On Location of Blow-Up of Ground States of Semilinear Elliptic Equations in \mathbb{R}^{n} Involving Critical Sobolev Exponents

Xuefeng Wang*
Department of Mathematics, Tulane University, New Orleans, Louisiana 70118

Received March 3, 1994; revised April 19, 1995

1. Introduction and Statement of Main Result

View metadata, citation and similar papers at core.ac.uk

$$
\begin{equation*}
\Delta u-k(x) u+u^{p-\varepsilon}=0, \quad u>0 \quad \text { in } \quad \mathbb{R}^{n}, \tag{1.1}
\end{equation*}
$$

as $\varepsilon \rightarrow 0$, where $n \geqslant 3, p$ is the critical Sobolev exponent, i.e., $p=(n+2) /(n-2)$. In [PW], Pan and Wang obtained the precise blow-up rate of the L^{∞} norm of the ground states of (1.1). They also proved that any sequence $u_{\varepsilon_{j}}$ of ground states contains a subsequence which blows up and concentrates at a single point as $\varepsilon_{j} \rightarrow 0$, under certain conditions on $k(x)$ and the ground states. The main purpose of this paper is to show that this point of blow-up and concentration is a global minimum point of $k(x)$.

Before giving the precise statements of the results described above, we first need to state a technical condition on $k(x)$.

$$
\begin{align*}
& k \text { is a nonnegative } C^{1} \text { function defined on } \mathbb{R}^{\mathrm{n}}, \\
& \quad k+\frac{1}{2} x \cdot \nabla k \text { is bounded in } \mathbb{R}^{n}, \tag{K}\\
& k(x) \geqslant k_{0}>0 \text { for }|x| \text { large, and }-k \in E\left(\rho, \mathbb{R}^{n}\right) \text { for some } \rho \geqslant 0 .
\end{align*}
$$

Here $E\left(\rho, \mathbb{R}^{n}\right)$ is the set of all continuous functions u defined on \mathbb{R}^{n} satisfying $u\left(y+t e_{i}\right) \leqslant u\left(y+(2 \lambda-t) e_{i}\right)$ for all $t \geqslant \lambda \geqslant \rho$ or $t \leqslant-\lambda \leqslant-\rho$, $y \in \Sigma_{i}=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{i}=0\right\}$ with $1 \leqslant i \leqslant n$, where e_{i} is the unit vector pointing in the direction of the positive x_{i}-axis. Note if $u \in E\left(\rho, \mathbb{R}^{n}\right)$, then u is ultimately nondecreasing in every direction along some coordinate axis and u assumes its maximum in the cube $C(\rho)$ with length 2ρ and center at the origin.

[^0]Any solution of (1.1) which also minimizes energy functional J_{ε} is called a ground state of (1.1), where J_{ε} is defined by

$$
J_{\varepsilon}(u)=\frac{\int_{\mathbb{R}^{n}}|\nabla u|^{2}+k(x) u^{2}}{\left(\int_{\mathbb{R}^{n}}|u|^{p+1-\varepsilon} d x\right)^{2 /(p+1-\varepsilon)}}, \quad u \in H^{1}\left(\mathbb{R}^{n}\right), \quad u \not \equiv 0
$$

In the special case when $k(x) \equiv 1$, the existence of ground states (for $0<\varepsilon<p-1$) was studied years ago ([Ne$],[\mathrm{B}]$ and [S]), but only until recently it was proven that every solution of (1.1) which decays at infinity must be radially symmetric about some point and achieves its maximum at that point ([GNN]), and that such solutions of (1.1) are unique up to translation in x variable ([K]).

For more general k, it is known that under Condition (K), (1.1) (with $0<\varepsilon<p-1$) has a ground state u_{ε} which also belongs to $E\left(\rho, \mathbb{R}^{n}\right)$ (the condition on $k+\frac{1}{2} x \cdot \nabla k$ is unnecessary for this purpose, see [DN] or Lemma 2.1 in [PW]). Since this ground state u_{ε} is in $E\left(\rho, \mathbb{R}^{n}\right)$, it assumes its maximum at some point x_{ε} in the cube $C(\rho)$ and hence $\left\{x_{\varepsilon}\right\}$ is bounded.

Concerning the behavior of ground states of (1.1) for general $k(x)$, the following theorem is proved in [PW] (see Theorem 2 and the proof of Lemma 3.7 in [PW]).

Theorem A. Suppose Condition (K) holds. Let u_{ε} be a ground state of (1.1) which has a maximum point x_{ε} that remains bounded as $\varepsilon \rightarrow 0$. If some sequence $x_{\varepsilon_{j}}$ converges to some point x_{0}, then each of the following holds.
(i) When $n=3$,

$$
\varepsilon_{j}\left\|u_{\varepsilon_{j}}\right\|_{L^{\infty}}^{2} \rightarrow \frac{768 \pi^{3}}{\sqrt{3}} \int_{\mathbb{R}^{n}}\left(k+\frac{1}{2} x \cdot \nabla k\right) \Gamma_{k}^{2}\left(x, x_{0}\right) d x
$$

as $\varepsilon_{j} \rightarrow 0$, where Γ_{k} is the fundamental solution of $-\Delta+k$ in \mathbb{R}^{n};
(ii) When $n>4$,

$$
\varepsilon_{j}\left\|u_{\varepsilon_{j}}\right\|_{L^{\infty}}^{4 /(n-2)} \rightarrow\left(k\left(x_{0}\right)+\frac{1}{2} x_{0} \cdot \nabla k\left(x_{0}\right)\right) \frac{16 n(n-1)}{(n-2)^{3}}
$$

as $\varepsilon_{j} \rightarrow 0$.
(iii) $\left\|u_{\varepsilon_{j}}\right\|_{L^{\infty}} u_{\varepsilon_{j}}(x) \rightarrow(1 / n) \omega_{n}[n(n-2)]^{n / 2} \Gamma_{k}\left(x, x_{0}\right)$ in $C_{\text {loc }}^{2}\left(\mathbb{R}^{n} \backslash\left\{x_{0}\right\}\right)$ as $\varepsilon_{j} \rightarrow 0$. Furthermore, for ε_{j} small,

$$
u_{\varepsilon_{j}}(x) \leqslant \begin{cases}C e^{-a\left|x-x_{\varepsilon_{j}}\right|} /\left\|u_{\varepsilon_{i}}\right\|_{L^{\infty}}, & \left|x-x_{\varepsilon_{j}}\right| \geqslant 1, \tag{1.2}\\ C\left|x-x_{\varepsilon_{j}}\right|^{2-n} /\left\|u_{\varepsilon_{j}}\right\|_{L^{\infty}}, & \left|x-x_{\varepsilon_{j}}\right| \leqslant 1,\end{cases}
$$

where C and a are positive constants independent of ε.

Remark 1.1. In [PW], Condition (K) contains one more condition: $k+\frac{1}{2} x \cdot \nabla k \geqslant 0, \not \equiv 0$. This is used only in the proof of Lemma 3.1 in [PW] to show the blow-up of u_{ε} (including the case when $n=4$). It turns out that this is still the case without this extra condition-actually, we do not even need the boundedness of $k+\frac{1}{2} x \cdot \nabla k$. See Lemma 3.1 in this paper. In [PW], u_{ε} is assumed to be in $E\left(\rho, \mathbb{R}^{n}\right)$, and x_{ε} in $C(\rho)$. By the proof in [PW], only the boundedness of x_{ε} is necessary. The condition $-k \in E\left(\rho, \mathbb{R}^{n}\right)$ is useful only to assure the existence of u_{ε} and x_{ε} in the statement of Theorem A. The boundedness of $k+\frac{1}{2} x \cdot \nabla k$ is used to obtain the blow-up rates ((i) and (ii) of Theorem A).

Remark 1.2. Part (ii) does not cover the case when $n=4$ (Part (iii) does). However, when $k(x)$ is identically equal to 1 , it is covered in [PW, Theorem 1], where the value of the integral in (i) is also given. We conjectured in [PW] that

$$
\frac{\varepsilon_{j}\left\|u_{\varepsilon_{j}}\right\|_{L^{\infty}}^{2}}{\ell n\left\|u_{\varepsilon_{j}}\right\|_{L^{\infty}}} \rightarrow 48\left(k\left(x_{0}\right)+\frac{1}{2} x_{0} \cdot \nabla k\left(x_{0}\right)\right),
$$

and we were informed by Zhenchao Han that he obtained a proof of this.
From this theorem, we see that $u_{\varepsilon_{j}}$ blows up and concentrates at x_{0}. The main purpose of this paper is to show that x_{0} is a minimum point of k. More precisely, we shall prove the following.

Theorem 1.1. Suppose that $n>6$ and (\mathbf{K}) holds. Let u_{ε} and x_{ε} be defined as in the statement of Theorem A. Then $k\left(x_{\varepsilon}\right) \rightarrow \inf _{x \in \mathbb{R}^{n}} k(x)$ as $\varepsilon \rightarrow 0$.

Remark 1.3. In Section 3, we shall show that when $n>6$, Theorem A and Theorem 1.1 hold for an arbitrary ground state u_{ε} of (1.1) and an arbitrary maximum point x_{ε} of u_{ε} (i.e., the boundedness of x_{ε} is not needed), under an additional condition (3.4) (see Theorem 3.3). In that same section, we shall also show that this is still the case if " $-k \in E\left(\rho, \mathbb{R}^{n}\right)$ " in Condition (\mathbf{K}) is replaced by (3.6) (see Theorem 3.4). Under (3.6), the existence of a ground state is proved by Rabinowitz [R]. The main concern here is that x_{ε} might go off to infinity as $\varepsilon \rightarrow 0$. Indeed, this may happen if K is independent of at least one component of x.

Before describing the main arguments in the proof of Theorem 1.1, we need some preparation. Define μ_{ε} by $\mu_{\varepsilon}^{-2 /(p-1-\varepsilon)}=\left\|u_{\varepsilon}\right\|_{L^{\infty}}$. Let $v_{\varepsilon}(x)=\mu_{\varepsilon}^{2 /(p-1-\varepsilon)} u\left(x_{\varepsilon}+\mu_{\varepsilon} x\right)$. Then $0<v_{\varepsilon} \leqslant 1, v_{\varepsilon}(0)=1$ and

$$
\begin{equation*}
\Delta v_{\varepsilon}-\mu_{\varepsilon}^{2} k\left(x_{\varepsilon}+\mu_{\varepsilon} x\right) v_{\varepsilon}+v_{\varepsilon}^{p-\varepsilon}=0 \quad \text { in } \quad \mathbb{R}^{n} . \tag{1.3}
\end{equation*}
$$

Then by the elliptic interior estimates and the uniqueness result of [CGS] or [CL], we have

$$
\begin{equation*}
v_{\varepsilon} \rightarrow U \quad \text { in } \quad C_{\mathrm{loc}}^{2}\left(\mathbb{R}^{n}\right), \tag{1.4}
\end{equation*}
$$

where $U(x)=\left(1+|x|^{2} /(n(n-2))\right)^{(2-n) / 2}$ is the unique positive solution of

$$
\begin{equation*}
\Delta u+u^{p}=0, \quad x \in \mathbb{R}^{n}, \quad u(0)=1 . \tag{1.5}
\end{equation*}
$$

Actually, more is known from Lemma 3.6 in [PW]

$$
\begin{equation*}
v_{\varepsilon} \leqslant c U \text { and hence } v_{\varepsilon} \rightarrow U \text { in } L^{\infty} \quad \text { as } \quad \varepsilon \rightarrow 0, \tag{1.6}
\end{equation*}
$$

where c stands for a generic constant independent of ε (we shall use this convention throughout this paper).

To prove Theorem 1.1, we adapt the method developed by Ni and Takagi in [NT] where they proved that as the diffusion coefficient shrinks to zero, least energy solutions to the Neumann problem of an elliptic equation on a bounded domain concentrate at the "most curved" part of the boundary. The basic idea is to get an asymptotic expansion (in ε or μ_{ε}) of the "ground energy"

$$
S_{\varepsilon}=\inf \left\{J_{\varepsilon}(u) \mid u \in H^{1}\left(\mathbb{R}^{n}\right), u \not \equiv 0\right\}
$$

then compare it with an upper bound of S_{ε} obtained by using a good trial function. To have this asymptotic expansion, we expand v_{ε} in μ_{ε}. By (1.4) and (1.6), the first approximation of v_{ε} should be U. Let $v_{\varepsilon}=U+\mu_{\varepsilon}^{2} w_{\varepsilon}$. In order to get an a-priori bound for w_{ε}, we have to deal with the linearlized operator $L=\Delta+p U^{p-1}$. Unlike in [NT], one of the main difficulties stems from the slow decay of U and the fundamental solution of Δ. We get around this by using Lemma 2.4. Unfortunately, the case $3 \leqslant n \leqslant 6$ is left out in this approach, though we certainly believe that Theorem 1.1 holds in this case.

Finally, we mention that the blow-up behavior of "ground states" of the Dirichlet problem of Equation (1.1) with $k(x)$ identically equal to zero has been studied at least by Atkinson and Peletier [AP], Brezis and Peletier [BP], Han [H] and Rey [Re]. By using Pohozaev identity, Han and Rey proved that as $\varepsilon \rightarrow 0$ the ground states blow up at critical points of the regular part of the Green function. The approach in the present paper is entirely different from theirs.

2. Proof of Theorem 1.1

Throughout this section, we assume Condition (K) holds.
To prove Theorem 1.1, we just need to show x_{0} in the statement of Theorem A is a minimum point of k. We begin with a result which offers a good upper bound for

$$
\begin{equation*}
S_{j} \equiv S_{\varepsilon_{j}}=\inf \left\{I_{\varepsilon_{j}}(u) \mid u \in H^{1}\left(\mathbb{R}^{n}\right), u \not \equiv 0\right\} . \tag{2.1}
\end{equation*}
$$

Let S be the best Sobolev constant, i.e.,

$$
S=\inf _{u \in H^{1}\left(\mathbb{R}^{n}\right)} \frac{\int_{\mathbb{R}^{n}}|\nabla u|^{2} d x}{\left(\int_{\mathbb{R}^{n}}|u|^{p+1} d x\right)^{2 /(p+1)}}, \quad u \not \equiv 0 .
$$

It is well-known that S is achieved by U and hence from (1.5),

$$
\begin{equation*}
S=\left(\int_{\mathbb{R}^{n}}|\nabla U|^{2} d x\right)^{2 / n}=\left(\int_{\mathbb{R}^{n}} U^{p+1} d x\right)^{2 / n} \tag{2.2}
\end{equation*}
$$

Recall

$$
\mu_{j} \equiv \mu_{\varepsilon_{j}}=\left(\left\|u_{\varepsilon_{j}}\right\|_{L^{\infty}}\right)^{-\left(p-\varepsilon_{j}-1\right) / 2} \rightarrow 0 \quad \text { as } \quad \varepsilon_{j} \rightarrow 0 .
$$

Lemma 2.1. If $n>4$, then

$$
\begin{aligned}
S_{j} \leqslant S+\mu_{j}^{2} & {\left[\inf k S^{(2-n) / 2} \int_{\mathbb{R}^{n}} U^{2} d x+\frac{n-2}{n} C(n, k) S^{(2-n) / 2}\right.} \\
& \left.\times \int_{\mathbb{R}^{n}} U^{p+1} \ell n U d x-\frac{n}{(p+1)^{2}} C(n, k) S \ell n S\right]+o\left(\mu_{j}^{2}\right),
\end{aligned}
$$

where $C(n, k)=\left(k\left(x_{0}\right)+\frac{1}{2} x_{0} \cdot \nabla k\left(x_{0}\right)\right) 16 n(n-1) /(n-2)^{3}$.
Proof. Since $-k \in E\left(\rho, \mathbb{R}^{n}\right)$, infimum of k is assumed at some point x_{1}. Let $\varphi_{j}(x)=U\left(\left(x-x_{1}\right) / \mu_{j}\right)$. Then we have

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left|\nabla \varphi_{j}\right|^{2} d x=\mu_{j}^{n-2} \int_{\mathbb{R}^{n}}|\nabla U|^{2} d x=\mu_{j}^{n-2} S^{n / 2} \tag{2.3}
\end{equation*}
$$

and

$$
\int_{\mathbb{R}^{n}} k(x) \varphi_{j}^{2}(x) d x=\mu_{j}^{n} \int_{\mathbb{R}^{n}} k\left(x_{1}+\mu_{j} y\right) U^{2}(y) d y .
$$

Since $k+\frac{1}{2} x \cdot \nabla k$ is bounded, by considering $f(t)=k(t x)$, it is easy to see that k is also bounded. So by the Dominated Convergence Theorem we have

$$
\int_{\mathbb{R}^{n}} k\left(x_{1}+\mu_{j} y\right) U^{2}(y) d y=k\left(x_{1}\right) \int_{\mathbb{R}^{n}} U^{2} d y+o(1)
$$

Thus,

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} k(x) \varphi_{j}^{2}(x) d x=\mu_{j}^{n} k\left(x_{1}\right) \int_{\mathbb{R}^{n}} U^{2} d y+o\left(\mu_{j}^{n}\right) \tag{2.4}
\end{equation*}
$$

From Theorem A, we obtain

$$
\begin{equation*}
\varepsilon_{j}=C(n, k) \mu_{j}^{2}+o\left(\mu_{j}^{2}\right) \tag{2.5}
\end{equation*}
$$

By Taylor's theorem, (2.2) and (2.5), we have

$$
\begin{aligned}
&\left(\int_{\mathbb{R}^{n}} \varphi^{p-\varepsilon_{j}+1} d x\right)^{2 /\left(p-\varepsilon_{j}+1\right)} \\
&= \mu_{j}^{2 n /\left(p-\varepsilon_{j}+1\right)}\left(\int_{\mathbb{R}^{n}} U^{p+1-\varepsilon_{j}} d y\right)^{2 /\left(p+1-\varepsilon_{j}\right)} \\
& \geqslant \mu^{2 n /(p+1)}\left(\int_{\mathbb{R}^{n}}\left(U^{p+1}-\varepsilon_{j} U^{p+1} \ell n U\right) d y+o\left(\varepsilon_{j}\right)\right)^{2 /\left(p+1-\varepsilon_{j}\right)} \\
&= \mu_{j}^{n-2}\left[\left(S^{n / 2}-\varepsilon_{j} \int_{\mathbb{R}^{n}} U^{p+1} \ell n U d y\right)^{2 /\left(p+1-\varepsilon_{j}\right)}+o\left(\varepsilon_{j}\right)\right] \\
&= \mu_{j}^{n-2}\left\{\left(S^{n / 2}\right)^{2 /(p+1)}+\varepsilon_{j}\left(S^{n / 2}\right)^{2 /(p+1)}\right. \\
&\left.\times\left[\frac{2}{(p+1)^{2}} \ell n S^{n / 2}+\frac{2}{p+1} \frac{1}{S^{n / 2}}\left(-\int_{\mathbb{R}^{n}} U^{p+1} \ell n U d y\right)\right]+o\left(\varepsilon_{j}\right)\right\} \\
&= \mu_{j}^{n-2} S^{(n-2) / 2}\left[1+C(n, k) \mu_{j}^{2}\left(\frac{n}{(p+1)^{2}} \ell n S\right.\right. \\
&\left.\left.-\frac{(n-2)}{n} S^{-n / 2} \int_{\mathbb{R}^{n}} U^{p+1} \ell n U d y\right)+o\left(\mu_{j}^{2}\right)\right] .
\end{aligned}
$$

Combining this with (2.3) and (2.4), we obtain

$$
\begin{aligned}
S_{j} \leqslant & \frac{\int_{\mathbb{R}^{n}}\left|\nabla \varphi_{j}\right|^{2}+k \varphi_{j}^{2} d x}{\left(\int_{\mathbb{R}^{n}} \varphi_{j}^{\left.p+1-\varepsilon_{j}\right)^{2 /\left(p+1-\varepsilon_{j}\right)}}\right.} \\
\leqslant & \frac{\mu_{j}^{n-2} S^{n / 2}+\mu_{j}^{n} k\left(x_{1}\right) \int_{\mathbb{R}^{n}} U^{2} d y+o\left(\mu_{j}^{n}\right)}{\left[\begin{array}{r}
\mu_{j}^{n-2} S^{(n-2) / 2}\left[1+C(n, k) \mu_{j}^{2}\left(n /(p+1)^{2} \ell n S\right.\right. \\
-(n-2) / n S \\
-n / 2 \\
\left.\left.\mathbb{R}_{\mathbb{R}^{n}} U^{p+1} \ell n U d y\right)+o\left(\mu_{j}^{2}\right)\right]
\end{array}\right]} \\
= & \left(S+\mu_{j}^{2} k\left(x_{1}\right) S^{(2-n) / 2} \int_{\mathbb{R}^{n}} U^{2} d x+o\left(\mu_{j}^{2}\right)\right) \\
& \cdot\left[1-C(n, k) \mu_{j}^{2}\left(\frac{n}{(p+1)^{2}} \ell n S\right.\right. \\
& \left.\left.-\frac{(n-2)}{n} S^{-n / 2} \int_{\mathbb{R}^{n}} U^{p+1} \ell n U d y\right)+o\left(\mu_{j}^{2}\right)\right] .
\end{aligned}
$$

From this, Lemma 2.1 follows.
Define w_{j} by $v_{j}=U+\mu_{j}^{2} w_{j}$, where $v_{j} \equiv v_{\varepsilon_{j}}=\mu_{j}^{2 /\left(p-1-\varepsilon_{j}\right)} u\left(x_{\varepsilon_{j}}+\mu_{j} x\right)$. Then by (1.3),

$$
\begin{equation*}
\Delta w_{j}+p U^{p-1} w_{j}-k_{j} v_{j}+F\left(w_{j}\right)=0 \quad \text { in } \mathbb{R}^{n}, \tag{2.6}
\end{equation*}
$$

where $F\left(w_{j}\right)=\left[\left(U+\mu_{j}^{2} w_{j}\right)^{p-\varepsilon_{j}}-U^{p}-p \mu_{j}^{2} U^{p-1} w_{j}\right] / \mu_{j}^{2}, k_{j}(x)=k\left(x_{\varepsilon_{j}}+\mu_{j} x\right)$.
Proposition 2.2. Assume $n>6$. Then $w_{j} \rightarrow w$ in L^{∞} as $j \rightarrow \infty$, where w is a bounded solution of

$$
\begin{equation*}
\Delta w+p U^{p-1} w-k\left(x_{0}\right) U-C(n, k) U^{p} \ell n U=0 \quad \text { in } \mathbb{R}^{n}, \tag{2.7}
\end{equation*}
$$

$w \in W^{2, s}\left(\mathbb{R}^{n}\right)$ for $s>n /(n-4)$.
More properties of w will be seen later. We delay the proof of this result, but use it to show Theorem 1.1 now.

Proof of Theorem 1.1. First, we derive an asymptotic formula for S_{j}. By the definitions of $u_{\varepsilon_{j}}, v_{j}, S_{j}$, and by (1.3), we have

$$
\begin{align*}
S_{j} & =J_{\varepsilon_{j}}\left(u_{\varepsilon_{j}}\right) \\
& =\frac{\int_{\mathbb{R}^{n}}\left(\left|\nabla v_{j}\right|^{2}+\mu_{j}^{2} k_{j} v_{j}^{2}\right) d x}{\left(\int_{\mathbb{R}^{n}} v_{j}^{p+1-\varepsilon_{j}} d x\right)^{2 /\left(p+1-\varepsilon_{j}\right)}} \\
& =\left(\int_{\mathbb{R}^{n}} v_{j}^{p+1-\varepsilon_{j}} d x\right)^{1-2 /\left(p+1-\varepsilon_{j}\right)} \\
& =\left(\int_{\mathbb{R}^{n}}\left(U+\mu_{j}^{2} w_{j}\right)^{p+1-\varepsilon_{j}} d x\right)^{1-2 /\left(p+1-\varepsilon_{j}\right)} . \tag{2.8}
\end{align*}
$$

From Taylor's Theorem, we obtain

$$
\begin{align*}
\int_{\mathbb{R}^{n}}(U & \left.+\mu_{j}^{2} w_{j}\right)^{p+1-\varepsilon_{j}} d x \\
= & \int_{\mathbb{R}^{n}}\left[U^{p+1-\varepsilon_{j}}+\left(p+1-\varepsilon_{j}\right) U^{p-\varepsilon_{j}} \mu_{j}^{2} w_{j}\right. \\
& \left.+\frac{1}{2}\left(p+1-\varepsilon_{j}\right)\left(p-\varepsilon_{j}\right)\left(U+t \mu_{j}^{2} w_{j}\right)^{p-1-\varepsilon_{j}} \mu_{j}^{4} w_{j}^{2}\right] d x \tag{2.9}
\end{align*}
$$

for some $0<t<1$ which depends on x and j. By (1.6) and Proposition 2.2,

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\left(U+t \mu_{j}^{2} w_{j}\right)^{p-1-\varepsilon_{j}} \mu_{j}^{4} w_{j}^{2} d x & \leqslant c \int_{\mathbb{R}^{n}} U^{p-\varepsilon_{j}-1}\left|v_{j}-U\right| \mu_{j}^{2}\left\|w_{j}\right\|_{L^{\infty}} d x \\
& =o\left(\mu_{j}^{2}\right) .
\end{aligned}
$$

Now returning to (2.9) and using Proposition 2.2 and Taylor's Theorem again, we have

$$
\begin{align*}
\int_{\mathbb{R}^{n}} & \left(U+\mu_{j}^{2} w_{j}\right)^{p+1-\varepsilon_{j}} d x \\
& =\int_{\mathbb{R}^{n}}\left(U^{p+1-\varepsilon_{j}}+\left(p+1-\varepsilon_{j}\right) U^{p-\varepsilon_{j}} \mu_{j}^{2} w\right) d x+o\left(\mu_{j}^{2}\right) \\
& =\int_{\mathbb{R}^{n}}\left(U^{p+1}-\varepsilon_{j} U^{p+1} \ell n U+(p+1) U^{p} \mu_{j}^{2} w\right) d x+o\left(\varepsilon_{j}\right)+o\left(\mu_{j}^{2}\right) \\
& =S^{n / 2}+\mu_{j}^{2} \int_{\mathbb{R}^{n}}\left(-C(n, k) U^{p+1} \ell n U+(p+1) U^{p} w\right) d x+o\left(\mu_{j}^{2}\right) . \tag{2.10}
\end{align*}
$$

(At the last step, we have used (2.2) and (2.5).) Multiplying (2.7) by U and integrating by parts yield

$$
\left.\int_{\mathbb{R}^{n}} U^{p} w d x=\frac{1}{p-1} \int_{\mathbb{R}^{n}}\left(k\left(x_{0}\right) U^{2}+C(n, k)\right) U^{p+1} \ell n U\right) d x .
$$

(Here (1.5), the fact that $w \in L^{s}\left(\mathbb{R}^{n}\right)$ for $s>n /(n-4)$ and $n>6$ have been used.) Plugging this identity into (2.10) and then returning to (2.8), by Taylor's Theorem, we have

$$
\begin{aligned}
S_{j}= & {\left[S^{n / 2}+\mu_{j}^{2} \int_{\mathbb{R}^{n}}\left(\frac{2}{p-1} C(n, k) U^{p+1} \ell n U\right.\right.} \\
& \left.\left.+\frac{p+1}{p-1} k\left(x_{0}\right) U^{2}\right) d x\right]^{1-2 /\left(p+1-\varepsilon_{j}\right)}+o\left(\mu_{j}^{2}\right) \\
= & I^{1-2 /\left(p+1-\varepsilon_{j}\right)}+o\left(\mu_{j}^{2}\right) \\
= & I^{1-2 /(p+1)}-\varepsilon_{j} I^{1-2 /(p+1)}(\ell n I) \frac{2}{(p+1)^{2}}+o\left(\mu_{j}^{2}\right) \\
= & \left(S^{n / 2}\right)^{(p-1) /(p+1)}+\frac{p-1}{p+1}\left(S^{n / 2}\right)^{-2 /(p+1)} \mu_{j}^{2} \\
& \times \int_{\mathbb{R}^{n}}\left(\frac{2}{p-1} C(n, k) U^{p+1} \ell n U+\frac{p+1}{p-1} k\left(x_{0}\right) U^{2}\right) d x \\
& -\frac{2 \varepsilon_{j}}{(p+1)^{2}}\left(S^{n / 2}\right)^{(p-1) /(p+1)} \ell n S^{n / 2}+o\left(\mu_{j}^{2}\right) .
\end{aligned}
$$

Now by (2.5), we have

$$
\begin{align*}
S_{j}= & S+\mu_{j}^{2} S^{(2-n) / 2}\left(k\left(x_{0}\right) \int_{\mathbb{R}^{n}} U^{2} d x+\frac{n-2}{n} C(n, k) \int_{\mathbb{R}^{n}} U^{p+1} \ell n U d x\right. \\
& \left.-\frac{n C(n, k)}{(p+1)^{2}} S^{n / 2} \ell n S\right)+o(\mu 2 j) . \tag{2.11}
\end{align*}
$$

Comparing this with the upper bound of S_{j} given in Lemma 2.1, we have $k\left(x_{0}\right)=\inf k$. The proof of Theoem 1.1 is complete.

The remaining part of this section is devoted to the proof of Proposition 2.2. First, we need to analyze the linear operator associated with (2.6).

Lemma 2.3. Regard $L=\Delta+p U^{p-1}$ as an operator defined on $\operatorname{Dom}(L)=W^{2, r}\left(\mathbb{R}^{n}\right)$, where $n /(n-2)<r<+\infty$. Then

$$
\text { Ker } L=\operatorname{span}\left\{\frac{\partial U}{\partial x_{1}}, \ldots, \frac{\partial U}{\partial x_{n}}, x \cdot \nabla U+\frac{n-2}{2} U\right\}
$$

Proof. We use the method in the proof of Lemma 4.2 in [NT], that is, we first show that the dimension of $\operatorname{Ker} L$ is less than or equal to $n+1$ by using the eigenfunctions of the Laplace-Beltrami operator Δ_{θ} on S^{n-1}.

Suppose $\varphi \in \operatorname{Ker} L$, i.e., $\varphi \in W^{2, r}\left(\mathbb{R}^{n}\right)$ and φ satisfies

$$
\begin{equation*}
\Delta \varphi+p U^{p-1} \varphi=0 \quad \text { in } \mathbb{R}^{n} . \tag{2.12}
\end{equation*}
$$

By the elliptic regularity theory, $\varphi \in C^{\infty}\left(\mathbb{R}^{n}\right)$. Furthermore, from the onesided Harnack inequality (see Theorem 8.17 in [GT]), we have

$$
\begin{equation*}
|\varphi(x)| \leqslant C(n, r)\|\varphi\|_{L^{r}\left(B_{1}(x)\right)} \rightarrow 0 \quad \text { as } \quad x \rightarrow \infty \tag{2.13}
\end{equation*}
$$

where $B_{1}(x)$ is the unit ball centered at x. Now using the interior L^{p} estimates and the imbedding theorem, we obtain

$$
\begin{equation*}
|D \varphi(x)| \rightarrow 0 \quad \text { as } \quad x \rightarrow \infty \tag{2.14}
\end{equation*}
$$

Let λ_{i} and ψ_{i} be the eigenvalues and eigenfunctions of $-\Delta_{\theta}$,

$$
-\Delta_{\theta} \psi_{i}=\lambda_{i} \psi_{i}, \quad 0=\lambda_{0}<\lambda_{1}=\cdots=\lambda_{n}=(n-1)<\lambda_{n+1}<\cdots .
$$

$\left\{\psi_{i}\right\}$ forms an orthonormal basis of $L^{2}\left(S^{n-1}\right)$. Define

$$
\varphi_{i}(t)=\int_{S^{n-1}} \varphi(t, \theta) \psi_{i}(\theta) d \theta, \quad t=|x| .
$$

Then

$$
\begin{equation*}
\varphi_{i}^{\prime \prime}+\frac{n-1}{t} \varphi_{i}^{\prime}+\left(p U^{p-1}-\frac{\lambda_{i}}{t^{2}}\right) \varphi_{i}=0, \quad \varphi_{i}^{\prime}(0)=0 . \tag{2.15}
\end{equation*}
$$

If $\varphi_{i} \not \equiv 0$, then by uniqueness, $\varphi_{i}(0) \neq 0$. Without loss of generality, assume $\varphi_{i}(0)>0$. Then there exists $t_{i} \in(0, \infty]$ such that φ_{i} is positive on [$0, t_{i}$), $\varphi_{i}\left(t_{i}\right)=0$. Multiplying (2.15) by $U^{\prime} t^{n-1}$ and integrating by parts on [$0, t_{i}$), we obtain

$$
\begin{aligned}
t_{i}^{n-1} \varphi_{i}^{\prime}\left(t_{i}\right) U^{\prime}\left(t_{i}\right) & +\int_{0}^{t_{i}}\left(U^{\prime \prime \prime}+\frac{n-1}{t} U^{\prime \prime}+\left(U^{p}\right)^{\prime}\right) \varphi_{i} t^{n-1} d t \\
& -\lambda_{i} \int_{0}^{t_{i}} U^{\prime} \varphi_{i} t^{n-3} d t=0,
\end{aligned}
$$

and hence,

$$
t_{i}^{n-1} \varphi_{i}^{\prime}\left(t_{i}\right) U^{\prime}\left(t_{i}\right)+\left(n-1-\lambda_{i}\right) \int_{0}^{t_{i}} U^{\prime} \varphi_{i} t^{n-3} d t=0
$$

(When $t_{i}=\infty$, we use (2.13) and (2.14); in this case, the first term vanishes.) Thus $\lambda_{i} \leqslant n-1$ and consequently $i \leqslant n$. We have shown $\varphi_{i} \equiv 0$ if $i \geqslant n+1$. Therefore,

$$
\varphi(t, \theta)=\varphi_{0}(t)+\sum_{i=1}^{n} \varphi_{i}(t) \psi_{i}(\theta)
$$

which implies $\operatorname{dim}(\operatorname{Ker} L) \leqslant n+1$.

On the other hand, by (1.5), $\partial U / \partial x_{i} \in \operatorname{Ker} L$ (note $r>n /(n-2)$). Furthermore, since $U_{\lambda}(x)=\lambda^{(n-2) / 2} U(\lambda x)$ is a solution of (1.4) for any $\lambda>0$,

$$
\left.\frac{\partial U_{\lambda}}{\partial \lambda}\right|_{\lambda=1}=x \cdot \nabla U+\frac{n-2}{2} U \text { also belongs to Ker } L \text {. }
$$

This completes the proof of Lemma 2.3.
Let $X=\operatorname{span}\left\{\partial U / \partial x_{1}, \ldots, \partial U / \partial x_{n}, x \cdot \nabla U+U(n-2) / 2\right\}$. Then $X \subset L^{s}\left(\mathbb{R}^{n}\right)$ for any $s>n /(n-2)$. So when $1<t<n / 2 . \varphi u \in L^{1}\left(\mathbb{R}^{n}\right)$ for any $\varphi \in X$ and $u \in L^{t}\left(\mathbb{R}^{n}\right)$. Define

$$
Y_{t}=\left\{u \in L^{t}\left(\mathbb{R}^{n}\right) \mid \int_{\mathbb{R}^{n}} u \varphi d x=0 \text { for all } \varphi \in X\right\} .
$$

Then

$$
\begin{equation*}
L^{t}\left(\mathbb{R}^{n}\right)=X \oplus Y_{t} \quad \text { for any } \quad \frac{n}{n-2}<t<\frac{n}{2} . \tag{2.16}
\end{equation*}
$$

The following result plays a crucial role in the proof of Proposition 2.2.
Lemma 2.4. Suppose $n>4$. For any $1<q<n / 4$, there exists a constant $C=C(q, n)$ such that

$$
\begin{equation*}
\|u\|_{W^{2}, r_{\left(\mathbb{R}^{n}\right)}} \leqslant C\left(\|L u\|_{L^{q}}+\|L u\|_{L^{r}},\right. \tag{2.17}
\end{equation*}
$$

for $u \in Y_{r} \cap W^{2, r}\left(\mathbb{R}^{n}\right)$ with $L u \in L^{q}\left(\mathbb{R}^{n}\right)$ where $1 / q-2 / n=1 / r$.
Proof. We claim that

$$
\begin{equation*}
\|u\|_{L^{r}} \leqslant C(q, n)\left(\|L u\|_{L^{q}}+\|L u\|_{L^{r}}\right) \tag{2.18}
\end{equation*}
$$

for all $u \in Y_{r} \cap W^{2, r}\left(\mathbb{R}^{n}\right)$ with $L u \in L^{q}\left(\mathbb{R}^{n}\right)$. Once this claim is shown, (2.17) follows from Corollary 9.10 of [GT]. To show (2.18), we argue by contradiction. So assume there exists a sequence $\left\{u_{i}\right\} \subset Y_{r} \cap W^{2, r}\left(\mathbb{R}^{n}\right)$ such that

$$
\begin{equation*}
\left\|u_{i}\right\|_{L^{r}}=1, \quad\left\|f_{i}\right\|_{L^{q}}+\left\|f_{i}\right\|_{L^{r}} \rightarrow 0 \quad \text { as } \quad i \rightarrow \infty \tag{2.19}
\end{equation*}
$$

where $f_{i}=\Delta u_{i}+p U^{p-1} u_{i}$. This and Corollary 9.10 of [GT] imply that $\left\{u_{i}\right\}$ is bounded in $W^{2, r}\left(\mathbb{R}^{n}\right)$. Consequently, there exists $u_{\infty} \in W^{2, r}$ such that, after passing to a subsequence, $u_{i} \rightarrow u_{\infty}$ weakly in $W^{2, r}\left(\mathbb{R}^{n}\right)$ and strongly in $L_{\mathrm{loc}}^{r}\left(\mathbb{R}^{n}\right)$. Let Γ be the fundamental solution of Δ in \mathbb{R}^{n}. Then

$$
\begin{equation*}
u_{i}+T\left(u_{i}\right)=\Gamma * f_{i} \tag{2.20}
\end{equation*}
$$

where $T\left(u_{i}\right)=\Gamma *\left(p U^{p-1} u_{i}\right)$. By virtue of the Hardy-Littlewood-Sobolev inequality ([HL] and [So]), we have

$$
\begin{equation*}
\|\Gamma * f\|_{L^{r}} \leqslant C(n, q)\|f\|_{L^{q}} \quad \text { for } \quad f \in L^{q}\left(\mathbb{R}^{n}\right) \tag{2.21}
\end{equation*}
$$

Therefore, by (2.19), we obtain

$$
\begin{equation*}
\Gamma * f_{i} \rightarrow 0 \text { in } L^{r}\left(\mathbb{R}^{n}\right) \text { as } i \rightarrow \infty \tag{2.22}
\end{equation*}
$$

We claim $\left\{T\left(u_{i}\right)\right\}$ is Cauchy in $L^{r}\left(\mathbb{R}^{n}\right)$. Let χ_{R} be the characteristic function of the ball $B_{R}(0)$ centered at the origin with radius R. Define $v_{i}^{R}=\chi_{R} u_{i}$, $w_{i}^{R}=\left(1-\chi_{R}\right) u_{i}$. Then for fixed $R>0$, by (2.21),

$$
\begin{aligned}
\left\|T\left(v_{i}^{R}-v_{\ell}^{R}\right)\right\|_{L^{r}\left(\mathbb{R}^{n}\right)} & \leqslant C(n, q)\left\|U^{p-1}\left(v_{i}^{R}-v_{\ell}^{R}\right)\right\|_{L^{q}\left(\mathbb{R}^{n}\right)} \\
& \leqslant C(n, q, R)\left\|v_{i}^{R}-v_{\ell}^{R}\right\|_{L^{r}\left(B_{R}(0)\right)} .
\end{aligned}
$$

This and the fact that $\left\{u_{i}\right\}$ is Cauchy in $L_{\text {loc }}^{r}\left(\mathbb{R}^{n}\right)$ imply that $\left\{T\left(v_{i}^{R}\right)\right\}$ is Cauchy in $L^{r}\left(\mathbb{R}^{n}\right)$. By virtue of (2.21) and Hölder's inequality, we have

$$
\begin{aligned}
\left\|T\left(w_{i}^{R}-w_{\ell}^{R}\right)\right\|_{L^{r}} & \leqslant C(n, q)\left\|U^{p-1}\left(1-\chi_{R}\right)\left(u_{i}-u_{\ell}\right)\right\|_{L^{q}} \\
& \leqslant C(n, q, R)\left\|u_{i}-u_{\ell}\right\|_{L^{r}}\left(\int_{|x| \geqslant R} U^{2 n /(n-2)} d x\right)^{2 / n} \\
& \rightarrow 0 \quad \text { as } \quad R \rightarrow \infty
\end{aligned}
$$

uniformly with respect to i, ℓ, where we have used the facts that $r q /(r-q)=n / 2$ and $\left\{u_{i}\right\}$ is bounded in $L^{r}\left(\mathbb{R}^{n}\right)$. This, (2.20) and (2.22) imply that $\left\{u_{k}\right\}$ is Cauchy in $L^{r}\left(\mathbb{R}^{n}\right)$. Consequently, $\left\|u_{\infty}\right\|_{L^{r}}=1, u_{\infty} \in Y_{r}$ (note since $q<n / 4, r<n / 2$), and $u_{\infty}+T\left(u_{\infty}\right)=0$, i.e.,

$$
\Delta u_{\infty}+p U^{p-1} u_{\infty}=0 \quad \text { in } \mathbb{R}^{n} .
$$

Since $u_{\infty} \in W^{2, r}\left(\mathbb{R}^{n}\right)$ and $r>n /(n-2)$, then by Lemma 2.3, $u_{\infty} \in X$. But u_{∞} also belongs to Y_{r}. So $u_{\infty} \equiv 0$ which contradicts the fact that $\left\|u_{\infty}\right\|_{L^{r}}=1$. Now (2.18) and hence Lemma 2.4 are proved.

Since u_{ε} decays exponentially in x for each fixed $\varepsilon>0$ (see, e.g. Lemma 3.5 in [PW]), by the L^{p} estimate we have that $u_{\varepsilon} \in W^{2, s}\left(\mathbb{R}^{n}\right)$ for $s>1$. Thus $w_{j} \in W^{2, s}$ for $s>n /(n-2)$ and hence by (2.16) we can write

$$
\begin{equation*}
w_{j}=\sum_{i=1}^{n+1} a_{i j} e_{i}+z_{j} \quad j=1,2, \ldots, \tag{2.23}
\end{equation*}
$$

where $a_{i j}$'s are constants, $e_{i}=\partial U / \partial x_{i}, i=1, \ldots, n, e_{n+1}=x \cdot \nabla U+U(n-2) / 2$, and $z_{j} \in Y_{r} \cap W^{2, r}\left(\mathbb{R}^{n}\right) \cap C^{2}\left(\mathbb{R}^{n}\right)$ for $n /(n-2)<r<n / 2$. Furthermore, from (2.6) we have

$$
\begin{equation*}
\Delta z_{j}+p U^{p-1} z_{j}-k_{j} v_{j}+F\left(w_{j}\right)=0 \quad \text { in } \mathbb{R}^{n} . \tag{2.24}
\end{equation*}
$$

To finish the proof of Proposition 2.2, following the main lines in [NT], first we show that $a_{i j}$ and $\left\|z_{j}\right\|_{W^{2, s} s_{\left(\mathbb{R}^{n}\right)}}(s>n /(n-4))$ are bounded as $j \rightarrow \infty$ (Lemma 2.5); then we prove that $z_{j} \rightarrow z$ in $C_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$, where z satisfies (2.7) and $z \in W^{2, s}\left(\mathbb{R}^{n}\right)$ for $s>n /(n-4)$ (Lemma 2.6); finally, after showing that $a_{i j} \rightarrow 0$ for $1 \leqslant i \leqslant n$ and $a_{(n+1) j} \rightarrow-2 z(0) /(n-2)$ in Lemma 2.7, we prove $w_{j} \rightarrow w$ in $L^{\infty}\left(\mathbb{R}^{n}\right)$ as $j \rightarrow \infty$, where $w=z-2 z(0)(x \cdot \nabla U+$ $U(n-2) / 2) /(n-2)$ (Lemma 2.8).

Lemma 2.5. Suppose $n>6$. Let $M_{j}=\max \left\{\left|a_{1 j}\right|,\left|a_{2 j}\right|, \ldots,\left|a_{(n+1) j}\right|\right\}$. Then M_{j} and $\left\|z_{j}\right\|_{W^{2, s}\left(\mathbb{R}^{n}\right)}$ are bounded as $j \rightarrow \infty$ for every fixed $s>n /(n-4)$.

Proof. As in [NT], we argue by contradiction. Assume, without loss of generality, that $M_{j} \rightarrow \infty$ and

$$
\frac{1}{M_{j}}\left(a_{1 j}, a_{2 j}, \ldots, a_{(n+1) j}\right) \rightarrow\left(b_{1}, b_{2}, \ldots, b_{n+1}\right) \neq 0
$$

as $j \rightarrow \infty$. From (2.24) it follows that

$$
\begin{equation*}
L\left(\frac{z_{j}}{M_{j}}\right)-\frac{1}{M_{j}} k_{j} v_{j}+\frac{1}{M_{j}} F\left(w_{j}\right)=0 \quad \text { in } \mathbb{R}^{n} . \tag{2.25}
\end{equation*}
$$

Observe that

$$
\begin{aligned}
\left|\mu_{j}^{2} F\left(w_{j}\right)\right| \leqslant & \left|U^{p-\varepsilon_{j}}-U^{p}\right| \\
& +\left|\left(U+\mu_{j}^{2} w_{j}\right)^{p-\varepsilon_{j}}-U^{p-\varepsilon_{j}}-\left(p-\varepsilon_{j}\right) \mu_{j}^{2} U^{p-1-\varepsilon_{j}} w_{j}\right| \\
& +\left|p \mu_{j}^{2} U^{p-1} w_{j}-\left(p-\varepsilon_{j}\right) \mu_{j}^{2} U^{p-1-\varepsilon_{j}} w_{j}\right| \\
= & I_{1}+I_{2}+I_{3} .
\end{aligned}
$$

It is easy to see that

$$
\begin{equation*}
I_{3} \leqslant c \varepsilon_{j} \mu_{j}^{2}\left|w_{j}\right| U^{p-1-\varepsilon_{j}}(|\ell n U|+1), \quad I_{1} \leqslant c \varepsilon_{j} U^{p-\varepsilon_{j}}(|\ell n U|+1) \tag{2.26}
\end{equation*}
$$

Define $f(t)=\left(U+t \mu_{j}^{2} w_{j}\right)^{p-\varepsilon_{j}}$. Since $f(1)=f(0)+f^{\prime}(0)+\int_{0}^{1} t f^{\prime \prime}(1-t) d t$, we have

$$
\begin{aligned}
I_{2} & =\left|f(1)-f(0)-f^{\prime}(0)\right| \\
& \leqslant \int_{0}^{1} t\left|f^{\prime \prime}(1-t)\right| d t \\
& \leqslant c \int_{0}^{1} t\left(U+(1-t) \mu_{j}^{2} w_{j}\right)^{p-2-\varepsilon_{j}} \mu_{j}^{4} w_{j}^{2} d t \\
& =c \mu_{j}^{2}\left|w_{j}\right|\left|v_{j}-U\right| \int_{0}^{1} t\left(t U+(1-t) v_{j}\right)^{p-2-\varepsilon_{j}} d t \\
& \leqslant c \mu_{j}^{2}\left|w_{j}\right|\left|v_{j}-U\right| \int_{0}^{1} t(t U)^{p-2-\varepsilon_{j}} d t .
\end{aligned}
$$

Thus

$$
\begin{equation*}
I_{2} \leqslant c \mu_{j}^{2}\left|w_{j}\right|\left|v_{j}-U\right| U^{p-2-\varepsilon_{j}} . \tag{2.27}
\end{equation*}
$$

From this, (2.26) and (2.5), we obtain

$$
\begin{equation*}
\left|F\left(w_{j}\right)\right| \leqslant c\left[U^{p-\varepsilon_{j}}(|\ell n U|+1)+\left|w_{j}\right|\left|v_{j}-U\right| U^{p-2-\varepsilon_{j}}\right] . \tag{2.28}
\end{equation*}
$$

Choose an arbitrary $q \in(n /(n-2), n / 4)$. (Since $n>6$, such q exists-this is the place we need $n>6$.) Let $1 / r=1 / q-2 / n$. Then $n /(n-4)<r<n / 2$ and hence $z_{j} \in Y_{r} \cap W^{2, r}\left(\mathbb{R}^{n}\right)$. Thus we can apply Lemma 2.4 to obtain that

$$
\begin{align*}
&\left\|z_{j} / M_{j}\right\|_{W^{2}, r\left(\mathbb{R}^{n}\right)} \\
& \leqslant \frac{c}{M_{j}}\left(\left\|k_{j} v_{j}\right\|_{L^{q}}+\left\|k_{j} v_{j}\right\|_{L^{r}}+\left\|F\left(w_{j}\right)\right\|_{L^{q}}+\left\|F\left(w_{j}\right)\right\|_{L^{r}}\right) \\
& \leqslant \frac{c}{M_{j}}\left(1+\left\|F\left(w_{j}\right)\right\|_{L^{q}}+\left\|F\left(w_{j}\right)\right\|_{L^{r}}\right) \tag{2.29}
\end{align*}
$$

since $v_{j} \leqslant c U$ and k is bounded. By virtue of (2.28) and Hölder’s inequality, we have

$$
\begin{align*}
\frac{1}{M_{j}}\left\|F\left(w_{j}\right)\right\|_{L^{q}} & \left.\leqslant \frac{c}{M_{j}}\left(\| U^{p-\varepsilon_{j}}(|\ell n U|+1)\right)\left\|_{L^{q}}+\right\| w_{j} U^{p-2-\varepsilon_{j}}\left(v_{j}-U\right) \|_{L^{q}}\right) \\
& \leqslant \frac{c}{M_{j}}\left(1+\left\|w_{j}\right\|_{L^{r}}\left\|U^{p-2-\varepsilon_{j}}\left(v_{j}-U\right)\right\|_{L^{n / 2}}\right) \\
& =\frac{c}{M_{j}}\left(1+o(1)\left\|w_{j}\right\|_{L^{r}}\right) \\
& =o(1)+o(1)\left\|z_{j} / M_{j}\right\|_{L^{r}} . \tag{2.30}
\end{align*}
$$

In the third inequality, we have used the fact that

$$
\left\|U^{p-2-\varepsilon_{j}}\left(v_{j}-U\right)\right\|_{L^{n / 2}}=o(1)
$$

which follows from the Dominated Convergence Theorem; in the last step, we have used (2.23). By (2.28) and (2.23) again, we have

$$
\begin{align*}
\frac{1}{M_{j}}\left\|F\left(w_{j}\right)\right\|_{L^{r}} & \leqslant \frac{c}{M_{j}}\left(\left\|U^{p-\varepsilon_{j}}(|\ell n U|+1)\right\|_{L^{r}}+\left\|w_{j} U^{p-2-\varepsilon_{j}}\left(v_{j}-U\right)\right\|_{L^{r}}\right) \\
& \leqslant \frac{c}{M_{j}}\left(1+o(1)\left\|w_{j}\right\|_{L^{r}}\right) \\
& =o(1)+o(1)\left\|z_{j} / M_{j}\right\|_{L^{r}} . \tag{2.31}
\end{align*}
$$

Now (2.29)-(2.31) imply that

$$
\begin{equation*}
\left\|z_{j} / M_{j}\right\|_{W^{2}, r_{\left(\mathbb{R}^{n}\right)}}=o(1) \tag{2.32}
\end{equation*}
$$

for every fixed $r \in(n /(n-4), n / 2)$. By the imbedding theorem,

$$
\begin{equation*}
\left\|z_{j} / M_{j}\right\|_{L^{n_{1}}}=o(1) \tag{2.33}
\end{equation*}
$$

where $1 / r_{1}=1 / r-2 / n$. By choosing r close to $n / 2, r_{1}$ can be arbitrarily large. From (2.25), (2.28) and (2.23), it follows that

$$
\begin{aligned}
\left|L\left(\frac{z_{j}}{M_{j}}\right)\right| & \leqslant \frac{c}{M_{j}}\left(U+U^{p-\varepsilon_{j}}(|\ell n U|+1)+\left|w_{j}\right| U^{p-2-\varepsilon_{j}}\left|v_{j}-U\right|\right) \\
& \leqslant o(1)\left[U+U^{p-\varepsilon_{j}}(|\ell n U|+1)+U^{p-1-\varepsilon_{j}} \sum_{i=1}^{n+1}\left|e_{i}\right|\right]+o(1)\left|\frac{z_{j}}{M_{j}}\right|
\end{aligned}
$$

(At the last step, we have also used (1.6).) In view of this, (2.33) and the L^{p} estimate (Corollary 9.10 in [GT]), we have

$$
\begin{aligned}
\left\|z_{j} / M_{j}\right\|_{W^{2} r_{1}\left(\mathbb{R}^{n}\right)} & \leqslant c\left(\left\|L\left(z_{j} / M_{j}\right)\right\|_{L^{r_{1}}}+\left\|z_{j} / M_{j}\right\|_{\left.L^{r_{1}}\right)}\right. \\
& =o(1)+o(1)\left\|z_{j} / M_{j}\right\|_{L^{r^{1}}} .
\end{aligned}
$$

Hence

$$
\left\|z_{j} / M_{j}\right\|_{W^{2}, r_{1}\left(\mathbb{R}^{n}\right)}=o(1)
$$

which, by the imbedding theorem, implies that

$$
\begin{equation*}
\frac{z_{j}}{M_{j}} \rightarrow 0 \quad \text { in } \quad L^{\infty}\left(\mathbb{R}^{n}\right) \quad \text { and } \quad C_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n}\right) \tag{2.34}
\end{equation*}
$$

Recall that $v_{j}(0)=U(0)$ and that both v_{j} and U achieve their maximum at the origin. By the definitions of w_{j} and M_{j} and in view of (2.34), we have

$$
\begin{align*}
& 0=w_{j}(0)=M_{j}\left(\sum_{i=1}^{n+1} b_{i} e_{i}(0)+o(1)\right), \\
& 0=\nabla w_{j}(0)=M_{j}\left(\sum_{i=1}^{n+1} b_{i} \nabla e_{i}(0)+o(1)\right) . \tag{2.35}
\end{align*}
$$

By direct calculation, one finds that $e_{i}(0)=\partial U / \partial x_{i}=0, \quad i=1, \ldots, n$, $e_{n+1}(0)=(n-2) / 2, \nabla e_{n+1}(0)=0$, and that $\nabla e_{1}(0), \ldots, \nabla e_{n}(0)$ are linearly independent. These observations and (2.35) imply that $\left(b_{1}, \ldots, b_{n+1}\right)=0$, which is impossible.

We have proved the boundedness of M_{j} as $j \rightarrow \infty$. The remaining part of Lemma 2.5 can be proved similarly.

Lemma 2.6. Suppose $n>6$. Then there exists a function z so that $z_{j} \rightarrow z$ in $C_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$, z satisfies (2.7), $z \in W^{2, s}\left(\mathbb{R}^{n}\right)$ for $s>n /(n-4)$, and that z is radial.

Remark 2.1. From the following proof, we shall see that $z \in Y_{s}$ for $n /(n-4)<s<n / 2$. Thus z is the unique solution of (2.7) in the class $Y_{s} \cap W^{2, s}$ for $n /(n-4)<s<n / 2$.

Proof. By Lemma 2.5 and the imbedding theorem, every subsequence of $\left\{z_{j}\right\}$ has a subsequence $\left\{z_{j_{k}}\right\}$ so that

$$
\begin{align*}
& z_{j_{k}} \text { converges to some } z \text { weakly in } W^{2, s}\left(\mathbb{R}^{n}\right)\left(s>\frac{n}{n-4}\right) \\
& \text { and strongly in } C_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right) . \tag{2.36}
\end{align*}
$$

Observe that

$$
\begin{aligned}
& \left|F\left(w_{j}\right)+C(n, k) U^{p} \ell n U\right| \\
& \quad=\left|\left(U^{p-\varepsilon_{j}}-U^{p}\right) / \mu_{j}^{2}+C(n, k) U^{p} \ell n U\right|+\left(I_{2}+I_{3}\right) / \mu_{j}^{2} \\
& \quad=I_{1}^{\prime}+\left(I_{2}+I_{3}\right) / \mu_{j}^{2},
\end{aligned}
$$

where I_{2} and I_{3} are defined in the proof of Lemma 2.5. Using Lemma 2.5 and the imbedding theorem again, we have that $\left\|w_{j}\right\|_{L^{\infty}}$ is bounded. Thus by (2.26) and (2.27), we see that

$$
\begin{align*}
\left(I_{2}+I_{3}\right) / \mu_{j}^{2} & \leqslant C\left(\varepsilon_{j}\left|w_{j}\right| U^{p-1-\varepsilon_{j}}(|\ell n U|+1)+\left|w_{j}\right|\left|v_{j}-U\right| U^{p-2-\varepsilon_{j}}\right) \\
& =o(1) \tag{2.37}
\end{align*}
$$

On the other hand, by Taylor's Theorem and (2.5), it is easily seen that

$$
\begin{equation*}
I_{1}^{\prime} \leqslant o(1) U^{p-\varepsilon_{j}} \ell n^{2} U . \tag{2.38}
\end{equation*}
$$

Thus

$$
F\left(w_{j}\right) \rightarrow-C(n, k) U^{p} \ell n U \quad \text { in } \quad L^{\infty}\left(\mathbb{R}^{n}\right) \quad \text { as } j \rightarrow \infty
$$

Now we see that z is a weak $W^{2, s}\left(\mathbb{R}^{n}\right)(s>n /(n-4))$ and hence a classical solution of (2.7).
$\forall \varphi \in X$, it is easily seen that $\langle\varphi, f\rangle=\int_{\mathbb{R}^{n}} \varphi f d x, f \in L^{r}\left(\mathbb{R}^{n}\right)$, is a bounded linear functional on $L^{r}\left(\mathbb{R}^{n}\right)$, and hence it is also one on $W^{2, r}\left(\mathbb{R}^{n}\right)$ for every $1<r<n / 2$. Since $z_{j_{k}} \in Y_{r}$ for $n /(n-2)<r<n / 2$, we have $\left\langle\varphi, z_{j_{k}}\right\rangle=0$ for $\varphi \in X$. So by (2.36), $\langle\varphi, z\rangle=0$ for $\varphi \in X$. Thus z belongs not only to $W^{2, s}\left(\mathbb{R}^{n}\right)$ but also to Y_{s} for $n /(n-4)<s<n / 2$. Since (2.7) has at most one such solution, the whole sequence $z_{j} \rightarrow z$ weakly in $W^{2, s}\left(\mathbb{R}^{n}\right)$ and strongly in $C_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$, where z satisfies (2.7).

To show z is radial, let A be a rotation in \mathbb{R}^{n}. Define $z_{A}(x)=z(A x)$. It is easy to see that z_{A} still belongs to $Y_{s} \cap W^{2, s}\left(\mathbb{R}^{n}\right)$ for $n /(n-4)<s<n / 2$. On the other hand, since (2,7) is invariant under rotation, $z_{A}-z$ belongs to X. Consequently, $z_{A}-z \equiv 0$.

Lemma 2.7. When $n>6, \quad M_{j}^{\prime}=\left\{\left|a_{1 j}\right|, \ldots,\left|a_{n j}\right|\right\} \rightarrow 0$ and $a_{(n+1) j} \rightarrow$ $-2 z(0) /(n-2)$ as $j \rightarrow \infty$.

Proof. Observe that the following analogue of (2.35) holds:

$$
\begin{align*}
& 0=\frac{n-2}{2} a_{(n+1) j}+z_{j}(0) \\
& 0=\sum_{i=0}^{n} a_{i j} \nabla e_{i}(0)+\nabla z_{j}(0) \tag{2.39}
\end{align*}
$$

On the other hand, since z is radial and C^{1} smooth, $\nabla z(0)=0$. Combining this with (2.39) and the fact that $z_{j} \rightarrow z$ in $C_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n}\right)$ (Lemma 2.6), we have the conclusion of Lemma 2.7.

Remark 2.2. Since z is a radial solution of (2.7), by uniqueness of solutions to IVP for ODE's, $z(0) \neq 0$.

Finally we are at the point of finishing the proof of Proposition 2.2.
Lemma 2.8. When $n>6, w_{j} \rightarrow w$ in $L^{\infty}\left(\mathbb{R}^{n}\right)$ as $j \rightarrow \infty$, where

$$
w=z-\frac{2 z(0)}{n-2}\left(x \cdot \nabla U+\frac{n-2}{2} U\right),
$$

and hence w satisfies (2.7), $w \in W^{2, s}\left(\mathbb{R}^{n}\right)$ for $s>n /(n-4)$.
Proof. In view of Lemma 2.7, we just need to show that $z_{j} \rightarrow z$ in L^{∞} as $j \rightarrow \infty$.

Since z satisfies (2.7), by (2.24), (2.37) and (2.38), we have

$$
\begin{align*}
\left|L\left(z_{j}-z\right)\right| \leqslant & \left|k_{j} v_{j}-k\left(x_{0}\right) U\right|+\left|F\left(w_{j}\right)+C(n, k) U^{p} \ell n U\right| \\
\leqslant & \left|k_{j} v_{j}-k\left(x_{0}\right) U\right|+C\left(\varepsilon_{j}\left|w_{j}\right| U^{p-1-\varepsilon_{j}}(|\ell n U|+1)\right. \\
& \left.+\left|w_{j}\right|\left|v_{j}-U\right| U^{p-2-\varepsilon_{j}}+o(1) U^{p-\varepsilon_{j}} \ell n^{2} U\right) . \tag{2.40}
\end{align*}
$$

Applying Lemma 2.4 with $n /(n-2)<q<n / 4$ and $1 / r=1 / q-2 / n$, we have

$$
\begin{aligned}
\left\|z_{j}-z\right\|_{W^{2, r}\left(\mathbb{R}^{n}\right)} \leqslant & C\left(\left\|k_{j} v_{j}-k\left(x_{0}\right) U\right\|_{L^{q}}+\left\|k_{j} v_{j}-k\left(x_{0}\right) U\right\|_{L^{r}}\right. \\
& +\left\|F\left(w_{j}\right)+C(n, k) U^{p} \ell n U\right\|_{L^{q}} \\
& \left.+\left\|F\left(w_{j}\right)+C(n, k) U^{p} \ell n U\right\|_{L^{r}}\right) .
\end{aligned}
$$

The first two terms on the right hand side are $o(1)$ as $j \rightarrow \infty$, which follows from the Dominated Convergence Theorem. Arguing as in (2.30) and (2.31) and using (2.40), we obtain

$$
\begin{aligned}
\| F\left(w_{j}\right)+ & +C(n, k) U^{p} \ell n U\left\|_{L^{q}}+\right\| F\left(w_{j}\right)+C(n, k) U^{p} \ell n U \|_{L^{r}} \\
\leqslant & C\left(\varepsilon_{j}\left\|w_{j}\right\|_{L^{r}}\left\|U^{p-1-\varepsilon_{j}} \ell n U\right\|_{L^{n / 2}}+\left\|w_{j}\right\|_{L^{r}}\left\|U^{p-2-\varepsilon_{j}}\left(v_{j}-U\right)\right\|_{L^{n / 2}}\right. \\
& \left.+\varepsilon_{j}\left\|w_{j}\right\|_{L^{r}}+\left\|w_{j}\right\|_{L^{r}}\left\|\left(v_{j}-U\right) U^{p-2-\varepsilon_{j}}\right\|_{L^{\infty}}+o(1)\right) \\
= & o(1) .
\end{aligned}
$$

Here at the last step, we have used Lemma 2.5. Thus we see

$$
\left\|z_{j}-z\right\|_{W^{2}, r_{\left(\mathbb{R}^{n}\right)}}=o(1)
$$

for every fixed $n /(n-4)<r<n / 2$. From this, by using the imbedding theorem and the L^{p} estimates as in the proof of Lemma 2.5 (the part from (2.33) to (2.34)), we obtain

$$
\left\|z_{j}-z\right\|_{W^{2}, r_{1\left(\mathbb{R}^{n}\right)}}=o(1)
$$

for every fixed large r_{1}. Now the imbedding theorem implies that $z_{j} \rightarrow z$ in $L^{\infty}\left(\mathbb{R}^{n}\right)$ as $j \rightarrow \infty$.

3. Concluding Remarks

The main purpose of this section is to discuss the possibility of removing the conditions on x_{ε} and " $-k \in E\left(\rho, \mathbb{R}^{n}\right)$ " from Theorem 1.1 and Theorem A. However, we start with what is claimed in Remark 1.1.

Lemma 3.1. Suppose Condition (K) holds, but with the condition on $k+\frac{1}{2} x \cdot \nabla k$ replaced by the weaker assumption that k be bounded. Let u_{ε} be an arbitrary positive ground state of (1.1). Then the L^{∞} norm of u_{ε} blows up as $\varepsilon \rightarrow 0$.

Proof. We argue by contradiction. Assume that the L^{∞} norm of $u_{j} \equiv u_{\varepsilon_{j}}$ is bounded by M for $j \geqslant 1$. Let x_{j} be a maximum point of u_{j}. Since we are not assuming $u_{j} \in E\left(\rho, \mathbb{R}^{n}\right)$ and $x_{j} \in C(\rho)$, we do not know if x_{j} is bounded. By Lemma 2.3 of [PW], we have $u_{j}\left(x_{j}\right) \geqslant \alpha_{0}>0$ for $j \geqslant 1$. Define $w_{j}(x)=$ $u_{j}\left(x_{j}+x\right)$. Then

$$
\Delta w_{j}-k\left(x_{j}+x\right) w_{j}+w_{j}^{p-\varepsilon_{j}}=0 \quad \text { in } \mathbb{R}^{n}, \quad \alpha_{0} \leqslant w_{j}(0)=\max w_{j} \leqslant M
$$

Since

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left(\left|\nabla u_{j}\right|^{2}+k(x) u_{j}^{2}\right) d x=\int_{\mathbb{R}^{n}} u_{j}^{p+1-\varepsilon_{j}} d x \rightarrow S^{n / 2} \tag{3.1}
\end{equation*}
$$

as $\varepsilon_{j} \rightarrow 0$ (see Corollary 2.6 of [PW]), u_{j} and hence w_{j} are bounded in $H^{1}\left(\mathbb{R}^{n}\right)$. Consequently, we have that after passing to a subsequence,

$$
w_{j} \rightarrow w_{0} \text { weakly in } H^{1}\left(\mathbb{R}^{n}\right) .
$$

On the other hand, since $w_{j} \leqslant M$ and k is bounded, by the L^{p} interior estimates and the imbedding theorem, we have $w_{j} \rightarrow w_{0}$ in $C_{\text {loc }}^{1+\alpha}\left(\mathbb{R}^{n}\right)$. Thus $w_{0}(0) \geqslant \alpha_{0}>0, w_{0} \not \equiv 0$.

Case 1. $\left\{x_{j}\right\}$ is bounded. W.L.O.G., assume $x_{j} \rightarrow x_{0}$. Then w_{0} is a nontrivial and nonnegative classical solution of

$$
\begin{equation*}
\Delta w_{0}-k\left(x_{0}+x\right) w_{0}+w_{0}^{p}=0 \quad \text { in } \mathbb{R}^{n} . \tag{3.2}
\end{equation*}
$$

By the strong maximum principle, w_{0} is positive on \mathbb{R}^{n}. Thus by (3.2), we have

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left|\nabla w_{0}\right|^{2} d x<\int_{\mathbb{R}^{n}} w_{0}^{p+1} d x \tag{3.3}
\end{equation*}
$$

Now by the definition of the Sobolev constant S and by (3.1), we deduce

$$
\begin{aligned}
S & \leqslant \frac{\int_{\mathbb{R}^{n}}\left|\nabla w_{0}\right|^{2}}{\left(\int_{\mathbb{R}^{n}} w_{0}^{p+1} d x\right)^{2 /(p+1)}}<\left(\int_{\mathbb{R}^{n}} w_{0}^{p+1} d x\right)^{2 / n} \\
& \leqslant \liminf _{j \rightarrow \infty}\left(\int_{\mathbb{R}^{n}} w_{j}^{p+1-\varepsilon_{j}} d x\right)^{2 / n} \\
& =S .
\end{aligned}
$$

We reach a contradiction.
Case 2. $\left\{x_{j}\right\}$ is unbounded. W.L.O.G., assume $x_{j} \rightarrow \infty$. Then w_{0} satisfies that

$$
\Delta w_{0}-k_{0} w_{0}+w_{0}^{p} \geqslant 0 \text { in the sense of } H^{-1}\left(\mathbb{R}^{n}\right),
$$

since $k(x) \geqslant k_{0}>0$ near infinity. This will lead to (3.3) and hence to a contradiction again.

Next, we discuss the possibility of removing the condition on x_{ε} in Theorem 1.1 and Theorem A. For an arbitrary global maximum point x_{ε} of an arbitrary ground state u_{ε} of (1.1), our worry is that x_{ε} may go off to infinity as ε shrinks to zero. Indeed, this may happen when k is independent of one component of x. We shall assume that

$$
\begin{equation*}
k \text { is not independent of any component } x_{\mathrm{i}} \text { of } x=\left(x_{1}, \ldots, x_{n}\right) \text {. } \tag{3.4}
\end{equation*}
$$

This condition, together with Condition (K), implies that any maximum point of any solution of (1.1) that decays at infinity must be contained in the cube $C(\rho)$ (centered at the origin with length 2ρ). More precisely, the following is true.

Lemma 3.2. Let k be a nonnegative function defined on \mathbb{R}^{n} with $k(x) \geqslant k_{0}>0$ at $x=\infty$. Suppose $-k \in E\left(\rho, \mathbb{R}^{n}\right)$ for some $\rho \geqslant 0$, and that (3.4) hold. Then any solution u of

$$
\begin{equation*}
\Delta u-k(x) u+u^{q}=0, \quad u>0 \quad \text { in } \quad \mathbb{R}^{n}, \quad u(\infty)=0, \tag{3.5}
\end{equation*}
$$

$(q>1)$ satisfies that

$$
\frac{\partial u}{\partial x_{i}}<0 \quad \text { for } \quad x_{i}>\rho ; \quad \frac{\partial u}{\partial x_{i}}>0 \quad \text { for } \quad x_{i}<-\rho .
$$

In particular, all maximum points of u are contained in the cube $C(\rho)$.
The proof of this result is a slight modification of the one in $\mathrm{Li}-\mathrm{Ni}$ [LN]. It will be given at the end of this section.

From this lemma, we immediately have
Theorem 3.3. Suppose that Condition (K) and (3.4) hold. Let u_{ε} be an arbitrary positive ground state of (1.1), and x_{ε} be an arbitrary maximum point of u_{ε}. Then $x_{\varepsilon} \in C(\rho)$ and the conclusions of Theorem A and Theorem 1.1 hold. (For Theorem 1.1 to hold, we need $n>6$.)

Now, we discuss the possibility of removing " $-k \in E\left(\rho, \mathbb{R}^{n}\right)$ " in Condition (K). This "geometric condition" is not directly used in the previous part of this paper. It is only used in [PW] to show the existence of a ground state u_{ε} which also belongs to $E\left(\rho, \mathbb{R}^{n}\right)$ (so it has a maximum point in $C(\rho)$). Recently, Rabinowitz proved, among other things, the existence of a positive ground u_{ε} of (1.1) for each $0<\varepsilon<p-1$, under the condition

$$
k \text { is a nonnegatrive } C^{1} \text { function defined in } \mathbb{R}^{n} \text { satisfying }
$$

$$
\begin{equation*}
\lim _{x \rightarrow \infty} k(x)=\sup _{x \in \mathbb{R}^{n}} k(x)>\inf _{x \in \mathbb{R}^{n}} k(x) \tag{3.6}
\end{equation*}
$$

(see Theorem 4.27 of [R]). Actually "inf $k>0$ " is assumed in [R]. But as can be checked, his arguments go through without this condition.

Theorem 3.4. Suppose that (3.6) holds, and that $k+\frac{1}{2} x \cdot \nabla k$ is bounded. Let u_{ε} and x_{ε} be as given in Theorem 3.3. Then x_{ε} remains bounded as $\varepsilon \rightarrow 0$ and the conclusions of Theorem A and Theorem 1.1 hold. ($n>6$ is needed for Theorem 1.1.)

Proof. We just need to show the boundedness of x_{ε} as $\varepsilon \rightarrow 0$. We argue by contradiction. So, W.L.O.G., assume $x_{\varepsilon} \rightarrow \infty \varepsilon \rightarrow 0$. Define μ_{ε} and v_{ε} as before.

Claim. There exists a constant C independent of small ε such that

$$
\begin{equation*}
v_{\varepsilon} \leqslant C U \quad \text { in } \mathbb{R}^{n} . \tag{3.7}
\end{equation*}
$$

(In the case that x_{ε} is bounded, this is Lemma 3.6 in [PW].)
We put off the proof of this claim and use it to reach the desired conclusion now. By this claim and by (3.16) in [PW], we have

$$
\begin{equation*}
\varepsilon=O\left(\mu_{\varepsilon}^{2}\right) \tag{3.8}
\end{equation*}
$$

(Note in the argument leading to (3.16) in [PW], we just need the boundedness of $k+\frac{1}{2} x \cdot \nabla k$ and the exponential decay of u_{ε} and $\left|\nabla u_{\varepsilon}\right|$ for each fixed ε.) From (3.6) and (3.8), there exists a sequence $\varepsilon_{j} \rightarrow 0$ and constants $\bar{c} \geqslant 0$ and \bar{k} so that

$$
\begin{equation*}
\varepsilon_{j}=\bar{c} \mu_{j}^{2}+o\left(\mu_{j}^{2}\right), \quad \lim _{j \rightarrow \infty} k\left(x_{\varepsilon_{j}}\right)=\bar{k}>\inf k, \tag{3.9}
\end{equation*}
$$

where $\mu_{j}=\mu_{\varepsilon_{j}}$. The first part of (3.9) is an analogue of (2.5). In the present case, Lemma 2.1 with $C(n, k)$ replaced by \bar{c} holds (by modifying the proof in the obvious way); Proposition 2.2 with $k\left(x_{0}\right)$ in (2.7) replaced by \bar{k} also holds by almost the same proof. (Note when proving that z satisfies the modified version of (2.7) in the proof of Lemma 2.6, we can use the uniform continuity of k on \mathbb{R}^{n}.) Now as in the proof of Theorem 1.1, we are led to $\bar{k} \leqslant \inf k$, which contradicts (3.9). The proof of Theorem 3.4 is complete except we now have to show (3.7). To this end, first we observe that Lemma 3.2 in [PW] still remains true. Then the proof of Lemma 3.4 in [PW] implies that for any $\delta>0$, there exists a small $\varepsilon_{0}>0$ such that if $0<\varepsilon<\varepsilon_{0}$, then

$$
\int_{\left|x-x_{\varepsilon}\right| \geqslant 1 / 2} u_{\varepsilon}^{p+1} d x \leqslant \delta .
$$

Using this and the one-sided Harnack inequality (Lemma 2.7 in [PW]), we have

$$
\begin{equation*}
u_{\varepsilon}(x) \leqslant \delta \quad \text { for } \quad\left|x-x_{\varepsilon}\right| \geqslant 1 \text { and small } \varepsilon . \tag{3.10}
\end{equation*}
$$

Recall $k(x) \geqslant k_{0}>0$ for $|x|$ large, say, $|x| \geqslant R$. Choose $k_{1} \in\left(0, k_{0}\right)$. Suppose δ in (3.10) is chosen so small that

$$
\begin{equation*}
g_{\varepsilon}(x) \equiv\left(k_{1}-k(x)\right) u_{\varepsilon}(x)+u_{\varepsilon}^{p-\varepsilon}(x) \leqslant 0 \tag{3.11}
\end{equation*}
$$

for x satisfying both $\left|x-x_{\varepsilon}\right| \geqslant 1$ and $|x| \geqslant R$, and for small ε. Since for each fixed $\varepsilon, u_{\varepsilon}$ decays exponentially and satisfies

$$
\Delta u_{\varepsilon}-k_{1} u_{\varepsilon}+g_{\varepsilon}(x)=0 \quad \text { in } \mathbb{R}^{n},
$$

we have

$$
u_{\varepsilon}(x)=\int_{\mathbb{R}^{n}} \Gamma_{k_{1}}(x-y) g_{\varepsilon}(y) d y
$$

where $\Gamma_{k_{1}}$ is the fundamental solution of $-\Delta+k_{1}$. By (3.11),

$$
u_{\varepsilon}(x) \leqslant \int_{\Omega} \Gamma_{k_{1}}(x-y) g_{\varepsilon}(y) d y+\int_{|y| \leqslant R} \Gamma_{k_{1}}(x-y) g_{\varepsilon}(y) d y=I_{1}+I_{2},
$$

where $\Omega=\left\{y \in \mathbb{R}^{n}| | y-x_{\varepsilon}|\leqslant 1,|y| \geqslant R\}\right.$. By (4.2) of [GNN],

$$
\Gamma_{k_{1}}(x) \leqslant C\left(n, k_{1}\right) \frac{\exp \left(-\sqrt{k_{1}}|x|\right)}{|x|^{n-2}}(1+|x|)^{(n-3) / 2}
$$

From this and (3.10), it is easy to see that for small ε,

$$
I_{2} \leqslant C \exp \left(-\sqrt{k_{1}}|x|\right), \quad x \in \mathbb{R}^{n}
$$

On the other hand, if $\left|x-x_{\varepsilon}\right| \geqslant 2$,

$$
\begin{align*}
I_{1} & \leqslant \int_{\Omega} \Gamma_{k_{1}}(x-y) u_{\varepsilon}^{p-\varepsilon}(y) d y \\
& \leqslant\left\|u_{\varepsilon}\right\|_{L^{p+1-\varepsilon}}^{p-\varepsilon}\left(\int_{\Omega}\left(\Gamma_{k_{1}}(x-y)\right)^{p+1-\varepsilon} d y\right)^{1 /(p+1-\varepsilon)} \quad(\text { Hölder's inequality) } \\
& \leqslant C\left(\int_{\left|y-x_{\varepsilon}\right| \leqslant 1}\left(\Gamma_{k_{1}}(x-y)\right)^{p+1-\varepsilon} d y\right)^{1 /(p+1-\varepsilon)} \tag{3.1}\\
& \leqslant C e^{-a\left|x-x_{\varepsilon}\right|}
\end{align*}
$$

for some constant $a>0$. Thus we have shown that for small ε,

$$
\begin{equation*}
u_{\varepsilon}(x) \leqslant I_{1}+I_{2} \leqslant C e^{-a\left|x-x_{\varepsilon}\right|}, \quad\left|x-x_{\varepsilon}\right| \geqslant 2 \tag{3.12}
\end{equation*}
$$

which is an analogue of Lemma 3.5 in [PW]. Now (3.7) follows from almost the same proof of Lemma 3.6 in [PW] (whenever Lemma 3.5 is used there, we apply (3.12) above instead).

Finally, we give
Proof of Lemma 3.2. We shall only prove $\partial u / \partial x_{1}<0, x_{1}>\rho$, in detail. The proof for the other cases is similar and hence is omitted.

We use the "moving plane" method.
For any real number λ, set

$$
\Sigma_{\lambda}=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \mid x_{1}<\lambda\right\}, \quad T_{\lambda}=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \mid x_{1}=\lambda\right\} .
$$

For any $x \in \mathbb{R}^{n}$, let x^{λ} be the reflection point of x about the hyperplane T_{λ}, i.e., $x^{\lambda}=\left(2 \lambda-x_{1}, x_{2}, \ldots, x_{n}\right)$. Define $v_{\lambda}(x)=u(x)-u\left(x^{\lambda}\right)$ and

$$
\Lambda=\left\{\lambda^{\prime} \geqslant \rho \mid v_{\lambda}>0 \text { in } \Sigma_{\lambda}, \frac{\partial v_{\lambda}}{\partial x_{1}}<0 \text { on } T_{\lambda}, \lambda \geqslant \lambda^{\prime}\right\} .
$$

Claim 1. Λ is nonempty. Since $k(x) \geqslant k_{0}>0$ at $x=\infty$ and $u(\infty)=0$, there exists a large $\rho_{1}>\rho$ such that

$$
k(x) \geqslant k_{0} \quad \text { on } \quad\left(C\left(\rho_{1}\right)\right)^{c} \quad \text { and } \quad \max _{\left(C\left(\rho_{1}\right)\right)^{c}} u<\left(\frac{1}{q} k_{0}\right)^{1 /(q-1)} .
$$

We can also choose a large $\rho_{2}>\rho_{1}$ such that

$$
\min _{C\left(\rho_{1}\right)} u>\max _{\left(C\left(\rho_{2}\right)\right)^{c}} u
$$

By (3.5), we have

$$
\begin{equation*}
\Delta v_{\lambda}(x)-k(x) u(x)+k\left(x^{\lambda}\right) u\left(x^{\lambda}\right)+u^{q}(x)-u^{q}\left(x^{\lambda}\right)=0 \quad \text { in } \mathbb{R}^{n} . \tag{3.13}
\end{equation*}
$$

Since $-k \in E\left(\rho, \mathbb{R}^{n}\right), k\left(x^{\lambda}\right) \geqslant k(x)$ for $\lambda \geqslant \rho, x \in \Sigma_{\lambda}$. So if $\lambda \geqslant \rho$, we have

$$
\begin{equation*}
\Delta v_{\lambda}(x)+\left(c(x)-k\left(x^{\lambda}\right)\right) v_{\lambda}(x) \leqslant 0, \quad x \in \Sigma_{\lambda}, \tag{3.14}
\end{equation*}
$$

where $c(x)=\left(u^{q}(x)-u^{q}\left(x^{\lambda}\right)\right) /\left(u(x)-u\left(x^{\lambda}\right)\right)$, which is between $q u^{q-1}(x)$ and $q u^{q-1}\left(x^{\lambda}\right)$.

From our choices for ρ_{1} and ρ_{2}, we see that for $\lambda \geqslant \rho_{2}$,

$$
\begin{equation*}
v_{\lambda}>0 \quad \text { on } C\left(\rho_{1}\right), \quad c(x)-k\left(x^{\lambda}\right)<0, x \in \Sigma_{\lambda} \backslash C\left(\rho_{1}\right) . \tag{3.15}
\end{equation*}
$$

Note also that $v_{\lambda} \equiv 0$ on T_{λ} and $\lim _{x \rightarrow \infty} v_{\lambda}(x)=0$. This and (3.15) enable us to apply the strong maximum principle to (3.14) on $\Sigma_{\lambda} \backslash C\left(\rho_{1}\right)$, to conclude that for $\lambda \geqslant \rho_{2}, v_{\lambda}>0$ on $\Sigma_{\lambda} \backslash C\left(\rho_{1}\right)$ and hence on Σ_{λ}. Furthermore, by Hopf boundary point lemma (see [GT]), $\partial v_{\lambda} / \partial x_{1}<0$ on T_{λ}. Thus $\rho_{2} \in \Lambda$ and Claim 1 is proved.

Let $\lambda_{0}=\inf \Lambda$. We shall prove $\lambda_{0}=\rho$. Once this is shown, the proof of Lemma 3.2 is complete.

Claim 2. $\lambda_{0} \in \Lambda$ if $\lambda_{0}>\rho$. By the definition of λ_{0} and the continuity of $u, v_{\lambda_{0}} \geqslant 0$ on $\Sigma_{\lambda_{0}}$. Applying the strong maximum principle and the Hopf boundary point lemma, we have that either $v_{\lambda_{0}} \equiv 0$ in $\Sigma_{\lambda_{0}}$, or $v_{\lambda_{0}}>0$ on $\Sigma_{\lambda_{0}}$ and $\partial v_{\lambda_{0}} / \partial x_{1}<0$ on $T_{\lambda_{0}}$. If the latter occurs, then by the definition of Λ, Claim 2 is true; if the former occurs, by (3.13) we have

$$
\begin{equation*}
k\left(x^{\lambda_{0}}\right) \equiv k(x), \quad x \in \Sigma_{\lambda_{0}} . \tag{3.16}
\end{equation*}
$$

This implies that k is independent of x_{1}.
This is shown as follows. Since $-k \in E\left(\rho, \mathbb{R}^{n}\right), k$ is nondecreasing in $x_{1} \geqslant \rho$. So if $\lambda_{0}>\rho$ and (3.16) occurs, then k is independent of $x_{1} \in\left[\rho, 2 \lambda_{0}-\rho\right]$. For $x=\left(x_{1}, \ldots, x_{n}\right)$ with $2 \lambda_{0}-\rho<x_{1} \leqslant 3 \lambda_{0}-2 \rho$, we have

$$
k(x)=k\left(x^{\lambda_{0}}\right) \leqslant k\left(\left(x^{\lambda_{0}}\right)^{\rho}\right) \leqslant k(x),
$$

where $\left(x^{\lambda_{0}}\right)^{\rho}$ stands for the reflection point of $x^{\lambda_{0}}$ about T_{ρ}. Thus k is independent in $x_{1} \in\left[\rho, 3 \lambda_{0}-2 \rho\right]$ (recall k nondecreasing in $x_{1} \geqslant \rho$). Continuing this process, we have k is constant in $x_{1} \in[\rho, \infty)$ and hence in $x_{1} \in(-\infty,+\infty)$.

We have reached a contradiction to the assumption (3.4). Claim 2 is proved.

Now we show $\rho=\lambda_{0}$. We argue by contradiction, so assume $\lambda_{0}>\rho$. By Claim 1 and Claim 2, $\lambda_{0} \leqslant \rho_{2}$ and $\lambda_{0} \in \Lambda$. In particular $\partial v_{\lambda_{0}} / \partial x_{1}<0$ on $T_{\lambda_{0}}$, i.e., $\partial u / \partial x_{1}<0$ on $T_{\lambda_{0}}$. So there exists a small $\varepsilon>0$ such that

$$
\frac{\partial u}{\partial x_{1}}<0 \quad \text { on } \quad C\left(\rho_{2}\right) \cap\left\{\lambda_{0}-2 \varepsilon \leqslant x_{1} \leqslant \lambda_{0}+2 \varepsilon\right\} .
$$

Thus for $\lambda \in\left[\lambda_{0}-\varepsilon, \lambda_{0}\right]$,

$$
u(x)>u\left(x^{\lambda}\right) \text {, i.e., } v_{\lambda}(x)>0, \quad x \in C\left(\rho_{2}\right) \cap\left\{\lambda_{0}-2 \varepsilon \leqslant x_{1}<\lambda\right\} .
$$

On the other hand, since $v_{\lambda}(x)>0$ in $\Sigma_{\lambda_{0}}$, by the continuity of u, there exists a small $0<\delta<\varepsilon$ such that for $\lambda \in\left[\lambda_{0}-\delta, \lambda_{0}\right]$,

$$
v_{\lambda}(x)>0 \quad \text { on } \quad C\left(\rho_{2}\right) \cap\left\{x_{1} \leqslant \lambda_{0}-2 \varepsilon\right\} .
$$

So now we have

$$
\begin{equation*}
v_{\lambda}(x)>0 \quad \text { on } \quad C\left(\rho_{2}\right) \cap \Sigma_{\lambda}, \quad \lambda \in\left[\lambda_{0}-\delta, \lambda_{0}\right] . \tag{3.17}
\end{equation*}
$$

For $x \in \Sigma_{\lambda} \backslash C\left(\rho_{2}\right)$ and $\lambda \in\left[\lambda_{0}-\delta, \lambda_{0}\right]$, both x and x^{λ} fall off $C\left(\rho_{2}\right)$ (recall $\rho_{2}>\rho_{1}$). So by our choice for ρ_{1} and the definition of $c(x)$, we have

$$
\begin{equation*}
c(x)-k\left(x^{\lambda}\right)<0, \quad x \in \Sigma_{\lambda} \backslash C\left(\rho_{2}\right), \quad \lambda \in\left[\lambda_{0}-\delta, \lambda_{0}\right] . \tag{3.18}
\end{equation*}
$$

Observe that $v_{\lambda} \geqslant 0, v_{\lambda} \not \equiv 0$ on the boundary of $\Sigma_{\lambda} \backslash C\left(\rho_{2}\right)$ and that $\lim _{x \rightarrow \infty} v_{\lambda}(x)=0$. By using this and (3.18), we can apply the strong maximum principle to (3.14) on $\Sigma_{\lambda} \backslash C\left(\rho_{2}\right)$ to conclude that

$$
v_{\lambda}>0 \quad \text { on } \quad \Sigma_{\lambda} \backslash C\left(\rho_{2}\right), \quad \lambda \in\left[\lambda_{0}-\delta, \lambda_{0}\right] .
$$

Combining this with (3.17), we see that v_{λ} is positive on whole Σ_{λ}, $\lambda \in\left[\lambda_{0}-\delta, \lambda_{0}\right]$. Now once again, the Hopf boundary point lemma implies that

$$
\frac{\partial v_{\lambda}}{\partial x_{1}}<0 \quad \text { on } T_{\lambda}, \quad \lambda \in\left[\lambda_{0}-\delta, \lambda_{0}\right]
$$

We have thus shown $\left[\lambda_{0}-\delta, \lambda_{0}\right] \subset \Lambda$, which contradicts the definition of λ_{0}.

Acknowledgments

We thank Professor Yi Li for a helpful discussion which led to Lemma 3.2, resulting in an improvement of Theorem 3.3 in the original version of this paper. We also thank the referee for a helpful comment on the presentaton.

References

[AP] F. Atkinson and L. Peletier, Elliptic equations with nearly critical growth, J. Differential Equations 70 (1987), 349-365.
[B] M. S. Berger, On the existence and structure of stationary states for a nonlinear Klein-Gordon equation, J. Funct. Anal. 9 (1972), 249-261.
[BP] H. Brezis and L. Peletier, Asymptotics for elliptic equations involving critical growth, in "Partial Differential Equations and Calculus of Variations," (F. Colombini, Eds.), Vol. 1, pp. 149-192, Birkhäuser, Basel, 1989.
[CGS] L. Caffarelli, B. Gidas, and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. XLII (1989), 271-297.
[CL] W. Chen and C. Li, Classification of solutions of some semilinear elliptic equations, Duke Math. J. 63 (1991), 615-622.
[DN] W.-Y. Ding and W.-M. Ni, On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rational Mech. Anal. 91 (1986), 283-308.
[GNN] B. Gidas, W.-M. Ni, and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in \mathbb{R}^{n}, Adv. Math. Suppl. Stud. (Math. Anal. Appl. Part A) 7 (1981), 369-402.
[GT] D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order," 2nd ed., Springer, New York/Berlin, 1983.
[H] Z. C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Anal. Nonlinière 8 (1991), 159-174.
[HL] G. Hardy and J. Littlewood, Some properties of fractional integrals, Math. Z. 27 (1928), 565-606.
[K] M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^{p}=0$ in \mathbb{R}^{n}, Arch. Rational Mech. Anal. 105 (1989), 243-266.
[LN] Yi Li and W.-M. Ni, Radial symmetry of positive solutions of nonlinear elliptic equations in \mathbb{R}^{n}, Comm. Partial Differential Equations 18 (1993), 1043-1054.
[Ne] Z. Nehari, On a nonlinear differential equation arising in nuclear physics, Proc. Roy. Irish Acad. Sect. A 62 (1963), 117-135.
[NT] W.-M. Ni and I. Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J. 70 (1993), 247-281.
[PW] X.-B. Pan and X. Wang, Blow-up behavior of ground states of semilinear elliptic equations in \mathbb{R}^{n} involving critical Sobolev exponents, J. Differential Equations 99 (1992), 78-107.
[R] P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992), 270-291.
[Re] O. Rey, Proof of two conjectures of H. Brezis and L. A. Peletier, Manuscr. Math. 65 (1989), 19-37.
[So] S. Sobolev, On a theorem of functional analysis, AMS Transl. Ser. 2, No. 34 (1963), 39-68.
[S] W. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), 149-162.

[^0]: * Research supported in part by NSF Grants DMS-9105172 and DMS-9305658.

