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A natural generalization of graph colorings is graph homomorphisms. Let G and
H be simple graphs. A map 8: V(G)— V(H) is called a homomorphism if § preserves
adjacency. The set of all homomorphism from G to H is denoted by Hom(G, H).
A graph G is uniquely H-colorable if Hom(G, H}# ¢, and if for
81, 0, Hom(G, H), there is an automorphism ¢ of H such that ¢f, =6,. In this
paper, we investigate some necessary conditions of unique C**'.colorings and
prove a best possible sufficient condition involving 6(G) for G to be uniquely
C*+1lcolorable under some necessary conditions. This generalizes a result of
Bollobés on unique C*-colorings [J. Combin. Theory Ser. B 25 (1978), 55-61]. We
also find best possible conditions on the connectedness of the subgraphs of G
induced by the preimages of 8, for any #e Hom(G, C**1).  © 1989 Academic Press, Inc.

We shall use the notation of Bollobas [1]. Let G be a graph. We use
6(G) to denote the minimum degree of G. For simple graphs G and H, a
map 0: V(G)— V(H) is called a homomorphism if 6 preserves adjacency.
The set of all homomorphisms from G to H is denoted by Hom(G, H). If
¢ e Hom(G, G) is bijective, then ¢ is called an automorphism of G. Cycles
of length m are denoted by C™ and occasionally by Z,,, the set of integers
modulo m, where i and j are adjacent if and only if i —j= +1(mod m).

A graph G is H-colorable if Hom(G, H) # (J, and G is said to be uniguely
H-colorable if Hom(G, H) # J and if V0,, 6, e Hom(G, H), there exists an
automorphism ¢ of H such that ¢8,=49,.

Graph homomorphisms are regarded as a generalization of graph
colorings. If a graph G is K*-colorable, then G is k-colorable in the usual
meaning. For homomorphisms into odd cycles, see [4] and [5].

In 1978, Bollobas proved two theorems on unique graph colorings.

THEOREM 1 (Bollobas [2]). If G is a graph of order n, Hom(G, K*) # &
and 6(G)> (3k — 5)/(3k —2), then G is uniquely K*-colorable.

It is shown in [3] that if k = y(G) and if G is uniquely K*-colorable, then
for any 8 e Hom(G, K*), the following condition holds:

G[O7'(i)u0~'(j)] is connected,  for any ije E(K*). (1)
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For graphs satisfying (1) for some 6cHom(G, K*), the bound in
Theorem 1 can be improved.

THEOREM 2 (Bollobas [2]). Let G be a graph of order n such that
360 e Hom(G, K*) satisfying (1). If
k—2
k—1°

5(G)>n

then G is uniquely K*-colorable.

Bollobas gave two classes of graphs to show that both bounds are best
possible.
In a recent paper [6], we proved

THEOREM 3. Let G be a graph of order n. If, for k> 1,
(i) 4(G)=n/(k+1), and

(i) 30eHom(G, C**") such that §(G) = C*+ 1,

C2k+l

then G is uniquely -colorable.

This result is also best possible.

It is clear that Theorem 3 is analogous to Theorem 1. In this note we
obtain the corresponding analogue to Theorem 2 for C***'-colorings with
k =2 such that a condition analogous to (1) holds.

We note first that if G is a bipartite graph and G ¢ {K', K*}, then G is
not uniquely 7, ,-colorable.

Let G be a graph with G # K> For any vertex v e V(G), let I'(v) denote
the neighborhood of v in G. Suppose 6eHom(G, Z,.,,), where
0(G)=2Z4 . I |8(I(x))} =1, for some x e V(G), then x can be recolored,
and so G is not uniquely C**'-colorable.

From the above observations, we conclude that if G #K*, G# K> and G
is uniquely Z**'-colorable, then for any 8 e Hom(G, Z,, , ,), the following
holds:

NG)=2Lp . and [6( (x| =2, for all xe V(G). (2)

THEOREM 4. Let G be a graph of order n and let k=2 be an integer. If
(i) F8eHom(G, Z,;, . ) such that (2) is satisfied, and
(il) 8(G)>3n/(4k +2),
then G is uniquely Z,, ., — colorable.

We start with some lemmas.
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LEMMA 1. Let G be a graph of order n. If 30 e Hom(G, 2., . ) such that
Q(G) = ZZk+ 1> then

0,, <n—k(5(G)), (3)

where 0, =max{|0 '(I)]:i€Zp .}
Proof. Let n,=0"'(i)], ie Z**'. We may assume that |6 '(0)[ =0,,.
Suppose that k is even. Consider the following k inequalities:
ny + n3 2 5(6)5
ny+ny = 6(G),
(G),
R + ng 2 5(G)3

ns+n, =290

Ry 3+ Ny 2 6(G),
o2+ Ny 2 0(G).
Adding them all together with n,, we get (3).

The proof when k is odd uses 7, + n,, > 6(G) as one of the k irequalities,
and it is similar. |

LEMMA 2. Suppose that G satisfies the hypotheses of Theorem 4. For any
x € V(G), there exists an m(2k +1)—cycle of G containing x, where m
equals 1 or 2.

Proof. Denote, for subsets V, V' of V(G).

(V, V')={ve V":Iwe V such that vwe E(G)}.

Pick xe07%(0). Let

Vi=({x}, 0 (1)), Way=({x},0"'(2k)),
V,=(V,,07'(2)), W 1= Wy, 072k —1)),
V,«=(V,-ﬁ1,0_1(i)), Wiz(Wi+170_l(i))a
Vo=V 1, 07 (2k)), W, =(W,,07'(1)),

VOZ(Vzk’Q*I(()))’ WO’_"(WU GAI(O))
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Then we have, for all ieZ,, .,
1B+ V2] 2 8(G),
107 i+ 4)| + Wi 20(G)

Notice that condition (2) implies that V,# & and W, # & forallie Z,; , .
IfV.nW,=¢, for all ieZ,, , {, then we would have

3nz Y {10710 G+ M+ (Vo + W2 DY

i€ 2oy
=22k + 1)(6(G))
> 3n,
a contradiction.

Hence for some i€Zy,;, VinW,# . If i=0, then x lies on a
2(2k + 1)-cycle of G. In other cases, x is in a {2k + 1)-cycie of G. '}

LEMMA 3. If G satisfies the hypotheses of Theorem 4, then G does not
have an odd cycle of length less than 2k + 1.

Proof. This follows from the fact that Hom(G, Z,, . ) # . §

Lemma 4. Suppose that G satisfies the hypotheses of Theorem 4. Then G
has a (2k + 1)-cycle.

Proof. By Lemma 2, G has a cycle whose length is 2k + 1 or 2(2k + 1).
Let C be a cycle of G of length m(2k + 1) such that m is minimized. We
shall show m=1.

By contradiction, suppose m> 1. By Lemma 2, m = 2. Let

C=Ulvz"‘Um(2k+1)—1l’m(2k+1) Uy.

By (ii) of Theorem 4, we have

m(2k + 1} 2 3

+
L d(vj)>3nm4k+2=§nm>nm. (4)

J

Denote 0C = {ee E(G)— E(C): e is incident with ¥(C)}. We claim that
there is no edge in &C that is incident with two vertices of V(C). Suppose
not, we can find an edge e=v,0,€dC. Without loss of generality, we
assume [ <i<2k+1. Hence j=(2k+1+i)+1.

If j=2k+i, then 0,0, 00y i1 VarsyP1 18 8 {2k +1)-cycle, a
contradiction.
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If j=2k+i+2, then the cycle v,v0,, - vyp 4 1)V, -+ 0;_,v; has length
2k — 1, contrary to Lemma 3. Hence the claim.
Thus no edge ¢ dC can be incident with two vertices of V(C) and so

m(2k + 1)
0CI= Y (dv)-2), ()

j=1

since exactly two edges incident with v,e V(C) are in E(C), and the
d(v;) — 2 other edges are in 0C. Denote

Y={yeV(G)-V(C):I(y)n V(C)# I}
We claim that for all ye ¥,
I nV(O) <2 (6)
Since 8 e Hom(G, Z4; . ),
LI (y) (O] {6(y)—1.0(y)+1}. )

Suppose that (7) holds with equality. Then by the minimality of m,
[F(y) N V(C)| =2. Suppose that (7) is strict. Then |I(y)~ V(C)| < m. By
Lemma 2, m < 2. Hence in either case, (6) holds, as claimed.

By (6) and the definitions of ¥ and C,

|0CI =), [I(y)n V(C) <217, (8)
and
nz|Y|+|V(C) =Y +m(2k+1). (9)

We combine (9), (8), (5), and (4) to get

2n 22| Y]+ 2m(2k + 1) > |8C| + 2m(2k + 1)
m(2k + 1)
= Y (dv)-2)+2m(k+1)
j=1
m(2k + 1)

> d(v;) =2 m(2k + 1)(5(G))>%mn>mn.
=1

J
It follows that m <2 and we are done. |

For a graph A that has a (2k+1)-cycle, we define a new graph
C*+'(H) whose vertex set is the set of all (2k + 1)-cycles of H, where two
vertices of C**!(H) are adjacent if and only if the corresponding (2k + 1)-
cycles have at least one edge in common.
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Let X be the subset of V(G) that consists of all vertices lying on (2k + 1)-
cycles of G. By Lemma 4, X # J. Let W= V(G)— X.

Let C, and C, be two (2k+ 1)cycles of G. For any 8,,0,¢
Hom(G, Z .., ), consider the following condition on the restrictions of 6,
and 6,:

91|q=92‘cx©91|cz=92|c2- (10)

We say that C, is related to C, if and only if (10) holds for any
8,, 0, Hom(G, 7, ., ). It is clear that this defines an equivalence relation
on V(C**Y(G)). We shall first show that V(C?**!(G)) has only one equiv-
alence class. This will mean for 8, € Hom(G, Z,, , ,), if 6,(v)=6(v) for all
vertices v in a (2k + 1)-cycle of G, then 8,(x)=0(x) for all xe X. Then we
shall show that 6,(w)=0(w) for all we W also.

Let C, and C, be two (2k + 1)-cycles of G that have an edge in common.
If 8, is a homomorphism from C, onto Z,, , ;, then there is a unique way
to extend 0, to a homomorphism from C, u C, onto Z,;,,. Hence C, is
related to C,. As a consequence, if there is a (C;, C,)-path in C**1(G) for
two (2k+ 1)-cycles C, and C, in G, then C, is related to C,.

LeMMA 5. If the hypotheses of Theorem 4 hold, then V(C**(G)) has
only one equivalence class.

Proof. Let C, and C, be two (2k + 1)-cycles of G. We shall also use C,
and C, to denote the corresponding vertices in C**!(@G). It suffices to
show that C, is related to C,.

Case 1. V(C)nV(C,)# . We assume that C;=xyx, - x5,%x, and
Cy=yoy1- Yo and that xo= y,.

Suppose that C, is not related to C,. Thus there is no (C,, C,)-path in
C2k+ I(G)

First we claim that |V(C;)n V(C,)| = 1. Suppose not. We have x;=y;
for some 0 <, j <2k + 1.

If i=j, then xgx;---x;p;, 1" YuXo i @ (2k + 1)-cycle in G that is adja-
cent to both C, and C, in C¥**(G), a contradiction.

If i=2k+1—j, then XX, - X, Vo (2 ; -V Xo I8 @ (2k+ 1)-cycle in G
that is adjacent to both C, and C, in C**!(G), a conradiction.

If i # 4/ (mod 2k + 1), then one of the following cycles,

XXy XiViv1 Ya—1YVaXos
XoXy X Vi1 Y2Vi1Xo,
XoXog =X Viv 1 YVar—1VaXos

XoXog " X;Yi 17 YaYiXos
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18 an odd cycle of length less than 2k + 1, contrary to Lemma 3. Hence the
claim holds and so |V(C, U C,)| =4k + 1.

Subcase L1, Suppose k= 3. Define S;={x,_, ¥, 1, X;, 1, yip1} for
all ieZ,, ., where S, has fewer than four elements if ie {1, —1}.

Let m, be the number of incidences of edges of G with V(C,u C,). We
shall estimate m, in two ways.

We claim that Vie Z**'— {0}, |I'(z)n S| <2, for all ze 6 '(i). Sup-
pose not. Since x,=y,, if ie {—1, 1}, then { y,, X5, ¥»;} S I'(z) and so y,z
lies on a (2k + 1)-cycle C4 adjacent to C, and on a (2% + 1)-cycle C, adja-
cent to C,. Thus C,C,C,C, is a (C,, C,)-path in C* " (@), a contradic-
tion. If i¢ {—1,0,1}, then without loss of generality, we may assume
{¥io1> X1} S1(2) with ze07'(i). Then yo-- ¥, 12X, 1+ Xy Yo IS 2
(2k + 1)-cycle adjacent to both C; and C, in C**!(G), a contradiction.
Hence the claim.

Note that |I(z) N S,] <4, Vze 871(0). Therefore, by the above claim, we
sum over all ze V(G) to get

my= 3, Tz)aV(CuGll= ) 3} 0S|

ze V(G) i€Zy 1 z€071(i)
<2n 42|67 10)].
By (ii) of Theorem 4, and since |V(C, v C,)| =4k +1,

3n 3n

m0>|V(C1UC2)15(6)>(4/€+1)4k+2=3n—m.

Combine these bounds to get

3n
*1 o
210710) >n Tl

But (3) and (ii) of Theorem 4 give

3kn

- _ .
07O <n=2773

Hence we must have

5 _3kn S 3n
"Tak12) " w2

It follows that k < 3, contrary to k> 3.
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Subcase 1.2. Suppose k=2. Then §(G) > 3n/10. Now we have
Ci=XyXX;X3X4X0 and Co=yor1Y2¥3¥ao with xo=y,.
Cram.  I(x,), I'(y,), I'(x5), I'(y3) are pairwise disjoint.

Proof of the Claim. By Lemma 3, we have I'(x,)nI(x,)=¢ and
I'(y)nI(ys)= .

If I'(x)nI'(y,;)# &, then picking we I'(x,)~ I'(y,), we can see that
XoX{Wy,YiXq is @ S-cycle in G that is adjacent to both C, and C, in C*(G),
a contradiction.

If I'(x,)nI(y;)# &, then picking we I'(x,) I'(y;), we can see that
XoX1Wy;3y4Xg is a 5-cycle in G that is adjacent to both C, and C, in CS(G)
a contradiction.

Suppose I{x,)nI{y,)# 5. Let 8,,0,eHom(G, Z,,,) and let
we l(x,)n [(y,). Without loss of generality, we assume that 0,(x;)=
0,(x,) =1, VieZy ,,. Since we I'(x,), 0,(w)e {1, 3}. Since 8,(xq)=0,(y,)
and since C, =,y Y2 ¥3Y4V iS a 5-cycle, 6,(y,)€ {2, 3} and so we must
have 0,(y,)=2, by we I'(y,), 6,(w)e {1, 3}, and 0,(y,) € {2, 3}. It follows
that 0,(y;)=1i, Vie Z,.,,. Similarly, we can see that 6,(y,)=1i, VieZ,, .
Hence C| is related to C,, a contradiction.

Similarly we can see that I'(x,) n I'(y;) = . Hence the claim. |

By the claim, we have
12
n2 [I(x) W L(x) U I(y:) W I(ys) 2 48(G)) > 15 n > 1,

a contradiction.

Case 2. V(C)nV(Cy)=¢. Fix a (2k+1)cycle C of G. Define
C=10y0; -+ Uy such that 8(v,) =1, YieZy, , Let
NC)= | [T )n (v, )]

i€ Zy+1

Note that
IN(C) = Z AU Ta VA A1

i€ Zyy

> Y Al )08 O+ (v, ) 0 07 (Dl — 0= (1}

Z deg(v,) —n

i€ Zast
1

> (2k + )4k 3~

n

3
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Hence

|N(C1)nN(C2)|>g+g—n=0. (11)

By (11), there is a vertex ue N(C,)u N(C,). Thus there are 7 and j, 0 <,
j< 2k, such that

uel'(x,_ )N Il )N I (- )N T (py41)-

Cy=XoX " X;_(UX; 4 Xop 1 Xops

Co=yor: e YiaWiey Yok —1 Y 2k

Then C; has an edge in common with C; and C, has an edge in common

with C, and C; and C, have a vertex, namely #, in common. Thus C, is

related to C; and C, is related to C,. By the result of Case 1, C; is related

to C, and so by transitivity of the equivalence relation, C, is related to C,.
Thus C, is related to C, and we are done. |

Proof of Theorem 4. Suppose that 36, 6, e Hom(G, Z; , ;) such that 8
and 6, agree in X, the set of vertices lying in some (2k + 1)-cycle of G. Let
we W, where W=V(G)—X. By Lemma 2, there is a 2(2k+ 1)-cycle Cs
that contains w. We may assume

Cs=WoW, - W 1 Wog 2 Wak o i Wak 42
such that w=w,=wg,_ , and 68(w;) =i (mod 2k + 1).
For each ie Z,, ., define
T;= {Wifu Wis s Wak g o W2k+i+2}'

We claim that

VieZy, —{0} and Vze07'(), |T(2)nT,|<3. (12)

If, instead, we have T;< I'(z) for some i€ Z,,,,— {0} and ze (i), then
WoW; Wi ZWap y1e2 " War s W 18 @ (2k+ 1)-cycle containing w, a
contradiction. Hence the claim.

Let m, be the number of incidences of edges of G with V(Cs).

Suppose |I(z) N Tyl <3, Vze67'(0). Then by (12),

mp= Y Y Mz)nT;{<3n.

ieZyt1 ze 6 1(5)
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On the other hand,

4+ 2
my= Y, deg(w,) = (4k+2)(6(G))>3n,

i=1

a contradiction. Hence we must have

\[(z)n Ty =4, forsomezef '(0). (13)

By (13), zw wy - -waz and zw,y, , sWar 13- Wy 2 are (2k+ 1)-cycles of

G. Hence w,, wy ., €X. Thus 8(w,)=0,(w;)=1 and 0w, ) =0,(Wgy +)

=2k. Since wow,, wowy,, | € E(G), we must have 6(wy)=0,(wy)=0.
Thus G is uniquely Z,, , ;-colorable. |}

Theorem 4 is best possible in some sense. Let k=2 and m>1 be
integers. Let C, =040, -0y and C,=ugti; -+ Uty be two (2k+ 1)-
cycles with V(C)nV(C,)=F. Let H be the graph such that V(H)=
V(Cy)u V(C,) and E(H)=E(C,)u E(Cy)u {uw;:i=0,1,2---2k}. Let
H,, be the graph obtained from H by replacing each vertex v, by a set V,
of m vertices and replacing each vertex u; by a set U, of m vertices, where
two vertices of H,, are adjacent in H,, if and only if they correspond to
different vertices that are adjacent in H.

Hence |V(H,)|=(4k+2)m and O(H,)=3m. There arc two
homomorphisms 6, Hom(H,,, Zy ), i=1,2, where 0, '(j)=U,uV,_,
and 05 ()=U,uV,, .j€Zy . Clearly 0(H,)=2Zy ,,i=1,2. Also,
6., 0, satisfy (2). But there is no automorphism ¢ of Z,,,, satislying
08, =0,.

Examples of Bollobas [2] showing that Theorem 1 is best possible also
show that Theorem 4 fails for k=1.

Let 8 e Hom(G, Z,, . ;). One may consider the following analogue to (1}):

G[0~'(i)u b '(i+1)] is connected, Vie Z,, ;. (14)

One may ask if (14) is a necessary condition for unique Z,, , ;-colorings,
and when (14) holds, if it is not such a necessary condition.

THEOREM 5. Let G be a graph of order n and let k=1 be an integer.
Suppose that 30 Hom(G, Z, ) such that 8(G)=12Z,.,. If one of the
following holds:

(1) k is even and 6(G)>n/(k+ 1),
(1) Kk is odd and 6(G) > 4n/(dk + 3),

then (14) holds.
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Proof. By contradiction, we may assume that G[8~'(0)uf~'(1)] is
the disjoint union of two nontrivial subgraphs G, and G, such that there
are no edges of G joining a vertex of G| and a vertex of G,. Let

Vo=V(G)n6~10),
Wo=V(G,)n 6 10),
Vi=V(G)n6 (1),
W, =V(Gy)n 0~ '(1).

Assume (i) of Theorem 5 first. We claim that V,, V,, W,, and W, are
nonempty. Suppose, to the contrary, that V,= . Since 8(G)=2Z,, ., and
G[O-1(0)uh~'(1)] is disconnected, we may assume that V,# ¢ and
there is no edge in G joining one vertex in V; and one vertex in W,. Let
xeV,. Then I'(x)< 6 '(2). Thus

10-1(2)1 = ( G)>m (15)

By (3), |07 '(2)| <n—ké(G) <nf(k + 1), a contradiction. Hence V,, V, W,
and W, are nonempty. Without loss of generality, suppose

Vol +IWol<IVil+ W] (16)
Considering the degrees, we have
[Wol +1071(2) > 6(G), (17)
Vil +1071(2k) 2 8(G), (18)
012k —1)| + |0 '(0)| = 6(G).
If £ > 2, we have the following besides the above three inequalities,
07147 +3)[+10 (4] +5)| > 8(G),
10714 +4) +107'(4)+6)| =9(G),
where j=0, 1, ..., (k/2 —2).

Adding all these inequalities, we get

+H(UWol =W D)= Wl +1Vi 1+ 3 107'()

JeZur1— {1}

> [2 <§— 1) + 3] o(G)

=(k+1)8(G)>n.
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This implies |W,|>|W,|. Replacing W, by ¥V, in (17) and V, by W, in
(18), we get similarly | V| > |V, |, contrary to (16).

Now we assume that (ii) of Theorem 5 holds. A similar argument shows
that V,, V,, W,, and W, are nonempty. Without loss of generality,
suppose

Vol < Vil (19)
Considering the degrees, we get
[Wol+1671(2) >6(G),
10712k — 1) +16-1(0)] = 6(G),
and

10~1(2k)| + W1 = 6(G),
167 2i— 1) + [0 '2i+ 1)| = 8(G),
107120 +1671(2i+2)] = 8(G),

where i=1,2, ., k— 1.
Adding all these inequalities, we get

m—(Vol+1Viz Y 16~ + | W,

ie Zyk 11— {0}
+ Y 0T+
ieZyp— {1}
> (2k+1)8(G)

4n
>(2k+ I)Zm

2n
4k +3°

=2n-—

Thus |Vol + |V, | <2n/(4k + 3), and so (19) implies that | V| <n/(4k + 3).
Considering the degrees of vertices in ¥, we have

Wol +1071(2)1 = 6(G) > 4n/(4k + 3).
It follows that |87 1(2)| > 3n/(4k + 3) > n — ké(G), contrary to (3).
This completes the proof of Theorem 5. |

Theorem 5 is best possible in some sense also. Let H be a theta graph
obtained from 7., ., by adding two vertices «, f to Z, . in the following
way: « is adjacent to § and 0, and f is adjacent to « and S.
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Let k>1 and s>1 be integers. Let G/(k,s), j=1,2, be the graphs
obtained from H by replacing each vertex je {a, f} U Z, ,, by a set V,,
of n; ; vertices, where the n, /s are defined as follows:

When j=1, we let

By =R =Ng =Ny, =5,
Ny 1 =n3 =35,
n,=2s,  forall othern, s;
and when j=2 and k is odd, we let
Ny 2=HNy 2=Hg =Ny =05,

n3, 2= 33’

and for p=1,2, .., (k—1)/2,
”4p,z:”4p+2~2=25,
Naps1,2= 5,

n4p+3, 2 = 3S.

Two vertices in H,(k, s) are adjacent if and only if they correspond to
different vertices that are adjacent in H.

Let H, denote H{k,s). It is easy to see that Hom(H;, Zy, ) # J,
j=1, 2. Note that

S(H\)=4s=|V(H)|/(k+1) and  O(H,)=4s=|V(H,)|/(4k +3).

By Theorem 3, both H, and H, are uniquely Z,; , ;-colorable. Hence for
Jje{l1,2},v0,e Hom(H,, Z,, , ), we have

0V, ) =0V, and 0,V ) =04{V3,)
But H[V, oV, ;uVs,;0V, ] is disconnected. These extremal graphs

also show that (13) is not a necessary condition for unique 7, ;-
colorings.
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