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a  b  s  t  r  a  c  t

Anabolic/androgenic  steroids  (AAS)  are  drugs  that  enhance  muscle  mass,  and  are  often  illegally  utilized
in athletes  to improve  their  performances.  Recent  data  suggest  that  the  increased  risk  for  amyotrophic
lateral  sclerosis  (ALS)  in  male  soccer  and  football  players  could  be linked  to AAS  abuse.  ALS  is  a motor  neu-
ron  disease  mainly  occurring  in sporadic  (sALS)  forms,  but some  familial  forms  (fALS)  exist  and  have  been
linked to mutations  in  different  genes.  Some  of  these,  in  their  wild type  (wt)  form,  have  been  proposed
as  risk  factors  for  sALS,  i.e. superoxide  dismutase  1 (SOD1)  gene,  whose  mutations  are  causative  of  about
20% of  fALS.  Notably,  SOD1  toxicity  might  occur  both  in  motor  neurons  and  in  muscle  cells.  Using  gas-
trocnemius  muscles  of mice  overexpressing  human  mutant  SOD1  (mutSOD1)  at  different  disease  stages,
we  found  that the expression  of  a selected  set  of  genes  associated  to muscle  atrophy,  MyoD,  myogenin,
atrogin-1,  and  transforming  growth  factor  (TGF)�1,  is  up-regulated  already  at  the  presymptomatic  stage.
Atrogin-1  gene  expression  was  increased  also  in  mice  overexpressing  human  wtSOD1.  Similar  alterations
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otor neuron disease
GFbeta1

were found  in  axotomized  mouse  muscles  and  in  cultured  ALS myoblast  models.  In these  ALS  models,
we  then  evaluated  the  pharmacological  effects  of the  synthetic  AAS  nandrolone  on the  expression  of
the genes  modified  in  ALS  muscle.  Nandrolone  administration  had  no effects  on  MyoD,  myogenin,  and
atrogin-1  expression,  but it significantly  increased  TGF�1  expression  at disease  onset.  Altogether,  these
data  suggest  that,  in  fALS,  muscle  gene  expression  is altered  at early  stages,  and  AAS  may  exacerbate

duce
some  of the  alterations  in

. Introduction

ALS is an adult onset neurodegenerative disease characterized
y motor neuron loss in the cortex, brain stem and spinal cord.
oint mutations in the SOD1 gene have been found in about 20%
f fALS cases, while alterations of wtSOD1 behavior have been
eported in some cases of sALS [1,2]. sALS and fALS are clinically
ndistinguishable, and thus animal and cellular models expressing

utSOD1 are widely used to study the disease [3].  It is thought

hat SOD1 mutations destabilize protein conformation leading
o misfolding, which may  then result in protein accumulation,
xonal transport alterations, mitochondrial and/or proteasome
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d  by  SOD1  possibly  acting  as  a contributing  factor  also  in sALS.
© 2011 Elsevier Ltd. 

dysfunctions [3–5]. AAS have been proposed as a risk factor in
ALS. Indeed, a variable male/female ratio has been reported: the
ratio is 2.5 in younger groups (when males have elevated levels of
androgens), declining to 1.4 in the older groups [6],  and becoming
1:1 at ages above 60 (when androgen levels in males dramatically
decrease) [7–9]. Furthermore, an older average age of ALS onset is
reported in women [10] and in the mutSOD1 mouse model, dis-
ease progression is significantly more aggressive in males than in
females [11,12].  Recently, AAS drug abuse has been suggested as
one of the factors responsible for the increased ALS prevalence
in Italian soccer and American football players [13–17].  A typical
target of AAS is the skeletal muscle, particularly rich of the andro-
gen receptor (AR), the mediator of the AAS action. For this reason,
skeletal muscle mass and strength differ considerably in the two

Open access under CC BY-NC-ND license.
sexes. Notably, spinobulbar muscular atrophy, an ALS-related dis-
ease, is triggered by a mutation in the AR [18], while the selective
overexpression of wt  AR in mouse muscles induces an ALS-like phe-
notype with motor neuron dysfunctions and early death [19,20].
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hus, toxicity to motor neurons might also derive from their tar-
et muscle cells. In the mutSOD1 mouse model (expressing the
93A-hSOD1), the reduction of mutant protein in skeletal muscles
as no effect on disease progression [21], but the selective expres-
ion of mutSOD1 in skeletal muscle results in progressive muscle
trophy [22–24].  Furthermore, muscle dysfunction and neuromus-
ular junction degeneration occur long before disease onset and
otoneuronal death [25–27].
On this basis, we analysed the expression of a selected set of

enes involved in skeletal muscle pathophysiology to evaluate early
euromuscular abnormalities that precede motor neuron death in
LS and the potential involvement of AAS drugs as a risk factor for
LS.

The results here obtained in mutSOD1 mice demonstrate that,
lready at the presymptomatic stage, the expression of MyoD,  myo-
enin, atrogin-1, and transforming growth factor (TGF)ˇ1 genes are
p-regulated, and that AAS treatment resulted in a further increase
f TGF�1 expression levels.

. Materials and methods

.1. Animals and procedures

All the procedures involving animals and their care have been
onducted following the institutional guidelines and in accordance
ith national (D.L. no. 116, G.U. suppl. 40, February 18, 1992) and

nternational laws and policies (EEC Council Directives 86/609, OJ L
58, 1 DEC.12, 1987; NIH Guide for the Care and Use of Laboratory
nimals, U.S. National Research Council, 1996). Mice were main-

ained at a temperature of 21 ◦C with 55 ± 10% relative humidity
nd 12 h of light. Food (standard pellets) and water were supplied
d libitum.  Animals with substantial motor impairment had food
n the bottom of the cage and water bottles with long drinking
pouts. The time of death was defined when animals are unable
o right themselves within 30 s after being placed on both sides.
nimals were sacrificed by decapitation under anesthesia.

.1.1. Experiment 1 – mutSOD1 effects on muscle gene expression
t different stages of disease

We used transgenic mice carrying about 20 copies of mutant
93A-SOD1 or wt human SOD1 (hSOD1) originally obtained from

ackson Laboratories crossbred with a C57BL/6J mouse strain. The
enotyping of the litters was conducted by PCR (Primer sequences:
OD1 Forward: CATCAGCCCTAATCCATCTGA; SOD1 Reverse: CGC-
ACTAACAATCAAAGTGA) on DNA extracted from tail biopsies.
on-transgenic (NTg) littermates were used as controls. To eval-
ate disease stages, starting from the 14th week of age and twice

 week, mice were tested for deficit in grip strength and rotarod
erformance by the same operator. The symptoms onset was
onsidered when the mice showed the first impairment in grip
trength. Body weight loss was also monitored. Mice (n = 4 per
roup) were sacrificed at 80 (presymptomatic), 120 (on the average
ymptomatic), and 160 days (on the average end stage) [28].

.1.2. Experiment 2 – effects of sciatic nerve resection on muscle
ene expression

Three-month-old NTg male mice (C57BL/6 strain, n = 4) were
naesthetized with xylazine and ketamine. An incision was made
hrough the skin and the upper region of the left gluteal muscle
o expose the sciatic nerve, which was then cut 1–2 mm distal to

he sciatic notch. The proximal portion of the nerve was  sutured
o prevent errant reinnervation of the gastrocnemius muscle. Right
ciatic nerve was exposed and utilized as sham internal control in
ach animal. Mice were sacrificed 7 days later.
Research 65 (2012) 221– 230

2.1.3. Experiment 3 – effects of nandrolone treatment on muscle
gene expression

Mice carrying the mutSOD1 gene (strain designation: B6SLL-
TgN[SOD1-G93A]1Gur) were purchased from Jackson Laboratories
(Bar Harbor, ME,  USA). Colonies with high-copy number of mutant
SOD1 were crossbred with F1 B6SJL mice. F1 B6SJL mice were
obtained by breeding C57BL6 mice with SJL mice in-house. mut-
SOD1 progeny was identified by specific polymerase chain reaction
(see above). Male mutSOD1 and NTg control mice were assigned
to different experimental groups (n = 4 per group) at 50–52 days
of age. Two  groups of mutSOD1 and two groups of age-matched
NTg mice were injected subcutaneously with nandrolone dis-
solved in peanut oil (Sigma–Aldrich, Milan, Italy), at the dose of
10 mg/kg once a week. Nandrolone-treated mice were sacrificed
at the onset of the disease (around 85–95 days in this colony),
or at 120 days (on the average symptomatic); control groups of
age-matched mutSOD1 and NTg mice were treated with vehicle
and sacrificed at the same time points. Also in this experiment
body weight was monitored; transgenic mice were assessed for
the presence of tremors and lack of extension reflex, and tested
for deficit in grip strength and rotarod performance twice weekly.
Presence of tremors, lack of extension reflex, or failure in either of
the two  motor tests in 3 consecutive sessions indicated onset of
disease.

For all the experiments, at sacrifice gastrocnemius muscle sam-
ples were rapidly dissected, washed in 0.01 phosphate-buffered
saline, pH 7.4 (PBS), frozen on dry ice, and stored at −80 ◦C until
RNA or protein extraction. Each experiment was  carried out twice,
with 4 independent samples.

2.2. Cell cultures and transfection

In vitro experiments were conducted on the C2C12 cell line, orig-
inally obtained from American Type Culture Collection (Rockville,
MD)  which represents a widely used myoblast cell line. C2C12
cells were routinely maintained in DMEM (Biochrom KG, Berlin,
Germany) supplemented with 4 mM glutamine, 1 mM sodium
pyruvate, 100 U/ml penicillin, 100 �g/ml streptomycin, and 10%
fetal bovine serum (FBS, Invitrogen, San Giuliano Milanese, Italy)
at 37 ◦C with 5% CO2. Differentiation was induced by replacing
the growth medium (10% FBS) with the differentiation medium
(2% horse serum, Invitrogen, in DMEM)  after the cells reached
70% confluence. The plasmids pcDNA3-hSOD1, pcDNA3-mutSOD1
[29], and/or pCMV−AR.Q23 [30] were transiently transfected into
C2C12 cells using Lipofectamine 2000TM (Invitrogen) according
to the manufacturer’s instructions. Briefly, 60,000 cells/ml were
plated in 12-well dishes, and transfected with 1.6 �g of DNA, and
4 �l of lipofectamine/well. Controls were mock transfected. The
medium was  replaced with differentiation medium at 5 h after
transfection. Cells were harvested for RNA isolation at 48 h after
transfection.

2.3. Western blot analysis

Frozen samples of gastrocnemius muscles were homogenized
in chilled PBS supplemented with a protease inhibitor cock-
tail (Sigma–Aldrich), with an ultra-turrax® homogenizer. Samples
of C2C12 cells were harvested at 48 h after transfection, and
centrifuged 5 min  at 1200 rpm at 4 ◦C; cell pellets were resus-
pended in PBS plus protease inhibitor cocktail and homogenized
using slight sonication. The supernatant protein concentration
was assayed according to the Bradford method. Equal amount

of each sample (containing 10 �g of proteins for gastrocnemius
muscle samples, and 25 �g for C2C12 cells) was resolved on 12%
SDS–polyacrylamide gel and electroblotted to nitrocellulose mem-
brane (Trans-blot, Bio-Rad Laboratories, Segrate, Italy). Membranes
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mutSOD1 levels increased two-fold over muscles from age matched
hSOD1 mice (p < 0.05 vs. hSOD1-80 days; Fig. 1B). No high molecu-
lar weight insoluble species of SOD1 (oligomers or aggregates) were

Fig. 1. Biochemical properties of hSOD1 and mutSOD1 in the gastrocnemius mus-
cle  of transgenic mice. (A) Western blot assays were performed using the polyclonal
anti-SOD1 antibody on gastrocnemius muscle lysates of mice expressing human
wild  type or G93A mutant SOD1 (hSOD1 and mutSOD1, respectively) at differ-
M. Galbiati et al. / Pharmacol

ere blocked with 5% non-fat dry milk in TBS-Tween for 1 h and
hen incubated overnight at 4 ◦C with rabbit polyclonal anti-SOD1
SOD-100; Stressgen, Victoria, BC, Canada; dilution 1:1000) or rab-
it polyclonal anti-GAPDH (Santa Cruz Biotechnology, Santa Cruz,
A, USA; dilution 1:1000). Immunoreactivity was  revealed with
oat anti-rabbit peroxidase-conjugated antibodies (Santa Cruz
iotechnology; dilution 1:5000), and visualized using ECL Plus
eagents (GE Healthcare, Milan, Italy). Each experiment was carried
ut twice, with 4 independent samples.

.4. RNA isolation and RT-qPCR

Frozen samples of gastrocnemius muscles were homogenized
with an ultra-turrax® homogenizer) in 4 M guanidium isothio-
yanate (containing 25 mM sodium citrate pH 7.5, 0.5% sarcosyl
nd 0.1% 2-mercaptoethanol); C2C12 cells were harvested in the
ame buffer and total RNA isolated by phenol–chloroform extrac-
ion according to Chomczynski and Sacchi. Quantification was
arried out by absorption at 260 nm.  For Reverse Transcription
RT), an aliquot of total RNA (1 �g) was treated for 15 min  at room
emperature with 1U of DNaseI (Sigma–Aldrich). DNaseI was  heat-
nactivated and the samples were reverse-transcribed using the
igh-Capacity cDNA Reverse Transcription Kit (Applied Biosys-

ems, Monza, Italy), according to the manufacturer’s instructions,
n a 25 �l volume. Primers for selected genes were designed via
he primer Express software (PE Applied Biosystems, Foster City,
A, USA) and purchased from Eurofins MWG  Operon (Ebersberg,
ermany). The sequences of primers were as follows: MyoD:  5′-
GC TAC GAC ACC GCC TAC TA-3′ (forward), 5′-GTG GAG ATG CGC
CC ACT AT-3′ (reverse); myogenin:  5′-GGG CAA TGC ACT GGA
TT-3′ (forward), 5′-CAC GAT GGA CGT AAG GGA GT-3′ (reverse);
trogin-1: 5′-GAA GAG AGC AGT ATG GGG TCA-3′ (forward), 5′-
TT GAG GGG AAA GTG AGA CG-3′ (reverse); calpain-1: 5′-GCC
TG GAC TTT GAC AAC TT-3′ (forward), 5′-CAA CAC CAT CCA GGT
TG TG-3′ (reverse); TGFˇ1: 5′-GAA GGA CCT GGG TTG GAA GT-3′

forward), 5′-CGG GTT GTG TTG GTT GTA GA-3′ (reverse); GAPDH:
′-CCA GAA CAT CAT CCC TGC AT-3′ (forward), 5′-CAG TGA GCT TCC
GT TCA-3′ (reverse). Efficiency of each set of primers was close
o 100% for both target and reference genes. RT-qPCR was per-
ormed using the ABI Prism 7000 sequence detection system (PE
pplied Biosystems) in a 25 �l total volume, using the iTaq SYBR
reen Supermix (BioRad Laboratories), and with 500 nmol primers.
CR cycling conditions were as follows: 94 ◦C for 10 min, 35 cycles
t 94 ◦C for 15 s, and 60 ◦C for 1 min. Melting curve analysis was
erformed at the end of each PCR assay to control specificity. Data
as expressed as Ct values and used for the relative quantifica-

ion of targets with the ��Ct calculation. To exclude potential bias
ue to averaging data transformed through the equation 2−��Ct

o give N-fold changes in gene expression, all statistics were per-
ormed with �Ct values. Each experiment was  carried out twice,
ith 4 independent samples. Each sample was  run in duplicate
ells.

.5. Statistical analysis

Statistical analysis was performed through Student’s t test (for
he analyses between non-injured and axotomized muscles, and
etween undifferentiated and differentiated C2C12 cells), one way
nalysis of variance (ANOVA, when analyzing the effect of mut-
OD1 in muscles) or two-way ANOVA (when studying the effect of
ndrogen treatment on muscles of mutSOD1 mice), using the PRISM

oftware (GraphPad, San Diego, CA, USA). Specific group pair(s)
tatistical difference were determined by the Tukey post hoc test
or one-way ANOVA, and by Bonferroni post hoc test for two-way
NOVA.
Research 65 (2012) 221– 230 223

3. Results

In murine fALS models, muscle denervation precedes motor
neuron loss and muscles biochemistry is already altered at the
presymptomatic stage [25,26,31–33]. Thus, in this study we
initially characterized alterations in the expression of genes con-
trolling muscle physiology and involved in muscle pathology. The
analysis was  conducted on muscle samples derived from fALS
mouse models both at disease onset and at various stages of dis-
ease progression. Then, we  analyzed the effects of pharmacological
doses of a typical AAS, the nandrolone, on the expression of the
same genes. In parallel, we  set-up an ALS muscle cell model to
validate and extend the observation obtained in vivo. This cellular
model also allowed us to discriminate between cell-autonomous
modifications of muscle pathophysiology and the effects due to
muscle denervation associated to motor neuron death in the spinal
cord.

To evaluate muscle tissue modifications induced by mutSOD1,
we firstly searched for SOD1 inclusions in muscle of mutSOD1 mice.
Gastrocnemius muscles of male mutSOD1 tg mice was analysed at
presymptomatic, symptomatic, and end stage (80, 120, and 160
day-old-mice, respectively), and comparison was  made with both
age-matched hSOD1 mice and NTg mice (data not shown). The
levels of mutSOD1 were similar in muscles from animals at the
presymptomatic and symptomatic stages and comparable to those
of age-matched hSOD1 mice. In muscles from end stage mice the
ent ages. SOD1 indicates the human SOD1 monomeric form; mSOD1  indicates the
endogenous mouse SOD1. PN day, postnatal day. (B) Quantitative data (after nor-
malization with GAPDH levels) are expressed as percent versus the levels found in
80  day-old hSOD1 mice. Each bar represents the mean ± SEM of four independent
replicates. *p < 0.05 vs. 80 days hSOD1.
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present (Fig. 1A); thus, in contrast to the observation performed in
motor neurons [34], the potential mutSOD1-induced modification
in muscle cells cannot be due to aggregate formation.

3.1. Effects of mutSOD1 on gene expression in gastrocnemius
muscle

To evaluate aggregate-independent mutSOD1 toxicity in mus-
cle, we  analyzed gene expression modifications of mRNAs coding
for proteins controlling muscle pathways activated by nerve injury,
stress, or muscular atrophy. These are MyoD and myogenin (two
genes encoding myogenic regulatory factors), atrogin-1, calpain-1,
and TGFˇ1 considered markers for muscle fiber damage or atrophy
in the gastrocnemius muscles. Their expression level was compared
in mutSOD1 mice at different stages of disease, in age-matched
hSOD1 and NTg mice.

hSOD1 expression did not affect mRNA levels of MyoD and
myogenin at all ages considered (Fig. 2A and B), while mutSOD1
expression induced a robust increase of MyoD and myogenin mRNA
levels. Indeed, in the gastrocnemius muscles of mutSOD1 mice
at presymptomatic, symptomatic and terminal stages, a 10-fold
increase of MyoD and 6- to 8-fold increase of myogenin mRNA lev-
els were observed in comparison to either hSOD1 or NTg mice at
corresponding ages (p < 0.01 vs. NTg).

Calcium-activated calpains, a class of proteins involved in the
myofibrillar complex dissociation [35], are typically activated in
atrophic muscles. We  found that in gastrocnemius muscles calpain-
1 mRNA levels are modulated by mutSOD1, but unaffected in all the
other conditions tested (Fig. 2C).

The expression of the muscle-specific E3 ubiquitin ligase
atrogin-1 (also called muscle atrophy F-box, MAFbx) [36] was
increased in muscle of mutSOD1 mice during disease progres-
sion. At the symptomatic and terminal stages atrogin-1 mRNA
levels were significantly higher than at the presymptomatic stage
(p < 0.01 vs. NTg and 80 days mutSOD1; p < 0.05 vs. 120 days
mutSOD1; Fig. 2D). Notably, also hSOD1 induced atrogin-1 up-
regulation in the gastrocnemius muscle, but only at 160 days
(*p < 0.01 vs. NTg and 80 days mutSOD1; #p < 0.05 vs.120 days

hSOD1; §p < 0.05 vs. 120 days mutSOD1). No significant differences
of atrogin-1 mRNA level were detected between presymptomatic
mutSOD1 mice and age-matched hSOD1 mice.

Several in vivo studies suggest that TGF� signaling is impor-
tant in skeletal muscle repair [37], and we  therefore analyzed the
expression of TGFˇ1. While TGFˇ1 expression was similar in muscle
of hSOD1 and NTg mice at all ages tested (Fig. 2E), we found that
TGFˇ1 expression is highly upregulated (up to 8-fold) in the gas-
trocnemius muscles of mutSOD1 mice at all disease stages (p < 0.01
vs. NTg).

3.2. Direct versus indirect effects of mutSOD1 in muscle
The modulation of activity parameters in mutSOD1 muscles may
be a consequence of: (i) muscle denervation due to mutSOD1 –
induced spinal motor neuron loss, and/or (ii) direct mutSOD1 tox-
icity in muscle cells. To investigate these alternative mechanisms

Fig. 2. Effect of hSOD1 and mutSOD1 on gene expression in gastrocnemius muscle.
RT-qPCRs were performed on total RNA extracted from gastrocnemius muscles of
non-transgenic (NTg) mice, of mice expressing the wild type human SOD1 transgene
(hSOD1), and of mice expressing the G93A mutant form of human SOD1 (mutSOD1)
at different ages. All animals were age-matched. Data have been normalized to
the  amount of GAPDH mRNA, expressed relative to the levels determined in NTg
mice (age-matched with 80-day-old mutSOD1 mice) taken as internal reference,
and expressed as fold changes. Data are means ± SEM of four independent repli-
cates. *p < 0.01 vs. NTg mice and vs. 80 days mutSOD1; #p < 0.05 vs. 120 days hSOD1;
§p < 0.05 vs. 120 days mutSOD1.
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Fig. 3. Direct versus indirect effects of mutSOD1 toxicity in muscle. RT-qPCRs were performed on total RNA extracted from gastrocnemius muscles of left axotomized
non  transgenic mice (Axo). Right gastrocnemius muscles of the same animals were used as controls (Ctrl). Data have been normalized to the amount of GAPDH mRNA,
expressed relative to the levels determined in control muscles, which are taken as internal reference, and expressed as fold changes. Each bar represents the mean ± SEM
of  four independent replicates. *p < 0.01 vs. Ctrl. RT-qPCRs were performed on total RNA extracted from C2C12 cells cultured in the growth medium (GM) or placed in the
differentiation medium (DM) for 48 h. Data have been normalized to the amount of GAPDH mRNA, expressed relative to the levels determined in GM,  which are taken as a
reference, and expressed as fold changes. All the data shown are the means ± SEM of determinations performed (n = 4). *p < 0.001 vs. GM; #p < 0.05 vs. GM.  RT-qPCRs were
performed on total RNA extracted from C2C12 cells transfected with wild type human SOD1 (hSOD1) or the G93A mutant form of human SOD1 (mutSOD1) and cultured
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n  the differentiation medium for 48 h. Mock transfected cells are used as controls
evels  determined in control cells, which are taken as internal reference, and expres
p  < 0.01 vs. mock.

not mutually exclusive), we used two approaches. We  first ana-
yzed the mRNA levels expressed by the genes studied above in
he gastrocnemius muscle of axotomized NTg mice and in a fALS

uscle cell model.
Muscles of axotomized NTg mice were collected 7 days after

ciatic nerve transection, when muscle atrophy initiates as a con-
equence of denervation. All genes analyzed were found to be
verexpressed in muscles denervated by axotomy when compared
o control contralateral non-injured muscles (Fig. 3A). The varia-
ions paralleled those found in mutSOD1 mouse muscles, with the
xception of calpain-1. Indeed, muscle expression of MyoD,  myo-
enin, atrogin-1 and TGFˇ1 were highly increased both in mutSOD1
nd axotomized muscles, while calpain-1 showed a 3-fold increase
n the denervated NTg muscle, but remained unchanged in mut-
OD1 muscle.
To test a potential direct toxicity of mutSOD1 in muscle cells we
roduced and characterized a cell model using the mouse myoblas-
ic cell line C2C12, which provides a well-established in vitro model
or the study of muscle differentiation [38]. To avoid modification
 have been normalized to the amount of GAPDH-mRNA, expressed relative to the
 fold changes. Each bar represents the mean ± SEM of four independent replicates.

linked to C2C12 differentiation after SOD1 expression, we  initially
quantified the expression levels of the five genes studied above in
undifferentiated and differentiated C2C12 cells. Differentiation of
C2C12 cells was induced by culturing cells in low serum concen-
trations for 48 h. C2C12 cell differentiation completely abolished
MyoD mRNA expression, while myogenin levels was increased 3-
fold (Fig. 3B); downregulation of calpain-1 and TGFˇ1 expression
was observed accompanied by a robust increase (about 15-fold)
of atrogin-1 level (Fig. 3B). We  then tested the potential detri-
mental effects of mutSOD1 in C2C12 fALS model. C2C12 were
utilized in their differentiating phase since this better reflects the
physiological condition of muscle in adult animals. In these cells
mutSOD1 induced a significant increase of both MyoD and myo-
genin (Fig. 3C), while no variation were seen with hSOD1. Calpain-1
expression remained unchanged both in hSOD1- or mutSOD1-

expressing C2C12 cells (Fig. 3C), as observed in mice (Fig. 2C). On the
other hand, in C2C12 differentiating cells atrogin-1 mRNA (Fig. 3C)
expression was increased both by hSOD1 and mutSOD1, while
TGFˇ1 mRNA levels were increased only by mutSOD1 (Fig. 3C).



226 M. Galbiati et al. / Pharmacological 
Research 65 (2012) 221– 230

Altogether these findings, which show high consistency, indi-
cate that all the selected genes are upregulated by both denervation
and mutSOD1 overexpression (either in cells and tissues), with the
exception of calpain-1 which is modulated only by denervation.

3.3. Effect of androgen treatment on muscles of mutSOD1 mice

As mentioned previously, muscle atrophy is a major cause of
disability in ALS, and increasing muscle strength might help to
preserve functions in patients. Androgens are one of the factors
that enhance muscle size and strength by activating many different
mechanisms, and have been proposed as a risk factor for ALS [6]. To
evaluate the impact of androgens on ALS muscles, we  treated NTg
or mutSOD1 mice with pharmacological doses of nandrolone. It is a
synthetic testosterone derivative that exhibits much weaker andro-
genic properties and higher anabolic effects than testosterone [39];
it is used in some cases of osteoporosis in postmenopausal women
as well as in cases of anemia associated to renal insufficiency. Unfor-
tunately, this drug is often illegally used by body builders and other
athletes to enhance their muscle mass.

Mice were treated with nandrolone (10 mg/kg, subcutaneously
once a week) from the 7th week of age until disease onset or the
symptomatic stage (120 days). The clinical evaluation of disease
onset showed that nandrolone did not affect the appearance of
the symptoms in mutSOD1 mice (90 ± 7 days in vehicle-treated
mutSOD1 mice and 89 ± 9 days in nandrolone-treated mutSOD1
mice). In addition, nandrolone treatment did not modify the
massive effects of mutSOD1 on MyoD,  myogenin and atrogin-1
expression (Fig. 4A–D), and did not alter the levels of calpain-1
expression. When TGFˇ1 expression was compared in untreated
and nandrolone-treated mice, we  found that AAS administration
greatly affects the overall TGFˇ1 mRNA levels (Fig. 4E). Indeed,
at disease onset, mutSOD1 mice treated with nandrolone showed
TGFˇ1 mRNA levels significantly higher than that detected in
untreated mutSOD1 mice (p < 0.01 vs. NTg 90 days; p < 0.01 vs.
untreated mutSOD1 mice at onset). Notably, TGFˇ1 gene expres-
sion reached the same level in untreated and nandrolone-treated
mutSOD1 mice at the symptomatic stage.

The effect of AAS on TGFˇ1 expression was  also tested in the
C2C12 cell model of fALS. Since our line of C2C12 cells expresses
very low levels of AR, we co-transfected the cells with AR (AR.Q23)
and either hSOD1 or mutSOD1, and found that AR expression
correlated with an increased TGFˇ1 level in C2C12 co-expressing
mutSOD1. Thus, AR exacerbated the detrimental effects of mut-
SOD1 in cultured muscle cells, whereas there was no apparent
effect of testosterone treatment. Since C2C12 cells have been
treated with testosterone 10−8 M for 48 h after transfection, this
time period may  not be sufficient to allow the muscle cells to

directly respond to AAS (longer time could not be tested because
our experiments have been performed in transient transfection)
(Fig. 5). Very interestingly, C2C12 cells co-expressing hSOD1
and AR, even without androgens, showed TGFˇ1 mRNA levels

Fig. 4. Effect of nandrolone treatment on gene expression in gastrocnemius muscles
of mutSOD1 mice. RT-qPCRs were performed on total RNA extracted from gastroc-
nemius muscles of non transgenic (NTg) or mutSOD1 mice treated with vehicle or
Nandrolone (Ndrl; see text for treatment parameters). Animals were age-matched.
Data  have been normalized to the amount of GAPDH mRNA, expressed relative to
the  levels determined in 90-day-old NTg mice, which are taken as internal ref-
erence, and expressed as fold changes. Each bar represents the mean ± SEM of 4
independent replicates. The two-way ANOVA found a significant effect of mut-
SOD1 (*p < 0.0001), no effect of nandrolone (p > 0.05), and no significant interaction
between the two variables (p > 0.05) for MyoD,  myogenin, calpain-1, and atrogin-
1.  For TGFˇ1 the analysis indicated a significant effect of mutSOD1 (*p < 0.0001),
and  of nandrolone treatment (#p < 0.05), with a significant mutSOD1 by nandrolone
treatment interaction at 90 days (§p < 0.05).
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Fig. 5. Effect of testosterone treatment on TGF�1 gene expression in C2C12 cells
transfected with hSOD1 or mutSOD1. RT-qPCRs were performed on total RNA
extracted from C2C12 cells co-transfected with wild type human SOD1 (hSOD1)
or  G93A mutant form of human SOD1 (mutSOD1) and androgen receptor (AR).
After transfection cells were cultured in the charcoal–dextran-treated horse serum
differentiation medium for 48 h with or without testosterone 10−8 M.  Mock trans-
fected cells are used as controls. Data have been normalized to the amount of
GAPDH-mRNA, expressed relative to the levels determined in control cells, which
are taken as internal reference, and expressed as fold changes. Each bar represents
the mean ± SEM of four independent replicates. The two-way ANOVA found a sig-
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this pathway is not influenced by the androgenic anabolic action in
ificant effect of hSOD1 and mutSOD1 (*p < 0.0001), and of testosterone (#p > 0.001),
nd no significant interaction (p > 0.05) between the two  variables.

ignificantly higher than that of cells expressing only hSOD1
Fig. 5), suggesting a synergistic detrimental effect of SOD1 and AR
xpressed at high levels on muscle physiology.

. Discussion

In the present study we demonstrate in animal and cellular
odels that mutSOD1 modifies the expression of genes involved

n muscle cell signaling pathways activated by nerve injury, stress,
r atrophy. In addition, we show that nandrolone, a widely used
ynthetic ASS, is able to exacerbate the deleterious effects of mut-
OD1 on TGFˇ1 expression in the muscle of the murine model of
ALS. The major goal of the present study was to identify the effect of

utSOD1 on the transcription of a set of genes relevant for muscle
athophysiology, and we therefore focused on the level of expres-
ion of these transcripts. Further verification at the protein level
ill help to understand the impact of such modifications, which,
owever, could be influenced by several factors (variations in the
ranslational control, protein maturation, post-translational modi-
cations, protein clearance).

The obtained data clearly indicate that mutSOD1 toxicity can
e exerted independently of its tendency to aggregate. This is
elevant to understand the cell specificity of the adverse effects
f mutSOD1, since several observations demonstrated that pro-
einaceous inclusions rich in mutSOD1 are present in spinal cord
issues from mutSOD1 animals. These inclusions may  alter SOD1
rotein bioavailability and turnover [40], reducing the overall pro-
ection exerted by SOD1 against free radical reactive oxygen species
41]. In the present investigation, increased mutSOD1 levels were
etectable in the gastrocnemius muscle of fALS mice, but only

n the terminal stage of disease. However, we did not find SOD1
igh molecular weight SDS-resistant species in muscle of mutSOD1
ice or mutSOD1-expressing C2C12 cells [38], in agreement with

 recent report showing that the increased level of mutant pro-
ein in muscle is due to its soluble fraction [42]. On the contrary, in

uscle C2C12 cells, at variance with immortalized motor neurons

34,41], mutSOD1 levels are significantly lower than those observed
n hSOD1 C2C12 cells [38], suggesting that mutSOD1 clearance is
ccelerated in ALS muscle cells.
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The upregulation of MyoD and myogenin transcripts indicates
that muscles of fALS mice attempt to counteract the effect of mut-
SOD1. The expression of transcripts of myogenic regulatory factors
in C2C12 cells paralleled that obtained in the gastrocnemius mus-
cle, thus indicating that mutSOD1 provides a stimulus continuously
upregulating MyoD,  which is instead usually downregulated dur-
ing the cell differentiation process. Indeed, MyoD up-regulation
is necessary to activate quiescent satellite cells during the first
phase of the satellite cell differentiation pathway, while MyoD
down-regulation is then required to generate reserve cells [43].
This aberrant behavior induced by mutSOD1 might be at the basis
of muscle atrophy in ALS, since prolonged increase of MyoD and
myogenin levels could cause an irreversible commitment and ter-
minal differentiation of satellite cells, depriving muscle of their cell
reservoir, thus impairing its regenerative potential. In line with
this hypothesis are the findings showing that cdk5 activity and
cyclin D1 levels, which control cell cycle progression, are reduced
in muscles of mutSOD1 mice [33], and that CDKN1 and RB1, which
are MyoD downstream targets able to arrest cell cycle, are upreg-
ulated in preparalyzed SOD1G86R mouse muscles [44]. Of note,
the present study reveals that nandrolone, despite its well-known
potent anabolic properties on muscle tissue, was  unable to revert
the altered MyoD and myogenin transcription induced by mutSOD1
in ALS muscle. As a positive result, nandrolone did not exacerbate
this deleterious action of mutSOD1 in muscle suggesting that AAS
might not play a role on this particular aberrant pathway in muscle
tissue.

The expression of calpain-1 was unchanged in cells transfected
with either hSOD1 or mutSOD1, as well as in the gastrocnemius
muscle of mutSOD1 mice. No changes of calpain-1 expression were
induced by nandrolone, suggesting that this gene is not a target of
the androgenic action in muscle. Surprisingly, calpain-1 expression
significantly increased after muscle denervation in NTg mice. Thus,
in fALS mice motor neuron damage or loss and consequent target
muscle denervation are not the only cause of muscle dysfunctions
and atrophy.

It is interesting to note that atrogin-1 level was  robustly
increased in muscles of both mutSOD1 at the end stage and age-
matched hSOD1 mice, while at the symptomatic stage atrogin-1
was significantly induced in muscle of mutSOD1 mice but not in
age-matched hSOD1 mice. Such data have been here confirmed
also in the muscle cell model. This suggests that hSOD1 overex-
pression in muscle may  in part mimic  the intracellular response
to mutSOD1. An increase of SOD1 levels could be interpreted by
muscle cells as a stress signal, as supported by findings indicating
that also aged hSOD1 animals may show symptoms reminiscent of
alteration of muscle functions [45]. This hypothesis is also corrob-
orated by the finding that muscle cells from ALS patients exhibit
intrinsic increased sensitivity to oxidative stress [46]. Moreover,
atrogin-1 expression is linked to normal protein turnover in mus-
cles [36,47] and oxidative stress upregulates atrogin-1 expression
in vivo [48–50],  validating the hypothesis that high levels of hSOD1
represent a stress signal for skeletal muscle. As it will be discussed
below in further details, our data have also shown that AR and wt
SOD1 co-expression in muscle C2C12 cells results in a significant
increase of TGFˇ1 expression, in line with the hypothesis that wt
SOD1 (and AR) may  have a role also in cases of sALS. Moreover,
previous data have indicated that both atrogin-1 mRNA and protein
content are significantly increased in skeletal muscle of mutSOD1
mice and ALS patients compared with healthy control subjects [51].
As in the case of MyoD,  myogenin and calpain-1, the AAS nandrolone
had no effects on the level of atrogin-1 mRNA, suggesting that also
muscle tissue.
TGF�1 is a diffusible factor that promotes motor neuron sur-

vival [52–54],  and deeply modulates muscle functions. High levels
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f TGF�1 are, however, detrimental for muscles. For example, mice
eficient for the extracellular matrix protein fibrillin-1 are charac-
erized by excessive TGF�1 signaling which results in myopathy
nd inability to increase muscle mass despite exercise [37].
ystrophin-deficient Mdx  mice (a model of Duchenne muscular
ystrophy) are characterized by degeneration of muscle fibers,

ncreased skeletal muscle fibrosis and augmented TGF�1 signaling
37,55]. In these murine models, neutralization of TGF�1 signaling
ctivates skeletal muscle regeneration, suggesting a direct role for
his cytokine in skeletal muscle maintenance [37,55]. The present
esults showed that TGF�1 expression is robustly increased by
utSOD1 in both gastrocnemius muscle and C2C12 cells. Inter-

stingly, TGF�1 inhibits MyoD transcription (and activity) through
mad3 [37,56–58],  while attenuation of the TGF�/pSmad3 signal-
ng restores regeneration of old muscle satellite cells in vivo [59].
herefore, the high levels of MyoD mRNA in muscle of mutSOD1
ice and in mutSOD1-transfected C2C12 cells strongly suggest the

xistence of an impairment of the TGF�1 signaling pathway in ALS.
n fact, several data indicates that a dysfunctional TGF�/Smad sig-
al transduction pathway could be involved in the pathogenesis of
LS, with impairment of TGF� signal transduction presumably at

he step of pSmad2/3 translocation into the nucleus [60]. Nucleo-
ytoplasmic transport impairment has also been reported in fALS
ice [61]. Furthermore, it has been reported that also in Spinal

nd Bulbar Muscular Atrophy (a polyglutamine disease dependent
n the expansion of the CAG repeat within the AR) motor neuron
amage is associated with disruption of TGF� signaling [62]. The
resent data are also in agreement with the high TGF�1 plasma

evels detected in ALS patients, and with the significant positive cor-
elation between TGF�1 plasma concentration and disease duration
63]. Finally, it has been recently reported that the transcription
actor ZNF512B, encoding an important positive regulator of TGF�
ignaling, is a new susceptibility gene for ALS [64].

Axotomy was  here found to up-regulate also muscle TGFˇ1
RNA levels. It is known that TGF�1 doubles the size of acetyl-

holine receptor clusters at nerve–muscle contacts and increases
he percentage of these contacts [65]. Thus, muscles may  attempt to
e-establish contacts with nerve endings even if the positive effects
f a transiently increased TGF�1 production at the neuromuscular
unction may  become detrimental.

Concerning androgenic steroids, we initially postulated that the
nabolic actions of androgens (such as testosterone) on muscle
ould be due to its ability to repress the expression of atrogin-1
66,67], or to promote myogenic differentiation of mesenchymal

ultipotent cells by inhibition of the TGF� signaling pathway
68]. However, the present data clearly indicate that an exces-
ive anabolic stimulation of AR, obtained with treatment with
harmacological doses of nandrolone, leads to increased TGFˇ1
xpression in the muscle of mutSOD1 mice. This evidence is also
upported by our observation in C2C12 cultured muscle cells in
hich co-expression of AR (the mediator of AAS action) and mut-

OD1 resulted in significant increase of TGF�1 expression with
espect to mutSOD1 expression only. Thus, the AR circuitry and
articularly the anabolic action of nandrolone in ALS muscle seems
o greatly enhance the detrimental effect of this growth factor.
GF�1 exerts a key role in the trans-differentiation of myoblasts
n myofibroblasts, thus hampering tissue repair [69]. Notably, tar-
eted overexpression of AR in skeletal muscle fibers leads to muscle
eakness and early death associated with motor neuron loss [19],

trongly supporting the notion that aberrant androgenic stimula-
ion of muscle may  be detrimental for skeletal muscle and possibly
or motor neurons.
Insulin-like Growth Factor-1 (IGF-1) expression in skeletal mus-
le increases the survival of mutSOD1 mice [70,71];  thus muscle
rophic factors overproduction could help to rescue spinal motor
eurons [12,72–74],  suggesting that alterations of muscular origin
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could contribute to enhance axonal vulnerability in motor neurons.
IGF-1 synthesis in muscle is regulated by AAS [75], and physi-
cal exercise may  modify the production of endogenous AAS [76].
Interestingly, a cross-talk between androgen and IGF-1 has been
described in several systems [77]. However, the role of andro-
gens or the effect of androgen dysregulation on IGF-1 signaling
in ALS remains to be clarified characterizing the molecular cross-
talk between androgens and muscle-specific IGF-1 signaling in the
maintenance of muscle phenotype.

Recent data indicate an increased risk for ALS in male soc-
cer and football players, with a ALS prevalence 20 times higher
than in general population [13,16]. This event suggests that there
might be a link between sALS and sport. Although mechanical stress
and repeated trauma of muscle have been implicated in sALS, no
increased risk of developing ALS has been reported among profes-
sional road cyclists and basketball player, suggesting that extensive
physical activity per se is not a risk for ALS [78]. It has been proposed
that the increased risk of ALS in soccer players might be linked to
AAS abuse [13,16].  The increase of TGFˇ1 expression induced by
androgenic treatment here reported seem to support this hypothe-
sis, indicating that an extensive use of AAS may  influence the effect
of SOD1 protein becoming a risk factors for ALS.

5. Conclusions

Altogether the present findings support the notion that in mut-
SOD1 mice functionality of skeletal muscle, besides that of motor
neurons, is altered and that these alterations precede severe motor
neuron loss. Moreover, the molecular data we obtained in the
fALS murine model suggest that mutSOD1 skeletal muscles might
have impaired regenerative potential and increased susceptibil-
ity to atrophy. The significance of such data for sALS pathogenesis
remains to be verified; however, the data obtained with the C2C12
cell model indicate that an increase of the AR (that in vivo was
here obtained through stabilization of the receptor with chronic
AAS treatment) may  modify also the effect of hSOD1 leading to an
increase of TGFˇ1 expression. Future studies will be carried out to
clarify the interaction of AR with SOD1.

No effective treatments are available for ALS patients, and
strategies to ameliorate symptoms or positively affect the life of
patients must be taken in consideration. Furthermore, the present
findings suggest that TGF�1 could be a new pharmacological target
to delay muscles wasting in ALS.
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