Unique Graph Homomorphisms onto Odd Cycles, II Hong-JIAN LAI

Department of Mathematics, Wayne State University, Detroit, Michig`an 48202

Communicated by Adrian Bondy

Received June 24, 1986

A natural generalization of graph colorings is graph homomorphisms. Let G and II be simple graphs. A map $\theta: V(G) \to V(H)$ is called a homomorphism if θ preserves adjacency. The set of all homomorphism from G to H is denoted by Hom(G, H). A graph G is uniquely H-colorable if Hom(G, H) $\neq \emptyset$, and if for $\theta_1, \theta_2 \in \text{Hom}(G, H)$, there is an automorphism φ of H such that $\varphi \theta_1 = \theta_2$. In this paper, we investigate some necessary conditions of unique C^{2k+1} -colorings and prove a best possible sufficient condition involving $\delta(G)$ for G to be uniquely C^{2k+1} -colorable under some necessary conditions. This generalizes a result of Bollobás on unique C^3 -colorings [J. Combin. Theory Ser. B 25 (1978), 55-61]. We also find best possible conditions on the connectedness of the subgraphs of G induced by the preimages of θ , for any $\theta \in \text{Hom}(G, C^{2k+1})$. © 1989 Academic Press, Inc.

We shall use the notation of Bollobás [1]. Let G be a graph. We use $\delta(G)$ to denote the minimum degree of G. For simple graphs G and H, a map $\theta: V(G) \to V(H)$ is called a homomorphism if θ preserves adjacency. The set of all homomorphisms from G to H is denoted by $\operatorname{Hom}(G, H)$. If $\varphi \in \operatorname{Hom}(G, G)$ is bijective, then φ is called an *automorphism* of G. Cycles of length m are denoted by C^m and occasionally by \mathbb{Z}_m , the set of integers modulo m, where i and j are adjacent if and only if $i-j \equiv \pm 1 \pmod{m}$.

A graph G is H-colorable if Hom $(G, H) \neq \emptyset$, and G is said to be uniquely H-colorable if Hom $(G, H) \neq \emptyset$ and if $\forall \theta_1, \theta_2 \in \text{Hom}(G, H)$, there exists an automorphism φ of H such that $\varphi \theta_1 = \theta_2$.

Graph homomorphisms are regarded as a generalization of graph colorings. If a graph G is K^k -colorable, then G is k-colorable in the usual meaning. For homomorphisms into odd cycles, see [4] and [5].

In 1978, Bollobás proved two theorems on unique graph colorings.

THEOREM 1 (Bollobás [2]). If G is a graph of order n, $\text{Hom}(G, K^k) \neq \emptyset$ and $\delta(G) > (3k-5)/(3k-2)$, then G is uniquely K^k -colorable.

It is shown in [3] that if $k = \chi(G)$ and if G is uniquely K^k -colorable, then for any $\theta \in \text{Hom}(G, K^k)$, the following condition holds:

$$G[\theta^{-1}(\mathbf{i}) \cup \theta^{-1}(j)] \text{ is connected,} \qquad \text{for any } ij \in E(K^k). \tag{1}$$

For graphs satisfying (1) for some $\theta \in \text{Hom}(G, K^k)$, the bound in Theorem 1 can be improved.

THEOREM 2 (Bollobás [2]). Let G be a graph of order n such that $\exists \theta \in \text{Hom}(G, K^k)$ satisfying (1). If

$$\delta(G) > n \frac{k-2}{k-1},$$

then G is uniquely K^k -colorable.

Bollobás gave two classes of graphs to show that both bounds are best possible.

In a recent paper [6], we proved

THEOREM 3. Let G be a graph of order n. If, for k > 1,

- (i) $\delta(G) \ge n/(k+1)$, and
- (ii) $\exists \theta \in \operatorname{Hom}(G, C^{2k+1}) \text{ such that } \theta(G) = C^{2k+1},$

then G is uniquely C^{2k+1} -colorable.

This result is also best possible.

It is clear that Theorem 3 is analogous to Theorem 1. In this note we obtain the corresponding analogue to Theorem 2 for C^{2k+1} -colorings with $k \ge 2$ such that a condition analogous to (1) holds.

We note first that if G is a bipartite graph and $G \notin \{K^1, K^2\}$, then G is not uniquely \mathbb{Z}_{2k+1} -colorable.

Let G be a graph with $G \neq K^2$. For any vertex $v \in V(G)$, let $\Gamma(v)$ denote the neighborhood of v in G. Suppose $\theta \in \text{Hom}(G, \mathbb{Z}_{2k+1})$, where $\theta(G) = \mathbb{Z}_{2k+1}$. If $|\theta(\Gamma(x))| = 1$, for some $x \in V(G)$, then x can be recolored, and so G is not uniquely C^{2k+1} -colorable.

From the above observations, we conclude that if $G \neq K^1$, $G \neq K^2$, and G is uniquely \mathbb{Z}^{2k+1} -colorable, then for any $\theta \in \text{Hom}(G, \mathbb{Z}_{2k+1})$, the following holds:

$$\theta(G) = \mathbb{Z}_{2k+1}$$
 and $|\theta(\Gamma(x))| = 2$, for all $x \in V(G)$. (2)

THEOREM 4. Let G be a graph of order n and let $k \ge 2$ be an integer. If

- (i) $\exists \theta \in \text{Hom}(G, \mathbb{Z}_{2k+1})$ such that (2) is satisfied, and
- (ii) $\delta(G) > 3n/(4k+2)$,

then G is uniquely \mathbb{Z}_{2k+1} - colorable.

We start with some lemmas.

LEMMA 1. Let G be a graph of order n. If $\exists \theta \in \text{Hom}(G, \mathbb{Z}_{2k+1})$ such that $\theta(G) = \mathbb{Z}_{2k+1}$, then

$$\theta_M \leqslant n - k(\delta(G)), \tag{3}$$

where $\theta_M = \max\{|\theta^{-1}(i)|: i \in \mathbb{Z}_{2k+1}\}.$

Proof. Let $n_i = |\theta^{-1}(i)|, i \in \mathbb{Z}^{2k+1}$. We may assume that $|\theta^{-1}(0)| = \theta_M$. Suppose that k is even. Consider the following k inequalities:

$$n_{1} + n_{3} \ge \delta(G),$$

$$n_{2} + n_{4} \ge \delta(G),$$

$$n_{5} + n_{7} \ge \delta(G),$$

$$n_{6} + n_{8} \ge \delta(G),$$

$$\dots$$

$$n_{2k-3} + n_{2k-1} \ge \delta(G),$$

$$n_{2k-2} + n_{2k} \ge \delta(G).$$

Adding them all together with n_0 , we get (3).

The proof when k is odd uses $n_1 + n_{2k} \ge \delta(G)$ as one of the k inequalities, and it is similar.

LEMMA 2. Suppose that G satisfies the hypotheses of Theorem 4. For any $x \in V(G)$, there exists an m(2k+1) - cycle of G containing x, where m equals 1 or 2.

Proof. Denote, for subsets V, V' of V(G).

$$(V, V') = \{ v \in V' \colon \exists w \in V \text{ such that } vw \in E(G) \}.$$

Pick $x \in \theta^{-1}(0)$. Let

$$\begin{split} & V_1 = (\{x\}, \, \theta^{-1}(1)), & W_{2k} = (\{x\}, \, \theta^{-1}(2k)), \\ & V_2 = (V_1, \, \theta^{-1}(2)), & W_{2k-1} = (W_{2k}, \, \theta^{-1}(2k-1)), \\ & \cdots & \\ & V_i = (V_{i-1}, \, \theta^{-1}(i)), & W_i = (W_{i+1}, \, \theta^{-1}(i)), \\ & \cdots & \\ & V_{2k} = (V_{2k-1}, \, \theta^{-1}(2k)), & W_1 = (W_2, \, \theta^{-1}(1)), \\ & V_0 = (V_{2k}, \, \theta^{-1}(0)), & W_0 = (W_1, \, \theta^{-1}(0)). \end{split}$$

Then we have, for all $i \in \mathbb{Z}_{2k+1}$,

$$|\theta^{-1}(i)| + |V_{i+2}| \ge \delta(G),$$

 $|\theta^{-1}(i+4)| + |W_{i+2}| \ge \delta(G).$

Notice that condition (2) implies that $V_i \neq \emptyset$ and $W_i \neq \emptyset$ for all $i \in \mathbb{Z}_{2k+1}$. If $V_i \cap W_i = \emptyset$, for all $i \in \mathbb{Z}_{2k+1}$, then we would have

$$\begin{aligned} 3n &\ge \sum_{i \in \mathbb{Z}_{2k+1}} \left\{ |\theta^{-1}(i)| + |\theta^{-1}(i+4)| + (|V_{i+2}| + |W_{i+2}|) \right\} \\ &\ge 2(2k+1)(\delta(G)) \\ &> 3n, \end{aligned}$$

a contradiction.

Hence for some $i \in \mathbb{Z}_{2k+1}$, $V_i \cap W_i \neq \emptyset$. If i = 0, then x lies on a 2(2k+1)-cycle of G. In other cases, x is in a (2k+1)-cycle of G.

LEMMA 3. If G satisfies the hypotheses of Theorem 4, then G does not have an odd cycle of length less than 2k + 1.

Proof. This follows from the fact that $\operatorname{Hom}(G, \mathbb{Z}_{2k+1}) \neq \emptyset$.

LEMMA 4. Suppose that G satisfies the hypotheses of Theorem 4. Then G has a (2k + 1)-cycle.

Proof. By Lemma 2, G has a cycle whose length is 2k + 1 or 2(2k + 1). Let C be a cycle of G of length m(2k + 1) such that m is minimized. We shall show m = 1.

By contradiction, suppose m > 1. By Lemma 2, m = 2. Let

$$C = v_1 v_2 \cdots v_{m(2k+1)-1} v_{m(2k+1)} v_1.$$

By (ii) of Theorem 4, we have

$$\sum_{j=1}^{m(2k+1)} d(v_j) > 3nm \, \frac{2k+1}{4k+2} = \frac{3}{2} \, nm > nm.$$
⁽⁴⁾

Denote $\partial C = \{e \in E(G) - E(C): e \text{ is incident with } V(C)\}$. We claim that there is no edge in ∂C that is incident with two vertices of V(C). Suppose not, we can find an edge $e = v_i v_j \in \partial C$. Without loss of generality, we assume $1 \le i \le 2k + 1$. Hence $j = (2k + 1 + i) \pm 1$.

If j = 2k + i, then $v_1 v_2 \cdots v_i v_{2k+i+1} \cdots v_{2(2k+1)} v_1$ is a (2k+1)-cycle, a contradiction.

366

If j = 2k + i + 2, then the cycle $v_j v_{j+1} \cdots v_{2(2k+1)} v_1 \cdots v_{i-1} v_i$ has length 2k - 1, contrary to Lemma 3. Hence the claim.

Thus no edge $e \in \partial C$ can be incident with two vertices of V(C) and so

$$|\partial C| = \sum_{j=1}^{m(2k+1)} (d(v_j) - 2),$$
(5)

since exactly two edges incident with $v_j \in V(C)$ are in E(C), and the $d(v_j) - 2$ other edges are in ∂C . Denote

$$Y = \{ y \in V(G) - V(C) \colon \Gamma(y) \cap V(C) \neq \emptyset \}.$$

We claim that for all $y \in Y$,

$$|\Gamma(y) \cap V(C)| \le 2. \tag{6}$$

Since $\theta \in \text{Hom}(G, \mathbb{Z}_{2k+1})$,

$$\theta[\Gamma(y) \cap V(C)] \subseteq \{\theta(y) - 1, \theta(y) + 1\}.$$
(7)

Suppose that (7) holds with equality. Then by the minimality of m, $|\Gamma(y) \cap V(C)| = 2$. Suppose that (7) is strict. Then $|\Gamma(y) \cap V(C)| \le m$. By Lemma 2, $m \le 2$. Hence in either case, (6) holds, as claimed.

By (6) and the definitions of Y and C,

$$|\partial C| = \sum_{y \in Y} |\Gamma(y) \cap V(C)| \leq 2|Y|, \tag{8}$$

and

$$n \ge |Y| + |V(C)| = |Y| + m(2k+1).$$
(9)

We combine (9), (8), (5), and (4) to get

$$2n \ge 2|Y| + 2m(2k+1) \ge |\partial C| + 2m(2k+1)$$

= $\sum_{j=1}^{m(2k+1)} (d(v_j) - 2) + 2m(2k+1)$
 $\ge \sum_{j=1}^{m(2k+1)} d(v_j) \ge m(2k+1)(\delta(G)) > \frac{3}{2}mn > mn.$

It follows that m < 2 and we are done.

For a graph H that has a (2k+1)-cycle, we define a new graph $C^{2k+1}(H)$ whose vertex set is the set of all (2k+1)-cycles of H, where two vertices of $C^{2k+1}(H)$ are adjacent if and only if the corresponding (2k+1)-cycles have at least one edge in common.

HONG-JIAN LAI

Let X be the subset of V(G) that consists of all vertices lying on (2k + 1)-cycles of G. By Lemma 4, $X \neq \emptyset$. Let W = V(G) - X.

Let C_1 and C_2 be two (2k+1)-cycles of G. For any $\theta_1, \theta_2 \in \text{Hom}(G, \mathbb{Z}_{2k+1})$, consider the following condition on the restrictions of θ_1 and θ_2 :

$$\theta_1|_{C_1} = \theta_2|_{C_1} \Leftrightarrow \theta_1|_{C_2} = \theta_2|_{C_2}.$$
(10)

We say that C_1 is related to C_2 if and only if (10) holds for any $\theta_1, \theta_2 \in \text{Hom}(G, \mathbb{Z}_{2k+1})$. It is clear that this defines an equivalence relation on $V(C^{2k+1}(G))$. We shall first show that $V(C^{2k+1}(G))$ has only one equivalence class. This will mean for $\theta_1 \in \text{Hom}(G, \mathbb{Z}_{2k+1})$, if $\theta_1(v) = \theta(v)$ for all vertices v in a (2k+1)-cycle of G, then $\theta_1(x) = \theta(x)$ for all $x \in X$. Then we shall show that $\theta_1(w) = \theta(w)$ for all $w \in W$ also.

Let C_1 and C_2 be two (2k + 1)-cycles of G that have an edge in common. If θ_1 is a homomorphism from C_1 onto \mathbb{Z}_{2k+1} , then there is a unique way to extend θ_1 to a homomorphism from $C_1 \cup C_2$ onto \mathbb{Z}_{2k+1} . Hence C_1 is related to C_2 . As a consequence, if there is a (C_1, C_2) -path in $C^{2k+1}(G)$ for two (2k + 1)-cycles C_1 and C_2 in G, then C_1 is related to C_2 .

LEMMA 5. If the hypotheses of Theorem 4 hold, then $V(C^{2k+1}(G))$ has only one equivalence class.

Proof. Let C_1 and C_2 be two (2k+1)-cycles of G. We shall also use C_1 and C_2 to denote the corresponding vertices in $C^{2k+1}(G)$. It suffices to show that C_1 is related to C_2 .

Case 1. $V(C_1) \cap V(C_2) \neq \emptyset$. We assume that $C_1 = x_0 x_1 \cdots x_{2k} x_0$ and $C_2 = y_0 y_1 \cdots y_{2k} y_0$ and that $x_0 = y_0$.

Suppose that C_1 is not related to C_2 . Thus there is no (C_1, C_2) -path in $C^{2k+1}(G)$.

First we claim that $|V(C_1) \cap V(C_2)| = 1$. Suppose not. We have $x_i = y_j$ for some 0 < i, j < 2k + 1.

If i=j, then $x_0x_1 \cdots x_iy_{i+1} \cdots y_{2k}x_0$ is a (2k+1)-cycle in G that is adjacent to both C_1 and C_2 in $C^{2k+1}(G)$, a contradiction.

If i = 2k + 1 - j, then $x_0 x_1 \cdots x_i y_{2k+2-j} \cdots y_{2k} x_0$ is a (2k+1)-cycle in G that is adjacent to both C_1 and C_2 in $C^{2k+1}(G)$, a conradiction.

If $i \neq \pm j \pmod{2k+1}$, then one of the following cycles,

$$x_0 x_1 \cdots x_i y_{i+1} \cdots y_{2k-1} y_{2k} x_0,$$

$$x_0 x_1 \cdots x_i y_{i-1} \cdots y_2 y_1 x_0,$$

$$x_0 x_{2k} \cdots x_i y_{i+1} \cdots y_{2k-1} y_{2k} x_0,$$

$$x_0 x_{2k} \cdots x_i y_{i-1} \cdots y_2 y_1 x_0,$$

is an odd cycle of length less than 2k + 1, contrary to Lemma 3. Hence the claim holds and so $|V(C_1 \cup C_2)| = 4k + 1$.

Subcase I.1. Suppose $k \ge 3$. Define $S_i = \{x_{i-1}, y_{i-1}, x_{i+1}, y_{i+1}\}$ for all $i \in \mathbb{Z}_{2k+1}$, where S_i has fewer than four elements if $i \in \{1, -1\}$.

Let m_0 be the number of incidences of edges of G with $V(C_1 \cup C_2)$. We shall estimate m_0 in two ways.

We claim that $\forall i \in \mathbb{Z}^{2k+1} - \{0\}$, $|\Gamma(z) \cap S_i| \leq 2$, for all $z \in \theta^{-1}(i)$. Suppose not. Since $x_0 = y_0$, if $i \in \{-1, 1\}$, then $\{y_0, x_{2i}, y_{2i}\} \subseteq \Gamma(z)$ and so $y_0 z$ lies on a (2k+1)-cycle C_3 adjacent to C_1 and on a (2k+1)-cycle C_4 adjacent to C_2 . Thus $C_1 C_3 C_4 C_2$ is a (C_1, C_2) -path in $C^{2k+1}(G)$, a contradiction. If $i \notin \{-1, 0, 1\}$, then without loss of generality, we may assume $\{y_{i-1}, x_{i+1}\} \subseteq \Gamma(z)$ with $z \in \theta^{-1}(i)$. Then $y_0 \cdots y_{i-1} z x_{i+1} \cdots x_{2k} y_0$ is a (2k+1)-cycle adjacent to both C_1 and C_2 in $C^{2k+1}(G)$, a contradiction. Hence the claim.

Note that $|\Gamma(z) \cap S_0| \leq 4$, $\forall z \in \theta^{-1}(0)$. Therefore, by the above claim, we sum over all $z \in V(G)$ to get

$$m_{0} = \sum_{z \in V(G)} |\Gamma(z) \cap V(C_{1} \cup C_{2})| = \sum_{i \in Z_{2k+1}} \sum_{z \in \theta^{-1}(i)} |\Gamma(z) \cap S_{i}|$$

 $\leq 2n+2|\theta^{-1}(0)|.$

By (ii) of Theorem 4, and since $|V(C_1 \cup C_2)| = 4k + 1$,

$$m_0 \ge |V(C_1 \cup C_2)|\delta(G) > (4k+1)\frac{3n}{4k+2} = 3n - \frac{3n}{4k+2}.$$

Combine these bounds to get

$$2 |\theta^{-1}(0)| > n - \frac{3n}{4k+2}.$$

But (3) and (ii) of Theorem 4 give

$$|\theta^{-1}(0)| < n - \frac{3kn}{4k+2}.$$

Hence we must have

$$2\left(n-\frac{3kn}{4k+2}\right) > n-\frac{3n}{4k+2}.$$

It follows that $k < \frac{5}{2}$, contrary to $k \ge 3$.

Subcase I.2. Suppose k = 2. Then $\delta(G) > 3n/10$. Now we have

 $C_1 = x_0 x_1 x_2 x_3 x_4 x_0$ and $C_2 = y_0 y_1 y_2 y_3 y_4 y_0$ with $x_0 = y_0$.

CLAIM. $\Gamma(x_1), \Gamma(y_2), \Gamma(x_2), \Gamma(y_3)$ are pairwise disjoint.

Proof of the Claim. By Lemma 3, we have $\Gamma(x_1) \cap \Gamma(x_2) = \emptyset$ and $\Gamma(y_2) \cap \Gamma(y_3) = \emptyset$.

If $\Gamma(x_1) \cap \Gamma(y_2) \neq \emptyset$, then picking $w \in \Gamma(x_1) \cap \Gamma(y_2)$, we can see that $x_0 x_1 w y_2 y_1 x_0$ is a 5-cycle in G that is adjacent to both C_1 and C_2 in $C^5(G)$, a contradiction.

If $\Gamma(x_1) \cap \Gamma(y_3) \neq \emptyset$, then picking $w \in \Gamma(x_1) \cap \Gamma(y_3)$, we can see that $x_0 x_1 w y_3 y_4 x_0$ is a 5-cycle in G that is adjacent to both C_1 and C_2 in $C^5(G)$, a contradiction.

Suppose $\Gamma(x_2) \cap \Gamma(y_2) \neq \emptyset$. Let $\theta_1, \theta_2 \in \text{Hom}(G, \mathbb{Z}_{2k+1})$ and let $w \in \Gamma(x_2) \cap \Gamma(y_2)$. Without loss of generality, we assume that $\theta_1(x_i) = \theta_2(x_i) = i$, $\forall i \in \mathbb{Z}_{2k+1}$. Since $w \in \Gamma(x_2)$, $\theta_1(w) \in \{1, 3\}$. Since $\theta_1(x_0) = \theta_1(y_0)$ and since $C_2 = y_0 y_1 y_2 y_3 y_4 y_0$ is a 5-cycle, $\theta_1(y_2) \in \{2, 3\}$ and so we must have $\theta_1(y_2) = 2$, by $w \in \Gamma(y_2)$, $\theta_1(w) \in \{1, 3\}$, and $\theta_1(y_2) \in \{2, 3\}$. It follows that $\theta_1(y_i) = i$, $\forall i \in \mathbb{Z}_{2k+1}$. Similarly, we can see that $\theta_2(y_i) = i$, $\forall i \in \mathbb{Z}_{k+1}$. Hence C_1 is related to C_2 , a contradiction.

Similarly we can see that $\Gamma(x_2) \cap \Gamma(y_3) = \emptyset$. Hence the claim.

By the claim, we have

$$n \ge |\Gamma(x_1) \cup \Gamma(x_2) \cup \Gamma(y_2) \cup \Gamma(y_3)| \ge 4(\delta(G)) > \frac{12}{10} n > n,$$

a contradiction.

Case 2. $V(C_1) \cap V(C_2) = \emptyset$. Fix a (2k+1)-cycle C of G. Define $C = v_0 v_1 \cdots v_{2k} v_0$ such that $\theta(v_i) = i$, $\forall i \in \mathbb{Z}_{2k+1}$, Let

$$N(C) = \bigcup_{i \in \mathbb{Z}_{2k+1}} [\Gamma(v_{i-1}) \cap \Gamma(v_{i+1})].$$

Note that

$$\begin{split} |N(C)| &= \sum_{i \in \mathbb{Z}_{2k+1}} |\Gamma(v_{i-1}) \cap \Gamma(v_{i+1})| \\ &\geqslant \sum_{i \in \mathbb{Z}_{2k+1}} \left\{ |\Gamma(v_{i-1}) \cap \theta^{-1}(i)| + |\Gamma(v_{i+1}) \cap \theta^{-1}(i)| - |\theta^{-1}(i)| \right\} \\ &= \sum_{i \in \mathbb{Z}_{2k+1}} \deg(v_i) - n \\ &> (2k+1) \frac{3n}{4k+2} - n \\ &= \frac{n}{2}. \end{split}$$

Hence

$$|N(C_1) \cap N(C_2)| > \frac{n}{2} + \frac{n}{2} - n = 0.$$
(11)

By (11), there is a vertex $u \in N(C_1) \cup N(C_2)$. Thus there are *i* and *j*, $0 \le i$, $j \le 2k$, such that

$$u \in \Gamma(x_{i-1}) \cap \Gamma(x_{i+1}) \cap \Gamma(y_{j-1}) \cap \Gamma(y_{j+1}).$$

Let

$$C_{3} = x_{0}x_{1} \cdots x_{i-1}ux_{i+1} \cdots x_{2k-1}x_{2k},$$

$$C_{4} = y_{0}y_{1} \cdots y_{i-1}uy_{i+1} \cdots y_{2k-1}y_{2k}.$$

Then C_3 has an edge in common with C_1 and C_4 has an edge in common with C_2 and C_3 and C_4 have a vertex, namely u, in common. Thus C_1 is related to C_3 and C_2 is related to C_4 . By the result of Case 1, C_3 is related to C_4 and so by transitivity of the equivalence relation, C_1 is related to C_2 .

Thus C_1 is related to C_2 and we are done.

Proof of Theorem 4. Suppose that $\exists \theta, \theta_1 \in \text{Hom}(G, \mathbb{Z}_{2k+1})$ such that θ and θ_1 agree in X, the set of vertices lying in some (2k+1)-cycle of G. Let $w \in W$, where W = V(G) - X. By Lemma 2, there is a 2(2k+1)-cycle C_5 that contains w. We may assume

$$C_5 = w_0 w_1 \cdots w_{2k+1} w_{2k+2} \cdots w_{4k+1} w_{4k+2}$$

such that $w = w_0 = w_{4k+2}$ and $\theta(w_i) \equiv i \pmod{2k+1}$.

For each $i \in \mathbb{Z}_{2k+1}$, define

$$T_i = \{ w_{i-1}, w_{i+1}, w_{2k+i}, w_{2k+i+2} \}.$$

We claim that

 $\forall i \in \mathbb{Z}_{2k+1} - \{0\} \quad \text{and} \quad \forall z \in \theta^{-1}(i), \quad |\Gamma(z) \cap T_i| \leq 3.$ (12)

If, instead, we have $T_i \subseteq \Gamma(z)$ for some $i \in \mathbb{Z}_{2k+1} - \{0\}$ and $z \in \theta^{-1}(i)$, then $w_0 w_i \cdots w_{i-1} z w_{2k+i+2} \cdots w_{4k+1} w_0$ is a (2k+1)-cycle containing w, a contradiction. Hence the claim.

Let m_1 be the number of incidences of edges of G with $V(C_5)$. Suppose $|\Gamma(z) \cap T_0| \leq 3$, $\forall z \in \theta^{-1}(0)$. Then by (12),

$$m_1 = \sum_{i \in Z_{2k+1}} \sum_{z \in \theta^{-1}(i)} |\Gamma(z) \cap T_i| \leq 3n.$$

On the other hand,

$$m_1 = \sum_{i=1}^{4k+2} \deg(w_i) \ge (4k+2)(\delta(G)) > 3n,$$

a contradiction. Hence we must have

 $|\Gamma(z) \cap T_0| = 4, \quad \text{for some } z \in \theta^{-1}(0). \tag{13}$

By (13), $zw_1w_2\cdots w_{2k}z$ and $zw_{2k+2}w_{2k+3}\cdots w_{4k+1}z$ are (2k+1)-cycles of G. Hence $w_1, w_{4k+1} \in X$. Thus $\theta(w_1) = \theta_1(w_1) = 1$ and $\theta(w_{4k+1}) = \theta_1(w_{4k+1}) = 2k$. Since $w_0w_1, w_0w_{4k+1} \in E(G)$, we must have $\theta(w_0) = \theta_1(w_0) = 0$. Thus G is uniquely \mathbb{Z}_{2k+1} -colorable.

Theorem 4 is best possible in some sense. Let $k \ge 2$ and $m \ge 1$ be integers. Let $C_1 = v_0 v_1 \cdots v_{2k} v_0$ and $C_2 = u_0 u_1 \cdots u_{2k} u_0$ be two (2k + 1)cycles with $V(C_1) \cap V(C_2) = \emptyset$. Let H be the graph such that V(H) = $V(C_1) \cup V(C_2)$ and $E(H) = E(C_1) \cup E(C_2) \cup \{u_i v_i: i = 0, 1, 2 \cdots 2k\}$. Let H_m be the graph obtained from H by replacing each vertex v_i by a set V_i of m vertices and replacing each vertex u_i by a set U_i of m vertices, where two vertices of H_m are adjacent in H_m if and only if they correspond to different vertices that are adjacent in H.

Hence $|V(H_m)| = (4k+2)m$ and $\delta(H_m) = 3m$. There are two homomorphisms $\theta_i \in \text{Hom}(H_m, \mathbb{Z}_{2k+1})$, i = 1, 2, where $\theta_1^{-1}(j) = U_j \cup V_{j-1}$ and $\theta_2^{-1}(j) = U_j \cup V_{j+1}, j \in \mathbb{Z}_{2k+1}$. Clearly $\theta_i(H_m) = \mathbb{Z}_{2k+1}, i = 1, 2$. Also, θ_1, θ_2 satisfy (2). But there is no automorphism φ of \mathbb{Z}_{2k+1} satisfying $\varphi \theta_1 = \theta_2$.

Examples of Bollobás [2] showing that Theorem 1 is best possible also show that Theorem 4 fails for k = 1.

Let $\theta \in \text{Hom}(G, \mathbb{Z}_{2k+1})$. One may consider the following analogue to (1):

$$G[\theta^{-1}(i) \cup \theta^{-1}(i+1)] \text{ is connected, } \forall i \in \mathbb{Z}_{2k+1}.$$
(14)

One may ask if (14) is a necessary condition for unique \mathbb{Z}_{2k+1} -colorings, and when (14) holds, if it is not such a necessary condition.

THEOREM 5. Let G be a graph of order n and let $k \ge 1$ be an integer. Suppose that $\exists \theta \in \text{Hom}(G, \mathbb{Z}_{2k+1})$ such that $\theta(G) = \mathbb{Z}_{k+1}$. If one of the following holds:

- (i) k is even and $\delta(G) > n/(k+1)$,
- (*ii*) k is odd and $\delta(G) > 4n/(4k+3)$,

then (14) holds.

372

Proof. By contradiction, we may assume that $G[\theta^{-1}(0) \cup \theta^{-1}(1)]$ is the disjoint union of two nontrivial subgraphs G_1 and G_2 such that there are no edges of G joining a vertex of G_1 and a vertex of G_2 . Let

$$V_0 = V(G_1) \cap \theta^{-1}(0),$$

$$W_0 = V(G_2) \cap \theta^{-1}(0),$$

$$V_1 = V(G_1) \cap \theta^{-1}(1),$$

$$W_1 = V(G_2) \cap \theta^{-1}(1).$$

Assume (i) of Theorem 5 first. We claim that V_0 , V_1 , W_0 , and W_1 are nonempty. Suppose, to the contrary, that $V_0 = \emptyset$. Since $\theta(G) = \mathbb{Z}_{2k+1}$ and $G[\theta^{-1}(0) \cup \theta^{-1}(1)]$ is disconnected, we may assume that $V_1 \neq \emptyset$ and there is no edge in G joining one vertex in V_1 and one vertex in W_0 . Let $x \in V_1$. Then $\Gamma(x) \subseteq \theta^{-1}(2)$. Thus

$$|\theta^{-1}(2)| \ge \delta(G) > \frac{n}{k+1}.$$
(15)

By (3), $|\theta^{-1}(2)| \leq n - k\delta(G) \leq n/(k+1)$, a contradiction. Hence V_0, V_1, W_0 and W_1 are nonempty. Without loss of generality, suppose

$$|V_0| + |W_0| \le |V_1| + |W_1|. \tag{16}$$

Considering the degrees, we have

$$|W_0| + |\theta^{-1}(2)| \ge \delta(G),$$
 (17)

$$|V_1| + |\theta^{-1}(2k)| \ge \delta(G), \tag{18}$$

$$|\theta^{-1}(2k-1)| + |\theta^{-1}(0)| \ge \delta(G).$$

If k > 2, we have the following besides the above three inequalities,

$$\begin{aligned} |\theta^{-1}(4j+3)| + |\theta^{-1}(4j+5)| \ge \delta(G), \\ |\theta^{-1}(4j+4)| + |\theta^{-1}(4j+6)| \ge \delta(G), \end{aligned}$$

where j = 0, 1, ..., (k/2 - 2).

Adding all these inequalities, we get

$$n + (|W_0| - |W_1|) \ge |W_0| + |V_1| + \sum_{j \in Z_{2k+1} - \{1\}} |\theta^{-1}(j)|$$
$$\ge \left[2\left(\frac{k}{2} - 1\right) + 3 \right] \delta(G)$$
$$= (k+1) \, \delta(G) > n.$$

This implies $|W_0| > |W_1|$. Replacing W_0 by V_0 in (17) and V_1 by W_1 in (18), we get similarly $|V_0| > |V_1|$, contrary to (16).

Now we assume that (ii) of Theorem 5 holds. A similar argument shows that V_0, V_1, W_0 , and W_1 are nonempty. Without loss of generality, suppose

$$|V_0| \leqslant |V_1|. \tag{19}$$

Considering the degrees, we get

$$|W_0| + |\theta^{-1}(2)| \ge \delta(G),$$

$$|\theta^{-1}(2k-1)| + |\theta^{-1}(0)| \ge \delta(G),$$

and

$$\begin{aligned} |\theta^{-1}(2k)| + |W_1| &\ge \delta(G), \\ |\theta^{-1}(2i-1)| + |\theta^{-1}(2i+1)| &\ge \delta(G), \\ |\theta^{-1}(2i)| + |\theta^{-1}(2i+2)| &\ge \delta(G), \end{aligned}$$

where i = 1, 2, ..., k - 1.

Adding all these inequalities, we get

$$2n - (|V_0| + |V_1|) \ge \sum_{i \in Z_{2k+1} - \{0\}} |\theta^{-1}(i)| + |W_0| + \sum_{i \in Z_{2k+1} - \{1\}} |\theta^{-1}(j)| + |W_1| \ge (2k+1) \,\delta(G) > (2k+1) \frac{4n}{4k+3} = 2n - \frac{2n}{4k+3}.$$

Thus $|V_0| + |V_1| < 2n/(4k+3)$, and so (19) implies that $|V_0| < n/(4k+3)$. Considering the degrees of vertices in V_1 , we have

$$|V_0| + |\theta^{-1}(2)| \ge \delta(G) > 4n/(4k+3).$$

It follows that $|\theta^{-1}(2)| > 3n/(4k+3) > n - k\delta(G)$, contrary to (3).

This completes the proof of Theorem 5.

Theorem 5 is best possible in some sense also. Let *H* be a theta graph obtained from \mathbb{Z}_{2k+1} by adding two vertices α , β to \mathbb{Z}_{2k+1} in the following way: α is adjacent to β and 0, and β is adjacent to α and β .

374

Let k > 1 and s > 1 be integers. Let $G_j(k, s)$, j = 1, 2, be the graphs obtained from H by replacing each vertex $j \in \{\alpha, \beta\} \cup \mathbb{Z}_{2k+1}$ by a set $V_{i,j}$ of $n_{i,j}$ vertices, where the $n_{i,j}$'s are defined as follows:

When j = 1, we let

$$n_{\alpha, 1} = n_{1, 1} = n_{\beta, 1} = n_{2, 1} = s,$$

 $n_{0, 1} = n_{3, 1} = 3s,$
 $n_{i, 1} = 2s,$ for all other $n_{i, 1}$'s;

and when j = 2 and k is odd, we let

$$n_{\alpha, 2} = n_{1, 2} = n_{\beta, 2} = n_{2, 2} = s,$$

$$n_{3, 2} = 3s,$$

and for p = 1, 2, ..., (k - 1)/2,

$$n_{4p, 2} = n_{4p+2, 2} = 2s,$$

 $n_{4p+1, 2} = s,$
 $n_{4p+3, 2} = 3s.$

Two vertices in $H_j(k, s)$ are adjacent if and only if they correspond to different vertices that are adjacent in H.

Let H_j denote $H_j(k, s)$. It is easy to see that $Hom(H_j, \mathbb{Z}_{2k+1}) \neq \emptyset$, j = 1, 2. Note that

$$\delta(H_1) = 4s = |V(H_1)|/(k+1)$$
 and $\delta(H_2) = 4s = |V(H_2)|/(4k+3)$.

By Theorem 3, both H_1 and H_2 are uniquely \mathbb{Z}_{2k+1} -colorable. Hence for $j \in \{1, 2\}, \forall \theta_i \in \text{Hom}(H_i, \mathbb{Z}_{2k+1})$, we have

$$\theta_i(V_{\alpha,i}) = \theta_i(V_{i,i})$$
 and $\theta_i(V_{\beta,i}) = \theta_i(V_{2,i})$.

But $H_j[V_{\alpha,j} \cup V_{i,j} \cup V_{\beta,j} \cup V_{2,j}]$ is disconnected. These extremal graphs also show that (13) is not a necessary condition for unique \mathbb{Z}_{2k+1} -colorings.

ACKNOWLEDGMENT

The author thanks Paul A. Catlin, the author's Ph.D. supervisor, for his many helpful suggestions.

HONG-JIAN LAI

References

- 1. B. BOLLOBÁS, "Extremal Graph Theory," Academic Press, New York/London, 1978.
- 2. B. BOLLOBÁS, Uniquely colorable graphs, J. Combin. Theory Ser. B 25 (1978), 55-61.
- 3. D. CARTWRIGHT AND F. HARARY, On colorings of signed graphs, *Elem. Math.* 23 (1968), 85–89.
- 4. P. A. CATLIN, Graph homomorphisms into the five cycle, J. Combin. Theory Ser. B 45 (1988), 199-211.
- 5. P. A. CATLIN, Homomorphisms as a generalization of graph colorings, *Congress. Numer.* 50 (1985), 179–186.
- 6. H. J. LAI, Unique graph homomorphisms onto odd cycles, Utilitas Math. 31 (1987), 199-208.