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Follicular helper T (Tfh) cells are specialized providers of T cell help to B cells, and are essential for germinal
center formation, affinity maturation, and the development of most high-affinity antibodies and memory B
cells. Tfh cell differentiation is a multistage, multifactorial process involving B cell lymphoma 6 (Bcl6) and
other transcription factors. This article reviews understanding of Tfh cell biology, including their differentia-
tion, migration, transcriptional regulation, and B cell help functions. Tfh cells are critical components of many
protective immune responses against pathogens. As such, there is strong interest in harnessing Tfh cells to
improve vaccination strategies. Tfh cells also have roles in a range of other diseases, particularly autoimmune
diseases. Overall, there have been dramatic advances in this young field, but there is much to be learned
about Tfh cell biology in the interest of applying that knowledge to biomedical needs.
Introduction
There has been a great deal of recent activity in the study of T

follicular helper (Tfh) cells. While the first evidence of Tfh cells

was reported in human lymphoid tissue more than a decade

ago, much of the interest in Tfh cells traces its origins to the

identification of Bcl6 as an essential transcription factor in

CD4+ T cells for Tfh cell differentiation and the development of

germinal centers (GCs) (Johnston et al., 2009; Nurieva et al.,

2009; Yu et al., 2009). The field of Tfh cell biology has now

exploded with activity, examining everything from the biochem-

istry of transcription factors involved in programming Tfh cell dif-

ferentiation to the cellular biology of Tfh cell-mediated selection

of germinal center B cells, and examining important roles of Tfh

cells in biological processes as diverse as vaccine-elicited im-

mune responses, chronic autoimmune diseases, and even roles

of Tfh cells in protective immunity in human cancers. This article

reviews our understanding of Tfh cell differentiation, molecular

biology, and function and discusses the most recent advances

in these areas, as well as the complexities of Tfh cell biology.

In addition, a new conceptual model is introduced to explain

the relationship between Tfh cell and other CD4+ T cell differen-

tiation programs. For an oral presentation of the review, see

Movie S1 available online.

Stages of Tfh Cell Differentiation

Tfh cell differentiation is a multistage, multifactorial process.

There is no single event that defines Tfh cell differentiation, unlike

T helper 1 (Th1) cell differentiation, for instance, which can be

fully induced by interleukin-12 (IL-12) exposure in vitro or in vivo.

Instead, Tfh cell differentiation is a multistep, multisignal process

that also accommodates a significant amount of heterogeneity.

The canonical Tfh cell differentiation process starts at initial den-

dritic cell (DC) priming of a naive CD4+ T cell (Goenka et al., 2011)

(Figure 1A). The CD4+ T cell undergoes a cell-fate decision within

the first few rounds of cell division (Choi et al., 2011; 2013b). If the

chemokine receptor CXCR5 is expressed, the early Tfh cell will

migrate to the border of the B cell follicle and undergo further

Tfh cell differentiation. If the cell instead receives Th1, Th2, or
Th17 signals (Figure 1), then the CD4+ T cell follows a Th1,

Th2, or Th17 cell differentiation program, including upregulation

of chemokine receptors for inflammatory chemokines that will

drive the effector cell to exit the lymphoid tissue and traffic to

the site of infection or inflammation.

Early Tfh cell differentiation (the DCpriming phase) is regulated

by IL-6, inducible costimulator (ICOS), IL-2, and T cell receptor

(TCR) signal strength in mouse models. TCR signal strength

can bias T cell differentiation in vivo (Tubo et al., 2013), but a sin-

gle naive mature T cell can give rise to multiple different differen-

tiated effector cell types upon stimulation and proliferation,

demonstrating that non-TCR and TCR signals combine to deter-

mine T cell differentiation fates. CD4+ T cells possessing TCRs

with high affinity preferentially differentiated into Tfh cells in a

pigeon cytochrome C (PCC) model (Fazilleau et al., 2009), but

not a Friend virus infection (Ploquin et al., 2011). Utilizing a range

of systems, it was found that TCR: major histocompatibility com-

plex-II (MHCII) dwell time is amore accurate predictor of cell-fate

preference, with a nonlinear relationship (Tubo et al., 2013), such

that there was no simple relationship between TCR signal

strength and Tfh cell differentiation. IL-6 is the earliest non-

TCR signal involved in initiation of Tfh cell differentiation. IL-6

signaling through IL-6 receptor (IL-6R/gp130) transiently induces

Bcl6 expression by newly activated CD4+ T cells (Nurieva et al.,

2009). Bcl6 is necessary for early CXCR5 expression in multiple

models (Choi et al., 2011; 2013a; Pepper et al., 2011). In the

absence of IL-6 an early defect in Tfh cell differentiation is

observed (Choi et al., 2013a). The DC type responsible for initi-

ating Tfh cell differentiation is unknown. Most likely, there are

multiple Tfh cell differentiation pathways and there is no single

DC type responsible. Instead, multiple DC and monocyte types

can prime Tfh cell differentiation in different conditions (Balles-

teros-Tato and Randall, 2014). Many DC types are robust

producers of IL-6. Prdm1�/� DCs are hyperactive producers of

IL-6, resulting in spontaneous Tfh cell and GC development

in vivo (Kim et al., 2011). IL-6 can also be a signal for Th17

cell differentiation, and therefore it is assumed that IL-6, in
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Figure 1. Overview of Tfh Cell
Differentiation
(A) Stages of Tfh cell differentiation, highlighting
roles of migration-associated molecules.
(B) Signals in CD4 T cell differentiation. A simplified
model of CD4 T cell differentiation pathways,
showing transcription factors and inducing fac-
tors, highlighting apparent differences between
human and mouse Tfh cell differentiation.
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combination with different signals, is involved in Tfh cell versus

Th17 cell differentiation. Interestingly, no increase in Th17 cells

was seen in hyper-IL-6-producing mice, in contrast to the in-

crease in Tfh cells. IL-1 is an important driver of Th17 differenti-

ation, whereas ICOS is important for Tfh differentiation (Choi

et al., 2011; Nurieva et al., 2008). ICOS has roles in both Tfh

cell differentiation and migration, and there are data supporting

a synergistic role of ICOS and IL-6. The importance of ICOS is

highlighted by the multiple ways in which ICOS signaling is regu-

lated. Roquin inhibits ICOS, and combined loss of Roquin1 and

Roquin2 results in spontaneous Tfh cell and GC development

(Pratama et al., 2013; Vogel et al., 2013). In addition, the miR-

19�72 complex is necessary for Tfh cell differentiation, and it

works, in part, via dampening the PI(3)K inactivating phospha-

tases PHLPP2 and PTEN, which are inhibitors of ICOS signaling

(Baumjohann et al., 2013; Kang et al., 2013). IL-2 signaling is

another major regulator of Tfh cell differentiation. IL-2 is a potent

inhibitor of Tfh cell differentiation (Ballesteros-Tato et al., 2012;

Johnston et al., 2012) and can act very early during T cell priming

(Johnston et al., 2012). Thus, the interplay between IL-6, ICOS,

IL-2, and TCR signaling orchestrates early induction of mouse

Tfh cell differentiation during DC priming via control of CXCR5,

Bcl6, and other targets.

The second stage of Tfh cell differentiation occurs when the

T cell interacts with antigen-specific B cells in the follicle, interfol-
530 Immunity 41, October 16, 2014 ª2014 Elsevier Inc.
licular zone, or the T-B border. Much of

Tfh cell differentiation and function is

tightly interconnected with the microana-

tomical geography of the T and B zones

of the lymph node (LN) and spleen. The

early Tfh cells colocalize with B cells

because they express CXCR5, downre-

gulate C-C chemokine receptor type 7

(CCR7) (the primary chemotactic recep-

tor for the T zone), and downregulate P-

selectin glycoprotein ligand 1 (PSGL1),

which is thought to anchor T cells to

CCL19 and CCL21 decorating the T

zone extracellular matrix (Figure 1A). Tfh

cells have a highly symbiotic relationship

with B cells, and B cells are required for

Tfh cell development under almost all

conditions (Crotty, 2011). ICOS is a costi-

mulatory molecule, but it has been

recently demonstrated that ICOS-ICOS

ligand (ICOSL) binding also induces

directional migration of CD4+ T cells,

which can play an important role in proper

localization of the early Tfh cells to the B
cell follicle (Xu et al., 2013). B cells serve both as antigen-pre-

senting cells (APCs) and as a source of ICOSL (Choi et al.,

2011; Haynes et al., 2007; Nurieva et al., 2008). B cells rapidly

become the primary APCs available in a LN during an acute

infection or immunization because mature DCs last for only a

few days before dying, whereas the antigen-specific B cells un-

dergo geometric replication. Antigen presentation is critical,

because unlike effector CD8 T cells, antigen-specific CD4

T cells require antigen recognition for virtually every cell division

(Choi et al., 2013b; Obst et al., 2005; Yarke et al., 2008).

The third stage of Tfh cell differentiation involves the GC

(Figure 1A). The GC is a distinct structure consisting of GC Tfh

cells, GC B cells, follicular dendritic cells (FDCs), macrophages,

and stroma. The majority of GC Tfh cells can be observed

to possess a canonical Tfh cell differentiation program. The

majority of GC Tfh cells are CXCR5hiPD1hiBcl6hiMafhiSAPhi.

They are also PSGL1loCD200+BTLAhiCCR7lo. The canonical

secreted Tfh cell molecules are C-X-C motif chemokine 13

(CXCL13), IL-21, and IL-4 (Crotty, 2011; Kroenke et al., 2012;

Liang et al., 2012; Linterman et al., 2011). These GC Tfh cell sur-

face proteins, transcription factors, and secreted molecules are

well conserved across in vivo conditions and species. GC Tfh

cells can be readily identified in mice, humans, and nonhuman

primates as CXCR5hiPD1hiBcl6hi CD4 T cells. The biology of

GC Tfh cells is strongly associated with changes in several



Figure 2. Tfh Cell Memory Development
Memory Tfh cells develop over time and appear to develop from either Tfh cells
or GC Tfh cells. Memory Tfh cells exhibit phenotypic heterogeneity. Memory
Tfh cells that retain stable expression of low amounts of PD-1 (PD-1lo or PD-1+)
are more polarized and highly functional memory Tfh cells, when compared to
PD-1neg memory Tfh cells. Upon reactivation, memory Tfh cells predominantly
become Tfh cells and can go on to become GC Tfh cells, although some
memory Tfh cells can go on to become non-Tfh cells in a recall response.
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chemokine receptors and related molecules. GC Tfh cells have

very high expression of CXCR5, low expression of CCR7,

elevated C-X-C chemokine receptor type 4 (CXCR4), low sphin-

gosine 1-phosphate 1 receptor (S1P1R), and very low amounts

of PSGL1. Loss of Epstein-Barr virus-induced G protein coupled

receptor 2 (EBI2) expression is notable because the chemoat-

tractant ligand for EBI2 is present in the B cell follicle, but not

the GC environment. Reduction of EBI2 expression by both

GC B cells and GC Tfh cells is important for their proper localiza-

tion to GCs (Hannedouche et al., 2011). In addition, adhesion

molecules play an important role on GC Tfh cells, regulating their

interaction with GC B cells and their localization. The signaling

lymphocyte activation molecule (SLAM) family receptors

SLAMF6 (also known as Ly108 and NTB-A), CD84, and SLAM

are all self-ligands differentially expressed on GC Tfh cells and/

or GC B cells. SLAM-associated protein (SAP), the product of

the Sh2d1a gene, is an SH2-domain adaptor protein that binds

to the cytoplasmic tails of SLAM family receptors and is specif-

ically upregulated in GC Tfh cells. SAP expression is essential for

GC Tfh cell development, GC development, and the generation

of the majority of memory B cells and memory plasma cells

(Hu et al., 2013). In the absence of SAP, Tfh cells have defective

adhesion to GC B cells and fail to be retained in GCs (Qi et al.,

2008); as a result, insufficient help is provided by SAP-deficient

Tfh cells to B cells. The functions of SAP are central to Tfh cell

biology, because loss of SAP is one of the few genetic mutations

in CD4+ T cells that results in a complete loss of GC Tfh cells and

GC B cells in virtually all experimental settings. Surprisingly,

much of the importance of SAP is due to a requirement for

SAP to prevent powerful inhibitory signaling through SLAMF6
(Kageyama et al., 2012). SAP competes with the phosphatase

SHP-1 for binding to SLAMF6. With SAP bound, SLAMF6 trans-

mits positive signals within the Tfh cells, supporting adhesion

and help functions. With SHP-1 bound, SLAMF6 transmits

potent negative signals that truncate Tfh:B cell adhesion. Impor-

tant roles for SLAMF6 as a rheostat of cell:cell adhesion for lym-

phocytes have been shown for Tfh, natural killer T (NKT), CD8 T,

and NK cells. This also suggests that other adhesion molecules

are likely to be regulators of both GC Tfh cell differentiation and

function.

Once Tfh cells have differentiated into GC Tfh cells and pro-

vided help to GC B cells, they are not confined to the GC. GC

Tfh cells can exit GCs (Figure 1A). GCB cells are strictly confined

to a single GC, and the majority of GC B cells within a GC repre-

sent oligoclonal antigen-specific B cell clones undergoing hyper-

mutation and selection by Tfh cells. In contrast, the GC Tfh cells

can readily exit a GC and (1) transit to a neighboring follicle and

enter a different GC (Shulman et al., 2013), (2) temporarily reside

in the adjacent B cell follicle before re-entering the same GC

(Figure 1A), or (3) exit a GC and downregulate Bcl6 and develop

into a memory Tfh cell (Kitano et al., 2011; Shulman et al., 2013)

(Figure 2). Memory is discussed further in a section below.

Therefore, a CXCR5+ Tfh cell outside of a GCmight have already

been aGC Tfh cell and is in the process of transiting to a newGC,

or it might be a newly activated Tfh cell on its way to becoming a

GC Tfh cell, or it may have another fate, includingmemory forma-

tion or being a Tfh cell destined to provide help primarily outside

of a GC.

A canonical Tfh cell differentiation pathway was described

above, involving multiple signals, a multistage process, and

two different APCs. Alternative Tfh cell differentiation processes

exist. This is expected. There is not a single immutable Tfh cell

phenotype. It is quite clear that CD4+ T cells have enormous

intrinsic heterogeneity. This is an important aspect of CD4+

T cell biology, allowing the cells to adapt to a variety of environ-

mental conditions, locations, and needs. Some of this variability

is almost certainly stochastic and valuable for preventing path-

ogen evasion by virtue of its randomness and diversity. Th1,

Th2, Th17, and Th9 responses are selectively valuable for re-

sponses to specific categories of pathogens (e.g., Th1 cells in

response to viral infections) and are induced by pathogen-asso-

ciated molecular patterns (PAMPs) associated with a pathogen

category (e.g., viral RNA triggering of TLR7 and TLR8 causes

IL-12 production by DCs to instruct Th1 cell differentiation).

That conceptual framework does not hold true for Tfh cells. Anti-

body responses are valuable against almost all pathogens,

irrespective of whether they are viral, bacterial, fungal, or multi-

cellular parasites. Consequently, it is critical that the immune

system trigger Tfh cell inductive signals whenever any form of

pathogen is detected.

As a result of the need to trigger Tfh cell inductive signals in the

context of a wide range of potential pathogen assaults, multiple

redundant signals are likely involved. IL-6 is an example of this.

IL-6 is produced by DCs, macrophages, B cells, and a variety

of other cell types in response to a range of external and internal

PAMPs and damage-associated molecular patterns (DAMPs). In

the absence of IL-6, an early defect in murine Tfh cell differentia-

tion is observed, most likely due to a failure of IL-6 production by

the DCs priming naive T cells. Nevertheless, that defect is rapidly
Immunity 41, October 16, 2014 ª2014 Elsevier Inc. 531



Immunity

Review
compensated for by IL-21 or IL-27 in most cases (Batten et al.,

2010; Choi et al., 2013a; Eto et al., 2011; Harker et al., 2013; Kar-

nowski et al., 2012), though late roles of IL-6 for Tfh cells can also

be dramatic (Harker et al., 2011). A second example of multiple

alternative Tfh cell differentiation pathways involves ICOS (Wein-

stein et al., 2014; Xu et al., 2013). ICOSL was found to not be

essential on antigen-specific B cells (Xu et al., 2013), but a

follow-up study found that ICOSL is normally required on anti-

gen-specific B cells, but that can be overcome when large

numbers of antigen-specific B cells are transferred or in the pres-

ence of large amounts of antigen (Weinstein et al., 2014).

Given the importance of Tfh cells, one concept is that Tfh cell

differentiation is a default pathway for newly activated CD4

T cells. That concept appears to be incorrect. In vitro activated

CD4+ T cells in unbiased conditions fail to acquire any of the

key features of Tfh cells such as CXCR5, Bcl6, SAP, or IL-21

expression (Eto et al., 2011).

Althoughmuch is now understood about themultiple stages of

Tfh cell differentiation and signals involved in the process, critical

knowledge is still lacking.Most importantly, understanding of Tfh

cell differentiation is still insufficient to establish a defined and

reproducible in vitro Tfh cell differentiation condition. This is

the single most serious knowledge gap in the field of Tfh cell

biology. Features of some partial aspects of Tfh cell differentia-

tion have emerged from in vitro studies. It is well established

that IL-6 is a potent inducer of IL-21 expression by activated

murine CD4+ T cells. IL-6 also induces transient Bcl6 expression

(Eto et al., 2011; Nurieva et al., 2009). However, although IL-6

was initially reported to drive CXCR5 expression (Nurieva et al.,

2009), IL-6 does not induce significant amounts of CXCR5

mRNA or protein in most conditions (Eto et al., 2011; Liu et al.,

2014). Furthermore, IL-6 is not a good inducer of IL-21, Bcl6,

or CXCR5 expression by activated human CD4 T cells (Ma

et al., 2009; Schmitt et al., 2009). In contrast, IL-12 is a potent

inducer of IL-21 expression by human CD4 T cells, but not

murine CD4 T cells (Ma et al., 2009; Schmitt et al., 2009). Inter-

estingly, IL-6 deficiency results in a severe reduction in

CXCR5+Bcl6+ early Tfh cells in vivo, with effectively no CXCR5

or Bcl6 expressing cells present 72 hr after an acute viral infec-

tion (Choi et al., 2013a). Nevertheless, constitutive Bcl6 expres-

sion in activated murine CD4+ T cells is not sufficient to induce

CXCR5 expression in vitro (Liu et al., 2014). In contrast, constitu-

tive expression of Bcl6 in previously activated (CD45RO+) human

CD4+ T cells does induce elevated CXCR5 in vitro (Kroenke et al.,

2012). A recent paper reports the most successful conditions yet

for human Tfh cell differentiation in vitro, with successful short-

term induction of CXCR5, Bcl6, and IL-21 in the presence of

transforming growth factor b (TGF-b) and IL-12 or IL-23 (Schmitt

et al., 2014). A contribution by TGF-b is surprising. Importantly,

these same conditions were not effective at inducing murine

CD4+ T cells to differentiate into Tfh cells in vitro, implying a dif-

ference between the species. In vitro TGF-b + IL-12 or TGF-b +

IL-23 generated human Tfh cells possessed enhanced B cell

help activity, indicating that TGF-b is important for human Tfh

cell differentiation and function.

Clues regarding human Tfh cell differentiation are also being

provided by analysis of humans with genetic deficiencies. The

importance of SAP and ICOS in human Tfh cell differentiation

and function was recognized a number of years ago (Crotty,
532 Immunity 41, October 16, 2014 ª2014 Elsevier Inc.
2011). Now it is also clear that IL-21R and STAT3, as well as

IL-12R and STAT4 are two pairs of proteins for which genetic

mutations are associated with loss of Tfh cells in humans (Ma

et al., 2012a; Schmitt et al., 2013). Importantly, it remains unclear

whether murine and human Tfh cell differentiation are regulated

by the same cytokines (Figure 1B), and therefore not all lessons

from one species may be applicable to the other, even though

the cell gene-expression program and Tfh cell functions are

highly conserved between the species.

Tfh Cell Memory

While Tfh cell memory was controversial (Ma et al., 2012b;

Marshall et al., 2011; Pepper et al., 2011), there are now a series

of clear studies demonstrating Tfh cell memory in both mice

(Choi et al., 2013b; Hale et al., 2013; Liu et al., 2012; Weber

et al., 2012) and humans (Bentebibel et al., 2013; Locci et al.,

2013), building upon earlier observations in both species (Cheva-

lier et al., 2011; Lüthje et al., 2012; Morita et al., 2011). Memory

Tfh cells can be long-lived (Hale et al., 2013; Locci et al., 2013)

and are transferrable (Hale et al., 2013). Some of the hesitancy

regarding Tfh cell memory was based on an incorrect assump-

tion that GC Tfh cells were terminally differentiated and could

not leave GCs. In fact, GC Tfh cells regularly exit from GCs, as

discussed above. Upon leaving a GC, the Tfh cell acquires a

less activated, less polarized Tfh phenotype and can upregulate

IL-7Ra and develop into resting memory Tfh cells (Choi et al.,

2013b; Hale et al., 2013; Kitano et al., 2011; Liu et al., 2012; Shul-

man et al., 2013; Yusuf et al., 2010) (Figure 1B). In addition, it is

not required that a Tfh progress through a GC Tfh state to

become a memory Tfh cell (He et al., 2013) (Figure 2). Memory

Tfh cells have a central memory phenotype and predominantly

reside in spleen, LNs, and bone marrow, and have the capacity

to recirculate in blood (Chevalier et al., 2011; Hale et al., 2013).

Approximately 20% of all human central memory CD4+ T cells

are CXCR5+, demonstrating that memory Tfh cells are a major

component of human T cell memory. Memory Tfh cells preferen-

tially become Tfh cells and GC Tfh cells upon reactivation (Hale

et al., 2013) (Figure 2). In humans, memory Tfh cells are hetero-

geneous in phenotype, at least in blood (Schmitt and Ueno,

2013), including a significant fraction of resting memory Tfh cells

that express low amounts of programmed cell death-1 (PD-1).

These PD-1lo memory Tfh cells are the most polarized and func-

tional memory Tfh cells, as measured by gene-expression

profiling andB cell help (Locci et al., 2013). As a result, onemodel

is that those memory Tfh cells are the most likely to retain their

Tfh differentiation program upon reactivation (Figure 2), but this

requires additional studies.

Bcl6 expression is not stable; it requires continuous reinforce-

ment. As such, when a GC Tfh cell leaves a GC and transitions to

a non-GC Tfh cell state (a Tfh cell), Bcl6 expression is reduced

(Kitano et al., 2011; Yusuf et al., 2010). Bcl6 expression is further

reduced as the cell transitions to a fully resting state, becoming a

memory Tfh cell (Choi et al., 2013b; Hale et al., 2013; Liu et al.,

2012). This is not unlike the phenotype of other central memory

CD4+ T cell subsets, which frequently exhibit relatively low

amounts of canonical master regulator transcription factors.

Interestingly, activated memory B cells induce rapid re-expres-

sion of Bcl6 by memory Tfh cells (Ise et al., 2014), reinforcing

the concept that many features of Tfh cells are highly intertwined

with those of its partners, the B cells.
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The Transcription Factor Network Driving Tfh Cell

Differentiation

Bcl6 is essential for Tfh differentiation and is frequently referred

to as the Tfh master regulator transcription factor. However,

the master regulator transcription factor concept is an oversim-

plification of lymphocyte biology. More than one transcription

factor is critical for any CD4 T cell differentiation program. As

such, the transcription factors Bcl6, RORgt, T-bet, GATA3,

and Foxp3 are now more frequently referred to as ‘‘lineage

defining’’ transcription factors for Tfh, Th17, Th1, Th2, and

pTreg cells, respectively. Even this nomenclature is imperfect,

given the evidence of reversible plasticity by most CD4+

T cell types (O’Shea and Paul, 2010). It appears that most

cell types can be distinguished by differential expression of a

set of 4–6 transcription factors (TFs) (Ravasi et al., 2010), and

this concept applies to CD4+ T cell differentiation (Ciofani

et al., 2012). For Tfh cells, several transcription factors are

required in addition to Bcl6. These include Maf, interferon reg-

ulatory factor 4 (IRF4), the activator protein 1 (AP-1) family

member ‘‘basic leucine zipper transcription factor’’ (Batf),

STATs, and E proteins.

IRF4 and Batf are both essential for Tfh cell differentiation

(Bollig et al., 2012; Ise et al., 2011), but they are required for mul-

tiple different CD4+ T cell programs and can be considered early

T cell activation-associated transcription factors that enable

expression and function of downstream cell-fate-determining

transcription factors (Vahedi et al., 2013). This might occur via

cell-type-specific superenhancer regulation. For example, Batf

is a positive regulator of the Bcl6 gene, and combined expres-

sion of Bcl6 and Maf is required to obtain CXCR5 expression

in vivo in the absence of Batf (Ise et al., 2011). Maf is highly ex-

pressed in Tfh cells and is associated with CXCR5, IL-21, and

IL-4 expression (Bauquet et al., 2009; Hiramatsu et al., 2010;

Ise et al., 2011; Kroenke et al., 2012).

The E protein Ascl2 is a newly recognized contributor to Tfh

differentiation. Constitutive expression of Ascl2 in murine CD4+

T cells induces CXCR5 expression by some CD4+ T cells

in vitro (Liu et al., 2014). Ascl2fl/fl Cd4Cre mice had normal Tfh

cell differentiation and CXCR5 expression, which indicates that

Ascl2 is not a unique regulator of CXCR5 and that there is redun-

dancy among the several E proteins expressed in T cells and

multiple E proteins can enhance CXCR5 expression by binding

enhancer regions (Liu et al., 2014; Miyazaki et al., 2011). The sig-

nals inducing Ascl2 expression or other E-box proteins remain

undefined. Additionally, E protein function is heavily regulated

by Inhibitor of DNA-binding 2 (Id2) and Id3 (Yang et al., 2011a).

Foxp1 and Foxo1 represent transcription factor examples of

the converse biology. Foxp1 and Foxo1 are expressed in resting

naive CD4+ T cells and are required for quiescence and homing

of naive CD4+ T cells (Hedrick et al., 2012). Eliminating expres-

sion of either of these two genes—by genetic ablation or, at least

in the case of Foxo1, ubiquitination and degradation by Itch—is

critical for Tfh differentiation (Stone et al., 2013; Wang et al.,

2014; Xiao et al., 2014). These transcription factors appear to

repress Bcl6 and Tfh cell-associated migration genes, among

others, though conflicting Foxo1 data have been reported (Oes-

treich et al., 2012). As such, there are Tfh transcription factors

upstream of Bcl6, as well as transcription factors that coordinate

with Bcl6 or are downstream.
Signal transducers and activators of transcription (STATs) are

also deeply entwined with Tfh differentiation, as they are with all

CD4+ T cell differentiation pathways (Vahedi et al., 2013). Roles

of STAT proteins in Tfh cells are complex and overlapping.

STAT3 is the most important STAT in murine Tfh differentiation

(Ma et al., 2012a; Ray et al., 2014), while STAT1 and STAT4

can also contribute (Choi et al., 2013a; Nakayamada et al.,

2011; Schmitt et al., 2013). This includes a critical role for

STAT3 in IL-21 expression by murine CD4+ T cells (Suto et al.,

2008), whereas both STAT4 and STAT3 regulate IL-21 expres-

sion by human CD4+ T cells (Ma et al., 2009; 2012a; Schmitt

et al., 2009; 2013). Interestingly, STAT1 can either enhance

(Choi et al., 2013a; Nakayamada et al., 2014) or inhibit (Ray

et al., 2014) Bcl6 expression and Tfh cell differentiation.

Regarding murine CXCR5, it is feasible that IL6-driven STAT3

(and STAT1) binds at the CXCR5 promoter in conjunction with

Maf and Batf and drives CXCR5 expression in an E protein-

dependent manner (Ise et al., 2011). This remains to be tested.

In contrast to mice, STAT3 and STAT4 might be equally impor-

tant in human Tfh differentiation (Ma et al., 2012a; Schmitt

et al., 2013) (Figure 1B). In contrast, STAT5 represses Tfh differ-

entiation (Johnston et al., 2012). The opposing roles of STAT3

and STAT5 in Tfh differentiation appear similar to the antago-

nistic roles of STAT3 and STAT5 in Th17 differentiation (Yang

et al., 2011b). Thesemultifaceted regulators of Tfh differentiation

also highlight the need to always consider the complex features

of CD4+ T cell gene regulation.

The mechanisms by which Bcl6 controls CD4+ T cells have re-

mained only partially elucidated. Bcl6 is a DNA binding transcrip-

tion factor, and it contains three main domains, the BTB (broad

complex, tramtrack, bic-a-brac), RDII (repressor domain II, or

‘‘middle domain’’), and the Zn finger DNA binding domain

(Figure 3). However, within each of those domains, Bcl6 has

the capacity to interact with a range of proteins, particularly tran-

scription factors and chromatin modifiers (Figure 3). The Bcl6

BTB domain is known to bind multiple other BTB-containing

and non-BTB containing proteins. The Bcl6 Zn finger domain

actually consists of three different Zn finger pairs, one of which

is involved in DNA binding, while the others are involved in pro-

tein-protein interactions (Figure 3). Together, these features

allow for vast combinatorial possibilities for Bcl6 control of

gene expression.

Bcl6 has only been described as a repressor. In GC B cells,

there is no clear evidence of Bcl6 directly binding and activating

any gene, though it causes indirect upregulation of many

genes (Hatzi et al., 2013). In Tfh cells, Bcl6 appears to participate

in control of at least four major categories of genes: cell

migration, repression of alternative fates, Tfh differentiation,

and Tfh products (Figure 4A). Bcl6 expression is closely associ-

ated with CXCR5 expression in vivo (Baumjohann et al., 2011;

Choi et al., 2011; 2013b; Johnston et al., 2009; Pepper et al.,

2011). Nevertheless, CXCR5 expression can be initiated inde-

pendently of Bcl6 (Liu et al., 2012). Furthermore, memory Tfh

cells continue to express CXCR5 without evidence of elevated

Bcl6 expression (Chevalier et al., 2011; Hale et al., 2013; Locci

et al., 2013). Genome-wide Bcl6 occupancy in GC Tfh cells

has revealed that Bcl6 binds over 3,000 genes, with several

key patterns emerging (S.C., unpublished data). Bcl6 binds

many migration-associated genes, apparently inhibiting GC Tfh
Immunity 41, October 16, 2014 ª2014 Elsevier Inc. 533



Figure 3. Bcl6 Protein Domain Structure and Interacting Proteins
The functional domains of Bcl6 are shown with regions of interest indicated. Bcl6 interacting proteins are also shown with the Bcl6 regions with which they
interact, if known. Numbers indicate amino acid positions of human Bcl6. Bcl6 is shown in blue. ‘‘BTB’’ is the broad-complex, tramtrack, and bric-à-brac domain.
Bcl6 self-dimerizes via the BTBdomain, but the self-dimerization is not shown, for simplicity. HDAC, histone deacetylase complex. Ub, ubiquitin. ‘PEST’ indicates
a PEST (proline, glutamic acid, serine, threonine-rich) ubiquitination domain (1 and 2) in Bcl6. ℗ symbolizes phosphorylation. Ac symbolizes acetylation, and the
acetylation is mediated by p300. The Zn fingers are numbered 1–6 (e.g., Zn1). NuRD, nucleosome-remodeling and histone deacetylation complex.
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cells frommislocalizing to the T cell zone or sites of inflammation.

Bcl6 expression enhances CXCR5, CXCR4, and PD-1 expres-

sion (Kroenke et al., 2012), but Bcl6 does not appear to regulate

them via direct binding and induction of gene expression (S.C.,

unpublished data). Furthermore, Bcl6 is an important repressor

of alternative cell fates (Figures 4A and 4B), which is discussed

separately in the section below.

Layers of Differentiation

As noted above, the vast majority of GC Tfh cells have highly

conserved gene expression. However, GC Tfh cells interconvert

with Tfh cells; therefore, the GC Tfh cell gene-expression pro-

gram is neither terminal nor immutable. Tfh outside of GCs

have more heterogeneous gene-expression profiles, perhaps

related to their lower expression of Bcl6, resulting in less repres-

sion of alternative cell-fate programs. Heterogeneity among Tfh

cells is not unlike Th17, Th1, Th2, or even Treg cells, where sub-

stantial heterogeneity is observed. For example, it is well estab-

lished that Th17 cells can be converted to Th1 or Treg cells.

IL17+IFNg+ CD4+ T cells are observed under a number of condi-

tions. There have been longstanding data indicating interconver-

sion of Th1 and Th2 cells. It is quite clear that epigenetic marks

require continuous maintenance and can be changed when cells

enter different environments or experience new external signals

(Mukasa et al., 2010). The behavior of the Tfh differentiation pro-

gram is like that of other CD4+ T cell differentiation programs in

this regard.

One way to conceptualize this biology is with architectural

blueprints showing layers of differentiation, as if a cell is a multi-

story building and a single floor represents a differentiation pro-
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gram (Figure 4B). Each differentiation program has a specific

blueprint, which is the gene-expression program controlled by

a core transcription factor network and external signals. In the

case of the Tfh program, the core transcription factors are

Bcl6, Maf, and STAT3 (STAT3 and STAT4 in humans), with sup-

porting contributions by additional transcription factors. These

transcription factors control four general aspects of Tfh cell

biology, including location, function, and differentiation or posi-

tive reinforcement (Figure 4A). The fourth important attribute of

Tfh biology is repression of alternative cell-fate differentiation

programs. One obvious way this could be accomplished is by

downregulating cytokine receptors necessary for Th1 (IL-12R,

interferon-g receptor-1 [IFNGR1]), Th2 (IL-4R), pTreg (TGF-bR),

or Th17 (IL-23R) cell differentiation. Indeed, Bcl6 directly re-

presses each of these genes (S.C., unpublished data), thereby

cutting off alternative inductive signals. Bcl6 also represses

Blimp-1 (Johnston et al., 2009), which is strongly associated

with non-Tfh cell fates (Figure 4). Nevertheless, external cues

can still induce Th1, Th2, or Th17 differentiation signals in the

cell through the residual cytokine receptor expression. This

can result in expression of some amount of Th1, Th2, or Th17

genes. Thus, Bcl6 inhibits the Th1, Th17, Treg, and Th2 blue-

prints by also directly targeting central Th1, Th17, Treg, and

Th2 transcription factors and cytokine genes for repression

(S.C., unpublished data; Nurieva et al., 2009) (Figure 4B). IFN-

g, IL-17, or IL-5 and IL-13 expression is uncommon in human

GC Tfh cells (Kroenke et al., 2012; Ma et al., 2009), indicating

that the Bcl6 amounts in GC Tfh are sufficient to block Th1,

Th2, and Th17 gene expression in the majority of in vivo



Figure 4. An Architectural Blueprint
Conceptual Model of CD4 T+ Cell
Differentiation Programs
(A) Regulation of Tfh differentiation by Bcl6 and
cooperating Tfh transcription factors (TFs). Tfh cell
biology can be divided into four categories, indi-
cated in different colors, with representative genes
shown for each category. All differentiation and
product genes shown are upregulated in Tfh cells.
All alternative-fates genes shown are down-
regulated and are grouped in subcategories (Th1,
Th2, IL-2 and Blimp1, Th17, and forkhead box
gene regulation). Genes in the location category
include genes that are upregulated (+) or down-
regulated (�).
(B) An architectural blueprint model of Tfh cell
differentiation and how it relates to other CD4+

T cell differentiation programs, within a single cell.
The Tfh cell differentiation program (shown in 4a) is
projected as a flat plane, as if it were the archi-
tectural blueprint for a floor of amultistory building,
but in this case it is the blueprint within a CD4+

T cell instead of a building. The Th1 cell program is
projected as the blueprint of another floor. Bcl6
prevents activity of the Th1 cell program in a Tfh
cell by blocking the expression of genes central to
the Th1 cell blueprint. Extracellular signals can
enter as inputs from the surface of the cell, such as
through IL-2R or IFN-gR, shown at the edge of the
Th1 level. Proteins whose genes are inhibited by
Bcl6 are indicated by a red T. The Th17 cell pro-
gram is projected as another blueprint, which is
also inhibited by Bcl6. The Th2 and Treg cell pro-
grams are not shown due to space constraints but
are conceptually analogous to the Th1 and Th17
cell program blueprints.
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conditions. However, mouse models have demonstrated that,

under conditions of intense polarization, expression of other dif-

ferentiation programs occurs within GC Tfh cells. For example, in

a strongly Th1 systemic chronic lymphocytic choriomeningitis

virus (LCMV) infection GC, Tfh cells express IFN-g (Yusuf et al.,

2010). In the systemic autoimmunity prone BXD2 mice, sponta-

neousGCdevelopment is associatedwith IL-17+ RORgt+ GC Tfh

cells (Ding et al., 2013). The canonical Tfh, Th1, Th2, and Th17

blueprints can also interact in unexpected ways, further adding

to the biological complexity, such as enhancement of Tfh cell fre-

quencies in the presence of excessive IFN-g (Lee et al., 2012). In

summary, the majority of GC Tfh cells exhibit a canonical gene

expression profile, which is conserved across species and pre-

dominantly excludes expression of Th1, Th17, Th2, Th9, and

Treg cell-associated genes. Nevertheless, substantial heteroge-
Immunity 41,
neity of GC Tfh (and Tfh) phenotypes is

possible depending on environmental

cues.

Complexities of Tfh Cell

Differentiation and Memory

An alternative model to consider is that

Tfh differentiation is a secondary pro-

gram, such that there are Th1 cell-type

Tfh (Tfh1), Th2 cell-type Tfh (Tfh2),

and Th17 cell-type Tfh (Tfh17) cells

(Figure S1) (Crotty, 2011). In this concep-

tual framework, there are Th1 effector

cells and Tfh1 cells in response to a viral
infection, for example. In support of this model, Tfh cells in the

context of viral infection express some T-bet and IFN-g (John-

ston et al., 2009; Yusuf et al., 2010), and there are rare IFN-g+

Tfh in L. major-infected mice (Reinhardt et al., 2009). There are

also examples of IL-17+ Tfh cells in autoimmune prone BXD2

mice (Ding et al., 2013). IL-5 or IL-13 Th2 cytokine-expressing

Tfh cells were reported (Zaretsky et al., 2009). However, a

more recent extensive study concluded that Tfh cells do not ex-

press IL-13 or IL-5 (Liang et al., 2012). Transfer experiments are

challenging to interpret, since the outcome can be the result of

outgrowth of a small number of cells that did not share the

biology of the majority of the cells. Cell transfers appear to

show that Th2 cells can convert into Tfh cells (Zaretsky et al.,

2009), and Th17 cells can convert into Tfh cells (Hirota et al.,

2013). However, in other studies, Tfh, Th1, and Th17 cells have
October 16, 2014 ª2014 Elsevier Inc. 535



Immunity

Review
largely retained their identities after transfer (Choi et al., 2013b;

Hale et al., 2013;Weber et al., 2012). When facedwith the human

biology, the interpretations are more complicated. While very

few GC Tfh cells express non-Tfh cell cytokines in lymphoid

tissue (Kroenke et al., 2012; Ma et al., 2009), when observing

memory Tfh cells in human blood a high percentage of the mem-

ory Tfh cells express chemokine receptors generally affiliated

with human Th1, Th17, or Th2 cell memory cells (Morita et al.,

2011). However, conventional chemokine receptor-based defini-

tions of human blood central memory Th17 and Th2 cells are

flawed, as only a small percentage of those cells actually pro-

duce Th17 or Th2 cell-associated cytokines upon restimulation.

Additional complexities to understanding CD4+ T cell differentia-

tion programs include overlapping biology, including the obser-

vation that Tbet can form a complex with Bcl6 and both inhibit

major functions for Bcl6 and enhance other functions (Oestreich

et al., 2012). Finally, there are a great deal of data not in support

of the secondary program conceptualization of Tfh cell differen-

tiation, many of which were stated earlier in this review. In partic-

ular, Tfh cell differentiation can start at DC priming and can be

distinguished from Th1 cells within the first two cell divisions

in vivo during an acute infection (Choi et al., 2011). Second,

Tfh cell differentiation is independent in that it does not require

Th1, Th2, or Th17 cell programming (Nurieva et al., 2008).

Both conceptual models do have strengths. Although it is

appealing to have a simple shared nomenclature, this is inher-

ently problematic for cells as heterogeneous as CD4+ T cells

are. From a semantic perspective, this is in part a question of

the perceived primary biology of the cell in question. Is it primarily

a Tfh cell, helping B cells? Or is it primarily a Th1 cell, inducing

inflammation in an infected tissue? Treg cells are an illustrative

example here. While there are clearly Tbet+ or RORgt+ Tregs

(Th1-related and Th17-related), these cells are clearly still Tregs,

because their primary biology is to dampen and regulate immune

responses. A similar perspective is applicable to Tfh cells. While

there can be Tbet+ or RORgt+ Tfh cells, these cells are clearly still

Tfh cells, because their primary biology is to help B cells. Hence,

the conceptual frameworks discussed thoroughly earlier in the

review and shown in Figures 1B and 4B seem most relevant.

Th1, Th2, or Th17 cell-associated cytokines produced by Tfh

cells or GC Tfh cells can be instructive for class-switch recombi-

nation and are therefore not irrelevant. However, it must be noted

that the importance of this cytokine biology appears to be exac-

erbated in mice, because the difference in immunoglobulin G

(IgG) class switch recombination between Th1 and Th2 condi-

tions is dramatic in mice (murine IgG1 and murine IgG2a/b/c

have very different functions), whereas human IgG1 (the domi-

nant isotype) has broad functionality. In addition, while IFN-g is

a major class switch recombination factor in mice, its role in

human IgG class switching appears to be trivial (Holland and

Casanova, 2006). In summary, Tfh cells can exhibit features

consistent with the Tfh1/2/17 cell conceptual framework, but

on balance the majority of the data support Tfh cells as a distinct

cell type as the more instructive conceptual framework.

Within the context of categorizing cells and differentiation pro-

grams, T follicular regulatory (Tfr) cells are a separate issue,

because these cells are thymic Treg (tTreg or ‘‘natural Treg’’)

cells that also express Bcl6 and CXCR5 (Chung et al., 2011; Lin-

terman et al., 2011; Sage et al., 2013; Wollenberg et al., 2011).
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They are analogous to type-specific Treg cells, such as Th1

cell-specific Treg cells, which express Tbet as a mechanism to

express CXCR3. Expression of the appropriate chemokine re-

ceptor is a necessary part of Treg cell biology, so that they

migrate to the same location of the effector cells (Tfh or Th1 cells

in these examples) such that they can dampen immune re-

sponses at that site. Bcl6+CXCR5+ induced pTreg cells have

yet to be identified.

Bcl6 does have some role in the development of T cell mem-

ory, which also impacts interpretations of Tfh cell biology at

different time points. While Bcl6 has a role in development of

memory CD8 T cells, the cell intrinsic effect of Bcl6 deficiency

is modest (Cui et al., 2011). In CD4+ T cells, the role of Bcl6 in

memory requires further investigation. Early experiments with

Bcl6-deficient CD4+ T cells lacked key controls for cellular rejec-

tion (Ichii et al., 2007), whereas more recent studies did not

examine Bcl6-deficient CD4+ T cells at memory time points

(Hale et al., 2013; He et al., 2013; Pepper et al., 2011). An addi-

tional challenge to studying Tfh cell memory is that active Tfh

cell responses continue for much longer than Th1 or Th2 cell re-

sponses after an acute immunization or infection. Tfh cells are

active for the duration of the GCs, with continuous exposure to

antigens, which frequently last for 60 or more days. Therefore,

to stringently study resting Tfh cell memory, it is likely necessary

to wait more than 90 days, depending on the model system,

while resting Th1 or Th2 cell memory develops by day 30 after

an acute antigen exposure.

Tfh Cell Function

The most prominent role of Tfh cells is their requirement for GC

development and function. The GC is the primary site of B cell

affinity maturation. The extraordinary process of Ig gene somatic

hypermutation and selection is one of the miracles of immu-

nology. A GC reaction is effectively evolution in miniature. Regu-

lation of Tfh cell help is central for achieving the goal of GC

responses, which is to generate and select GCB cells with higher

affinity for the pathogen (Victora and Nussenzweig, 2012). In

GCs, B cells circulate through two regions: the light zone (LZ)

and the dark zone (DZ). In the LZ, GC B cells bind to antigen

and present antigen peptide:MHC complexes to Tfh cells that,

in turn, provide help signals to GC B cells that are essential for

their survival and proliferation. GC B cells that receive survival

signals and then migrate to the DZ, where they undergo prolifer-

ation and somatic hypermutation (SHM), allowing for the gener-

ation of BCRs with a spectrum of affinities to antigen. These

mutated GC B cells then move back to the LZ, where the highest

affinity B cells are selected again by the Tfh cells for another

round of proliferation and mutation. Multiple studies have re-

vealed the roles of Tfh cells in regulating GCs (Crotty, 2011; Vic-

tora and Nussenzweig, 2012). Tfh cells regulate GC size (Hams

et al., 2011; Johnston et al., 2009; Rolf et al., 2010), restrict

low-affinity B cell entry into the GC, support high affinity B cell

occupancy of the GC (Schwickert et al., 2011), and select

high-affinity B cells during affinity maturation (Good-Jacobson

et al., 2010; Victora et al., 2010). In addition, most GC B cells

cannot trigger BCR signaling (Khalil et al., 2012). Therefore, the

GC B cells are dependent on help signals from the Tfh cells to

discriminate which GC B cells proliferate. Tfh cells selectively

provide help to the B cells with the most antigen peptides, which

are the high-affinity B cells that bound and endocytosed the
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most antigen. Surprisingly, the amount of help provided by the

Tfh cell directly translates to the number of cell divisions—and

mutations—a GC B cell will undergo in the DZ in a single selec-

tion cycle (Gitlin et al., 2014). Therefore, Tfh cells regulate the

mutation diversity of BCRs in a GC. Strong Tfh help to B cells

can result in GC B cell accumulation of multiple mutations in a

single round of selection, which may be important for generating

raremultiple mutation combinations, particularly if a single muta-

tion happens to be deleterious on its own. For example, develop-

ment of broadly neutralizing antibodies against HIV is very diffi-

cult and requires extensive somatic hypermutation (Burton

et al., 2012). Some of these antibodies develop new disulfide

bonds that stabilize long CDR loops (Doria-Rose et al., 2014).

Single cysteines are likely to be deleterious, and are unlikely to

be positively selected. Simultaneous generation of two cysteine

mutations in a single selection cycle might be an example of how

strong Tfh cell help to GC B cells controls the mutation spectrum

of GC B cells and might allow some B cells to overcome large

hurdles in the evolutionarily landscape to develop high affinity

for their target antigen.

The help signals provided by Tfh cells to GC B cells consist of

both cytokines and cell-surface receptors. While the help signals

are incompletely characterized, CD40L, IL-21, and IL-4 aremajor

‘‘help’’ molecules produced by GC Tfh cells to keep GC B cells

alive and induce their proliferation (Crotty, 2011). IL-21 and IL-

4 are also potent inducers of IgG1 class switch recombination

for human B cells (Avery et al., 2008), and IgG1 is the most prev-

alent class-switched immunoglobulin. The help factors IL-21 and

IL-4 are not simply produced by Tfh cells upon TCR engage-

ment; they are regulated by additional cell-surface molecules

that effectively communicate additional dialog between the Tfh

cell (the provider of help) and the GC B cell soliciting help. IL-4

is produced by GC Tfh cells in a SLAM-dependent manner (Yu-

suf et al., 2010), and SLAM is selectively upregulated on LZGCB

cells (Victora et al., 2012). Separately, ICOS triggering is impor-

tant for Tfh cell production of IL-21 (Morita et al., 2011). Manipu-

lating the amount of Tfh cell help given to B cells dramatically

alters affinity maturation. Indiscriminate Tfh cell help to both

high and low affinity B cells leads to the generation of lower

affinity antibodies over time (Victora et al., 2010). Therefore,

the outcome of the GC B cell response depends on the proper

regulation of Tfh cell help to high affinity versus low affinity B

cells. For this reason, negative signaling through SLAMF6 might

serve a critical purpose in limiting Tfh cell help (Kageyama et al.,

2012), thereby enhancing selective pressure.

Inhibitory signals to Tfh cells might limit Tfh cell help signals or

Tfh cell proliferation or both. One of the central challenges of Tfh

cells in GCs is that they are constantly exposed to antigen and

must retain sensitive TCR signaling—so as to distinguish be-

tween GC B cells with modest differences in their numbers of

p:MHC complexes—but the Tfh cell needs to not respond by

proliferating, in contrast to most effector CD4+ T cells. Instead,

the Tfh cell needs to respond to that TCR signaling by only

providing transient help to the cognate B cells. After all, the pur-

pose of the GC is for the GC B cells to rapidly proliferate, mutate,

and evolve, not the Tfh cell. As such, control of multiple compo-

nents of TCR signaling and downstream pathways (including

regulation of transcription elongation by Cyclin T1 [Chen et al.,

2014]) might be essential for striking the balance in Tfh cells
between sensitive sensing of p:MHC and unwanted proliferation.

The extremely high amount of PD-1 expressed by GC Tfh cells

critically contributes to limiting GC Tfh cell proliferation in GCs

by dampening TCR signaling. Nevertheless, excessive availabil-

ity of the PD-1 ligand PD-L1 onGCB cells can occur and is asso-

ciated with defective Tfh cell function (Cubas et al., 2013). High

amounts of PD-L1 on GC B cells results in reduced ICOS and

IL-21 expression, resulting in minimal help to the PD-L1hi GC B

cells (Cubas et al., 2013). In addition to PD-1 and SLAMF6, Tfh

cells express multiple additional inhibitory receptors, which

might control both Tfh cell proliferation and function. Immuno-

therapy targeting Tfh cells by blocking PD-L1 and LAG-3 in a

mouse malaria model led to an increase in Tfh cell and GC B

cell numbers, followed by rapid development of protective anti-

bodies and clearance of the Plasmodium (Butler et al., 2012). In

summary, Tfh cell help to GC B cells is provided via a combina-

tion of secreted and surface bound help molecules, which are

counterregulated by inhibitory molecules that can critically affect

the amount of help provided, the duration of the T:B interaction

(which is related to the amount of help provided), or the cocktail

of molecules expressed by the Tfh cell.

Negative regulation of the GC is also accomplished by Tfr

cells, introduced earlier in this review. Tfr cells can have potent

inhibitory roles in GCs, and it is thought that the ratio between

the Tfh and Tfr cells is an important determinant of the GC reac-

tion. Nevertheless, there are many unanswered questions about

Tfr cells. It is unclear whether the Tfr cells primarily function by

interacting with T cells (Tfh cells in this case), which is the primary

mechanism by which tTregs cells act, or alternatively, the Tfr

cells might mainly act directly on the GC B cells. There is

currently uncertainty whether Tfr cells can regulate immune re-

sponses in an antigen-specific manner, and it might be that their

primary role is to eliminate autoreactive B cells that arise via mu-

tation in the GC (Linterman et al., 2011).

It is worth noting that while the most important and well-stud-

ied role of Tfh cells is their requirement in GCs, Tfh cells also have

critical roles outside the GC. This is an area that is understudied.

In addition, there are GC-independent memory B cells, which

form early during responses and generally have no mutations.

Thesememory B cells are Tfh cell-independent (Kaji et al., 2012).

Tfh Cells in Disease

Tfh cells are essential for the generation of most isotype

switched and affinity matured antibodies, and therefore they

have an obvious role in protective immunity against pathogens.

Antibodies are necessary for the control of LCMV infection,

and defects in Tfh cell frequencies result in failure to control

LCMV (Fahey et al., 2011; Harker et al., 2011). LCMV has a sur-

face that is very difficult for antibodies to bind, hence substantial

T cell help to B cells is necessary to drive the slow generation of B

cell responses capable of controlling the viremia. A similar prob-

lem exists for HIV, made even worse by the extrememutability of

HIV. Tfh cell frequencies are associated with the amount and

quality of antibody responses against SIV (simian immunodefi-

ciency virus, a close relative to HIV) in SIV-infected macaques

(Petrovas et al., 2012). Impaired Tfh cell help to B cells is

observed in HIV-infected individuals, which appears to exacer-

bate the difficulty in generating neutralizing antibodies against

HIV (Cubas et al., 2013). Conversely, individuals who have un-

usually elevated frequencies of highly functional memory Tfh
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cells (PD1loCXCR3�CXCR5+) are more likely to make broadly

neutralizing antibodies against HIV (Locci et al., 2013), again

consistent with the hypothesis that Tfh cells are a key limiting

resource for the development of high-affinity B cell responses.

Almost all licensed human vaccines work on the basis of long-

term protective antibody responses, and therefore it is reason-

able to assume that Tfh cells are mediators of the development

of the protective immunity generated by licensed human vac-

cines. There is evidence that Tfh cell help is a limiting factor in

humans for generating antibody responses after immunizations

(Bentebibel et al., 2013; Duan et al., 2014; Pallikkuth et al.,

2012; Schmitt et al., 2013). Therefore, learning to control Tfh

cells would almost certainly enhance development of new or

improved vaccines. As described above, boosting Tfh cell

numbers with immunotherapy led to dramatically improved anti-

body responses in mouse malaria (Butler et al., 2012). Therefore,

it might also be that vaccines that employmonoclonal antibodies

targeting Tfh cell inhibitory pathways could adjuvant vaccine

efficacy.

Tfh cells are not only important in control of pathogens, they

are also important in control of the commensal microbiota. The

predominant antibody isotype at mucosal surfaces is IgA, and

the majority of IgA is T-dependent, based on data from MHCII-

or T cell-deficient animals. In addition, in mice that had normal

IgA levels but a defect in productive GC somatic hypermutation,

the microbiota was expanded and increased susceptibility to

the intestinal pathogen Yersinia pestis was observed (Wei

et al., 2011). Thus, Tfh cells are required for sufficient antibody

response quality to control both commensals and pathogens.

Nevertheless, intestinal immune responses are characterized in

many ways by their balance between protecting against mi-

crobes and avoiding undo inflammation. This paradigm has

been seen to also hold true for Tfh cells, as a defect in Tfr cells

can result in more Tfh cells, larger antibody responses, and

less microbiota diversity, which, paradoxically, can result in

less healthy gut homeostasis (Kawamoto et al., 2014). Interest-

ingly, Tfh cells are also essential for IgE production (Liang

et al., 2012), and therefore Tfh cells are important in allergic

responses; however, the literature on Tfh cells in allergy is

currently limited and this is an area in need of much more

investigation.

Tfh cells are central players in a number of autoimmune dis-

eases, and it is hoped that a greater understanding of Tfh cells

can result in new therapeutic approaches against major autoim-

mune diseases. Increased frequencies of Tfh-like cells (CXCR5+

and PD-1hi or ICOShi) in peripheral blood are observed in subsets

of patients with Sjogren’s syndrome (Simpson et al., 2010;

Szabo et al., 2013), juvenile dermatomyositis (Morita et al.,

2011), and systemic lupus erythematosus (He et al., 2013; Simp-

son et al., 2010). Each of those diseases is associated with

extensive autoantibody production. Autoimmune diseases for

which autoantibodies play a direct pathogenic role are likely to

have Tfh cells as an important component of the disease, for

example, granulomatosis with polyangiitis (GPA). Separately,

there are functions of Tfh cells that might be unrelated to anti-

body responses, per se. For autoimmune diseases like SLE, au-

toantibodies are considered primarily markers of disease, not

causes of disease. Interestingly, a common variation of SLE in

humans is lupus nephritis, which can result in severe kidney
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dysfunction associated with inflammation and the accumulation

of high concentrations of autoantibodies. Importantly, ectopic

clusters of Tfh cells and B cells can be found in the inflamed kid-

neys of such patients, includingGCTfh cells andGCBcells (Liar-

ski et al., 2014). These and other data suggest that Tfh cells

might be major regulators of ectopic follicles in autoimmune

diseases (Craft, 2012). Thus, Tfh cells might contribute to auto-

immune diseases both by facilitating the aberrant generation of

autoantibodies and by facilitating the formation or maintenance

of ectopic follicles, which serve as nucleation points for other

cells that might be directly pathogenic in the autoimmune

disease.

Although roles for Tfh cells in infectious diseases, allergy, and

autoimmunity were expected, it was not anticipated that Tfh cells

would be relevant for cancer immunity. Therefore, it was surpris-

ing that a strong positive correlation was observed in breast

cancer between a Tfh gene signature in the tumor tissue and

long-term patient survival (Gu-Trantien et al., 2013). Histology

confirmed that a Tfh cell gene signature was associated with

infiltration of the tumor margin with Tfh cells and the develop-

ment of B cell follicles or ectopic lymphoid organ-like structures.

More surprising, similar results were found for human colorectal

cancer (Bindea et al., 2013). Positive outcomes in controlling the

cancers were associated with Tfh cell gene signatures, including

CXCL13 and IL-21 expression. Evenmore intriguing, tumor dele-

tion of the CXCL13 gene was associated with cancer progres-

sion (Bindea et al., 2013). Therefore, this invites the speculation

that Tfh cells might have shared roles in cancer immunity and

autoimmune diseases independently of helping antibody re-

sponses. The Tfh cells might facilitate or maintain ectopic B

cell-rich lymphoid structures, sustaining a local microenviron-

ment that is nurturing for other immunological cell types with

more direct roles in affecting disease progression or regression,

whether they be CTL in the context to tumor immunity (Bindea

et al., 2013; Gu-Trantien et al., 2013) or Th17 cells in the context

of multiple sclerosis (Hauser et al., 2008).

In conclusion, much has been recently discovered about the

biology of Tfh cells and germinal centers. Whilemajor knowledge

gaps remain, and Tfh cell biology is clearly complex, it is never-

theless easy to predict that in the coming years we will see an

ever-growing impact of the study of Tfh cells as we appreciate

more and more that Tfh cells have pivotal roles in a range of

diseases.
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