Block-cutvertex trees and block-cutvertex partitions

Curtis Barefoot
Departments of Mathematics and Computer Science, New Mexico Tech, Socorro, NM 87801, USA

Received 4 January 2000; received in revised form 20 September 2001; accepted 1 October 2001

Abstract

The block-cutvertex graph of the connected graph G, denoted $\mathrm{bc}(G)$, is the graph whose vertices are the blocks and cutvertices of G. The edges of $\mathrm{bc}(G)$ join cutvertices with those blocks to which they belong. Gallai, Harary and Prins defined this concept and showed that a graph G is the block-cutvertex graph of some connected graph H if and only if G is a tree in which the distance between any two leaves is even. A block-cutvertex partition of the tree T is a collection $\left\{T_{1}, \ldots, T_{k}\right\}$ of block-cutvertex trees such that each T_{i} is a subtree of T and each edge of T is in exactly one T_{i}. We prove that a tree has a block-cutvertex partition if and only if it does not have a perfect matching. Various concepts and algorithms related to block-cutvertex partitions will be presented.

(C) 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

All graphs considered will be finite, undirected and simple. $V(\mathbf{G})$ and $E(\mathbf{G})$ denote the vertex set and the edge set of the graph \mathbf{G}. The order of \mathbf{G} is the number of vertices and the size of \mathbf{G} is the number of edges. A nonempty graph has at least one edge. The degree of the vertex v, denoted $d(v)$, is the number of edges incident with v. The following definition is due to Gallai [3] and Harary and Prins [6].

Definition 1. The block-cutvertex graph of a connected graph G, denoted $\operatorname{bc}(\mathbf{G})$, is defined as the graph whose vertices are the blocks and cutvertices of \mathbf{G}. The edges of $\mathrm{bc}(\mathbf{G})$ join cut vertices with those blocks to which they belong.

[^0]

Fig. 1.

Example 2. A graph, H, of order 8 with blocks A, B, C and D, cutvertices 4,5 and 7 and the block-cutvertex-graph, bc(H) (see Fig. 1).

Theorem 3 (Harary, Gallai and Prins). A graph \mathbf{G} is the block-cutvertex graph of a connected graph \mathbf{H} if and only if \mathbf{G} is a tree in which the distance between every pair of leaves is even.

Thus, if \mathbf{G} is a connected graph then $\mathrm{bc}(\mathbf{G})$ is a tree and we can speak of the block-cutvertex tree of a connected graph. This fact leads to the following definition.

Definition 4. A bc-tree is a tree of order 1 or a nonempty tree in which the distance between every pair of leaves is even. A bc-tree will also be called an even tree. A tree that is not even will be called odd.

Harary and Palmer enumerated bc-trees in [5].

Definition 5. A bc-cover of the nonempty tree T is a collection

$$
C=\left\{T_{1}, \ldots, T_{k}\right\}
$$

Fig. 2. (a), (b) A tree with no bc-partition.
of nonempty bc-trees such that each T_{j} is a subtree of T and each edge of T is in at least one of the T_{i}. If each edge is in exactly one of the T_{i} then C is called a bc-partition.

Example 6. A bc-partition of T_{1} (Fig. 2(a)).
The tree \mathbf{T} below does not have a bc-partition : If \mathbb{B} were a bc-partition then edges 45 and 34 would be together in some bc-subtree $\mathbf{S}_{i} \in \mathbb{B}$. Also, edges 12 and 23 would be together in some bc-subtree $\mathbf{S}_{j} \in \mathbb{B}$. This implies that edge 36 cannot be in a bcsubtree of \mathbb{B} with edge 23 or 34 . Thus, \mathbf{T} does not have a bc-partition (Fig. 2(b)).

In the next section, we prove that a tree has a bc-partition if and only if it does not have a perfect matching. Section 3 will consider bc-covers in trees with a perfect matching and Section 4 describes various algorithms for finding bc-partitions and bc-covers.

2. bc-Partitions in trees

Definition 7. A type 1 tree has a path u_{1}, u_{2}, u_{3}, where $d\left(u_{1}\right) \geqslant 2, d\left(u_{2}\right)=2$ and $d\left(u_{3}\right)=1$. Any tree that is not type 1 will be called type 2 .

Theorem 8. A tree has a bc-partition if and only if it does not have a perfect matching.

Proof. The assertion is easy to verify for trees of order at most 6 . Assume, for purposes of induction, that the theorem holds for all trees of order $k \leqslant n$ and let T be a tree of order $n+1$.

Fig. 3. (a) A type 1 configuration; (b) a type 2 configuration.

Case 1: Assume that T is of type 1 with path $P=u, v, w$, where w is a leaf, v has degree 2 and u has degree at least 2 (Fig. 3(a)).

Let $T^{*}=T-\{v, w\}$. Suppose that T has no bc-partition. We must show that T has a perfect matching. Note that T^{*} cannot have a bc-partition \mathbb{B}, otherwise $\mathbb{B} \cup\{u v, v w\}$ would be a bc-partition of T. Thus, by induction, T^{*} has a perfect matching M^{*}. Therefore, $M^{*} \cup\{v w\}$ is a perfect matching of T.

Now, assume that T has the bc-partition

$$
\mathbb{B}=\left\{T_{1}, T_{2}, \ldots, T_{k}\right\},
$$

where $w \in V\left(T_{1}\right)$. We must show that T does not have a perfect matching. If $T_{1}=P$ then $\mathbb{B}-\left\{T_{1}\right\}$ is a bc-partition of T^{*}. If $T_{1} \neq P$ let $T_{1}^{*}=T_{1}-\{v, w\}$. Since the distance from u to w is even, T_{1}^{*} is also a bc-tree so that

$$
\left\{T_{1}^{*}, T_{2}, \ldots, T_{k}\right\}
$$

is a bc-partition of T^{*}. Thus, by induction, T^{*} has no perfect matching. Now, if M were a perfect matching of T, then $M-\{v w\}$ would be a perfect matching of T^{*}. Thus T has no perfect matching.

Case 2: Assume that T is of type 2. By considering the longest path in T, we conclude that there is a vertex u of degree at least three that is adjacent to the two leaves v and w (Fig. 3(b)).

Since T does not have a perfect matching we must show that T has a bc-partition. Let $T^{*}=T-\{v, w\}$. If T^{*} has a bc-partition then so does T and we are done. If T^{*} does not have a bc-partition then, by induction, T^{*} has a perfect matching. Let $T^{\prime}=T-\{v\}$. Since T^{\prime} has odd order it does not have a perfect matching. By induction, let

$$
\left\{T_{1}, T_{2}, \ldots, T_{k}\right\}
$$

be a bc-partition of T^{\prime}, where $w \in V\left(T_{1}\right)$. If z is a leaf of T_{1} then the distance from z to w is even. Therefore, the distance from z to v is also even in

$$
T_{1}^{*}=T_{1}+\{u v\} .
$$

Thus, T_{1}^{*} is a bc-tree and

$$
\left\{T_{1}^{*}, T_{2}, \ldots, T_{k}\right\}
$$

is a bc-partition of T.

3. Semipartitions and be-covers

If T is a tree with perfect matching M then T does not have a bc-partition. In this section we will see that if $T \neq K_{2}$ then there is a bc-cover that is "almost" a bc-partition.

Definition 9. Let C be a bc-cover of the tree T. The cover weight of edge $e \in E(T)$, denoted $C(e)$, is the number of bc-trees of C that contain e. The cover weight of T is

$$
C(T)=\sum_{e} C(e) .
$$

Example 10. Let Ψ be the set of all even subtrees of T. Note that if $S \in \Psi$ then the leaves of S must have labels of the same parity. Using this observation, we find that T has 7 even subtrees (see Fig. 4).

In this case

$$
\Psi(12)=\Psi(45)=2, \quad \Psi(23)=\Psi(34)=5, \quad \Psi(36)=3 \quad \text { and } \quad \Psi(\mathbf{T})=17
$$

T

Fig. 4.

T

Fig. 5.

Example 11. T has a minimum cover weight for the following bc-cover (see Fig. 5). Thus, if C is a bc-cover of \mathbf{T} then $6 \leqslant C(\mathbf{T}) \leqslant 17$. It is not difficult to show that if $i \neq 16$ and $6 \leqslant i \leqslant 17$ then $C(\mathbf{T})=i$ for some bc-cover C of \mathbf{T}.

If T is a tree of order $2 n \geqslant 4$ with perfect matching M and bc-cover C then $2 n \leqslant C(T)$ because $C(T)=2 n-1$ if and only if C is a bc-partition.

Definition 12. Let T be a tree of order $n \geqslant 3$. A semipartition of T is a bc-cover S such that $S(T)=n$.

Definition 13. Let u be a vertex of tree T. A branch of u is a maximal subtree containing u as a leaf. If $u x \in E(T)$ then $\operatorname{Br}[u, x]$ is the branch of u that contains x and $\operatorname{Br}(u, x)$ is the subtree $\operatorname{Br}[u, x]-\{u\}$ (Fig. 6).

The following theorem shows that $2 n \leqslant C(T)$ is a sharp bound.
Theorem 14. Let T be a tree of order $2 n \geqslant 4$ with perfect matching M. If $e \notin M$ then there is a semipartition S such that $S(e)=2$. Furthermore, if S is a semipartition of T such that $S(e)=2$ then $e \notin M$.

Proof. If $e=u v \notin M$ then the required semipartition S is easy to construct. Note that both components of $T-e$ have perfect matchings. Consider the subtrees $\operatorname{Br}[u, v]$ and $\operatorname{Br}[v, u]$. Each tree has a bc-partition C_{u} and C_{v}, respectively. Therefore, $S=C_{u} \cup C_{v}$ is the required semipartition. It remains to prove that if S is a semipartition of T for which $S(e)=2$ then $e \notin M$. The proof is by induction on n. Since the assertion is true when $n=2$, assume that the theorem holds for every tree of order $2 k$ with a perfect matching, where $2 \leqslant k \leqslant n$. Let T be a tree of order $2 n+2$ with perfect matching M,

Fig. 6.

Fig. 7. A type 1 tree in the proof of Theorem 14.
semipartition

$$
S=\left\{T_{1}, T_{2}, \ldots, T_{k}\right\}
$$

and edge e, where $S(e)=2$. Since a type 2 tree does not have a perfect matching, we know that T is of type 1 .

Let $P=u, v, w$ be a path in T, where w is a leaf, v has degree 2 and u has degree at least 2 (Fig. 7).
First, note that $T^{*}=T-\{v, w\}$ has perfect matching $M^{*}=M-\{v w\}$. Assume that $e=v w$, where e is in T_{1} and T_{2}. Note that any bc-tree that contains $v w$ must also contain $u v$. Therefore, T_{1} and T_{2} contain $u v$ and $v w$. Since this is impossible we conclude that $e \neq v w$. If $e=u v$ then $e \notin M$ and the theorem is verified. The only other possibility is that e is an edge of $T^{*}=T-\{v, w\}$. If $P \in S$ then $S^{*}=S-\{P\}$ is a semipartition of T^{*} with $S^{*}(e)=2$. If $v w \in T_{i}$ and $T_{i} \neq P$ then

$$
S^{*}=\left\{T_{1}, \ldots, T_{i}-\{v, w\}, \ldots, T_{k}\right\}
$$

Fig. 8.
is a semipartition of T^{*} such that $S^{*}(e)=2$. By induction, $e \notin M^{*}$. Since a tree has at most one perfect matching (see [1]) and $e \neq v w$, we conclude that $M=M^{*} \cup\{v w\}$ and $e \notin M$.

If T is even then $\{T\}$ is a trivial bc-partition. There are also nontrivial bc-partitions associated with each nonleaf.

Definition 15. Let

$$
U=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}
$$

be the neighbors of vertex u. The graph induced by u and U is denoted $\overline{N(u)}$.

Definition 16. Let T be a nonempty even tree with bipartition $\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)$, where \mathbf{X}_{1} contains all leaves of T. The vertices of \mathbf{X}_{1} will be called the black vertices and the vertices of \mathbf{X}_{2} will be called the white vertices.

Example 17. An even tree with 6 black vertices and 2 white vertices is shown in Fig. 8.
Theorem 18. Every nonempty even tree except $K_{1,2}$ and $K_{1,3}$ has a nontrivial bcpartition.

Proof. The theorem is obvious for $K_{1, n}$, where $n \geqslant 4$. Let w be a white vertex of the even tree $T \neq K_{1, n}$, where

$$
\left\{b_{1}, \ldots, b_{k}\right\}
$$

are the neighbors of w and $k \geqslant 2$. Since each component of $T-\{w\}$ is even

$$
\overline{N(w)} \cup B_{1} \cup \cdots \cup B_{k}
$$

Fig. 9.
is a nontrivial bc-partition of T, where

$$
B_{j}= \begin{cases}\operatorname{Br}\left(w, b_{j}\right), & \left|\operatorname{Br}\left(w, b_{j}\right)\right|>1, \\ \emptyset, & \left|\operatorname{Br}\left(w, b_{j}\right)\right|=1\end{cases}
$$

Corollary 19 (Local bc-partition). Every nonempty tree without a perfect matching has a bc-partition

$$
C=\left\{T_{1}, \ldots, T_{h}\right\},
$$

where T_{i} is isomorphic to $K_{1,2}$ or $K_{1,3}$.
If T is even then there is also a natural bc-partition associated with each black vertex b of degree at least two. Let

$$
W=\left\{w_{1}, \ldots, w_{j}\right\}
$$

be the neighbors of b, where $j \geqslant 2$. The bc-partition associated with b is

$$
\operatorname{Br}\left[b, w_{1}\right] \cup \cdots \cup \operatorname{Br}\left[b, w_{j}\right] .
$$

Example 20. The bc-partition shown below (in Fig. 9) is associated with w and b.

4. Algorithms

Problem 21. Let T be a tree of order $n \geqslant 3$. Find a bc-partition of T if one exists, otherwise find a semipartition of T.

The following lemma is essential for the first algorithm.
Lemma 22. Let T be an odd type 2 tree (Fig. 10). Then $T^{\star}=T-\{v, w\}$ has a bc-partition.

Fig. 10. A type 2 tree in the proof of Lemma 22.

Fig. 11.

Fig. 12. An odd type 1 tree with a bc-partition in Algorithm 23.

Proof. Since $d(u) \geqslant 3$ there are at least 3 leaves in T. If all leaves of T are adjacent to u then $T=K_{1, p}$, where $p=d(u)$. This is a contradiction because T is odd. Thus there are leaves x and y adjacent to $z \neq u$. Therefore, T^{\star} does not have a perfect matching and hence T^{\star} has a bc-partition.

Note that if T is an odd type 1 tree as in Fig. 11 with a bc-partition then

$$
T^{\star}=T-\{v, w\}
$$

also has a bc-partition. These observations lead to the following algorithm.
Algorithm 23. Procedure $\mathrm{BCP}(T)$: Find a bc-partition of the tree T, where T does not have a perfect matching.

Input: T, a tree with no perfect matching.
Output: C, a bc-partition of T.
(1) If T is even then return the bc-partition $C=\{T\}$.
(2) (Type 1 reduction): If T is odd and type 1 (Fig. 12). then return the bc-partition

$$
C=\{u v, v w\} \cup \mathrm{BCP}(T-\{v, w\})
$$

Fig. 13. An odd type 2 tree with a bc-partition in Algorithm 23.

(a)

(c)

(b)

(d)

Fig. 14.
(3) (Type 2 reduction): If T is odd and type 2 (Fig. 13). then return the bc-partition

$$
C=\{u v, u w\} \cup \operatorname{BCP}(T-\{v, w\}) .
$$

Example 24. Consider the tree in Fig. 14. The initial call to BCP gives

$$
C=\{12,23\} \cup \operatorname{BCP}\left(T_{1}\right) .
$$

The first recursive call gives

$$
\operatorname{BCP}\left(T_{1}\right)=\{36,37\} \cup \operatorname{BCP}\left(T_{2}\right) .
$$

Fig. 15. A type 1 tree in which a type 2 reduction does not work in Algorithm 23.

The next call to BCP gives

$$
\operatorname{BCP}\left(T_{2}\right)=\{04,34\} \cup \operatorname{BCP}\left(T_{3}\right),
$$

where the relation given in Fig. 14(d) holds and the final call to BCP gives

$$
\operatorname{BCP}\left(T_{3}\right)=\left\{T_{3}\right\}
$$

A type 2 reduction may not work in a type 1 tree. In the tree below in Fig. 15 the procedure would fail if the leaves incident with vertex 2 were deleted first!

4.1. The unsaturated leaf algorithm

It turns out that a maximum matching of the tree T provides all of the information needed to construct a bc-partition or a semipartition.

Lemma 25. Let T be a tree with the maximum matching M. Suppose that the M-unsaturated vertex u is a nonleaf and x is a neighbor of u. Then $\operatorname{Br}[u, x]$ has maximum matching $M_{x}=M \cap E(\operatorname{Br}[u, x])$ and M_{x}-unsaturated leaf u.

Proof. T and $\operatorname{Br}[u, x]$ have the configurations given in Fig. 16. If M^{*} is a matching of $\operatorname{Br}[u, x]$ with $\left|M^{*}\right|>\left|M_{x}\right|$ then

$$
\left(M-M_{x}\right) \cup M^{*}
$$

is a matching of T with more edges than M. Since this is impossible we conclude that M_{x} is a maximum matching of $\operatorname{Br}[u, x]$.

First, note that the tree described in the previous lemma has a bc-partition and the subtree $\operatorname{Br}[u, x]$ has maximum matching M_{x} with M_{x}-unsaturated leaf u. Thus, if T has an M-unsaturated vertex u of degree at least two then it can be partitioned into a collection of subtrees $\left\{T_{i}\right\}$, where T_{i} has maximum matching M_{i} and M_{i}-unsaturated

Fig. 16.
leaf u. If we can figure out how to partition a tree T with maximum matching M and M-unsaturated leaf u then we can devise another algorithm to find a bc-partition.

Suppose that u is an M-unsaturated leaf of T, where M is a maximum matching. Let

$$
P=u_{0}, u_{1}, \ldots, u_{k}
$$

be an M-alternating path, where $u=u_{0}$. If $k \geqslant 3$ then let (Fig. 17)

$$
M^{*}=M \cup\left\{u_{0} u_{1}\right\}-\left\{u_{1} u_{2}\right\} .
$$

Note that M^{*} is a maximum matching and u_{2} is an M^{*}-unsaturated vertex of degree at least two. Thus, T can be partitioned into subtrees as discussed in the previous lemma. If $k=2$ then T has the configuration given in Fig. 18.

The neighbors of u_{1} (the black vertex in Fig. 18) are classified as follows, where $B(x)=\operatorname{Br}\left(u_{1}, x\right):$
(i) L_{1}, \ldots, L_{a} are leaves, where $u=L_{1}$ and $u_{2}=L_{2}$.
(ii) $B\left(n_{i}\right)$ has an M-unsaturated vertex z_{i} for every $i, 1 \leqslant i \leqslant b$.
(iii) Each vertex of $B\left(p_{j}\right)$ is M-saturated for every $j, 1 \leqslant j \leqslant c$.

Following the argument in the previous lemma, we conclude that $B\left(n_{i}\right)$ has maximum matching $M_{i}=M \cap E\left(B\left(n_{i}\right)\right)$ and M_{i}-unsaturated vertex z_{i}. On the other hand, each subtree $B\left(p_{j}\right)$ has a perfect matching $M_{j}=M \cap E\left(B\left(p_{j}\right)\right)$. Therefore, $\operatorname{Br}\left[u_{1}, p_{j}\right]$ has

M

M *

Fig. 17.

Fig. 18. An unsaturated leaf configuration.
maximum matching M_{j} and M_{j}-unsaturated leaf u_{1}. Thus, T can be partitioned as depicted in Fig. 19.

Algorithm 26. Procedure $\operatorname{UnsatLeaf}(T, M, u)$: Find a bc-partition of the tree T, where T does not have a perfect matching.

Input: T, maximum matching M and M-unsaturated vertex u. Output: C, a bc-partition of T.
(1) If T is even then return the bc-partition $C=\{T\}$.
(2) If T is odd and u is not a leaf then let

$$
\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}
$$

Fig. 19. The decomposition of a tree with an unsaturated leaf configuration.
be the branches at vertex $u . B_{i}$ has maximum matching $M_{i}=M \cap E\left(B_{i}\right)$ and M_{i}-unsaturated vertex u. Return the bc-partition

$$
C=\bigcup_{i=1}^{k} \operatorname{UnsatLeaf}\left(B_{i}, M_{i}, u\right)
$$

(3) (Unsaturated leaf reduction): If T is odd and u is a leaf then let

$$
P=u_{0}, u_{1}, \ldots, u_{k}
$$

be an M-alternating path with initial vertex $u_{0}=u$.
(a) If $k \geqslant 3$ let

$$
M^{*}=M \cup\left\{u_{0} u_{1}\right\}-\left\{u_{1} u_{2}\right\}
$$

and let

$$
\left\{B_{1}, B_{2}, \ldots, B_{h}\right\}
$$

be the branches at u_{2}, where u_{2} has degree $h \geqslant 2$. Return the bc-partition

$$
C=\bigcup_{i=1}^{k} \operatorname{UnsatLeaf}\left(B_{i}, M_{i}, u_{2}\right),
$$

where $M_{i}=M^{*} \cap E\left(B_{i}\right)$.
(b) If $k=2$ then T has the configuration of Fig. 18. Let

$$
B_{i}=\operatorname{Br}\left[u_{1}, p_{i}\right], \quad \text { where } 1 \leqslant i \leqslant c .
$$

B_{i} contains the maximum matching $M_{i}=M \cap E\left(B_{i}\right)$ and M_{i}-unsaturated leaf u_{1}. Let

$$
\beta_{j}=\operatorname{Br}\left(u_{1}, n_{j}\right), \quad \text { where } 1 \leqslant j \leqslant b
$$

β_{j} contains the maximum matching $M_{j}=M \cap E\left(\beta_{j}\right)$. By definition, β_{j} also contains at least one M_{j}-unsaturated vertex. Let z_{j} be an M_{j}-unsaturated vertex of maximum degree. Finally, let B_{0} be the subtree of T induced by

$$
u_{1}, L_{1}, \ldots, L_{a}, n_{1}, \ldots, n_{b}
$$

Return the bc-partition C

$$
\left\{B_{0}\right\} \cup\left[\bigcup_{i=1}^{c} \operatorname{UnsatLeaf}\left(B_{i}, M_{i}, u_{1}\right)\right] \cup\left[\bigcup_{j=1}^{b} \operatorname{UnsatLeaf}\left(\beta_{j}, M_{j}, z_{j}\right)\right] .
$$

Example 27. In the following tree, T, the edges of maximum matching M are shown and vertex 1 is M-unsaturated. Step 3a is executed (Fig. 20). In $M^{*}=M \cup\{12\}-\{23\}$

(14)
\downarrow

\downarrow

(a)

(b)

Fig. 20. (a-e). A bc-partition for the tree in Fig. 20.

(c)

(d)

(e)

Fig. 20. (continued)

Fig. 21.
vertex 3 is unsaturated. Thus T can be partitioned as in Fig. 20(a). In $\operatorname{Br}[3,4]$ vertex 3 is an unsaturated leaf and step 3a applies as can be seen from Fig. 20(b). Now, only $\operatorname{Br}[5,6]$ is odd and we have Fig. 20(c). Therefore, a bc-partition of T is given in Fig. 20(e).

Example 28. In the tree below vertex 7 is unsaturated and the M-alternating path is 74321. Vertex 3 is unsaturated in the new matching and the bc-partition is generated as shown in Fig. 21.

Now, if M is a perfect matching of T and $e=u v \notin M$ then a semipartition can be found by finding bc-partitions C_{u} of $\operatorname{Br}[u, v]$ and C_{v} of $\operatorname{Br}[v, u]$. Note that

$$
M_{u}=M \cap E(\operatorname{Br}[u, v])
$$

is a maximum matching of $\operatorname{Br}[u, v]$ with M_{u}-unsaturated leaf u and

$$
M_{v}=M \cap E(\operatorname{Br}[v, u])
$$

is a maximum matching of $\operatorname{Br}[v, u]$ with M_{v}-unsaturated leaf v. Thus, let

$$
C_{u}=\operatorname{UnsatLeaf}\left(\operatorname{Br}[u, v], M_{u}, u\right) \quad \text { and } \quad C_{v}=\operatorname{UnsatLeaf}\left(\operatorname{Br}[v, u], M_{v}, v\right)
$$

so that

$$
S=C_{u} \cup C_{v}
$$

is a semipartition of T with $S(e)=2$.
Example 29. Edge $e=34$ is not in the perfect matching M. A semipartition S is constructed from $\operatorname{Br}[4,3]$ and $\operatorname{Br}[3,4]$ so that $S(e)=2$ (Fig. 22).

Fig. 22. Finding a semipartition in a tree with a perfect matching.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North-Holland, Amsterdam, 1979.
[2] R.C. Entringer, D.E. Jackson, Degree sums of paths in extremal trees, Congr. Numer. 39 (1983) 353-366.
[3] T. Gallai, Elementare Relationen bezüglich der Glieder und trennenden Punkte von Graphen, Magyar Tud. Akad. Mat. Kutato Int. Kozl. 9 (1964) 235-236.
[4] F. Harary, Graph Theory, Addison-Wesley, Menlo Park, 1969.
[5] F. Harary, E. Palmer, Graphical Enumeration, Academic Press, London, 1973.
[6] F. Harary, G. Prins, The block-cutpoint-tree of a graph, Publ. Math. Debrecen 13 (1966) 103-107.
[7] P. Steinbach, Field Guide to SIMPLE GRAPHS, Vol. 3: The Book of Trees, CD Design Lab, Albuquerque, NM, 1998.

[^0]: E-mail address: barefoot@nmt.edu (C. Barefoot).

