $i=0$, then x lies on a $2(2 k+1)$-cycle of G. In other cases, x is in a $(2 k+1)$-cycle of G.

Lemma 3. If G satisfies the hypotheses of Theorem 4 , then G does not have an odd cycle of length less than $2 k+1$.

Proof. This follows from the fact that $\operatorname{Hom}\left(G, \mathbb{Z}_{2 k+1}\right) \neq \varnothing$.
Lemma 4. Suppose that G satisfies the hypotheses of Theorem 4. Then G has a $(2 k+1)$-cycle.

Proof. By Lemma 2, G has a cycle whose length is $2 k+1$ or $2(2 k+1)$. Let C be a cycle of G of length $m(2 k+1)$ such that m is minimized. We shall show $m=1$.

By contradiction, suppose $m>1$. By Lemma 2, $m=2$. Let

$$
C=v_{1} v_{2} \cdots v_{m(2 k+1)-1} v_{m(2 k+1)} v_{1}
$$

By (ii) of Theorem 4, we have

$$
\begin{equation*}
\sum_{j=1}^{m(2 k+1)} d\left(v_{j}\right)>3 n m \frac{2 k+1}{4 k+2}=\frac{3}{2} n m>n m \tag{4}
\end{equation*}
$$

Denote $\partial C=\{e \in E(G)-E(C): e$ is incident with $V(C)\}$. We claim that there is no edge in ∂C that is incident with two vertices of $V(C)$. Suppose not, we can find an edge $e=v_{i} v_{j} \in \partial C$. Without loss of generality, we assume $1 \leqslant i \leqslant 2 k+1$. Hence $j=(2 k+1+i) \pm 1$.

If $j=2 k+i$, then $v_{1} v_{2} \cdots v_{i} v_{2 k+i, 1} \cdots v_{2(2 k+1)} v_{1}$ is a $(2 k+1)$-cycle, a contradiction.

If $j=2 k+i+2$, then the cycle $v_{j} v_{j+1} \cdots v_{2(2 k+1}, v_{1} \cdots v_{i-1} v_{i}$ has length $2 k-1$, contrary to Lemma 3 . Hence the claim.

Thus no edge $e \in \partial C$ can bc incident with two vertices of $V(C)$ and so

$$
\begin{equation*}
|\partial C|=\sum_{j=1}^{m(2 k+1)}\left(d\left(v_{j}\right)-2\right) \tag{5}
\end{equation*}
$$

since exactly two edges incident with $v_{j} \in V(C)$ are in $E(C)$, and the $d\left(v_{j}\right)-2$ other edges are in ∂C. Denote

$$
Y=\{y \in V(G)-V(C): \Gamma(y) \cap V(C) \neq \varnothing\} .
$$

We claim that for all $y \in Y$,

$$
\begin{equation*}
|\Gamma(y) \cap V(C)| \leqslant 2 . \tag{6}
\end{equation*}
$$

Since $\theta \in \operatorname{Hom}\left(G, \mathbb{Z}_{2 k+1}\right)$,

$$
\begin{equation*}
\theta[\Gamma(y) \cap V(C)] \subseteq\{\theta(y)-1, \theta(y)+1\} . \tag{7}
\end{equation*}
$$

Suppose that (7) holds with equality. Then by the minimality of m, $|\Gamma(y) \cap V(C)|=2$. Suppose that (7) is strict. Then $|\Gamma(y) \cap V(C)| \leqslant m$. By Lemma 2, $m \leqslant 2$. Hence in either case, (6) holds, as claimed.

By (6) and the definitions of Y and C,

$$
\begin{equation*}
|\partial C|=\sum_{y \in Y}|\Gamma(y) \cap V(C)| \leqslant 2|Y|, \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
n \geqslant|Y|+|V(C)|=|Y|+m(2 k+1) . \tag{9}
\end{equation*}
$$

We combine (9), (8), (5), and (4) to get

$$
\begin{aligned}
2 n & \geqslant 2|Y|+2 m(2 k+1) \geqslant|\partial C|+2 m(2 k+1) \\
& =\sum_{j=1}^{m(2 k+1)}\left(d\left(v_{j}\right)-2\right)+2 m(2 k+1) \\
& \geqslant \sum_{j=1}^{m(2 k+1)} d\left(v_{j}\right) \geqslant m(2 k+1)(\delta(G))>\frac{3}{2} m n>m n .
\end{aligned}
$$

It follows that $m<2$ and we are done.
For a graph H that has a $(2 k+1)$-cycle, we define a new graph $C^{2 k+1}(H)$ whose vertex set is the set of all $(2 k+1)$-cycles of H, where two vertices of $C^{2 k+1}(H)$ are adjacent if and only if the corresponding $(2 k+1)$ cycles have at least one edge in common.

Let X be the subset of $V(G)$ that consists of all vertices lying on $(2 k+1)$ cycles of G. By Lemma $4, X \neq \varnothing$. Let $W=V(G)-X$.

Let C_{1} and C_{2} be two $(2 k+1)$-cycles of G. For any $\theta_{1}, \theta_{2} \in$ $\operatorname{Hom}\left(G, \mathbb{Z}_{2 k+1}\right)$, consider the following condition on the restrictions of θ_{1} and θ_{2} :

$$
\begin{equation*}
\left.\theta_{1}\right|_{C_{1}}=\left.\left.\theta_{2}\right|_{C_{1}} \Leftrightarrow \theta_{1}\right|_{C_{2}}=\left.\theta_{2}\right|_{C_{2}} \tag{10}
\end{equation*}
$$

We say that C_{1} is related to C_{2} if and only if (10) holds for any $\theta_{1}, \theta_{2} \in \operatorname{Hom}\left(G, \mathbb{Z}_{2 k+1}\right)$. It is clear that this defines an equivalence relation on $V\left(C^{2 k+1}(G)\right)$. We shall first show that $V\left(C^{2 k+1}(G)\right)$ has only one equivalence class. This will mean for $\theta_{1} \in \operatorname{Hom}\left(G, \mathbb{Z}_{2 k+1}\right)$, if $\theta_{1}(v)=\theta(v)$ for all vertices v in a $(2 k+1)$-cycle of G, then $\theta_{1}(x)=\theta(x)$ for all $x \in X$. Then we shall show that $\theta_{1}(w)=\theta(w)$ for all $w \in W$ also.

Let C_{1} and C_{2} be two $(2 k+1)$-cycles of G that have an edge in common. If θ_{1} is a homomorphism from C_{1} onto $\mathbb{Z}_{2 k+1}$, then there is a unique way to extend θ_{1} to a homomorphism from $C_{1} \cup C_{2}$ onto $\mathbb{Z}_{2 k+1}$. Hence C_{1} is related to C_{2}. As a consequence, if there is a $\left(C_{1}, C_{2}\right)$-path in $C^{2 k+1}(G)$ for two $(2 k+1)$-cycles C_{1} and C_{2} in G, then C_{1} is related to C_{2}.

Lemma 5. If the hypotheses of Theorem 4 hold, then $V\left(C^{2 k+1}(G)\right)$ has only one equivalence class.

Proof. Let C_{1} and C_{2} be two $(2 k+1)$-cycles of G. We shall also use C_{1} and C_{2} to denote the corresponding vertices in $C^{2 k+1}(G)$. It suffices to show that C_{1} is related to C_{2}.

Case 1. $V\left(C_{1}\right) \cap V\left(C_{2}\right) \neq \varnothing$. We assume that $C_{1}=x_{0} x_{1} \cdots x_{2 k} x_{0}$ and $C_{2}=y_{0} y_{1} \cdots y_{2 k} y_{0}$ and that $x_{0}=y_{0}$.

Suppose that C_{1} is not related to C_{2}. Thus there is no $\left(C_{1}, C_{2}\right)$-path in $C^{2 k+1}(G)$.

First we claim that $\left|V\left(C_{1}\right) \cap V\left(C_{2}\right)\right|=1$. Suppose not. We have $x_{i}=y_{j}$ for some $0<i, j<2 k+1$.

If $i=j$, then $x_{0} x_{1} \cdots x_{i} y_{i+1} \cdots y_{2 k} x_{0}$ is a $(2 k+1)$-cycle in G that is adjacent to both C_{1} and C_{2} in $C^{2 k+1}(G)$, a contradiction.

If $i=2 k+1-j$, then $x_{0} x_{1} \cdots x_{i} y_{2 k+2-j} \cdots y_{2 k} x_{0}$ is a $(2 k+1)$-cycle in G that is adjacent to both C_{1} and C_{2} in $C^{2 k+1}(G)$, a conradiction.

If $i \not \equiv \pm j(\bmod 2 k+1)$, then one of the following cycles,

$$
\begin{gathered}
x_{0} x_{1} \cdots x_{i} y_{i+1} \cdots y_{2 k-1} y_{2 k} x_{0} \\
x_{0} x_{1} \cdots x_{i} y_{i-1} \cdots y_{2} y_{1} x_{0} \\
x_{0} x_{2 k} \cdots x_{i} y_{i+1} \cdots y_{2 k-1} y_{2 k} x_{0} \\
x_{0} x_{2 k} \cdots x_{i} y_{i-1} \cdots y_{2} y_{1} x_{0}
\end{gathered}
$$

is an odd cycle of length less than $2 k+1$, contrary to Lemma 3 . Hence the claim holds and so $\left|V\left(C_{1} \cup C_{2}\right)\right|=4 k+1$.

Subcase I.1. Suppose $k \geqslant 3$. Define $S_{i}=\left\{x_{i-1}, y_{i-1}, x_{i+1}, y_{i+1}\right\}$ for all $i \in \mathbb{Z}_{2 k+1}$, where S_{i} has fewer than four elements if $i \in\{1,-1\}$.

Let m_{0} be the number of incidences of edges of G with $V\left(C_{1} \cup C_{2}\right)$. We shall estimate m_{0} in two ways.

We claim that $\forall i \in \mathbb{Z}^{2 k+1}-\{0\},\left|\Gamma(z) \cap S_{i}\right| \leqslant 2$, for all $z \in \theta^{-1}(i)$. Suppose not. Since $x_{0}=y_{0}$, if $i \in\{-1,1\}$, then $\left\{y_{0}, x_{2 i}, y_{2 i}\right\} \subseteq \Gamma(z)$ and so $y_{0} z$ lies on a $(2 k+1)$-cycle C_{3} adjacent to C_{1} and on a ($2 k+1$)-cycle C_{4} adjacent to C_{2}. Thus $C_{1} C_{3} C_{4} C_{2}$ is a (C_{1}, C_{2})-path in $C^{2 k+1}(G)$, a contradiction. If $i \notin\{-1,0,1\}$, then without loss of generality, we may assume $\left\{y_{i-1}, x_{i+1}\right\} \subseteq \Gamma(z)$ with $z \in \theta^{-1}(i)$. Then $y_{0} \cdots y_{i-1} z x_{i+1} \cdots x_{2 k} y_{0}$ is a ($2 k+1$)-cycle adjacent to both C_{1} and C_{2} in $C^{2 k+1}(G)$, a contradiction. Hence the claim.

Note that $\left|\Gamma(z) \cap S_{0}\right| \leqslant 4, \forall z \in \theta^{-1}(0)$. Therefore, by the above claim, we sum over all $z \in V(G)$ to get

$$
\begin{aligned}
m_{0} & =\sum_{z \in V(G)}\left|\Gamma(z) \cap V\left(C_{1} \cup C_{2}\right)\right|=\sum_{i \in Z_{2 k+1}} \sum_{z \in \theta^{-1}(i)}\left|\Gamma(z) \cap S_{i}\right| \\
& \leqslant 2 n+2\left|\theta^{-1}(0)\right| .
\end{aligned}
$$

By (ii) of Theorem 4, and since $\left|V\left(C_{1} \cup C_{2}\right)\right|=4 k+1$,

$$
m_{0} \geqslant\left|V\left(C_{1} \cup C_{2}\right)\right| \delta(G)>(4 k+1) \frac{3 n}{4 k+2}=3 n-\frac{3 n}{4 k+2} .
$$

Combine these bounds to get

$$
2\left|\theta^{-1}(0)\right|>n-\frac{3 n}{4 k+2} .
$$

But (3) and (ii) of Theorem 4 give

$$
\left|\theta^{-1}(0)\right|<n-\frac{3 k n}{4 k+2} .
$$

Hence we must have

$$
2\left(n-\frac{3 k n}{4 k+2}\right)>n-\frac{3 n}{4 k+2} .
$$

It follows that $k<\frac{5}{2}$, contrary to $k \geqslant 3$.

Subcase I.2. Suppose $k=2$. Then $\delta(G)>3 n / 10$. Now we have
$C_{1}=x_{0} x_{1} x_{2} x_{3} x_{4} x_{0} \quad$ and $\quad C_{2}=y_{0} y_{1} y_{2} y_{3} y_{4} y_{0} \quad$ with $x_{0}=y_{0}$.
Claim. $\quad \Gamma\left(x_{1}\right), \Gamma\left(y_{2}\right), \Gamma\left(x_{2}\right), \Gamma\left(y_{3}\right)$ are pairwise disjoint.
Proof of the Claim. By Lemma 3, we have $\Gamma\left(x_{1}\right) \cap \Gamma\left(x_{2}\right)=\varnothing$ and $\Gamma\left(y_{2}\right) \cap \Gamma\left(y_{3}\right)=\varnothing$.

If $\Gamma\left(x_{1}\right) \cap \Gamma\left(y_{2}\right) \neq \varnothing$, then picking $w \in \Gamma\left(x_{1}\right) \cap \Gamma\left(y_{2}\right)$, we can see that $x_{0} x_{1} w y_{2} y_{1} x_{0}$ is a 5 -cycle in G that is adjacent to both C_{1} and C_{2} in $C^{5}(G)$, a contradiction.

If $\Gamma\left(x_{1}\right) \cap \Gamma\left(y_{3}\right) \neq \varnothing$, then picking $w \in \Gamma\left(x_{1}\right) \cap \Gamma\left(y_{3}\right)$, we can see that $x_{0} x_{1} w y_{3} y_{4} x_{0}$ is a 5 -cycle in G that is adjacent to both C_{1} and C_{2} in $C^{5}(G)$, a contradiction.

Suppose $\Gamma\left(x_{2}\right) \cap \Gamma\left(y_{2}\right) \neq \varnothing$. Let $\theta_{1}, \theta_{2} \in \operatorname{Hom}\left(G, \mathbb{Z}_{2 k+1}\right)$ and let $w \in I^{\prime}\left(x_{2}\right) \cap I^{\prime}\left(y_{2}\right)$. Without loss of generality, we assume that $\theta_{1}\left(x_{i}\right)=$ $\theta_{2}\left(x_{i}\right)=i, \forall i \in \mathbb{Z}_{2 k+1}$. Since $w \in \Gamma\left(x_{2}\right), \theta_{1}(w) \in\{1,3\}$. Since $\theta_{1}\left(x_{0}\right)=\theta_{1}\left(y_{0}\right)$ and since $C_{2}=y_{0} y_{1} y_{2} y_{3} y_{4} y_{0}$ is a 5 -cycle, $\theta_{1}\left(y_{2}\right) \in\{2,3\}$ and so we must have $\theta_{1}\left(y_{2}\right)=2$, by $w \in \Gamma\left(y_{2}\right), \theta_{1}(w) \in\{1,3\}$, and $\theta_{1}\left(y_{2}\right) \in\{2,3\}$. It follows that $\theta_{1}\left(y_{i}\right)=i, \forall i \in \mathbb{Z}_{2 k+1}$. Similarly, we can see that $\theta_{2}\left(y_{i}\right)=i, \forall i \in \mathbb{Z}_{k+1}$. Hence C_{1} is related to C_{2}, a contradiction.

Similarly we can see that $\Gamma\left(x_{2}\right) \cap \Gamma\left(y_{3}\right)=\varnothing$. Hence the claim.
By the claim, we have

$$
n \geqslant\left|\Gamma\left(x_{1}\right) \cup \Gamma\left(x_{2}\right) \cup \Gamma\left(y_{2}\right) \cup \Gamma\left(y_{3}\right)\right| \geqslant 4(\delta(G))>\frac{12}{10} n>n
$$

a contradiction.
Case 2. $V\left(C_{1}\right) \cap V\left(C_{2}\right)=\varnothing$. Fix a $(2 k+1)$-cycle C of G. Define $C=v_{0} v_{1} \cdots v_{2 k} v_{0}$ such that $\theta\left(v_{i}\right)=i, \forall i \in \mathbb{Z}_{2 k+1}$, Let

$$
N(C)=\bigcup_{i \in Z_{2 k+1}}\left[\Gamma\left(v_{i-1}\right) \cap \Gamma\left(v_{i+1}\right)\right] .
$$

Note that

$$
\begin{aligned}
|N(C)| & =\sum_{i \in Z_{2 k+1}}\left|\Gamma\left(v_{i-1}\right) \cap \Gamma\left(v_{i+1}\right)\right| \\
& \geqslant \sum_{i \in Z_{2 k+1}}\left\{\left|\Gamma\left(v_{i-1}\right) \cap \theta^{-1}(i)\right|+\left|\Gamma\left(v_{i+1}\right) \cap \theta^{-1}(i)\right|-\left|\theta^{-1}(i)\right|\right\} \\
& =\sum_{i \in Z_{2 k+1}} \operatorname{deg}\left(v_{i}\right)-n \\
& >(2 k+1) \frac{3 n}{4 k+2}-n \\
& =\frac{n}{n} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left|N\left(C_{1}\right) \cap N\left(C_{2}\right)\right|>\frac{n}{2}+\frac{n}{2}-n=0 . \tag{11}
\end{equation*}
$$

By (11), there is a vertex $u \in N\left(C_{1}\right) \cup N\left(C_{2}\right)$. Thus there are i and $j, 0 \leqslant i$, $j \leqslant 2 k$, such that

$$
u \in \Gamma\left(x_{i-1}\right) \cap \Gamma\left(x_{i+1}\right) \cap \Gamma\left(y_{j-1}\right) \cap \Gamma\left(y_{j+1}\right) .
$$

Let

$$
\begin{aligned}
& C_{3}=x_{0} x_{1} \cdots x_{i-1} u x_{i+1} \cdots x_{2 k-1} x_{2 k}, \\
& C_{4}=y_{0} y_{1} \cdots y_{j-1} u y_{j+1} \cdots y_{2 k-1} y_{2 k} .
\end{aligned}
$$

Then C_{3} has an edge in common with C_{1} and C_{4} has an edge in common with C_{2} and C_{3} and C_{4} have a vertex, namely u, in common. Thus C_{1} is related to C_{3} and C_{2} is related to C_{4}. By the result of Case 1, C_{3} is related to C_{4} and so by transitivity of the equivalence relation, C_{1} is related to C_{2}.

Thus C_{1} is related to C_{2} and we are done.
Proof of Theorem 4. Suppose that $\exists \theta, \theta_{1} \in \operatorname{Hom}\left(G, \mathbb{Z}_{2 k+1}\right)$ such that θ and θ_{1} agree in X, the set of vertices lying in some $(2 k+1)$-cycle of G. Let $w \in W$, where $W=V(G)-X$. By Lemma 2, there is a $2(2 k+1)$-cycle C_{5} that contains w. We may assume

$$
C_{5}=w_{0} w_{1} \cdots w_{2 k+1} w_{2 k+2} \cdots w_{4 k+1} w_{4 k+2}
$$

such that $w=w_{0}=w_{4 k+2}$ and $\theta\left(w_{i}\right) \equiv i(\bmod 2 k+1)$.
For each $i \in \mathbb{Z}_{2 k+1}$, define

$$
T_{i}=\left\{w_{i-1}, w_{i+1}, w_{2 k+i}, w_{2 k+i+2}\right\} .
$$

We claim that

$$
\begin{equation*}
\forall i \in \mathbb{Z}_{2 k+1}-\{0\} \quad \text { and } \quad \forall z \in \theta^{-1}(i), \quad\left|\Gamma(z) \cap T_{i}\right| \leqslant 3 . \tag{12}
\end{equation*}
$$

If, instead, we have $T_{i} \subseteq \Gamma(z)$ for some $i \in \mathbb{Z}_{2 k+1}-\{0\}$ and $z \in \theta^{-1}(i)$, then $w_{0} w_{i} \cdots w_{i-1} z w_{2 k+i+2} \cdots w_{4 k+1} w_{0}$ is a $(2 k+1)$-cycle containing w, a contradiction. Hence the claim.

Let m_{1} be the number of incidences of edges of G with $V\left(C_{5}\right)$.
Suppose $\left|\Gamma(z) \cap T_{0}\right| \leqslant 3, \forall z \in \theta^{-1}(0)$. Then by (12),

$$
m_{1}=\sum_{i \in Z_{2 k}+1} \sum_{z \in \theta^{-1}(i)}\left|\Gamma(z) \cap T_{i}\right| \leqslant 3 n .
$$

On the other hand,

$$
m_{1}=\sum_{i=1}^{4 k+2} \operatorname{deg}\left(w_{i}\right) \geqslant(4 k+2)(\delta(G))>3 n,
$$

a contradiction. Hence we must have

$$
\begin{equation*}
\left|\Gamma(z) \cap T_{0}\right|=4, \quad \text { for some } z \in \theta^{-1}(0) \tag{13}
\end{equation*}
$$

By (13), $z w_{1} w_{2} \cdots w_{2 k} z$ and $z w_{2 k+2} w_{2 k+3} \cdots w_{4 k+1} z$ are $(2 k+1)$-cycles of G. Hence $w_{1}, w_{4 k+1} \in X$. Thus $\theta\left(w_{1}\right)=\theta_{1}\left(w_{1}\right)=1$ and $\theta\left(w_{4 k+1}\right)=\theta_{1}\left(w_{4 k+1}\right)$ $=2 k$. Since $w_{0} w_{1}, w_{0} w_{4 k+1} \in E(G)$, we must have $\theta\left(w_{0}\right)=\theta_{1}\left(w_{0}\right)=0$.

Thus G is uniquely $\mathbb{Z}_{2 k+1}$-colorable.
Theorem 4 is best possible in some sense. Let $k \geqslant 2$ and $m \geqslant 1$ be integers. Let $C_{1}=v_{0} v_{1} \cdots v_{2 k} v_{0}$ and $C_{2}=u_{0} u_{1} \cdots u_{2 k} u_{0}$ be two $(2 k+1)$ cycles with $V\left(C_{1}\right) \cap V\left(C_{2}\right)=\varnothing$. Let H be the graph such that $V(H)=$ $V\left(C_{1}\right) \cup V\left(C_{2}\right)$ and $E(H)=E\left(C_{1}\right) \cup E\left(C_{2}\right) \cup\left\{u_{i} v_{i}: i=0,1,2 \cdots 2 k\right\}$. Let H_{m} be the graph obtained from H by replacing each vertex v_{i} by a set V_{i} of m vertices and replacing each vertex u_{i} by a set U_{i} of m vertices, where two vertices of H_{m} are adjacent in H_{m} if and only if they correspond to different vertices that are adjacent in H.

Hence $\left|V\left(H_{m}\right)\right|=(4 k+2) m$ and $\delta\left(H_{m}\right)=3 m$. There are two homomorphisms $\theta_{i} \in \operatorname{Hom}\left(H_{m}, \mathbb{Z}_{2 k+1}\right), i=1,2$, where $\theta_{1}^{-1}(j)=U_{j} \cup V_{j-1}$ and $\theta_{2}^{-1}(j)=U_{j} \cup V_{j+1}, j \in \mathbb{Z}_{2 k+1}$. Clearly $\theta_{i}\left(H_{m}\right)=\mathbb{Z}_{2 k+1}, i=1,2$. Also, θ_{1}, θ_{2} satisfy (2). But there is no automorphism φ of $\mathbb{Z}_{2 k+1}$ satisfying $\varphi \theta_{1}=\theta_{2}$.

Examples of Bollobás [2] showing that Theorem 1 is best possible also show that Theorem 4 fails for $k=1$.

Let $\theta \in \operatorname{Hom}\left(G, \mathbb{Z}_{2 k+1}\right)$. One may consider the following analogue to (1):

$$
\begin{equation*}
G\left[\theta^{-1}(i) \cup \theta^{-1}(i+1)\right] \text { is connected, } \forall i \in \mathbb{Z}_{2 k+1} \tag{14}
\end{equation*}
$$

One may ask if (14) is a necessary condition for unique $\mathbb{Z}_{2 k+1}$-colorings, and when (14) holds, if it is not such a necessary condition.

Theorem 5. Let G be a graph of order n and let $k \geqslant 1$ be an integer. Suppose that $\exists \theta \in \operatorname{Hom}\left(G, \mathbb{Z}_{2 k+1}\right)$ such that $\theta(G)=\mathbb{Z}_{k+1}$. If one of the following holds:
(i) k is even and $\delta(G)>n /(k+1)$,
(ii) k is odd and $\delta(G)>4 n /(4 k+3)$,
then (14) holds.

Proof. By contradiction, we may assume that $G\left[\theta^{-1}(0) \cup \theta^{-1}(1)\right]$ is the disjoint union of two nontrivial subgraphs G_{1} and G_{2} such that there are no edges of G joining a vertcx of G_{1} and a vertex of G_{2}. Let

$$
\begin{aligned}
V_{0} & =V\left(G_{1}\right) \cap \theta^{-1}(0), \\
W_{0} & =V\left(G_{2}\right) \cap \theta^{-1}(0), \\
V_{1} & =V\left(G_{1}\right) \cap \theta^{-1}(1), \\
W_{1} & =V\left(G_{2}\right) \cap \theta^{-1}(1) .
\end{aligned}
$$

Assume (i) of Theorem 5 first. We claim that V_{0}, V_{1}, W_{0}, and W_{1} are nonempty. Suppose, to the contrary, that $V_{0}=\varnothing$. Since $\theta(G)=\mathbb{Z}_{2 k+1}$ and $G\left[\theta^{-1}(0) \cup \theta^{-1}(1)\right]$ is disconnected, we may assume that $V_{1} \neq \varnothing$ and there is no edge in G joining one vertex in V_{1} and one vertex in W_{0}. Let $x \in V_{1}$. Then $I(x) \subseteq \theta^{-1}(2)$. Thus

$$
\begin{equation*}
\left|\theta^{-1}(2)\right| \geqslant \delta(G)>\frac{n}{k+1} . \tag{15}
\end{equation*}
$$

By (3), $\left|\theta^{-1}(2)\right| \leqslant n-k \delta(G) \leqslant n /(k+1)$, a contradiction. Hence V_{0}, V_{1}, W_{0} and W_{1} are nonempty. Without loss of generality, suppose

$$
\begin{equation*}
\left|V_{0}\right|+\left|W_{0}\right| \leqslant\left|V_{1}\right|+\left|W_{1}\right| . \tag{16}
\end{equation*}
$$

Considering the degrees, we have

$$
\begin{align*}
\left|W_{0}\right|+\left|\theta^{-1}(2)\right| \geqslant \delta(G), \tag{17}\\
\left|V_{1}\right|+\left|\theta^{-1}(2 k)\right| \geqslant \delta(G), \tag{18}\\
\left|\theta^{-1}(2 k-1)\right|+\left|\theta^{-1}(0)\right| \geqslant \delta(G) .
\end{align*}
$$

If $k>2$, we have the following besides the above three inequalities,

$$
\begin{aligned}
& \left|\theta^{-1}(4 j+3)\right|+\left|\theta^{-1}(4 j+5)\right| \geqslant \delta(G), \\
& \left|\theta^{-1}(4 j+4)\right|+\left|\theta^{-1}(4 j+6)\right| \geqslant \delta(G),
\end{aligned}
$$

where $j=0,1, \ldots,(k / 2-2)$.
Adding all these inequalities, we get

$$
\begin{aligned}
n+\left(\left|W_{0}\right|-\left|W_{1}\right|\right) & \geqslant\left|W_{0}\right|+\left|V_{1}\right|+\sum_{j \in Z_{2 k+1}-\{1\}}\left|\theta^{-1}(j)\right| \\
& \geqslant\left[2\left(\frac{k}{2}-1\right)+3\right] \delta(G) \\
& =(k+1) \delta(G)>n .
\end{aligned}
$$

This implies $\left|W_{0}\right|>\left|W_{1}\right|$. Replacing W_{0} by V_{0} in (17) and V_{1} by W_{1} in (18), we get similarly $\left|V_{0}\right|>\left|V_{1}\right|$, contrary to (16).

Now we assume that (ii) of Theorem 5 holds. A similar argument shows that V_{0}, V_{1}, W_{0}, and W_{1} are nonempty. Without loss of generality, suppose

$$
\begin{equation*}
\left|V_{0}\right| \leqslant\left|V_{1}\right| . \tag{19}
\end{equation*}
$$

Considering the degrees, we get

$$
\begin{array}{r}
\left|W_{0}\right|+\left|\theta^{-1}(2)\right| \geqslant \delta(G), \\
\left|\theta^{-1}(2 k-1)\right|+\left|\theta^{-1}(0)\right| \geqslant \delta(G),
\end{array}
$$

and

$$
\begin{aligned}
\left|\theta^{-1}(2 k)\right|+\left|W_{1}\right| & \geqslant \delta(G), \\
\left|\theta^{-1}(2 i-1)\right|+\left|\theta^{-1}(2 i+1)\right| & \geqslant \delta(G), \\
\left|\theta^{-1}(2 i)\right|+\left|\theta^{-1}(2 i+2)\right| & \geqslant \delta(G),
\end{aligned}
$$

where $i=1,2, \ldots, k-1$.
Adding all these inequalities, we get

$$
\begin{aligned}
2 n-\left(\left|V_{0}\right|+\left|V_{1}\right|\right) \geqslant & \sum_{i \in Z_{2 k+1}-\{0\}}\left|\theta^{-1}(i)\right|+\left|W_{0}\right| \\
& +\sum_{i \in Z_{2 k+1}-\{1\}}\left|\theta^{-1}(j)\right|+\left|W_{1}\right| \\
\geqslant & (2 k+1) \delta(G) \\
& >(2 k+1) \frac{4 n}{4 k+3} \\
& =2 n-\frac{2 n}{4 k+3} .
\end{aligned}
$$

Thus $\left|V_{0}\right|+\left|V_{1}\right|<2 n /(4 k+3)$, and so (19) implies that $\left|V_{0}\right|<n /(4 k+3)$. Considering the degrees of vertices in V_{1}, we have

$$
\left|V_{0}\right|+\left|\theta^{-1}(2)\right| \geqslant \delta(G)>4 n /(4 k+3) .
$$

It follows that $\left|\theta^{-1}(2)\right|>3 n /(4 k+3)>n-k \delta(G)$, contrary to (3).
This completes the proof of Theorem 5 .
Theorem 5 is best possible in some sense also. Let H be a theta graph obtained from $\mathbb{Z}_{2 k+1}$ by adding two vertices α, β to $\mathbb{Z}_{2 k+1}$ in the following way: α is adjacent to β and 0 , and β is adjacent to α and β.

Let $k>1$ and $s>1$ be integers. Let $G_{j}(k, s), j=1,2$, be the graphs obtained from H by replacing each vertex $j \in\{\alpha, \beta\} \cup \mathbb{Z}_{2 k+1}$ by a set $V_{i, j}$ of $n_{i, j}$ vertices, where the $n_{i, j}$'s are defined as follows:

When $j=1$, we let

$$
\begin{aligned}
& n_{\alpha, 1}=n_{1,1}=n_{\beta, 1}=n_{2,1}=s, \\
& n_{0,1}=n_{3,1}=3 s, \\
& n_{i, 1}=2 s, \quad \text { for all other } n_{i, 1}, s ;
\end{aligned}
$$

and when $j=2$ and k is odd, we let

$$
\begin{gathered}
n_{\alpha, 2}=n_{1,2}=n_{\beta .2}=n_{2,2}=s, \\
n_{3,2}=3 s,
\end{gathered}
$$

and for $p=1,2, \ldots,(k-1) / 2$,

$$
\begin{aligned}
n_{4 p, 2} & =n_{4 p+2,2}=2 s, \\
n_{4 p+1,2} & =s \\
n_{4 p+3,2} & =3 s .
\end{aligned}
$$

Two vertices in $H_{j}(k, s)$ are adjacent if and only if they correspond to different vertices that are adjacent in H.

Let H_{j} denote $H_{j}(k, s)$. It is easy to see that $\operatorname{Hom}\left(H_{j}, \mathbb{Z}_{2 k+1}\right) \neq \varnothing$, $j=1,2$. Note that

$$
\delta\left(H_{1}\right)=4 s=\left|V\left(H_{1}\right)\right| /(k+1) \quad \text { and } \quad \delta\left(H_{2}\right)=4 s=\left|V\left(H_{2}\right)\right| /(4 k+3) .
$$

By Theorem 3, both H_{1} and H_{2} are uniquely $\mathbb{Z}_{2 k+1}$-colorable. Hence for $j \in\{1,2\}, \forall \theta_{j} \in \operatorname{Hom}\left(H_{j}, \mathbb{Z}_{2 k+1}\right)$, we have

$$
\theta_{j}\left(V_{\alpha, j}\right)=\theta_{j}\left(V_{i, j}\right) \quad \text { and } \quad \theta_{j}\left(V_{\beta, j}\right)=\theta_{j}\left(V_{2, j}\right) .
$$

But $H_{j}\left[V_{\alpha, j} \cup V_{i, j} \cup V_{\beta, j} \cup V_{2, j}\right]$ is disconnected. These extremal graphs also show that (13) is not a necessary condition for unique $\mathbb{Z}_{2 k+1^{-}}$ colorings.

Acknowledgment

[^0]
References

1. B. Bollobás, "Extremal Graph Theory," Academic Press, New York/London, 1978.
2. B. Bollobás, Uniquely colorable graphs, J. Combin. Theory Ser. B 25 (1978), 55-61.
3. D. Cartwright and F. Harary, On colorings of signed graphs, Elem. Math. 23 (1968), 85-89.
4. P. A. Catlin, Graph homomorphisms into the five cycle, J. Combin. Theory Ser. B 45 (1988), 199-211.
5. P. A. Catlin, Homomorphisms as a generalization of graph colorings, Congress. Numer. 50 (1985), 179-186.
6. H. J. Lal, Unique graph homomorphisms onto odd cycles, Utilitas Math. 31 (1987), 199-208.

[^0]: The author thanks Paul A. Catlin, the author's Ph.D. supervisor, for his many helpful suggestions.

