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Abstract: Variational grid generation techniques are now used to produce grids suitable for solving numerical partial
differential equations in irregular geometries. In this paper the existence and uniqueness of solutions of the volume
and smoothness problems that are used in variational grid generation are studied. An analysis of the Euler-Lagrange
(EL) equations near the identity shows that the volume problem is difficult. These variational problems use a reference
grid to specify the properties of the desired grid. Replication of reference grid properties is analyzed. Examples are
given that show the effectiveness of the reference grid concept.
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Introduction

In the variational methods introduced by Steinberg and Roache [7] which are based on those
of Brackbill and Saltzman [1], two functionals are presented that provide (i) the measure of
spacing between the grid lines (smoothness) and (ii) the measure of the area of the grid cells. The
minimization problem is usually solved by calculating the Euler—Lagrange (EL) equation for the
variational problem. The computer creates a grid by solving a central finite differences ap-
proximation of the EL equations.

The code used in this paper is based on the ideas presented in [7] on surface grid generation,
where the code generates a grid on the boundary (curve) and a grid on the interior; the surface
(or region) must be parameterized. We would like to exercise a more refined control over the
grid. There are many ways to do this, but the following is convenient. We imagine that the
physical region is rather complex. We also assume that we have another region, called the
reference region, that is somewhat like the physical region but usually considerable simpler, and
that we can make a grid on the reference region that contains the essential features of the grid
that we want to put on the physical object. The reference grid is thought of as being in reference
space. Note that the reference space must have the same dimension as the physical object. It is
also important to notice that the reference grid not only specifies the grid properties in the
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interior of the geometric object, but also determines the grid properties on the boundary of the
geometric object [7].
In m-dimensions the integrals to be minimized are: for smoothness
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Here v=(vy, Ug,.--50,), P=(¥1, V25 Vp)s T=(T1, Tap.-., T,), 0=0(»), T=7(¥), B is a ‘box’

in » space. Also, 7 is a given map from B to the reference region and # maps B onto the
physical region; it is given on the boundary and must be calculated in the interior of the region
(see Fig. 1). In this case the constraints are automatically satisfied [7].

1. Euler-Lagrange equations in 2-D

In the case m = 2 (see Fig. 1), we set

u=(x, y)’ v=($,n), ’T=(0£,B)-

Hence, the integral to be minimized for smoothness is:

and for volume
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and then [7] the EL equations for the smoothness are:
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The EL equations for the volume are (7]
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where Jg is the Jacobian of the reference mapping 7 and J is the Jacobian of the mapping we
want to construct (see Fig. 1). For the smoothness problem, 4 and B are fixed and positive if the
reference map is proper. The EL equations are linear, elliptic and uncoupled. Note also that this
is true for m dimensions as well as it is for 2 dimensions.

The EL equations for the volume problem can also be written in the following way:

where
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this case the equations are the same as the ones presented by Brackbill and Saltzman [1]. It will
be shown that these equations are nonlinear, not elliptic, and coupled. To see this situation more

clearly, we now do an analysis for the simplest form of these equations.
1.1. Near identity analysis in 2-D

In order to study solutions of the EL equations that are nearly identity maps, x = £, y =1, the
reference map is chosen to be the identity. To do a near identity analysis we view the EL
equations as quasi-linear partial differential equations of the form

Afé& + Bf&n _+ Cfnn
where 4, B, C, D depend on f, f,, f,. Here A4, B, C, D are made constant by choosing fixed f,
f&’ fn‘

To study near identity maps, set x=¢, y=mn; so x,=1, x, =0, y,=0 and y,=1. The EL

equations for the smoothness integral become
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£ s Vet V=0, 7

whirh snennirnlad allistins cvetar ~Ff DMNEs W Aauaravans n tha ~raca ~AF thha xralizemn 1vtaceanl cora
JVELWIR Y ID all ull\/UuPl\/ \/llll}ll\u D.yalblll Ul L LD AAUWUVCA, 111 ULIIC LAaosu Ul LUIC YUILUILLIO IILLCEI al wo

get a degenerate system,
x§£+y€n=0’ xEn+y7m=O’ (8)
which can be easily checked to be not elliptic.

Based on this, we should expect difficulties with the codes that are used for solving these
problems, since they are elliptic solvers. However, experience shows the opposite: [4], [S] and [6].
This may seen surprising; however, the programs that are used solve an approximation of the EL
equations so they do not deal with the degenerate problem.

1.2. Replication of reference grid properties in 2-D

One of the questions to be asked with respect to the usefulness of the reference grid concept is
the possibility of being able to reproduce any reference grid on the physical object. We do not
expect an arbitrary reference grid to be replicated; the simplest test of the replication property is
given is the reference region is chosen to be the same as the physical region and checking to see if
the reference mapping satisfy the Euler—Lagrange equations. Surprisingly, this does not always
happen. When we choose the mapping, x = «, and y = B8, the smoothness equations for (x, y)
become

Clagg + Czan" + C3B€€ + C4BTT’7 = O, - C3a€g + C4a7m + D3B£§ + D4B7l"1 = 0,
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Fig. 2. The Real Problem.

In general, since these equations are nontrivial, it is not possible to replicate the reference grid
but in simple geometries. In particular, if the reference grid is a quadrilateral, x and y are linear;
hence the above equations are satisfied, so the smoothness integral replicates the reference grid.
In the case of the volume control, a similar calculation can be done. After some algebra, the
constraining equations become an identity. Thus, the reference grid always can be replicated.
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Fig. 3. Evenly spaced 5 by 5 grid (smoothness-noreference grid).
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Hor tzontal range: 8. to 12.8000 Unit = 1.08030
Vertical ranqe: 8. to 1.0006 Unit =  0.1000
Fig. 4(a). Evenly spaced reference grid.
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Fig. 4(b). Evenly spaced 5 by 5 grid (smoothness).
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Fig. 5(a). Exponentially stretched 5 by 5 reference grid.
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Fig. 5(b). Exponentially stretched 5 by 5 grid (smoothness).
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Hor 1zontal range: 8, to 12.0888 Unit =  |.0300
Vertical rance: 9. to 1.8889 Unit =  D.1808

Fig. 6(a). Exponentially stretched 5 by 5 reference grid.
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We use the region between two ellipses as a standard test problem [4] (see Fig. 2). This region
is chosen because most grid generators have problems with this type of geometry [4]. The grid in
this figure was generated using the ideas presented in [7] and was one of the best grids that we
could generate without the reference grid concept. The grid in Fig. 3 was generated with no
reference grid. The grid in Fig. 4(b) was generated using an evenly spaced grid in a rectangle as a
reference grid (see Fig. 4(a)). The grids in Fig. 5(b) and Fig. 6(b) were generated using an
exponentially spaced grid in a rectangle as a reference grid (see Fig. 5(a) and Fig. 6(a)). These
grids clearly illustrate the effects of the reference grid. Note that the grids in Figs. 3, 4(b), 5(b)
and 6(b) were generated using only smoothness control.

3. Conclusions

The near the identity analysis shows that the Euler—Lagrange equations appearing in the
variational grid generation method need not be elliptic. Reference grids are not reproduced
exactly in the physical region, but they play an important role in exercising a more refined
control over the grid properties. Variational grid generators that use the reference grid concept
produce grids suitable for solving numerical partial differential equations.
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