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In this paper, we analyse the convergence of the preconditioned

simultaneousdisplacement (PSD)method applied to linear systems

of the form Au = b where A is a two-cyclic matrix. Convergence

conditions and optimum values of the parameters of the method

are determined in the cases where the eigenvalues of the associ-

ated Jacobi iteration matrix are either all real or all imaginary. It is

shown that the convergence behavior of the PSD method is greatly

affected by the locality of the eigenvalues of the associated Jacobi

iteration matrix. In particular, it is shown that when these eigen-

values are real the PSD method degenerates into the extrapolated

Gauss–Seidelmethodwhereaswhen they are imaginary its conver-

gence is increased by an order of magnitude and becomes equiv-

alent to the extrapolated SOR method. Finally, a comparison with

the SSOR method reveals that the PSD method possesses a better

convergence behavior in all cases.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

The preconditioned simultaneous displacement (PSD) iterative method was introduced in [2,11]

for the numerical solution of the linear system

Au = b, (1)

where A ∈ CN,N
is a nonsingular, sparsematrix with nonvanishing diagonal entries and u, b ∈ CN

with

b given and u to be determined.
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The PSD method is a first order extrapolation of the symmetric successive overrelaxation (SSOR)

methodandas such itwas shown in [2] tobeasymptotically twiceas fast as theSSORmethod fornatural

ordering. In [11], various acceleration techniques were applied to the PSD method, which increased

its rate of convergence by an order of magnitude. Comparisons with the successive overrelaxation

(SOR) method in [11] proved that the PSD method combined with semi-iterative methods [18] gives

an increased rate of convergence to that of the SORmethod in certain cases. However, all these results

were based on “good” (near the optimum) values of the parameters of the PSDmethod. Subsequently,

a functional relationship was shown to exist in [19,8] for the SSOR method between the eigenvalues

of its preconditioned matrix and those of the associated Jacobi matrix which has proved useful to the

analysis of the convergence of the method where the associated Jacobi matrix has a p-cyclic form.

Such a functional relationship can be derived and the theory concerning p-cyclic matrices (see e.g.

[5,6,8,17]) can be applied for the PSD method too. It is the purpose of the present work to proceed

in this direction and analyse the convergence of the PSD method using such a functional relationship

in the cases where the associated block Jacobi iteration matrix is of a consistently ordered weakly

two-cyclic form [18] and possesses either all real (the real case) or all imaginary (the imaginary case)

eigenvalues. In such cases we find that the associated functional relationship is the same as the one

derived for the extrapolated SOR method in [13] with the only difference that the SOR parameter ω

is replaced by ω(2 − ω). As a consequence the theory developed in [13,14] can be applied to derive

sufficient and necessary conditions for the PSDmethod to converge as well as determine the optimum

values of the parameters of the PSD method under the aforementioned conditions on the associated

Jacobi iteration matrix. Our approach is also applied to the SSOR method for comparison purposes. It

is shown that the convergence behavior of the PSD method (and the SSOR method) is greatly affected

by the locality of the eigenvalues of the associated Jacobi iterationmatrix. More specifically, in the real

case the PSD method attains a maximum rate of convergence equivalent to the extrapolated Gauss–

Seidel (EGS) method [10], whereas in the imaginary case its convergence is improved by an order of

magnitude. This phenomenon was unexpected as the convergence behavior of the SOR method, for

example, remains unaffected under the same conditions [15].

This paper is organized as follows. In Section 2, we state the functional relationship for the PSD

methodbetween the eigenvalues of the preconditionedmatrix and the associated Jacobimatrix,where

this Jacobimatrix has a block p-cyclic form. In Section 3,we deduce sufficient and necessary conditions

for the PSD method to converge under the assumptions that the associated Jacobi matrix has a block

two-cyclic form and that the eigenvalues of this matrix are either all real or all imaginary. In Section 4,

under the same assumptionswefind optimumvalues for the parameters of the PSDmethod. In Section

5, we compare the PSD method with the SSOR method. Finally, in Section 6, we state our remarks and

conclusions.

2. The functional relationship

Let us consider the linear system (1), with

A =

⎡⎢⎢⎢⎣
A1,1 A1,2 · · · A1,p

A2,1 A2,2 · · · A2,p

.

.

.
.
.
.

. . .
.
.
.

Ap,1 Ap,2 · · · Ap,p

⎤⎥⎥⎥⎦ , p � 2, (2)

where each diagonal Ai,i (1 � i � p) is square and nonsingular. Assume that the coefficient matrix A

has the splitting

A = D − CL − CU ,

where D = diag(A1,1,A2,2, . . . ,Ap,p) and −CL and −CU are the block strictly lower and upper triangular

parts of A, respectively. The associated block Jacobi matrix is defined by

B = L + U, (3)

where L = D−1CL and U = D−1CU . Accordingly, the preconditioned simultaneous displacement (PSD)

method is given by the following scheme [2,4,12]:

u(n+1) = Dτ ,ωu
(n) + δτ ,ω , (4)
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where

Dτ ,ω = I − τBω , Bω = (I − ωU)−1(I − ωL)−1D−1A,

δτ ,ω = τ(I − ωU)−1(I − ωL)−1D−1b, (5)

and τ /= 0,ω ∈ R. Note that if τ = ω(2 − ω), then (4) reduces to the “well known” SSOR method.

Further, let B in (3) be a weakly cyclic matrix of index p [18] of the form

B =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 · · · 0 B1,p

B2,1 0 0 · · · 0 0

0 B3,2 0 · · · 0 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 0 · · · Bp,p−1 0

⎤⎥⎥⎥⎥⎥⎥⎦ , p � 2. (6)

Theorem 2.1. Assume that the block-partitioned matrix A of (2) is such that all diagonal submatrices Ai,i

are square and nonsingular, 1 � i � p, and B of (6) is its associated weakly cyclic of index p block Jacobi

matrix. If ω /= 0, 2, if λ /= 1 is an eigenvalue ofBω , and if μ satisfies

(1 − λ)p = (1 − λω)p−2[1 − λω(2 − ω)]μp, (7)

then μ is an eigenvalue of the block Jacobi matrix B of (6). Conversely, if μ is an eigenvalue of B and if λ̂ /= 1

satisfies (7), then λ̂ is an eigenvalue ofBω.

Proof. The proof is similar to Theorem 1 of [19] and therefore is omitted. �

If ν is an eigenvalue ofDτ ,ω , then because of (5) we have

ν = 1 − τλ.

Expressing (7) in terms of ν yields

(ν + τ − 1)p = τ(τ − ω + ων)p−2[τ − ω(2 − ω)(1 − ν)]μp. (8)

The above functional equation relates the eigenvalues ofDτ ,ω with those of the block Jacobi matrix

B. In case τ = ω(2 − ω), (8) becomes

[(ν − (1 − ω)2]p = ν(ν + 1 − ω)p−2(2 − ω)2ωpμp, (9)

where now ν is an eigenvalue of the SSOR iteration matrixDω(2−ω),ω . Note that (9) was also obtained

by Varga et al. [19]. If p = 2, then (9) reduces to

[ν − (1 − ω)2]2 = ν(2 − ω)2ω2μ2, (10)

which was obtained earlier by D’Sylva and Miles [1]. By letting

ω̂ = ω(2 − ω), (11)

(10) becomes

(ν + ω̂ − 1)2 = νω̂2μ2, (12)

which is Young’s relation for the SORmethod [21]. Using (12) Niethammer [15] and Lynn [9] produced

interesting results concerning the SSORmethod in the case where the Jacobi matrix B is weakly cyclic

of index 2. Also, when p = 2 (7) reduces to

(1 − λ)2 = [1 − λω(2 − ω)]μ2

or

(1 − λ)2 = (1 − λω̂)μ2

obtained also in [12]. Finally, if τ = 1, (8) becomes
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νp = (1 − ω + ων)p−2[1 − ω(2 − ω)(1 − ν)]μp, (13)

where now ν denotes the eigenvalues of D1,ω , the preconditioned Jacobi (PJ) iteration matrix [2,3].

Letting p = 2 (13) yields

ν2 = [1 − ω(2 − ω) + ων(2 − ω)]μ2

or

ν2 − ω̂μ2ν + μ2(ω̂ − 1) = 0 (14)

obtained also in [12]. Our conclusion so far is that (8) is the generalization of all known functional

relationships. In the sequel we will use (7) to analyse the convergence of the PSD method.

3. Convergence

In this section, we analyse the convergence of the PSD method in the case where the matrix B is

weakly cyclic of index 2, i.e., where

B =
[
0 B12
B21 0

]
. (15)

In such a case A is a two-cyclic and consistently ordered matrix [19]. In particular, we derive sufficient

and necessary conditions for the PSD method to converge under the assumption that the eigenvalues

of the associated Jacobi iteration matrix B are either all real or all imaginary. We also derive analogous

results for the SSOR and PJ methods.

3.1. The real case

In thepresent case,we assume that all eigenvalues {μj}Nj=1
of the Jacobi iterationmatrix are real. This

case occurs, for example, when A is a Hermitian matrix. Let μ = min1�j�N |μj| and μ̄ = max1�j�N |μj|.

Lemma 3.1. If the eigenvalues of the matrix B of (15) are real, then the eigenvalues ofBω are also real.

Proof. Letting p = 2 in (7) and using (11) we have

λ2 − (2 − ω̂μ2)λ + 1 − μ2 = 0. (16)

Furthermore, the roots of (16) are

λ±(μ) = 2 − ω̂μ2 ± √
�

2
, (17)

where

� ≡ �(μ) = μ2(ω̂2μ2 − 4ω̂ + 4). (18)

But ω̂ = ω(2 − ω) � 1. Thus, for a real μ, the discriminant � � 0. �

Theorem 3.1. If the matrix B of (15) has real eigenvalues, then the PSD method converges if and only if

μ̄ < 1 and 0 < τ <
2

λ+(μ̄)
, (19)

where λ+(μ̄) is given by ( 17).

Proof. For the PSD method to converge, λ±(μ) must either be positive or negative [16]. This implies

that 1 − μ2 > 0 (see (16)) proving the first part of (19). Since 2 − ω̂μ2 > 0, λ±(μ) are positive and the

range of τ is given by [16,18,21]

0 < τ <
2

λ+(μ)
. (20)
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By studying the monotonicity of λ+(μ) with respect to μ2 we find that

sign
∂λ+(μ)

∂μ2
= +1.

Hence (20) yields the range of τ given by (19). �

Under the same assumptions the SSOR method converges if and only if [21]

μ̄ < 1 and 0 < ω < 2.

The condition μ̄ < 1 was therefore expected to hold for the PSD method also. Note, however, that the

PSD method presents no restriction on ω for its convergence.

In an attempt to obtain amethodwith only oneparameter like the SSORmethod the preconditioned

Jacobi (PJ) method was introduced in [3] by letting τ = 1 in the PSD method.

Theorem 3.2. If the matrix B of (15) has real eigenvalues, then the PJ method converges if and only if

μ̄ < 1 and ω� < ω < ωr , (21)

where

ω� = 1 − 1

μ̄

(
1 + μ̄2

2

)1/2

, ωr = 1 + 1

μ̄

(
1 + μ̄2

2

)1/2

. (22)

Proof. Applying Lemma 2.1 of [21] to (14) it follows that the PJ method converges if and only if

|μ2(ω̂ − 1)| < 1, |ω̂μ2| < 1 + μ̄2(ω̂ − 1)

or

μ̄ < 1,
1

2

(
1 − 1

μ̄2

)
< ω̂ < 1 + 1

μ̄2
.

In view of (11) it is easy to prove that the latter inequalities are equivalent to (21). �

The convergence conditions (21) for the PJ method were also found in [20] via a different

approach.

3.2. The imaginary case

Here we assume that the Jacobi iteration matrix has imaginary eigenvalues {±iμj}Nj=1
with μ̄ =

max1�j�N |μj|andμ = min1�j�N |μj|. This caseoccurs, forexample,whenA is a skew-Hermitianmatrix.

Theorem 3.3. If thematrix B of (15) has imaginary eigenvalues, then the PSDmethod converges if and only

if the parameters ω, τ lie in any of the corresponding domains given by Table 1, where

Table 1

Necessary and sufficient conditions for the convergence of the PSD method.

Case τ-Domain ω-Domain

ω � ω2(μ)

1 2
λ−(μ)

< τ < 0 ω1(μ) � ω

ω2(μ) � ω < ω3(μ)

2 h(ω,μ) < τ < 0 ω4(μ) < ω � ω1(μ)

ω3(μ̄) < ω � ω5(μ̄)

3 0 < τ < h(ω, μ̄) ω6(μ̄) � ω < ω4(μ̄)

4 0 < τ < 2
λ+(μ̄)

0 < ω5(μ̄) � ω � ω6(μ̄)
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ω1(μ) = 2

1 + μ − (1 + μ2)
1/2

, ω2(μ) = 2

1 − μ − (1 + μ2)
1/2

,

ω3(μ) = 1 − 1

μ
(2 + μ2)

1/2
, ω4(μ) = 1 + 1

μ
(2 + μ2)

1/2
,

ω5(μ) = 2

1 + μ + (1 + μ2)
1/2

, ω6(μ) = 2

1 − μ + (1 + μ2)
1/2

,

h(ω,μ) = 2 + ω(2 − ω)μ2

1 + μ2
(23)

and λ±(μ) is given by (25).

Proof. If B has imaginary eigenvalues, then substituting μ2 with −μ2, it follows from (16) that

λ2 − (2 + ω̂μ2)λ + 1 + μ2 = 0. (24)

We remark that the eigenvalue relationship (24) is the same as the one satisfied by the eigenvalues

of the preconditioned matrix (see (2.6) of [13]) of the extrapolated SOR (ESOR) method and B, where

ω̂ plays the role of ω. It follows that the ESOR method’s convergence analysis developed in [13] can be

applied in the present case. As a result, the convergence conditions of PSD are given by Table 2.1 of

[13] or by Table 2, with

λ±(μ) = 2 + ω̂μ2 ± �̂
1/2

2
, (25)

ω̂6(μ) = 2

1 − (1 + μ2)1/2
and ω̂7(μ) = 2

1 + (1 + μ2)1/2
, (26)

where

�̂ ≡ �̂(μ) = μ2(ω̂2μ2 + 4ω̂ − 4) (27)

with ω̂6(μ) < 0 < ω̂7(μ) < 1 and h(ω̂,μ) = 2+ω̂μ2

1+μ2 . Note, that the τ-ranges of Table 2 are the same as the

ones given in Table 1.

In the following, we express the ranges of ω̂, for each case of Table 2, in terms of ω using (11).

Case 1: In this case ω̂ � ω̂6(μ), which is equivalent to ω(2 − ω) � ω̂6(μ), it follows that

ω � ω2(μ) or ω1(μ) � ω,

where ω1(μ) and ω2(μ) are given by (23), with ω2(μ) < 0 < ω1(μ). Hence, case 1 of Table 1 is proved.

Case 2: Here ω̂6(μ) � ω̂ < −2/μ2 which is equivalent to

ω̂6(μ) � ω(2 − ω) < −2/μ2. (28)

The left-hand side inequality of (28) is equivalent to

ω2(μ) � ω � ω1(μ), (29)

whereas the right-hand side is equivalent to

ω < ω3(μ) or ω4(μ) < ω, (30)

Table 2

Necessary and sufficient conditions for the convergence of the PSD method.

Case τ-Domain ω-Domain

1 2
λ−(μ)

< τ < 0 −∞ < ω̂ � ω̂6(μ)

2 h(ω̂,μ) < τ < 0 ω̂6(μ) � ω̂ < −2
μ2

3 0 < τ < h(ω̂, μ̄) −2
μ̄2 < ω̂ � ω7(μ̄)

4 0 < τ < 2
λ+(μ̄)

ω7(μ̄) � ω̂ < +∞
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where ω3(μ) and ω4(μ) are given by (23). From (29) and (30) it follows that

ω2(μ) � ω < min{ω1(μ),ω3(μ)} (31)

or

max{ω2(μ),ω4(μ)} < ω � ω1(μ). (32)

It is easily verified that (31) and (32), are equivalent to

ω2(μ) � ω < ω3(μ)

or

ω4(μ) < ω � ω1(μ),

respectively, with ω2(μ) < ω3(μ) < 0 < 2 < ω4(μ) < ω1(μ). So case 2 of Table 1 is proved.

Case 3: In this case −2/μ̄2 < ω̂ � ω̂7(μ̄), which is equivalent to

− 2/μ̄2 < ω(2 − ω) � ω̂7(μ̄). (33)

By the left-hand side inequality of (33) it follows that

ω3(μ̄) < ω < ω4(μ̄), (34)

whereas the right-hand side of (33) is equivalent to

ω � ω5(μ̄) or ω6(μ̄) � ω, (35)

where ω5(μ) and ω6(μ) are given by (23). From (34) and (35) it follows that

ω3(μ̄) < ω � min{ω4(μ̄),ω5(μ̄)}
or

max{ω3(μ̄),ω6(μ̄)} � ω < ω4(μ̄).

The above inequalities are equivalent to

ω3(μ̄) < ω � ω5(μ̄)

or

ω6(μ̄) � ω < ω4(μ̄),

respectively, with ω3(μ̄) < 0 < ω5(μ̄) < ω6(μ̄) < 2 < ω4(μ̄). Consequently, case 3 of Table 1 is proved.

Case 4: In this case ω̂7(μ̄) � ω̂, which is equivalent to ω̂7(μ̄) � ω(2 − ω), from which it follows that

0 < ω5(μ̄) � ω � ω6(μ̄).

Therefore, case 4 of Table 1 is proved. �

Corollary 3.1. Under the hypothesis of Theorem 3.3 and if μ = 0, then the PSD method converges if and

only if

ω3(μ̄) < ω < ω4(μ̄) and 0 < τ <
2

λ+(μ̄)
, (36)

where ω3(μ) and ω4(μ) are given by (23) and λ+(μ̄) by (25).

Proof. From Corollary 2.3 of [13], we have that S(Dτ ,ω) < 1 if and only if

− 2

μ̄2
< ω̂ < +∞ and 0 < τ <

2

λ+(μ̄)
. (37)

It is readily verified that, because of (11), the left-hand side inequality of (37) yields the first part

of (36). �
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Table 3

Sufficient and necessary conditions for the convergence of the SSOR method.

μ̄-Condition μ-Condition Case ω-Domain

μ̄ � 1 − 1 0 < ω < 2

1 < μ̄ μ < 1 2 0 < ω < 2

3 0 < ω < ω13(μ̄)

1 � μ 4 ω14(μ̄) < ω < 2

Theorem 3.4. If the matrix B of (15) has imaginary eigenvalues, then the SSOR method converges if and

only if any case of Table 3 holds, where

ω13(μ) = 2

1 + μ + (μ2 − 1)
1/2

and ω14(μ) = 2

1 + μ − (μ2 − 1)
1/2

.

Proof. If B has imaginary eigenvalues the functional relationship for the SSOR method is obtained by

letting μ2 = −μ2 in (12), which gives

ν2 + (ω̂2μ2 + 2ω̂ − 2)ν + (ω̂ − 1)
2 = 0.

By Lemma 2.1 of [21] it follows that |ν| < 1 if and only if

0 < ω̂ < 2 (38)

and

ω̂2(1 − μ2) − 4ω̂ + 4 > 0. (39)

In the following, we consider the three cases: case 1: μ̄ � 1, case 2: 1 � μ and case 3: μ < 1 < μ̄.

Case 1: μ̄ � 1. In this case inequality (39) is satisfied for

ω̂ <
2

1 + μ̄
or ω̂ >

2

1 − μ̄
. (40)

Combining (40) and (38) we have that

0 < ω̂ <
2

1 + μ̄
. (41)

Expressing (41) in terms of ω yields

0 < ω < 2. (42)

Hence, case 1 of Table 3 is proved.

Case 2: 1 � μ. In this case (39) and (38) hold for

0 < ω̂ <
2

1 + μ̄

which in terms of ω yields either

0 < ω < ω13(μ̄) (43)

or

ω14(μ̄) < ω < 2, (44)

where 0 < ω13(μ̄) < ω14(μ̄) < 2. Hence, cases 3 and 4 of Table 3 are proved.

Case3:μ< 1< μ̄. Letα,β be twopositive integers such thatμα =max{|μ| | |μ| < 1},μβ =min{|μ| | |μ|>1}
and consider the following two cases: (i) μ � |μ| � μα and (ii) μβ � |μ| � μ̄.

(i) By case 1,we have that (42) holds. (ii) By case 2,we have that either (43) or (44) holds. Combining

(42) and (43) we find that the SSOR method converges when 0 < ω < 2. Similarly (42) and (44) yield

the same range of ω. Therefore, case 2 of Table 3 is proved. �
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Table 4

Sufficient and necessary conditions for the convergence of the PJ method.

Condition Case ω-Domain

μ̄ < 1 1 ω7(μ̄) < ω < ω8(μ̄)

2 ω7(μ̄) < ω < ω9(μ̄)

1 � μ̄ <
√
3 3 ω10(μ̄) < ω < ω8(μ̄)

Theorem 3.5. If the matrix B of (15) has imaginary eigenvalues, then the PJ method converges if and only

if any case of Table 4 holds, where

ω7(μ) = 1 − 1

|μ| , ω8(μ) = 1 + 1

|μ| ,

ω9(μ) = 1 − 1

|μ|

(
μ2 − 1

2

)1/2

, ω10(μ) = 1 + 1

|μ|

(
μ2 − 1

2

)1/2

. (45)

Proof. Since the matrix B has imaginary eigenvalues the functional relationship for the PJ method is

obtained by letting μ2 = −μ2 in (14) to give

ν2 + ω̂μ2ν + μ2(1 − ω̂) = 0.

By Lemma 2.1 of [21] it follows that |ν| < 1 if and only if

μ2 − 1

μ2
< ω̂ <

μ2 + 1

μ2

and

ω̂ <
1

2

μ2 + 1

μ2
,

which are equivalent to

μ̄ <
√
3,

μ̄2 − 1

μ̄2
< ω̂ <

1

2

μ̄2 + 1

μ̄2
. (46)

Expressing (46) in terms of ω yields

ω2 − 2ω + μ̄2 − 1

μ̄2
< 0 (47)

and

ω2 − 2ω + μ̄2 + 1

2μ̄2
> 0. (48)

Further (47) is satisfied for

ω7(μ̄) < ω < ω8(μ̄), (49)

where ω7(μ̄) and ω8(μ̄) are given by (45). Inequality (48) is satisfied if either μ̄ < 1, or if 1 � μ̄ <
√
3

and either

ω < ω9(μ̄) or ω > ω10(μ̄), (50)

where ω9(μ̄),ω10(μ̄) are given by (45). If μ̄ < 1 then, in view of (49), case 1 of Table 4 is proved. If

1 � μ̄ <
√
3 then combining (49) and (50) we have either

ω7(μ̄) < ω < ω9(μ̄)

or

ω10(μ̄) < ω < ω8(μ̄)

and cases 2 and 3 of Table 4 are proved, respectively. �
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4. Optimum parameters

In the present section, we determine the optimum values τ0,ω0 of τ ,ω, respectively, for which the

rate of convergence of the PSD method is maximized.

4.1. The real case

Let us assume that all the eigenvalues {μj}Nj=1
of the associated Jacobi iteration matrix are real. If

we let S(Dτ ,ω) denote the spectral radius ofDτ ,ω , we can state the following.

Theorem 4.1. If the matrix B of (15) has real eigenvalues and μ̄ < 1, then S(Dτ ,ω) is minimized at

ω0 = 1 and τ0 = 2

2 − μ̄2
(51)

and its corresponding value is given by

S(Dτ0,ω0
) = μ̄2

2 − μ̄2
. (52)

Proof. By Lemma 3.1 and Theorem 3.1 λ±(μ), the eigenvalues ofBω , are real and positive. In this case

the optimum value for τ is given by [18,21]

τ0 = 2

λ+(μ̄) + λ−(μ̄)
(53)

and

S(Dτ0,ω̂) = P(Bω̂) − 1

P(Bω̂) + 1
with P(Bω̂) = λ+(μ̄)

λ−(μ̄)
. (54)

Since S(Dτ0,ω̂) is an increasing function of P(Bω̂) it suffices to minimize P(Bω̂) with respect to ω̂ in

order to find the optimum value of ω̂. Using (17) in (54) it is easily verified that

P(Bω̂) = 4(1 − μ̄2)

ϕ(ω̂, μ̄)
,

where ϕ(ω̂, μ̄) =
(
2 − ω̂μ̄2 −

√
�̂(μ̄)

)2

and �̂(μ̄) is given by (27). A study of the behavior of ϕ as a

function of ω̂ reveals that P(Bω̂) is a decreasing function of ω̂. Moreover (11) yields

ω2 − 2ω + ω̂ = 0,

which for ω ∈ R we must have

ω̂ � 1. (55)

Since P(Bω̂) is a decreasing function of ω̂, then its maximum value is achieved at ω̂0 = 1, which in

turn yields ω = 1. In addition (53), because of (17), yields τ0 = 2
2−ω̂0μ̄2 , which proves (51) since ω̂0 = 1.

Moreover, for ω̂0 = 1 (54) yields (52). �

In other words Theorem 4.1 states that the PSD method coincides with the extrapolated Gauss–

Seidel (EGS) method [10] for optimum parameter values. An analogous result holds also for the SSOR

method with ω0 = 1 and [1]

S(Dω0,ω0
) = μ̄2.
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Theorem 4.2. If the matrix B of (15) has real eigenvalues and μ̄ < 1, then S(D1,ω) is minimized at ω0 = 1

and its corresponding value is given by

S(D1,ω0
) = μ̄2. (56)

Proof. The eigenvalue relationship (14) connecting the eigenvalues ofD1,ω̂ with B is the same as the

one found in [14] between the preconditioned matrix of the ESOR method and B. In addition, the

eigenvalues ofD1,ω̂ are real sinceDτ ,ω̂ possesses real eigenvalues. Hence, from (14) it follows that

S(D1,ω̂) = max
μ2

|ω̂|μ̄2 + �̂
1/2

2
. (57)

For ω̂ ∈ (ω�, 0), where ω� is given by (22), S(D1,ω̂) is an increasing function of ω̂, whereas for 0 < ω̂ < ωr

D1,ω̂ is a decreasing function of ω̂. Therefore, because of (55) and (22), its minimum value is attained

at ω̂0 = 1 and its corresponding value, because of (57), is given by (56). �

As a resultwehave that the SSORmethodand thePJmethod coincidewith theGauss–Seidelmethod

for optimumparameter values.Note that the convergence rate of the EGSmethod is twice that of theGS

method [10]. As a consequence the PSD method will converge asymptotically twice as fast compared

to the SSOR and PJ methods.

4.2. The imaginary case

In the present case, the associated Jacobi iteration matrix has imaginary eigenvalues. Since the

eigenvalue relationship betweenDτ ,ω and B is (24), which coincides with (2.6) of [13], it follows that

we can apply Theorem 3.3 of [13] for determining the optimum values for ω and τ .

Theorem 4.3. If the matrix B of (15) has imaginary eigenvalues, then S(Dτ ,ω) is minimized at

ω0 = ω5(μ̄) or ω0 = ω6(μ̄) and τ0 = 2 + ω0(2 − ω0)μ
2

2(1 + μ2)
(58)

and its corresponding value is given by the expression

S(Dτ0,ω0
) = μ(μ̄2 − μ2)1/2

(1 + μ2)1/2(1 + (1 + μ̄2)1/2)
, (59)

where ω5(μ̄),ω6(μ̄) are given by (23).

Proof. According to Theorem 3.3 of [13] the optimum values for ω̂ and τ occur at ω̂0 = ω̂7(μ̄) where

ω̂7(μ̄) is given by (26) with τ0 given by (58), which on letting ω̂0 = ω0(2 − ω0) yields the two optimum

values of ω given in (58). �

Remark. The expression in the right-hand side of (59) is the minimum value of the spectral radius of

the ESOR method (see (3.18) of [13]). Therefore, in the imaginary case the PSD method and the ESOR

method coincide for optimum values of their parameters.

Corollary 4.1. Under the hypothesis of Theorem 4.3 and if μ = 0, then S(Dτ ,ω) is minimized at τ0 = ω̂7(μ̄)

and ω0 = ω5(μ̄) or ω0 = ω6(μ̄) and its corresponding value is given by

S(Dω0,ω0
) = 1 − ω̂7(μ̄) =

(
μ̄

1 + (1 + μ̄2)1/2

)2

. (60)

Proof. According to Corollary 3.4 of [13] the optimum values for τ and ω̂ occur at τ0 = ω̂0 = ω̂7(μ̄),

which by letting ω̂0 = ω0(2 − ω0) yields the two optimum values of ω,ω5(μ̄) and ω6(μ̄). �
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Table 5

Optimum values for ω0, τ0 and S(Dτ0,ω0
).

Condition Case ω0 τ0 S(Dτ0,ωopt )

μ = 0 1 ω5(μ̄) or ω6(μ̄) 2
1+(1+μ̄2)1/2

μ̄2

(1+(1+μ̄2)1/2)2

μ /= 0 2 ω5(μ̄) or ω6(μ̄)
1+μ2+(1+μ̄2)1/2

(1+μ2)(1+(1+μ̄2)1/2)

μ(μ̄2−μ2)1/2

(1+μ2)1/2(1+(1+μ̄2)1/2)

3 ω5(μ̄) or ω6(μ̄) 1
(1+μ2)1/2 0

μ = μ̄ = μ 4 ω1(μ̄) or ω2(μ̄) − 1
(1+μ2)1/2 0

As a result we have that ifμ = 0, then the PSDmethod coincides with the SORmethod for optimum

parameter values.

Corollary 4.2. Under the hypothesis of Theorem 4.3 and if μ = μ̄ = μ, then for either

(i) ω0 = ω5(μ) or ω0 = ω6(μ) and τ0 = 1

(1 + μ2)1/2

or

(ii) ω0 = ω1(μ) or ω0 = ω2(μ) and τ0 = − 1

(1 + μ2)1/2
,

we have S(Dτ0,ω0
) = 0.

Proof. It follows immediately from Corollary 3.5 of [13]. �

Table 5 summarizes the results of Theorem 4.3 and Corollaries 4.1 and 4.2.

Theorem 4.4. If the matrix B of (15) has imaginary eigenvalues and S(Dω(2−ω),ω) < 1, then S(Dω(2−ω),ω)

is minimized at

ω0 = ω5(μ̄) (61)

and its corresponding value is given by the expression

S(Dω0(2−ω0),ω0
) = 1 − ω5(μ̄) =

(
μ̄

1 + (1 + μ̄2)1/2

)2

. (62)

Proof. The SSOR method has the same functional relationship as the SOR method where instead of

ω we now have ω̂. Following the SOR theory [15] we can determine the optimum value ω̂0 = ω̂7(μ̄)

which in terms of ω yields (61). Therefore, S(Dω̂0,ω̂0
) = 1 − ω̂0 or S(Dω̂0,ω̂0

) = (1+μ̄2)1/2−1
(1+μ̄2)1/2+1

, which yields

(62). �

Accordingly, the SSOR method coincides with the SOR method for optimum parameter values.

Also, from the above theorem and Corollary 4.1 we have that if μ = 0, then the PSD method coincides

with the SSOR and SORmethods for optimum parameter values. Furthermore, note that the optimum

parameter value ω5(μ̄) in the SSOR method is equal to one of the optimum parameter values of ω of

the PSD method.

Theorem 4.5. If the matrix B of (15) has imaginary eigenvalues and S(D1,ω) < 1, then S(D1,ω0
) is mini-

mized at either

ω0 = ω5(μ̄) or ω0 = ω6(μ̄) (63)

and its corresponding value is given by

S(D1,ω0
) = μ̄2

1 + (1 + μ̄2)1/2
. (64)
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Proof. From Theorem 3.6 of [13], S(D1,ω̂) is minimized at

ω̂0 = ω̂7(μ̄) (65)

and its corresponding value is given by the expression

S(D1,ω̂0
) = μ̄

(
(1 + μ̄2)1/2 − 1

(1 + μ̄2)1/2 + 1

)1/2

, (66)

where ω̂7(μ̄) is given by (26). From (65) we obtain the optimum values of ω given by (63), whereas

(66) yields (64). �

5. Comparisons

Recall that for any convergent iterative method of the form u(n+1) = Gu(n) + k,n � 0

R(G) = − log S(G) (67)

is the rate of convergence whereas

RR(G) = 1/R(G) (68)

is its reciprocal rate of convergence which is associated with the number of iterations [21].

In the following, we compare the reciprocal rates of convergence for the PSD, SSOR and PJmethods.

5.1. The real case

With (52) and (67), it follows from log(1 + x) = x + O(x2) as x → 0 that for μ̄ close to 1, we have

R(Dτ0,ω0
) = − log S(Dτ0,ω0

) = − log
μ̄2

2 − μ̄2
� 2(1 − μ̄2). (69)

Similarly, from (60) and (64) we have

R(Dω0(2−ω0),ω0
) = R(D1,ω0

) � 1 − μ̄2. (70)

From (70), (69) and using (68) we conclude that

RR(Dτ0,ω0
) = 1

2
RR(Dω0(2−ω0),ω0

) � 1

2
RR(D1,ω0

). (71)

Accordingly, the reciprocal rate of convergence for the PSDmethod is approximately half the reciprocal

rate of either the SSOR method or the PJ method.

5.2. The imaginary case

From (62) and (64) it follows that

S(Dω0(2−ω0),ω0
) = S(D1,ω0

)

1 + (1 + μ̄2)1/2
. (72)

From (72), using (67), we obtain

R(Dω0(2−ω0),ω0
) = − log S(Dω0(2−ω0),ω0

) = − log S(D1,ω0
) + log(1 + (1 + μ̄2)1/2)

= R(D1,ω0
) + log(1 + (1 + μ̄2)1/2). (73)

From (73) it follows that the rate of convergence of the SSORmethodwill exceed that of the PJ method

as μ̄ increases. As regards the optimum PSD method, if μ = 0 it coincides with the optimum SOR

method, since both have the same spectral radius (Corollary 4.1). Furthermore, ifμ = μ̄ (Corollary 4.2),

then S(Dτ0,ω0
) = 0 < S(Dω0(2−ω0),ω0

).
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In the following, we compare the PSD and SSOR methods when 0 < μ < μ̄. Setting x = 1 + μ2 and

y = 1 + μ̄2 (62) yields

S(Dω0(2−ω0),ω0
) =

√
y − 1√
y + 1

and (59) becomes

S(Dτ0,ω0
) =

√
x − 1

√
y − x√

x(1 + √
y)

,

where 1 < x < y. As it is easily shown that
√
x − 1

√
y − x√

x(1 + √
y)

<

√
y − 1√
y + 1

,

it follows that

S(Dτ0,ω0
) < S(Dω0(2−ω0),ω0

). (74)

From (71), (72) and (74) it follows that

RR(Dτ0,ω0
) < RR(Dω0(2−ω0),ω0

) < RR(D1,ω0
).

In addition, a simple study of the behavior of S(Dτ0,ω0
)with respect toμ2 reveals that it is a decreas-

ing function if
√
1 + μ̄2 < 1 + μ2. This means that the PSD method will produce a fast rate of conver-

gence for large values of μ2 whereas this is not the case for the SSORmethod as its rate of convergence

is independent of μ. Finally, recall that the reciprocal rates of the PSD and ESORmethods are the same

in the imaginary case.

The aforementioned results serve to justify the claim to superiority of the PSD method when com-

pared to the SSOR and PJ methods where the eigenvalues of the associated Jacobi iteration matrix are

either all real or all imaginary.

6. Remarks and conclusions

In this paper, we analysed and compared the rates of convergence of the iterative methods PSD,

SSOR and PJ under the assumptions that the associated Jacobi iteration matrix B is of a two-cyclic

block form (15) and all its eigenvalues are either real or imaginary. Applying the results of [13,14]

we were able to find sufficient and necessary conditions for the aforementioned iterative schemes to

converge. In addition, we determined the optimum values of their parameters such that they attain

their optimum rate of convergence. The conclusions from our analysis are: (i) the PSD method attains

a faster rate of convergence than the SSOR and PJ methods and (ii) while the rate of convergence of the

PSDmethod is similar to that of the EGSmethod if B possesses real eigenvalues, it increases by an order

of magnitude and becomes equal to that of the ESOR method if B possesses imaginary eigenvalues.

The PSD method can be combined with semi-iterative methods in a way that is analogous to the

development of the SSOR method. This raises the possibility that the rate of convergence of the PSD

methodcanbe further improvedby theapplicationof suchaccelerationdevices.Where theeigenvalues

of theassociated Jacobimatrix are all real (the real case) it hasbeen shown in [18,21] that this possibility

does indeed occur and yields a performance equivalent to the semi-iterative Gauss–Seidel method

(SI-GS). However, in the imaginary case, the problem has to be investigated further.

The use of the PSD method with complex parameters τ ,ω with σ(B), the complex spectrum of the

associated Jacobi matrix B, belonging to a compact subset � of the complex plane C symmetric with

respect to the origin is a problem that is yet to be investigated. An equivalent problem has been solved

recently in [7] for the SORmethod, where it was shown that if the outer boundary of� is not an ellipse

then the SI-SORmethod is always advantageous over the sole use of the SORmethod and that if 0 ∈ �
then a best choice would be an asymptotically optimum (AO) SI method based on the Gauss–Seidel

method. If � is an ellipse, then any AOSI-SORmethod is equivalent to the optimal SORmethod, which

means that SI acceleration does not improve the rate of convergence in this case. Furthermore, for
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the ellipse Ea,b,θ with major and minor axes [−aeiθ , aeiθ ] and [−beiθ+π/2, beiθ+π/2], respectively, where

a � b � 0, a > 0 and θ ∈ [0,π ], which is symmetric with respect to the origin and does not contain 1,

the optimal value of the SOR parameter ωopt and the spectral radius S(Lωopt ) of the associated SOR

iteration matrixLωopt can be obtained via the formulas:

ωopt = 2

1 +
√
1 − μ2

0

, S(Lωopt ) =
⎛⎝ a + b

1 +
√
1 − μ2

0

⎞⎠2

, (75)

where 	 (√·) > 0 and ±μ0 = ±ceiθ , with c =
√
a2 − b2.

Let us finally indicate how the investigation of the PSD method with complex parameters might

proceed in the light of this analysis of the SOR method. Initially, one has to consider the ESORmethod

since bothmethods share the same eigenvalue relationship. As the ESORmethod is a first order extrap-

olation of the SOR method it follows that AOSI-ESOR will be equivalent to AOSI-SOR except in case

of the ellipse symmetric with respect to the origin where the ESOR method might produce a better

rate of convergence than the SOR method. However, it should be noted that if 0 ∈ �, then the optimal

ESOR method is equivalent to the optimal SOR method as has been proved in [13,14] for the real and

imaginary cases. Further, it is conjectured that the optimum ω for the ESOR method will be the same

equal to that given by (75) since both methods coincide if τ = ω.

As the PSD method is a more general method than the ESOR method one would expect that its

convergence would be better. Yet its optimal behavior suppresses the factor (I − ωU)−1 which appears

in its preconditioned matrixBω (see (5)) which reduces the optimal PSDmethod to the optimal ESOR

method. It is conjectured that this phenomenon appears due to the cyclic nature of the matrix A and

that themethodwill showabetter convergence for non-cyclicmatriceswhich can arise from the use of

high order discretization, e.g. 9-point, 13-point stencils, in the numerical solution of partial differential

equations or from the discretization of mixed derivatives.
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