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Abstract

The block-cutvertex graph of the connected graph G, denoted bc(G), is the graph whose
vertices are the blocks and cutvertices of G. The edges of bc(G) join cutvertices with those
blocks to which they belong. Gallai, Harary and Prins de4ned this concept and showed that a
graph G is the block-cutvertex graph of some connected graph H if and only if G is a tree in
which the distance between any two leaves is even. A block-cutvertex partition of the tree T is
a collection {T1; : : : ; Tk} of block-cutvertex trees such that each Ti is a subtree of T and each
edge of T is in exactly one Ti. We prove that a tree has a block-cutvertex partition if and only if
it does not have a perfect matching. Various concepts and algorithms related to block-cutvertex
partitions will be presented.
c© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

All graphs considered will be 4nite, undirected and simple. V (G) and E(G) denote
the vertex set and the edge set of the graph G. The order of G is the number of
vertices and the size of G is the number of edges. A nonempty graph has at least one
edge. The degree of the vertex v, denoted d(v), is the number of edges incident with v.
The following de4nition is due to Gallai [3] and Harary and Prins [6].

De�nition 1. The block-cutvertex graph of a connected graph G, denoted bc(G), is
de4ned as the graph whose vertices are the blocks and cutvertices of G. The edges of
bc(G) join cut vertices with those blocks to which they belong.
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Example 2. A graph, H, of order 8 with blocks A, B, C and D, cutvertices 4; 5 and
7 and the block-cutvertex-graph, bc(H) (see Fig. 1).

Theorem 3 (Harary, Gallai and Prins). A graph G is the block-cutvertex graph of a
connected graph H if and only if G is a tree in which the distance between every
pair of leaves is even.

Thus, if G is a connected graph then bc(G) is a tree and we can speak of the
block-cutvertex tree of a connected graph. This fact leads to the following de4nition.

De�nition 4. A bc-tree is a tree of order 1 or a nonempty tree in which the distance
between every pair of leaves is even. A bc-tree will also be called an even tree. A
tree that is not even will be called odd.

Harary and Palmer enumerated bc-trees in [5].

De�nition 5. A bc-cover of the nonempty tree T is a collection

C = {T1; : : : ; Tk}
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Fig. 2. (a), (b) A tree with no bc-partition.

of nonempty bc-trees such that each Tj is a subtree of T and each edge of T is in
at least one of the Ti. If each edge is in exactly one of the Ti then C is called a
bc-partition.

Example 6. A bc-partition of T1 (Fig. 2(a)).

The tree T below does not have a bc-partition : If B were a bc-partition then edges
45 and 34 would be together in some bc-subtree Si ∈B. Also, edges 12 and 23 would
be together in some bc-subtree Sj ∈B. This implies that edge 36 cannot be in a bc-
subtree of B with edge 23 or 34. Thus, T does not have a bc-partition (Fig. 2(b)).
In the next section, we prove that a tree has a bc-partition if and only if it does

not have a perfect matching. Section 3 will consider bc-covers in trees with a per-
fect matching and Section 4 describes various algorithms for 4nding bc-partitions and
bc-covers.

2. bc-Partitions in trees

De�nition 7. A type 1 tree has a path u1; u2; u3, where d(u1)¿2; d(u2)= 2 and
d(u3)= 1. Any tree that is not type 1 will be called type 2.

Theorem 8. A tree has a bc-partition if and only if it does not have a perfect
matching.

Proof. The assertion is easy to verify for trees of order at most 6. Assume, for purposes
of induction, that the theorem holds for all trees of order k6n and let T be a tree of
order n+ 1.
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Fig. 3. (a) A type 1 con4guration; (b) a type 2 con4guration.

Case 1: Assume that T is of type 1 with path P= u; v; w, where w is a leaf, v has
degree 2 and u has degree at least 2 (Fig. 3(a)).
Let T ∗=T − {v; w}. Suppose that T has no bc-partition. We must show that T has

a perfect matching. Note that T ∗ cannot have a bc-partition B, otherwise B∪{uv; vw}
would be a bc-partition of T . Thus, by induction, T ∗ has a perfect matching M∗.
Therefore, M∗∪{vw} is a perfect matching of T .
Now, assume that T has the bc-partition

B= {T1; T2; : : : ; Tk};
where w∈V (T1). We must show that T does not have a perfect matching. If T1 =P
then B−{T1} is a bc-partition of T ∗. If T1 �=P let T ∗

1 =T1−{v; w}. Since the distance
from u to w is even, T ∗

1 is also a bc-tree so that

{T ∗
1 ; T2; : : : ; Tk}

is a bc-partition of T ∗. Thus, by induction, T ∗ has no perfect matching. Now, if M
were a perfect matching of T , then M − {vw} would be a perfect matching of T ∗.
Thus T has no perfect matching.

Case 2: Assume that T is of type 2. By considering the longest path in T , we
conclude that there is a vertex u of degree at least three that is adjacent to the two
leaves v and w (Fig. 3(b)).
Since T does not have a perfect matching we must show that T has a bc-partition.

Let T ∗=T−{v; w}. If T ∗ has a bc-partition then so does T and we are done. If T ∗ does
not have a bc-partition then, by induction, T ∗ has a perfect matching. Let T ′ =T−{v}.
Since T ′ has odd order it does not have a perfect matching. By induction, let

{T1; T2; : : : ; Tk}
be a bc-partition of T ′, where w∈V (T1). If z is a leaf of T1 then the distance from z
to w is even. Therefore, the distance from z to v is also even in

T ∗
1 =T1 + {uv}:
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Thus, T ∗
1 is a bc-tree and

{T ∗
1 ; T2; : : : ; Tk}

is a bc-partition of T .

3. Semipartitions and bc-covers

If T is a tree with perfect matching M then T does not have a bc-partition. In
this section we will see that if T �=K2 then there is a bc-cover that is “almost” a
bc-partition.

De�nition 9. Let C be a bc-cover of the tree T . The cover weight of edge e∈E(T ),
denoted C(e), is the number of bc-trees of C that contain e. The cover weight of T is

C(T )=
∑
e

C(e):

Example 10. Let � be the set of all even subtrees of T. Note that if S ∈� then the
leaves of S must have labels of the same parity. Using this observation, we 4nd that
T has 7 even subtrees (see Fig. 4).
In this case

�(12)=�(45)= 2; �(23)=�(34)= 5; �(36)= 3 and �(T)= 17:
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Example 11. T has a minimum cover weight for the following bc-cover (see Fig. 5).
Thus, if C is a bc-cover of T then 66C(T)617. It is not diLcult to show that if

i �=16 and 66i617 then C(T)= i for some bc-cover C of T.

If T is a tree of order 2n¿4 with perfect matching M and bc-cover C then 2n6C(T )
because C(T )= 2n− 1 if and only if C is a bc-partition.

De�nition 12. Let T be a tree of order n¿3. A semipartition of T is a bc-cover S
such that S(T )= n.

De�nition 13. Let u be a vertex of tree T . A branch of u is a maximal subtree con-
taining u as a leaf. If ux∈E(T ) then Br[u; x] is the branch of u that contains x and
Br(u; x) is the subtree Br[u; x]− {u} (Fig. 6).

The following theorem shows that 2n6C(T ) is a sharp bound.

Theorem 14. Let T be a tree of order 2n¿4 with perfect matching M . If e =∈M then
there is a semipartition S such that S(e)= 2. Furthermore, if S is a semipartition of
T such that S(e)= 2 then e =∈M .

Proof. If e= uv =∈M then the required semipartition S is easy to construct. Note that
both components of T − e have perfect matchings. Consider the subtrees Br[u; v] and
Br[v; u]. Each tree has a bc-partition Cu and Cv, respectively. Therefore, S =Cu ∪Cv
is the required semipartition. It remains to prove that if S is a semipartition of T for
which S(e)= 2 then e =∈M . The proof is by induction on n. Since the assertion is true
when n=2, assume that the theorem holds for every tree of order 2k with a perfect
matching, where 26k6n. Let T be a tree of order 2n+ 2 with perfect matching M ,
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Fig. 7. A type 1 tree in the proof of Theorem 14.

semipartition

S = {T1; T2; : : : ; Tk}

and edge e, where S(e)= 2. Since a type 2 tree does not have a perfect matching, we
know that T is of type 1.
Let P= u; v; w be a path in T , where w is a leaf, v has degree 2 and u has degree

at least 2 (Fig. 7).
First, note that T ∗=T − {v; w} has perfect matching M∗=M − {vw}. Assume that

e= vw, where e is in T1 and T2. Note that any bc-tree that contains vw must also contain
uv. Therefore, T1 and T2 contain uv and vw. Since this is impossible we conclude that
e �= vw. If e= uv then e =∈M and the theorem is veri4ed. The only other possibility is
that e is an edge of T ∗=T − {v; w}. If P ∈ S then S∗= S − {P} is a semipartition of
T ∗ with S∗(e)= 2: If vw∈Ti and Ti �=P then

S∗= {T1; : : : ; Ti − {v; w}; : : : ; Tk}
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Fig. 8.

is a semipartition of T ∗ such that S∗(e)= 2. By induction, e =∈M∗. Since a tree has
at most one perfect matching (see [1]) and e �= vw, we conclude that M =M∗∪{vw}
and e =∈M .

If T is even then {T} is a trivial bc-partition. There are also nontrivial bc-partitions
associated with each nonleaf.

De�nition 15. Let

U = {u1; u2; : : : ; uk}
be the neighbors of vertex u. The graph induced by u and U is denoted N (u).

De�nition 16. Let T be a nonempty even tree with bipartition (X1;X2), where X1

contains all leaves of T . The vertices of X1 will be called the black vertices and the
vertices of X2 will be called the white vertices.

Example 17. An even tree with 6 black vertices and 2 white vertices is shown in Fig. 8.

Theorem 18. Every nonempty even tree except K1;2 and K1;3 has a nontrivial bc-
partition.

Proof. The theorem is obvious for K1; n, where n¿4. Let w be a white vertex of the
even tree T �=K1; n, where

{b1; : : : ; bk}
are the neighbors of w and k¿2. Since each component of T − {w} is even

N (w)∪B1 ∪ · · · ∪Bk
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is a nontrivial bc-partition of T , where

Bj =
{
Br(w; bj); |Br(w; bj)|¿1;
∅; |Br(w; bj)|=1:

Corollary 19 (Local bc-partition). Every nonempty tree without a perfect matching
has a bc-partition

C = {T1; : : : ; Th};
where Ti is isomorphic to K1;2 or K1;3.

If T is even then there is also a natural bc-partition associated with each black vertex
b of degree at least two. Let

W = {w1; : : : ; wj}
be the neighbors of b, where j¿2. The bc-partition associated with b is

Br[b; w1]∪ · · · ∪Br[b; wj]:

Example 20. The bc-partition shown below (in Fig. 9) is associated with w and b.

4. Algorithms

Problem 21. Let T be a tree of order n¿3. Find a bc-partition of T if one exists,
otherwise 6nd a semipartition of T .

The following lemma is essential for the 4rst algorithm.

Lemma 22. Let T be an odd type 2 tree (Fig. 10). Then T?=T − {v; w} has a
bc-partition.
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Fig. 12. An odd type 1 tree with a bc-partition in Algorithm 23.

Proof. Since d(u)¿3 there are at least 3 leaves in T . If all leaves of T are adjacent to
u then T =K1; p, where p=d(u). This is a contradiction because T is odd. Thus there
are leaves x and y adjacent to z �= u. Therefore, T? does not have a perfect matching
and hence T? has a bc-partition.

Note that if T is an odd type 1 tree as in Fig. 11 with a bc-partition then

T?=T − {v; w}

also has a bc-partition. These observations lead to the following algorithm.

Algorithm 23. Procedure BCP(T ): Find a bc-partition of the tree T , where T does
not have a perfect matching.

Input: T , a tree with no perfect matching.
Output: C, a bc-partition of T .

(1) If T is even then return the bc-partition C = {T}.
(2) (Type 1 reduction): If T is odd and type 1 (Fig. 12). then return the bc-partition

C = {uv; vw}∪BCP(T − {v; w}):
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(3) (Type 2 reduction): If T is odd and type 2 (Fig. 13). then return the bc-partition

C = {uv; uw}∪BCP(T − {v; w}):

Example 24. Consider the tree in Fig. 14. The initial call to BCP gives

C = {12; 23}∪BCP(T1):

The 4rst recursive call gives

BCP(T1)= {36; 37}∪BCP(T2):
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The next call to BCP gives

BCP(T2)= {04; 34}∪BCP(T3);

where the relation given in Fig. 14(d) holds and the 4nal call to BCP gives

BCP(T3)= {T3}:

A type 2 reduction may not work in a type 1 tree. In the tree below in Fig. 15 the
procedure would fail if the leaves incident with vertex 2 were deleted 4rst!

4.1. The unsaturated leaf algorithm

It turns out that a maximum matching of the tree T provides all of the information
needed to construct a bc-partition or a semipartition.

Lemma 25. Let T be a tree with the maximum matching M . Suppose that the
M -unsaturated vertex u is a nonleaf and x is a neighbor of u. Then Br[u; x] has
maximum matching Mx =M ∩E(Br[u; x]) and Mx-unsaturated leaf u.

Proof. T and Br[u; x] have the con4gurations given in Fig. 16. If M∗ is a matching
of Br[u; x] with |M∗|¿|Mx| then

(M −Mx)∪M∗

is a matching of T with more edges than M . Since this is impossible we conclude that
Mx is a maximum matching of Br[u; x].

First, note that the tree described in the previous lemma has a bc-partition and the
subtree Br[u; x] has maximum matching Mx with Mx-unsaturated leaf u. Thus, if T
has an M -unsaturated vertex u of degree at least two then it can be partitioned into
a collection of subtrees {Ti}, where Ti has maximum matching Mi and Mi-unsaturated
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leaf u. If we can 4gure out how to partition a tree T with maximum matching M and
M -unsaturated leaf u then we can devise another algorithm to 4nd a bc-partition.
Suppose that u is an M -unsaturated leaf of T , where M is a maximum matching.

Let

P= u0; u1; : : : ; uk

be an M -alternating path, where u= u0. If k¿3 then let (Fig. 17)

M∗=M ∪{u0u1} − {u1u2}:
Note that M∗ is a maximum matching and u2 is an M∗-unsaturated vertex of degree at
least two. Thus, T can be partitioned into subtrees as discussed in the previous lemma.
If k =2 then T has the con4guration given in Fig. 18.

The neighbors of u1 (the black vertex in Fig. 18) are classi4ed as follows, where
B(x)=Br(u1; x):

(i) L1; : : : ; La are leaves, where u=L1 and u2 =L2.
(ii) B(ni) has an M -unsaturated vertex zi for every i; 16i6b.
(iii) Each vertex of B(pj) is M -saturated for every j; 16j6c.

Following the argument in the previous lemma, we conclude that B(ni) has maximum
matching Mi=M ∩E(B(ni)) and Mi-unsaturated vertex zi. On the other hand, each
subtree B(pj) has a perfect matching Mj =M ∩E(B(pj)). Therefore, Br[u1; pj] has
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Fig. 18. An unsaturated leaf con4guration.

maximum matching Mj and Mj-unsaturated leaf u1. Thus, T can be partitioned as
depicted in Fig. 19.

Algorithm 26. Procedure UnsatLeaf(T;M; u): Find a bc-partition of the tree T , where
T does not have a perfect matching.

Input: T , maximum matching M and M -unsaturated vertex u.
Output: C, a bc-partition of T .

(1) If T is even then return the bc-partition C = {T}.
(2) If T is odd and u is not a leaf then let

{B1; B2; : : : ; Bk}
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Fig. 19. The decomposition of a tree with an unsaturated leaf con4guration.

be the branches at vertex u. Bi has maximum matching Mi=M ∩E(Bi) and
Mi-unsaturated vertex u. Return the bc-partition

C =
k⋃
i=1

UnsatLeaf(Bi;Mi; u):

(3) (Unsaturated leaf reduction): If T is odd and u is a leaf then let

P= u0; u1; : : : ; uk

be an M -alternating path with initial vertex u0 = u.
(a) If k¿3 let

M∗=M ∪{u0u1} − {u1u2}
and let

{B1; B2; : : : ; Bh}
be the branches at u2, where u2 has degree h¿2. Return the bc-partition

C =
k⋃
i=1

UnsatLeaf(Bi;Mi; u2);

where Mi=M∗∩E(Bi).
(b) If k =2 then T has the con4guration of Fig. 18. Let

Bi=Br[u1; pi]; where 16i6c:
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Bi contains the maximum matching Mi=M ∩E(Bi) and Mi-unsaturated leaf
u1. Let

'j =Br(u1; nj); where 16j6b:

'j contains the maximum matching Mj =M ∩E('j). By de4nition, 'j also
contains at least one Mj-unsaturated vertex. Let zj be an Mj-unsaturated vertex
of maximum degree. Finally, let B0 be the subtree of T induced by

u1; L1; : : : ; La; n1; : : : ; nb:

Return the bc-partition C

{B0}∪
[
c⋃
i=1

UnsatLeaf(Bi;Mi; u1)

]
∪

 b⋃
j=1

UnsatLeaf('j;Mj; zj)


 :

Example 27. In the following tree, T , the edges of maximum matching M are shown
and vertex 1 is M -unsaturated. Step 3a is executed (Fig. 20). In M∗=M ∪{12}−{23}
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Fig. 20. (a–e). A bc-partition for the tree in Fig. 20.
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vertex 3 is unsaturated. Thus T can be partitioned as in Fig. 20(a). In Br[3; 4] vertex
3 is an unsaturated leaf and step 3a applies as can be seen from Fig. 20(b). Now,
only Br[5; 6] is odd and we have Fig. 20(c). Therefore, a bc-partition of T is given
in Fig. 20(e).

Example 28. In the tree below vertex 7 is unsaturated and the M -alternating path is
74321. Vertex 3 is unsaturated in the new matching and the bc-partition is generated
as shown in Fig. 21.
Now, if M is a perfect matching of T and e= uv =∈M then a semipartition can be

found by 4nding bc-partitions Cu of Br[u; v] and Cv of Br[v; u]. Note that

Mu=M ∩E(Br[u; v])
is a maximum matching of Br[u; v] with Mu-unsaturated leaf u and

Mv=M ∩E(Br[v; u])
is a maximum matching of Br[v; u] with Mv-unsaturated leaf v. Thus, let

Cu=UnsatLeaf(Br[u; v]; Mu; u) and Cv=UnsatLeaf(Br[v; u]; Mv; v)

so that

S =Cu ∪Cv
is a semipartition of T with S(e)= 2.

Example 29. Edge e=34 is not in the perfect matching M . A semipartition S is
constructed from Br[4; 3] and Br[3; 4] so that S(e)= 2 (Fig. 22).
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Fig. 22. Finding a semipartition in a tree with a perfect matching.
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