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Z. Ftiredi and D. J. Kleitman proved that if an integer weight is assigned to each 
edge of a complete graph on p+ 1 vertices, then some spanning tree has total 
weight divisible by p. We obtain a simpler proof by generalizing the result to 
hypergraphs. 0 1991 Academic Press, Inc. 

1. INTIC~DUCTION 

The following theorem is due to 2. Fiiredi and D. J. Kleitman [2]. (It 
was conjectured by A. Bialostocki and P. Dierker El], who proved the 
case when p is prime.) 

THEOREM (1.1). Let r be a finite abelian group of order p, and let 
w: E(K, +. 1) -+ r be some function. Then there is a spanning tree T of K, + 1 
with w(T) = 0. 

(K, denotes the complete graph with n vertices; E(G) denotes the set of 
edges of a graph G; w(T) means C(w(e): e E E(T)), where the summation is 
in l7) 

* This research was performed under a consulting agreement with Bellcore. 
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We shall give a simpler proof of (1.1). For inductive purposes, it is 
advantageous to prove a version of (1.1) for complete uniform hyper- 
graphs, because it is then easy to reduce the general problem to the case 
when p is prime. 

Thus, let V be a finite set. A hypergraph in V is a collection of subsets 
of V; and it is r-uniform if each of these subsets has cardinality r. (In this 
paper, all our hypergraphs will be r-uniform for some r.) If H is a hyper- 
graph, we denote lJ (e: e E H) by V(H). A hypergraph T is connected if 
T # 0 and for every partition (A, B) of V(T) such that A and B are both 
nonempty there is a member eE T with en A, en B both nonempty. It 
is easy to see that if T is connected and r-uniform then ) V(T)1 < 
(r - 1 j JTI + 1; and if equality holds we say that T is a tree. (If r = 2, this 
coincides with the usual definition of a tree for graphs, except for trees with 
< 1 vertex.) If H is r-uniform, and T G H is a tree, we call it a tree of H, 
and if V(T) = V(H) we call it a spanning tree of H. If Y is a finite set with 
1 VI > r, we denote by ( 7) the collection of all r-element subsets of K We 
shall prove the following generalization of (1.1). 

THEOREM (1.2). Let r be a finite abelian group of order p, let r > 2 be 
an integer, let V be a set of cardinality p(r - 1) + 1, and let w: (r) -+ r be 
some function. Then there is a spanning tree T of ( r) with w(T) = 0. 

(w(T) means Z(w(e): eE T).) 

2. THE PROOF OF (1.2) 

We require several lemmas. First, we shall need the following, which is 
a special case of the Cauchy-Davenport theorem (see [3]). (It can also be 
proved directly in a couple of lines, as the reader may verify.) 

LEMMA (2.1). Let p be prime, let A E Z,, and let b, c E Z, be distinct. If 
ldlA(dp-1 then 

If T is an r-uniform tree, we say that f~ T is a leaf of T if there exists 
u of such that e nf c (v} for every e E T - (f}. We call such an element 
u a root of the leaf e. If T, T’ are trees in ( r) with leaves e, e’, respectively, 
and T- (e} = T’- (e’>, we say that T’ is obtained from T by shifting a 
leaf. If T, T’ E(Y) are trees, we say that T is shiftable to T’ if there is a 
sequence 

T= T,, T,, . . . . Tk = T’ 
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of trees in ( y) such that Ti+ , is obtained from Ti by shifting a leaf for 
1 d i 6 k - 1. This is evidently an equivalence relation, and in fact all trees 
in (F) of the same cardinality are shiftable to one another, but we only 
need a weaker result, the following. 

LEMMA (2.2). Let r92, k> 1 be integers, let /VI >k(r- 1)+2, and let 
vO E V. Let TO be a tree in (T) with 1 T,j = k. Then TO is shiftable to a tree 
T with II,, $ V(T). 

Proof. We may assume that k z 2, for the result is clear if k = 1. If T is 
a tree in ( r) with QE V(T) and f is a leaf of T, we define d( T, f) to be the 
unique d > 1 such that there is a sequence 

vo=u1, e,, v2, e2, . . . . ud, ed=f 

satisfying 

ti) ur , v2, . . . . VIE V(T) are all distinct, and so are e,, e2, . . . . edE T 

(ii) vjEeiel for 2 Bidd, and viEei for 1 <ibd. 

Let us choose a tree T in ( r) such that TO is shiftable to T and u. E V(T), 
and a leaf f of T, in such a way that d( T, f) is maximum. Let u be a root 
off. Since ) TI > 2 it follows that T has at least two leaves; let f' be another 
leaf, with root u’. Since d(T, f’) < d(T, f) it follows that a0 #f- (u). 
Choose v~f- {u), and let e=(j-‘- (u’~)u (v>. Now T’=(T-‘(f’))v 
(e> is shiftable from T and hence from T,, and e is a leaf of it, and if 
v. $f’ - (u’> then d( T’, e) > d( T, f  ), a contradiction. Thus u. ~fl- {u’] 
and, since V(T) # V, the result follows. 1 

Again, let r>2, k>l and let IVl>k(r-l)+l. We say that SG(~) is 
a ( V, k)-blocker if IS n T( # @ for every tree T in ( r) with / 7’1 = k. Our 
third lemma is the following. 

LEMMA (2.3). Let r 2 2, k > 1 be integers, and let I VI = k(r - 1) + 1. Ij 
SC_ ( y) is a (V, k)-blocker then S includes a spanning tree of ( “;‘). 

Proof. The result holds if k = 1, and so we may assume that k > 2 and 
proceed by induction on k. Since there is a spanning tree and we may 
assume that it is not included in S, it follows that (21# S # ( y). Thus, we 
may choose e, f E(y) with jenfl =r- 1 and eeS, f 4s. Let V- 
(e n f) = v’. If T’ is a spanning tree of ( 7’) then T’ u if) is a spanning 
tree of ( r), and so S n (T’ u {f )) # 0, that is, S’ n T’ # 0, where S’ = 
S n ( 7’). Hence S’ is a (V’, k - 1)-blocker, and so S’ includes a spannmg 
tree T’ of (‘;“), from the inductive hypothesis. Then T’u (e) c S is a 
spanning tree of (‘;‘), as required. fl 
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We shall use (2.1~(2.3) to prove the following, which is the main step 
in the proof of (1.2). 

LEMMA (2.4). Let p be prime, let k 3 1, r 3 2 be integers with k < p, let 
V be a set of cardinality k(r - 1) + 1, and let w: (“I) -+ Z, be some function. 
Then either 

(i) there are k spanning trees T,, . . . . Tk with w(T,),..., w(Tk) all 
distinct, or 

(ii) k > 2 and there is a monochromatic (V, k - 1 )-blocker. 

(A subset SC ( r) is monochromatic if the restriction of w  to S is 
constant.) 

ProoJ: The result holds if k = 1, and so we may assume that k 3 2 and 
proceed by induction on k. We say that X_c V is joint if ) XJ = r - 1 and 
X= fi nf2 for some fi, f2 E (r) with w(fi) # w(f2). We assume that (i) is 
false. We may assume that 

(1) Some set XE V is joint. For ( F) is a ( V, k - 1 )-blocker since 
k > 2, and so we may assume that w  is non-constant on ( r), for otherwise 
(ii) holds. The claim follows. 

(2) If X is joint then k> 3 and there exists a monochromatic 
( V- X, k - 2)blocker. For let XC V be joint. Suppose that there are k - 1 
spanning trees T,, . . . . Tk- r of (‘TV) with w(T,), . . . . w(Tk- 1) all distinct. 
Choosef,, f,e(r) withf, nf,=X and w(fi)# w(f& Now Tru {fi} and 
Ti u (f2} are spanning trees of ( y) for 1 d id k - 1, and 

~(~(T,)+w(f,):1~i<k--11)u{w(T,)+w(f,):1~i~k--1}/~k 

by (2.1). Hence (i) holds, a contradiction. Thus, there do not exist k- 1 
such spanning trees. From our inductive hypothesis applied to V-X the 
claim follows. 

In particular, from (1) and (2) we deduce that k> 3. For each joint set 
X, let S(X) be a monochromatic ( V-X, k - 2) blocker, and let w(e) = q(X) 
for all e E S(X). 

(3) There exists q E Z, such that q(X) = qfor every joint set X. For let 
XI, X, be joint; we shall show that 4(X,)= 4(X,). Let X, u X, E 2~: V, 
where 121 = 2r - 2. Now S(X,) is a ( V- X1, k - 2)-blocker, and so 
S(X,) n ( ‘; “) is a ( V - Z, k - 2)-blocker. By (2.3), there is a spanning tree 
T of ( ‘;“) with TrS(X,). Similarly, S(X,)n(V;Z) is a (V-Z, k-2)- 
blocker, and so S(X,) n T # 0. Hence, S(X,) n S(X,) # 0, and the claim 
follows. 

Let us say a tree TE, ( r) is bad if 1 TI = k - 1 and w(e) # q for all e E T. 
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(4) If S; is a leaf of a bad tree T, and fie ('() with If;! 

V(T-(f,))l<l, then w(fi)=w(fi). For let V’=V(T-if,)). If 
XrV-V’isjointthenS(X)n(T-ff,))#0,whichisimpossibleby(3), 
since T is bad. Thus no subset of V- V’ is joint, and the claim follows. 

In particular, 

(5) lf T is a bad tree and T is shiftable to T’ then T’ is bad. 
Now by (l), there is a joint set X. If there is a bad tree, then by (r - 1) 

applications of (2.2), it is shiftable to a tree T with Xn V(T) = 0; and by 
(5), T is bad. But then Tn S(X) # 0, a contradiction as before. We deduce 
that there is no bad tree, and so {e E: ( r) : w(e) = 4 > is a (V, k - 1 )-blocker. 
Thus (ii) holds, as required. 1 

Finally, we use (2.4) to prove (1.2). 

Proof of (1.2). We proceed by induction on p If p is prime, then f E Z, 
and by (2.4) with k = p, either 

(i) there are p spanning trees T,, . . . . Tp with w(T,), . . . . w(T,) all 
distinct; but then one of them is zero, as required, or 

(ii) for some q E r there is a ( V, p - 1 )-blocker S such that w(e) = q 
for all e E S; but then S is a (V, p)-blocker and hence includes a spanning 
tree T, and w(T) = Z(q: e E T) = 0 as required. 

We may assume then that p is not prime, and so r has a proper sub- 
group r’, of order p’ say. Let P be the quotient group r/r’, of order p”’ 
say, where p = p’p”, and let 4: r -+ rrr be the homomorphism with kernel 
r’. For each eE (r), we define w”(e)=&w(e))EI”‘. Let r’=p”(r- l)+ 1. 
For each f  c V with IfI = r’, we define w’(f) as follows. From our induc- 
tive hypothesis applied to (T), r” and w”, there is a spanning tree T(f) of 
({) such that w”( T(f)) = 0; that is, w(T(f)) ET’. We define w'(f) = 

w(T(f)). From our inductive hypothesis applied to (F), r’ and w’, there is 
a spanning tree T’ of (7) with w’( T’) = 0. Let T = U (T(f) : f  es T'); then T 
is a spanning tree of (r) and 

w(T)= c c w(e)= c w’(f)=0 
fE T’ ee T(f) feT’ 

as required. 1 
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