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Abstract

We study the probability that chordal SLE8/3 in the unit disk from exp(ix) to 1 avoids the disk of radius
q centered at zero. We find the initial/boundary value problem satisfied by this probability as a function of
x and a = ln q , and show that asymptotically as q tends to 1 this probability decays like exp(−cx/(1 − q))
with c = 5π/8 for 0 < x ≤ π . We also give a representation of this probability as a multiplicative functional
of a Legendre process.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we study certain hitting probabilities for the chordal Schramm–Loewner
evolution with parameter κ = 8/3 (SLE8/3). We study this question for SLE8/3 because this
process lies in the intersection of two important classes of conformally invariant measures.

On the one hand, we have chordal SLE: these are families of measures on non-self-crossing
curves γ , indexed by the simply connected domain D the curve γ lives in, and the endpoints
z, w of γ on ∂D. We can think of γ as a random interface separating two different materials on
D. If PD,z→w denotes the law of the curve γ in D from z to w, then the family {PD,z→w} is a
Schramm–Loewner evolution if members of the family are related by

(1) conformal invariance: if f is a conformal map from D to D′ sending z, w to z′, w′, then
f ◦ PD,z→w = PD′,z′→w′ ;
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(2) domain Markovianity: if γ has law PD,z→w, z′ is an interior point of γ , and we condition
on the segment γ ′ of γ from z to z′, then the remaining segment of γ , from z′ to w, has law
PD\γ ′,z′→w;

and if, for the particular case where D is the upper half-plane H, z = 0, w = ∞, the law of
γ is symmetric with respect to the imaginary axis. Suppose {PD,z→w} is such a family. Using
Löwner’s theory of slit mappings [22], Schramm showed that if t ∈ [0,∞) 7→ γt ∈ H is correctly
parameterized, γ0 = 0, Dt denotes the unbounded component of H\γ (0, t], and gt : Dt → H is
conformal with ‘hydrodynamic’ normalization at infinity

lim
z→∞

gt (z)− z = 0,

then, under PH,0→∞, gt (γt ) =
√
κBt for a standard one-dimensional Brownian motion {Bt :

t ≥ 0} starting at zero and a constant κ ≥ 0 [27].
On the other hand, we have restriction measures. These are again families of measures

{PD,z,w} indexed by simply connected domains D and two boundary points z, w, but this time
describing random, closed, simply connected subsets (which we denote also by γ ) of D such that
γ ∩∂D = {z, w}. For example, a simple curve in D from z to w is such a set. We dropped the →

in the notation as γ is a point-set without a ‘direction’. A family {PD,z,w} is called a restriction
measure if it is conformally invariant (as in (1) above), and satisfies the

(3) restriction property: if γ has distribution PD,z,w, D′
⊂ D and z, w ∈ ∂D′, then conditional

on {γ ⊂ D′
} the distribution of γ is PD′,z,w.

In the statement of the restriction property it is understood that z andw are bounded away from
the part of the boundary of D that does not belong to ∂D′. An example of a restriction measure
is provided by the ‘filling’ of a Brownian excursion in D from z to w. Restriction is a powerful
property. If {PD,z,w} denotes a restriction measure, and if D2 ⊂ D1 ⊂ D and z, w ∈ ∂D2, then
restriction implies in particular that

PD,z,w{γ ⊂ D2} = PD1,z,w{γ ⊂ D2}PD,z,w{γ ⊂ D1}. (1)

By conformal invariance it is enough to consider the case when D is the upper half-plane
H, z = 0, and w = ∞. That is, suppose that D2 ⊂ D1 ⊂ H with 0,∞ ∈ ∂D2. Define
Φ1,2 : D1,2 → H, the conformal map with normalization limz→∞ Φ1,2(z)/z = 1, Φ1,2(0) = 0.
Then we can rewrite (1) as

PH,0,∞{γ ⊂ D2} = PH,0,∞{γ ⊂ Φ1(D2)}PH,0,∞{γ ⊂ D1}. (2)

As we can identify a domain with the unique normalized conformal map from that domain to H,
we may write F(Φ1,2) = PH,0,∞{γ ⊂ D1,2}. In particular, (2) is equivalent to

F(Φ2) = F(Φ2 ◦ Φ−1
1 ) · F(Φ1), (3)

that is, F is a homomorphism from the semigroup of conformal maps (with composition)
to [0,∞) (with multiplication). Lawler, Schramm, and Werner showed that this implies the
remarkable result that there exists an α > 0 such that

PH,0,∞{γ ∈ D} = F(Φ) = Φ′(0)α, (4)

where D is a simply connected subdomain of H containing 0,∞ as boundary points; see [20]. If
γ is both an SLE and a restriction measure, then
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PH,0→∞{γ ⊂ D|γ [0, t]} = 1{γ [0, t] ⊂ D}PH,Wt →∞{γ ⊂ gt (D)}

= 1{γ [0, t] ⊂ D}h′
t (Wt )

α, (5)

where ht is the normalized conformal map from gt (D) to H, and Wt =
√
κBt . The first equality

in (5) is on account of γ being an SLE, the second a consequence of restriction. It follows that
h′

t (Wt )
α is a martingale on {γ [0, t] ⊂ D}. A calculation now shows that this implies κ = 8/3

and α = 5/8, [20]. The self-avoiding random walk satisfies the discrete version of the restriction
property and it is conjectured that the scaling limit of self-avoiding random walk is SLE8/3 [21].

We now ask what happens if we restrict to domains D ⊂ H with ‘holes’, i.e. if D is no
longer simply connected. Then there is no homeomorphism from D to H. Furthermore, while
connectivity classifies topological equivalence, it does not classify conformal equivalence. For
example, two annuli are conformally equivalent if and only if the ratio of outer to inner radius of
the former equals that of the latter. In other words, there is a conformal parameter, or modulus,
which labels conformal equivalence classes of doubly connected domains [1].

However, it is easy to extend restriction measures to multiply connected domains. Suppose
{PD,zw} is a restriction measure as above. If D′ is finitely connected and z, w are points on the
same boundary component of D′, we define

PD′,z,w = PD,z,w{·|γ ⊂ D′
}, (6)

where D ⊃ D′ is simply connected and z, w ∈ ∂D. Restriction for simply connected domains
implies that PD′,z,w is independent of the choice of D, and an inclusion/exclusion argument of
Beffara shows that then (6) holds for arbitrary finitely connected domains D′, D with D′

⊂ D,
z, w ∈ ∂D′

∩ ∂D [6]. The identity (1) still holds in this more general context but (2) and (4)
no longer make sense. Thus, while we can define restriction measures in multiply connected
domains, we cannot calculate – or do not have a functional expression for – the probability that
γ hits a ‘hole’. Finding a functional expression which generalizes (4) to multiply connected
domains is the main motivation for this paper.

To begin, we decided to focus on the simplest case, just one hole, and address this case for the
restriction measure which also is an SLE, making SLE tools available. So suppose γ is a chordal
SLE8/3 in the unit disk U = {|z| < 1} from eix to 1 and Aq = {q < |z| < 1} an annulus. Then

PU,eix →1{γ ⊂ Aq}

is a function F of x and a = ln q . In this paper we show that F is C1,2, find the initial/boundary
value problem to which this function is the solution, see Theorem 6.1, and show in Theorem 5.5
that asymptotically

F(a, x) � exp
(

−
5π
8

·
x

1 − q

)
, 0 ≤ x ≤ π, (7)

as q ↗ 1. Using this strong decay we obtain a stochastic representation for F(a, x) as[
∞∏

n=1

1 − 2q2n
+ q4n

1 − 2q2n cos x + q4n

]3/4

× E

[
exp

(∫ σ

a

[
1
12

−

∞∑
n=1

2ne2nb

1 − e2nb (1 − cos nYb)

]
db

)
, σ < 0

]
(8)
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in Theorem 5.6. Here Y is a Legendre process on [0, 2π ] starting at x at time a < 0 and σ is the
first time Y hits the boundary. We give an alternative expression in terms of Jacobi’s ϑ-function
and Weierstrass’s ℘-function.

In [28], Werner also studies the asymptotics of a non-intersection probability in annuli as
q ↗ 1, namely the probability, appropriately rescaled, that chordal SLE8/3 from “near 1” to 1 in
the unit disk stays in the annulus Aq and goes the long way (around the hole); see [28, Lemma
18]. He finds that that probability decays like exp(−5π2/(4(1 − q))). This result can be guessed
from (7) as follows. The probability that a chordal SLE8/3 from “near 1” to 1 goes around the
disk of radius q centered at zero is, for q close to 1, approximately the same as the probability
that a chordal SLE8/3 from 1 to −1 goes around the disk of radius q via the upper half-plane, this
being followed by an independent SLE8/3 from −1 to 1, which goes around the disk of radius
q via the lower half-plane. Thus the probability Werner calculates should behave asymptotically
like the square of (7) for x = π , which indeed is the case.

Concerning the behavior of F(a, x) as q ↘ 0 a brief analysis of the initial/boundary value
problem leads to the conjecture

F(a, x) = 1 − cq2/3 sin2 x/2, q ↘ 0, (9)

for some constant c; see Proposition 6.2. We give evidence for this conjecture based on an
analysis of the partial differential equation solved by F(a, x) in the last section. That 1−F decays
like q2/3 can actually be derived from the known Hausdorff dimension (i.e. 4/3) of SLE8/3.

Our approach rests on the argument of Beffara alluded to above, see Lemma 4.1, and earlier
work by Dubédat [9], as well as [4,5], where the Loewner equation in multiply connected
domains is discussed and explicit expressions for the change of the conformal parameters under
Loewner evolution are given. Using Beffara’s argument, it is easy to see that if D ⊂ Aq is doubly
connected, eix , 1 ∈ ∂D, then

PAq ,eix →1{γ ⊂ D} =
F(a′, x ′)

F(a, x)
[h′(eix )h′(1)]5/8, (10)

where h is defined in terms of the unique conformal equivalence from D to Aq ′ which keeps 1
fixed, eix ′

is the image of eix under this equivalence, and a′
= ln q ′. Eq. (10) is the generalization

of (4) for SLE8/3.
In [9], Dubédat discusses questions similar to those we discuss here, although he considers

SLE6 and ‘locality’. Zhan [30] constructs SLE2 in an annulus as the scaling limit of a loop-erased
random walk, by adapting the approach taken by Schramm from simply connected domains to
doubly connected domains. To do so, he exploits particular properties of the discrete walk. It is
also clear from our calculations that κ = 2 is special in that some of the martingales mentioned
below have a particularly simple form in this case. However, we will not pursue this here.

Restriction in multiply connected domains has also been discussed in [29,10,18]. In particular,
these authors find restriction (local) martingales similar to ours. Due to the greater generality, the
expressions these authors find are less explicit and the asymptotics of these (local) martingales
are not discussed. In the case of connectivity two we find here the asymptotics of the restriction
martingale, leading to a stochastic functional representation of the intersection probability. We
also give a proof that F is smooth enough for applying Itô’s lemma, an issue that, to our
knowledge, had not been addressed previously. The question of smoothness of the intersection
probabilities had been raised by John Cardy. While it had been expected that the intersection
probability would be given as the solution to a partial differential equation, we are the first to
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derive it for SLE8/3. A similar equation has been derived in [9] in the percolation case (κ = 6),
but the smoothness necessary for applying Itô’s formula in that context is not discussed. Finally,
the limiting behavior of the intersection probability as the annulus becomes thinner and thinner
is new, though it is clearly related to the estimate obtained in [28]. It fits with a recent calculation
of Cardy using Coulomb gas methods [8].

Going from ‘locality’ to ‘restriction’ in SLE-type calculations involves taking one more
derivative, which leads to expressions which are considerably more expansive. For this reason we
begin this paper by changing coordinates from the upper half-plane to a half-strip, where elliptic
functions – the indispensable tool of function theory in annuli – have their simplest expression.
In Section 3 we use elliptic functions to describe Loewner evolution in an annulus. In Section 4
we study the ‘conditional probability martingale’ derived from F and use it to show that F has
enough smoothness for applying the Itô formula later in the paper. In Section 5 we obtain the
asymptotic behavior for F as q ↗ 1 and the stochastic representation mentioned above. Finally,
in Section 6 we apply Itô’s formula to derive the partial differential equation for F .

2. Chordal SLE in a half-strip

Denote by Bt a standard one-dimensional Brownian motion, κ > 0 a constant, and set
Wt =

√
κBt . For u in the upper half-plane H denote by gt (u) the solution to the chordal Loewner

equation at time t ,

∂t gt (u) =
2

gt (u)− Wt
, g0(u) = u.

The solution exists up to a time Tu = sup{t : mins≤t |gs(u) − Ws | > 0}, and if Kt =

{u : Tu ≤ t}, then gt is the conformal map from H\Kt onto H with hydrodynamic normalization
at infinity, limz→∞ gt (z)− z = 0. The stochastic process of conformal maps gt is called chordal
Schramm–Loewner evolution in H from B0 to ∞ with parameter κ; see [19]. The random
growing compact Kt is generated by a curve t 7→ γt with γ0 = B0. If κ ≤ 4, then γ is simple;
see [25]. We will sometimes write γ for γ [0,∞).

The function

u = cot(z/2) = i
eiz

+ 1
eiz − 1

maps the half-strip HS ≡ {z : 0 ≤ R(z) ≤ 2π,=(z) < 0} onto the upper half-plane. We will use
u to denote the map as well as the variable for the image domain. The sides

{iy : y < 0}, {2π + iy : y < 0} (11)

of HS are mapped to the slit {iy : y > 1} ⊂ H and the real interval (0, 2π) in the z-plane
corresponds to the real axis in the u-plane. Furthermore, the point ∞ in the (extended) z-plane
corresponds to i ∈ H and the point ∞ in (the closure of) H has the pre-images 0, 2π ∈ HS. If
we identify the sides of (11), i.e. iy ≈ 2π + iy, then u = cot z/2 is conformal from HS onto H.
In the following we will always assume this identification for points in the z-plane. The inverse
mapping is given by

z =
1
i

ln
u + i
u − i

, (12)
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and we recall the derivatives

u′(z) = −
1
2

csc2(z/2), u′′(z) =
1
2

csc2(z/2) cot(z/2).

We define chordal SLEκ in HS from x ∈ (0, 2π) to 0 as the conformal image of SLEκ in H from
cot x/2 to ∞ under the mapping (12). This definition is natural in the light of the characterization
of SLE as the unique family of measures on non-self-crossing curves which are conformally
invariant, satisfy a Markovian-type property and a certain symmetry condition.

Remark 2.1. It follows from the Riemann mapping theorem that there is a one-parameter family
of conformal maps from HS onto H which send 0 to ∞ and x to cot x/2. Choosing a function
other than cot z/2 from this family would only result in a linear time change for the SLE
measures. As we will be interested not in when a particular event occurs but rather in if it
occurs this is of no concern. In fact, we will change the time parameter when it simplifies our
calculations.

If the process X is defined by X t = u−1(Wt ), then

dX t = −2
√
κ sin2(X t/2)dBt + 2κ sin4(X t/2) cot(X t/2)dt. (13)

Under the random time change t → s with ds = 4 sin4(X t/2)dt , we get

dXs = −
√
κ dBs +

κ

2
cot(Xs/2)ds. (14)

For this new time parameter, let g̃s = u−1
◦ gs ◦ u. Then, for each z ∈ HS,

∂s g̃s(z) = Ξ1(g̃s(z), Xs), g̃0(z) = z, (15)

with

Ξ1(z, x) =
2u′(x)2

u′(z)[u(z)− u(x)]
= −

sin2(z/2)

sin4(x/2)[cot(z/2)− cot(x/2)]
.

Note that the vector field Ξ1(·, x) has a pole with residue 2 at x . Ξ is the variation kernel of
the Riemann sphere expressed in the coordinate u; see [26]. The variation kernel is a reciprocal
differential (holomorphic vector field) in z – this explains the u′-term in the denominator – and a
quadratic differential in x—which explains the u′(x)2-term in the numerator.

Remark 2.2. The solution Xs to the SDE (14) is a Bessel-like process on the interval (0, 2π). At
the boundary points it behaves like the three-dimensional Bessel process; see [17]. In particular,
with probability 1, Xs never leaves (0, 2π).

3. SLE viewed in an annulus

For a real number a < 0, cot(z/2) maps the rectangle

Ra ≡ {0 ≤ R(z) ≤ 2π, a < =(z) < 0}

onto H\Ca , where Ca denotes the disk{
u :

∣∣∣∣u − i
1 + q2

1 − q2

∣∣∣∣ ≤
2q

1 − q2

}
, q = ea .
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This doubly connected domain is conformally equivalent to the annulus

Aq ≡ {q < |z| < 1},

the image of Ra under the map z 7→ v = exp(−iz).
For t > 0, suppose that K̃s ≡ u−1(Ks) ⊂ Ra . Then v(K̃s) ⊂ Aq and the doubly

connected domain Aq\v(K̃s) is conformally equivalent to a unique annulus Aq ′ . If a′
= ln q ′,

then a < a′ < 0. Furthermore, there is a unique conformal map h̃s : Aq\v(K̃s) → Aq ′ with
h̃s(1) = 1; see [1]. Set fs = v−1

◦ h̃s ◦ v. Then fs maps Ra\K̃s onto Ra′ , fixing 0, 2π .
To describe the time evolution of fs we need to use elliptic functions. Denote by ζ the

Weierstrass ζ -function with periods 2π , 2ia, i.e.

ζ(z) = ζ(z|a) =
η

π
z +

1
2

cot(z/2)+ 2
∞∑

n=1

q2n

1 − q2n sin nz, (16)

where

η = π

(
1
12

− 2
∞∑

n=1

nq2n

1 − q2n

)
; (17)

see [12]. ζ is regular in the entire z-plane except for poles with residue 1 at the lattice points
2nπ + 2mia, n,m ∈ Z. ζ is an odd function and ζ(π) = η. For each x ∈ (0, 2π), a < 0, define
the vector field Ξ2(·, x) by

Ξ2(z, x) = Ξ2(z, x |a) = 2
[
ζ(z − x)−

η

π
z + ζ(x)

]
. (18)

ζ , η, and Ξ2 all depend on a. We will use a in the notation if any ambiguity as to the particular
value of that parameter could arise.

Proposition 3.1. The vector field Ξ2(·, x) (i) is regular except for poles with residue 2 at the
points of the shifted lattice {2nπ + x + 2mia : n,m ∈ Z}, (ii) is periodic with period 2π (i.e.
Ξ2(z, x) = Ξ2(z + 2π, x)), (iii) vanishes at z = 0, and (iv) has constant imaginary part +i, −i
on the lines {=(z) = a}, {=(z) = −a}, respectively.

Proof. Property (i) follows immediately from the properties of ζ , and (ii), (iii) follow by
inspection from (18). Next, if =(z) = 0, then

=(Ξ2(z + ia, x)) = =(cot((z + ia − x)/2))+ 4
∞∑

n=1

q2n

1 − q2n =(sin n(z + ia − x))

=
1 − q2

1 − 2q cos(z − x)+ q2 − 2
∞∑

n=1

qn cos n(z − x) = 1, (19)

where the last equality follows from a well-known identity for Chebyshev polynomials; see [2].
Similarly, =(Ξ2(z − ia, x)) = −1 if =(z) = 0. �

For chordal SLEκ in H from 0 to ∞, and A < 0, set

TA = inf{s : Ks ∩ CA 6= ∅}.
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If κ ≤ 4, then γ is almost surely a simple curve and thus Kt = γ [0, t]. In particular, for κ ≤ 4,
TA = ∞ if and only if γ ∩CA = ∅. On s < TA, let a = a(s) be defined as the unique a such that

hs(g̃s(RA\K̃s)) = Ra .

Then a(0) = A and a(s) > a(t) if s > t (for an integral expression for a(s)− a(t) see [16]). Set

A∗
= lim

s↗TA
a(s).

Then A∗
≤ 0 and A∗

= 0 if and only if TA < ∞. The last statement holds with probability 1 and
is a consequence of the fact that a.s. γs → ∞ as s → ∞. We now change the time parameter
from s to a and write γa , Xa , g̃a , and h A,a for γs(a), Xs(a), g̃s(a), and hs(a). We include A in the
subscript of h to keep note of the fact that the definition of h depends on A (or rather RA). Then
γ [A, a] = γ [0, s].

Theorem 3.2. For A ≤ a < A∗ we have

∂sa = h′

A,a(Xa)
2

and

∂ah A,a(z) = Ξ2(h A,a(z), h A,a(Xa)|a)− Ξ1(z, Xa)
h′

A,a(z)

h′

A,a(Xa)2
. (20)

Proof. Set f A,a = h A,a ◦ g̃a . Then f A,a is the unique conformal map from RA\γ [A, a] onto Ra
with f A,a(0) = 0. By [16],

∂a f A,a(z) = Ξ2( f A,a(z), YA,a |a), (21)

where YA,a = h A,a(Xa). Note that YA,a is the image of the tip of the slit γ [A, a] under f A,a , i.e.
YA,a = limz→γa f A,a(z). Also, it is clear from the mapping properties of f A,a that the left-hand
side of (21) is zero at z = 0 and has constant imaginary part 1 if =(z) = A. Next, by the chain
rule

∂ah A,a(z) = ∂a f A,a(g̃−1
a (z))+ ( f A,a)

′(g̃−1
a (z))∂a g̃−1

a (z).

Since ∂a g̃−1
a (z) = −(g̃−1

a )′(z)(∂a g̃a)(g̃−1
a (z)), we get from (15)

∂a g̃−1
a (z) = −(g̃−1

a )′(z)Ξ1(z, Xa)
∂s
∂a
.

Hence

∂ah A,a(z) = Ξ2(h A,a(z), h A,a(Xa)|a)− Ξ1(z, Xa)h′

A,a(z)
∂s
∂a
,

and

∂shs(z) = Ξ2(h A,a(z), h A,a(Xa)|a)
∂a
∂s

− Ξ1(z, Xa)h′

A,a(z). (22)

To determine ∂a/∂s we note that the domains g̃s(RA) change smoothly because Ξ1(z, x) is
smooth away from x . The map hs can be written explicitly in terms of domain functionals,
namely the harmonic measures and their conjugates. By Hadamard’s formula for the variation
of domain functionals under smooth boundary perturbations, see [26], it follows that ∂shs(z)
extends continuously to the boundary. In particular, the residues of the two terms on the right
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in (22) have to cancel. The residue of the first term is 2(∂a/∂s)/h′

A,a(Xa), the residue of the
second 2h′

A,a(Xa). The theorem now follows. �

We will now draw a number of conclusions from (20). To simplify notation, we will indicate
differentiation with respect to a by ·, and suppress the subscripts a, A when convenient.

Corollary 3.3. On [A, A∗) we have

ḣ(X) = 2
[
ζ(h(X))−

η

π
h(X)

]
− 3

h′′(X)
h′(X)2

− 3
cot(X/2)

h′(X)
(23)

and

d(h(X)) = −
√
κdB + 2

[
ζ(h(X))−

η

π
h(X)

]
da

+
κ − 6

2

[
h′′(X)
h′(X)2

+
cot(X/2)

h′(X)

]
da. (24)

Proof. Taking the limit z → Xa in (20) gives (23). The calculation is done by Taylor expansion.
By an appropriate version of Itô’s lemma [24],

d(h(X)) = ḣ(X) da + h′(X)dX + 1/2h′′(X) dXdX,

where dXdX is the differential of the quadratic variation. Also, by (14),

dXa = −
√
κ

dB
h′(X)

+
κ

2
cot(X/2)
h′(X)2

da. (25)

Now (24) follows from (23). �

Remark 3.4. A time change of the results (23) and (24) had previously been obtained in [9].

Denote by ℘ = −ζ ′ the Weierstrass ℘-function,

℘(z) = ℘(z|a) = −
η

π
+

1
4

csc2(z/2)− 2
∞∑

n=1

nq2n

1 − q2n cos nz;

see [12]. Then it follows from (20) that

ḣ′(z) = −2
[
℘(h(z)− h(X))+

η

π

]
h′(z)−

h′′(z)
h′(X)2

·
sin3(z/2)

sin3(X/2)
csc

z − X
2

+
h′(z)

h′(x)2
sin2(z/2)

sin2(X/2)

[
1
2

csc2 z − X
2

−
cos(z/2)
sin(X/2)

csc
z − X

2

]
. (26)

In particular,

ḣ′(0) = −2
[
℘(h(X))+

η

π

]
h′(0), (27)

so that

h′

A,a(0) = exp
(

−2
∫ a

A

[
℘(h(Xb))+

η

π

]
db
)
. (28)

Note that η in the integrand also depends on b, the explicit form of the dependence being
given in (17).
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Corollary 3.5. We have

ḣ′(X) = −
2η
π

h′(X)+
2

3h′(X)
−

3 cot2(X/2)
2h′(X)

− 3 cot(X/2)
h′′(X)
h′(X)2

+
h′′(X)2

2h′(X)3
−

4
3

h′′′(X)
h′(X)2

and, for real α,

d(h′(X)α)
αh′(X)α

=

[
2

3h′(X)2
−

3 cot2(X/2)
2h′(X)2

+
κ − 6

2
cot(X/2)

h′′(X)
h′(X)3

]
da

+

[
1 + (α − 1)κ

2
h′′(X)2

h′(X)4
+
κ − 8/3

2
·

h′′′(X)
h′(X)3

−
2η
π

]
da

−
√
κ

h′′(X)
h′(X)2

dB. (29)

Proof. The first identity follows by taking the limit in (26), and then the second follows from
Itô’s lemma, just as in the proof of Corollary 3.3. The calculation is tedious but straightforward
and is omitted. �

4. Conditional probabilities and restriction martingales

For a simply connected domain D and boundary points p, q, we define chordal SLE in D
from p to q by conformal invariance from chordal SLE in H from 0 to ∞. This is well defined
up to a linear time change. Denote by PD,p→q the law of chordal SLE in D from p to q, and
ED,p→q expectation with respect to PD,p→q . Then

PHS,x→0{γ ⊂ RA|γ [0, s]} = PH,cot x→∞{γ ∩ CA = ∅|γ [0, s]}

= EH,cot x→∞ [1{γ [0, s] ∩ CA = ∅}1{γ [s,∞) ∩ CA = ∅}|γ [0, s]]
= 1{s < TA}EH,cot x→∞ [1{gs(γ [s,∞)) ∩ gs(CA) = ∅}|γ [0, s]]
= 1{t < TA}PH,Ws→∞{γ ∩ gs(CA) = ∅}, (30)

where W is a time changed Brownian motion starting at cot x . We note that the last equality
follows from basic properties of SLE. Now we need a result from [6].

Lemma 4.1 (Beffara). Let κ = 8/3. If K and K ′ are compact subsets of H such that H\K and
H\K ′ are conformally equivalent, then

PH,x→∞{γ ∩ K = ∅} = PH,Φ(x)→∞{γ ∩ K ′
= ∅}

[
Φ′(x)Φ′(∞)

]5/8
,

where Φ is a conformal map from H\K onto H\K ′ with Φ(∞) = ∞ and Φ′(∞) =

limz→∞ 1/Φ′(z).

Theorem 4.2. If F(A, x) denotes the probability that chordal SLE8/3 in the half-strip HS from
x to 0 stays in the rectangle RA, then

F(a, h A,a(Xa))

[
sin2(Xa/2)

sin2(h A,a(Xa)/2)
h′

A,a(Xa)h′

A,a(0)

]5/8

is a martingale on [A, A∗).
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Proof. It follows from (30) that PH,Ws→∞{γ ∩ gs(CA) = ∅} is a martingale on s < TA. Since

u ◦ hs ◦ u−1(gs(CA)) = Ca, a = a(s),

it follows from Lemma 4.1 that

PH,Ws→∞{γ ∩ gS(CA) = ∅} = PH,u◦hs◦u−1(Ws )→∞{γ ∩ Ca = ∅}

× [(u ◦ hs ◦ u−1)′(Ws)(u ◦ hs ◦ u−1)′(∞)]5/8

= PHS,ha(Xa)→0{γ ⊂ Ra}

× [(u ◦ hs ◦ u−1)′(Ws)(u ◦ hs ◦ u−1)′(∞)]5/8.

Next,

(u ◦ h ◦ u−1)′(w) = h′(u−1(w)) sin2(u−1(w)/2)/ sin2(h(u−1(w))/2).

If z = u−1(w), then w → ∞ implies z → 0. As limz→0 h(z) = 0, we have

lim
z→0

sin2 z/2

sin2(h(z)/2)
= lim

z→0

[
sin z/2

z
·

z
h(z)

·
h(z)

sin(h(z)/2)

]2

= h′(0)−2.

Since F(A, x) = PHS,x→0{γ ⊂ RA}, the theorem now follows. �

The martingale in this theorem is a functional of the Markov process Xa and the non-Markov
process h A,a(Xa). Under an appropriate change of measure h A,a(Xa) becomes a Markov process
Y . This change of measure also introduces a drift to the process in Theorem 4.2, and we have to
multiply by a factor given by Girsanov’s formula to obtain a martingale under this new measure.
The new martingale turns out to be a function of Y times an exponential functional of Y . Our
reason for changing measure is that we are able to obtain the asymptotics of this new martingale
in Theorem 5.6, while it was not clear to us how to carry out this step for the original martingale
in Theorem 4.2.

To change h A,a(Xa) into a Markov process we will first remove the two drift terms in its
Itô decomposition; see (24). We carry this out in two steps to better see how the constituent
parts fit together. Finally, we perform a third change of measure, which transforms Y from a
multiple of a linear Brownian motion to a Bessel-type process on the interval [0, 2π ], a zero-
dimensional Legendre process. This last step is natural since it takes the geometry of our set-up
(i.e. the circle) into account, and, more importantly, leads to a multiplicative stochastic functional
in the martingale replacing the martingale from Theorem 4.2, whose exponent is an integral with
non-singular integrand.

Proposition 4.3. If κ = 8/3, A < 0, and

MA,a =

[
h′

A,a(Xa)
sin2(Xa/2)

sin2(X A/2)
exp

(∫ a

A

2η
π

db
)]5/8

, A ≤ a < A∗,

then M is a martingale with MA,A = 1 and

dM = −
5
8

√
8/3M

[
cot(X/2)

h′(X)
+

h′′(X)
h′(X)2

]
dB.
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Proof. We have

d
[
h′(X) sin2(X/2)

]α
α
[
h′(X) sin2(X/2)

]α = −
√
κ

[
cot(X/2)

h′(X)
+

h′′(X)
h′(X)2

]
dB

−
2η
π

da +
1 + (α − 1)κ

2
·

h′′(X)2

h′(X)4
da

+

(
8
3

− κ

)[
1

4h′(X)2
−

h′′′(X)
2h′(X)3

]
da

+
κ(1 + 2α)− 6

2

[
cot2(X/2)
2h′(X)2

+ cot(X/2)
h′′(X)
h′(X)3

]
da. (31)

If κ = 8/3 and α = 5/8 then all drift terms except for the first vanish. Since M is also bounded
for a < 0 the proposition follows. �

Remark 4.4. If κ > 0 is arbitrary and α = (6 − κ)/2κ , then the drift term of
d
[
h′(X) sin2(X/2)

]α
/α
[
h′(X) sin2(X/2)

]α
reduces to

−2η/π da + (κ − 8/3)[Sh(X)− 1/2]/2h′(X)2 da,

where Sh = h′′′/h′
− (3/2)(h′′/h′)2 is the Schwarzian derivative of h.

Denote by P the law of the underlying Brownian motion B, and denote by Fa the associated
filtration after the time change t → a. Define the probability measure Q by

dQ
dP

∣∣∣∣
Fa

= MA,a .

Corollary 4.5. Under the measure Q,

F(a, h A,a(Xa))

[
h′

A,a(0)

sin2(h A,a(Xa)/2)
exp

(
−

∫ a

A

2η
π

db
)]5/8

is a martingale and YA,a ≡ h A,a(Xa) satisfies

dY = −
√

8/3 dB + 2
[
ζ(Y )−

η

π
Y
]

da.

Proof. The two statements follow from Girsanov’s theorem, [24], in conjunction with
Theorem 4.2, Proposition 4.3, and (24). �

Let θ(x |a) = ϑ1(x/2π), where ϑ1 is Jacobi’s theta function

θ(x |a) = ϑ1(x/2π) = −i
∞∑

n=−∞

eix(n+1/2)+a(n+1/2)2+iπn .

Then

∂

∂a
θ(x |a) = −

∂2

∂x2 θ(x |a), (32)

and
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∂

∂x
ln θ(x |a) = ζ(x)−

η

π
x,

∂2

∂x2 ln θ(x |a) = −℘(x)−
η

π
; (33)

see [12].
We note that if A∗ < 0, then A∗ is the first time that Y , starting at YA at time A < 0, hits

{0, 2π}. If A∗
= 0, then Y does not hit {0, 2π}.

Proposition 4.6. If κ = 8/3, A < 0, and

NA,a =

[
ϑ1

(
YA,a

2π

)/
ϑ1

(
YA,A

2π

)]−3/4

h′

A,a(0)
1/8, A ≤ a < A∗,

then, under Q, N is a martingale with NA,A = 1 and

dN =
3
4

√
8/3N

[
ζ(Y )−

η

π
Y
]

dB.

Proof. Denoting differentiation with respect to the spatial variable by a′ and using (32), we have

d
[
ϑ1(Y/2π)β

]
βϑ1(Y/2π)β

= −
√
κ
θ ′

θ
dB +

[(κ
2

− 1
) θ ′′

θ
+

(
2 +

κ

2
(β − 1)

)(θ ′

θ

)2
]

da. (34)

The term in brackets can be rewritten as(
1 +

βκ

2

)
θ ′′

θ
da +

[
(1 − β)

κ

2
− 2

]
(ln θ)′′ da.

Thus for κ = 8/3, β = −3/4,

d
[
ϑ1(Y/2π)−3/4

]
=

3
4

√
8/3ϑ1(Y/2π)−3/4 θ

′

θ
dB −

1
4
ϑ1(Y/2π)−3/4(ln θ)′′ da. (35)

The proposition now follows from (33) and (28). �

Define the probability measure R for a < A∗ by

dR
dQ

∣∣∣∣
Fa

= NA,a .

Proposition 4.7. If YA,a = h A,a(Xa), then under the measure R,

F(a, YA,a)
ϑ1(YA,a/2π)3/4

sin5/4(YA,a/2)
exp

(
−

∫ a

A

[
℘(YA,b)+

9η
4π

]
db
)

is a martingale for a < A∗ and YA,a satisfies

dY = −
√

8/3 dB.

Proof. This is again a consequence of Girsanov’s theorem. �

Finally, let

ÑA,a =
sin−1/2(YA,a/2)

sin−1/2(YA,A/2)
exp

[
−1/4

∫ a

A
csc2(YA,b/2) db

]
.
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It is an easy calculation that – under the measure R – ÑA,a is a martingale on a < A∗. If we
define the measure R̃ by dR̃/dR|Fa = ÑA,a , then we have the following

Proposition 4.8. Under the measure R̃ the process YA,a satisfies

dY = −
√

8/3 dB − 2/3 cot Y/2 da,

and

MA,a ≡ F(a, YA,a) exp
[
−

∫ a

A

(
℘(YA,b)−

1
4

csc2(YA,b/2)
)

db
]

×

[
∞∏

n=1

1 − 2Q2n
+ Q4n

1 − 2Q2n cos YA,A + Q4n ·
1 − 2q2n cos YA,a + q4n

1 − 2q2n + q4n

]3/4

(36)

is a martingale for a < A∗ withMA,A = F(A, YA,A).

Proof. It follows from the infinite product representation of ϑ1, see [12], that

ϑ1(y/2π)
sin(y/2)

= q1/4
∞∏

n=1

(1 − q2n)(1 − 2q2n cos y + q4n). (37)

Also,

exp

[
∞∑

n=1

∫ a

A

2nq̃2n

1 − q̃2n db

]
=

∞∏
n=1

1 − Q2n

1 − q2n ,

and

1 − 2q2n cos x + q4n

1 − 2Q2n cos y + Q4n

=
1 − 2Q2n

+ Q4n

1 − 2Q2n cos y + Q4n ·
1 − 2q2n cos x + q4n

1 − 2q2n + q4n

(
1 − q2n

1 − Q2n

)2

.

Now Girsanov’s theorem, Proposition 4.7, and the explicit expression for ℘ show that M is a
martingale. �

Corollary 4.9. For any A < a < 0, x ∈ [0, 2π ],

F(A, x) =

(
∞∏

n=1

1 − 2Q2n
+ Q4n

1 − 2Q2n cos x + Q4n

)3/4

× E

F(a, YA,a)

(
∞∏

n=1

1 − 2q2n cos YA,a + Q4n

1 − 2Q2n + Q4n

)3/4

× exp
(

−

∫ a

A

(
℘(Y )−

1
4

csc2 Y/2
)

db
) (38)

(where YA,A = x), and F(a, x) is C1,2 as a function of a and x.
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Proof. First, (38) is a consequence of (36) and the optional sampling theorem. Next, x 7→

F(a, x) is continuous because the chordal Loewner equation is continuous as a map from the
space of continuous paths with the topology of uniform convergence on compacts (the input) to
the space of conformal maps with the Caratheodory metric (as output). See [3] for a discussion.
It then follows from the Feynman–Kac formula that the right-hand side of Eq. (38) is C1,2;
see [15]. �

5. Asymptotic behavior of the non-intersection probability

The stochastic representation of the non-intersection probability

(a, x) ∈ [−∞, 0] × [0, 2π ] 7→ F(a, x) ≡ PU,eix →1(γ ⊂ Aq)

we obtain in this section rests on the asymptotics of F(a, x) as a ↗ 0. In particular, this
probability decays fast enough to control the limiting behavior of the martingale M from
Proposition 4.8.

For each q ∈ [0, 1) there exists a unique L = L(q) ∈ [0, 1) such that Aq and U\[−L , L] are
conformally equivalent. As q increases to 1, L increases to 1 as well. Denote by f the conformal
equivalence, normalized by f (1) = 1. For x ∈ (0, π], let z1 = eix/2, z2 = e−ix/2. By symmetry,
if w1,2 = f (z1,2), then w2 = w̄1.

In what follows we will mean by h(a) � g(a) as a ↗ 0 that

lim
a↗0

log h(a)/ log g(a) = 1.

Lemma 5.1. For x ∈ (0, π], we have

1 − L � e
π2
4a , and | f ′(z1)| � |1 − f (z1)| � e

π
4a (π−x)

as a ↗ 0.

Proof. From [23, Chap. VI, Sec. 3],

f (z) = Lsn
(

2iK
π

log
z
q

+ K ; q4
)
,

where sn(z) is the analytic function for which sn′(0) = 1 and which maps the rectangle
{z : −K < Rz < K , 0 < =z < iK ′

} onto the upper half-plane in such a way that sn(±K ) = ±1
and sn(±K + iK ′) = ±k−1. Furthermore, q4

= exp(−πK ′/K ), and L =
√

k. It is classical that
sn′(z) = [(1 − sn2(z))(1 − k2sn2(z))]1/2. Thus

f ′(z) = (2iK/π z)[(L2
− f 2(z))(1 − L2 f 2(z))]1/2. (39)

Define h, τ by q4
= h = eiπτ , and set v =

i
π

log z1
q +

1
2 . Then it follows from [12, II, 3.], and

using that text’s notation, that

L =
θ2(0|τ)

θ3(0|τ)
, and f (z) =

θ1(v|τ)

θ0(v|τ)
.

Using linear transformations of theta functions we may write

θ2(0|τ)

θ3(0|τ)
=

θ0

(
0| −

1
τ

)
θ3

(
0| −

1
τ

) , and
θ1(v|τ)

θ0(v|τ)
= i

θ1

(
v
τ
| −

1
τ

)
θ2

(
v
τ
| −

1
τ

) .
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Hence, if h′
= exp(−iπ/τ), and using the series representation of θ0 and θ3, we get

L =

1 + 2
∞∑

n=1
(−1)n(h′)n

2

1 + 2
∞∑

n=1
(h′)n

2
= 1 − 4h′

+ O((h′)2),

which is the first statement of the lemma. For the second, we use the infinite product
representation of θ1 and θ2, giving

i
θ1

(
v
τ
| −

1
τ

)
θ2

(
v
τ
| −

1
τ

) =
e2iπv/τ

− 1
e2iπv/τ + 1

∞∏
n=1

(1 − (h′)2ne2iπv/τ )(1 − (h′)2ne−2iπv/τ )

(1 + (h′)2ne2iπv/τ )(1 + (h′)2ne−2iπv/τ )
.

Since exp(2iπv/τ) = i exp(−(π/4a)(π − x)), the infinite product is 1 + O(exp(π2/(4a))), and

e2iπv/τ
− 1

e2iπv/τ + 1
= 1 + 2ie

π
4a (π−x)

+ O(eπ
2/(4a)),

as a ↗ 0. Using Eq. (39), the lemma now follows. �

The identities for θ -functions that we used can be found in any standard text on that topic,
with different authors using slightly different notation. An alternative to the Reference [12] is
Sections 3.1 and 3.9 in [14]. Note that ϑ4 in the latter reference is θ0 in the former.

Recall that z1 = eix/2, w1 = f (z1), and set u = i(1 + w1)/(1 − w1). The following result is
derived from Lemma 4.1. For the sake of completeness we will sketch the proof.

Lemma 5.2. The probability PU,eix →1(γ ⊂ Aq) is equal to

PH,u→−u

(
γ ∩ i

[
1 − L
1 + L

,
1 + L
1 − L

]
= ∅

) ∣∣∣∣ f ′(z1)(1 − z1)

1 − f (z1)

∣∣∣∣5/4 .
Proof. Denote by B a simple curve connecting the inner and outer boundaries of Aq , so that B
is bounded away from z1 and z2. Denote by φ a conformal map from Aq\B onto U such that
φ(z1,2) = z1,2, and by ψ a conformal map from f (Aq\B) onto U such that ψ(w1,2) = w1,2.
Then, by conformal restriction,

PU,z1→z2(γ ⊂ Aq\B) = |φ′(z1)φ
′(z2)|

5/8,

PU,w1→w2(γ ⊂ f (Aq\B)) = |ψ ′(w2)ψ
′(w2)|

5/8. (40)

Since T ≡ φ ◦ f ◦ ψ−1 maps U onto U and sends w1,2 to z1,2, there is a pair w0, z0 ∈ ∂U such
that T is the linear transformation given by

T (w)− w1

T (w)− w2
·
w0 − w2

w0 − w1
=

z − z1

z − z2
·

z0 − z2

z0 − z1
.

A calculation gives

T ′(w1)T ′(w2) =

(
z1 − z2

w1 − w2

)2

,
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which together with | f ′(z1)| = | f ′(z2)| implies

PU,z1→z2(γ ⊂ Aq\B) = PU,w1→w2(γ ⊂ f (Aq\B))
∣∣∣∣ f ′(z1)(z1 − z2)

w1 − w2

∣∣∣∣5/4 . (41)

By an inclusion/exclusion argument, Eq. (41) also holds if Aq\B is replaced by Aq . Finally, by
conformal invariance,

PU,w1→w2(γ ⊂ f (Aq)) = PH,u→−u

(
γ ∩ i

[
1 − L
1 + L

,
1 + L
1 − L

]
= ∅

)
. �

Note that because x ∈ (0, π] we have arg z1, argw1 ∈ (0, π/2] and so u ≤ −1. We will use
the following lower and upper bounds:

PH,u→−u

(
γ ∩ i

[
1 − L
1 + L

,
1 + L
1 − L

]
= ∅

)
≥ PH,u→−u

(
γ ∩ i

(
0,

1 + L
1 − L

]
= ∅

)
+ PH,u→−u

(
γ ∩ i

[
1 − L
1 + L

,∞

)
= ∅

)
= PH,u→−u

(
γ ∩ i

(
0,

1 + L
1 − L

]
= ∅

)
+ PH, 1

u →−
1
u

(
γ ∩ i

(
0,

1 + L
1 − L

]
= ∅

)
, (42)

and

PH,u→−u

(
γ ∩ i

[
1 − L
1 + L

,
1 + L
1 − L

]
= ∅

)
≤ PH,u→−u

(
γ ∩ i

(
0,

1 + L
1 − L

]
= ∅

)
+ PH, 1

u →−
1
u

(
γ ∩ i

[
1 + L
1 − L

,∞

)
= ∅

)
+ PH,u→−u

(
γ ∩ i

(
0,

1 − L
1 + L

)
6= ∅, γ ∩ i

(
1 + L
1 − L

,∞

)
6= ∅

)
. (43)

For c ∈ R, d > 0, set

gc,d(z) =
|c|

√
c2 + d2

√
z2 + d2.

Then gc,d maps H\i(0, d] conformally onto H such that gc,d(±c) = ±c. Furthermore,

|g′

c,d(c)g
′

c,d(−c)| =
c4

(c2 + d2)2
,

and so by conformal restriction

PH,c→−c(γ ∩ i(0, d] = ∅) = [c2/(c2
+ d2)]5/4. (44)

Corollary 5.3. We have

PH,u→−u

(
γ ∩ i

(
0,

1 + L
1 − L

]
= ∅

)
+ PH, 1

u →−
1
u

(
γ ∩ i

(
0,

1 + L
1 − L

]
= ∅

)
� e

5πx
8a

as a ↗ 0.
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Proof. By (44),

PH,u→−u

(
γ ∩ i

(
0,

1 + L
1 − L

]
= ∅

)
=

(
u(1 − L)

1 + L

)5/2 (
1 +

(u(1 − L))2

(1 + L)2

)−5/4

,

and from Lemma 5.1(
u(1 − L)

1 + L

)5/2
(

1 +

(
u(1 − L)

1 + L

)2
)−5/4

� e
5πx
8a .

Similarly,

PH, 1
u →−

1
u

(
γ ∩ i

(
0,

1 + L
1 − L

]
= ∅

)
� e

5π2
8a +

5π
8a (π−x),

so that this term is negligible compared to the first if 0 < x < π , and of the same order if
x = π . �

Lemma 5.4. We have

PH,u→−u

(
γ ∩ i

(
0,

1 − L
1 + L

)
6= ∅, γ ∩ i

(
1 + L
1 − L

,∞

)
6= ∅

)
� eπ

2/a,

as a ↗ 0.

Proof. First,

PH,u→−u

(
γ ∩ i

(
0,

1 − L
1 + L

)
6= ∅, γ ∩ i

(
1 + L
1 − L

,∞

)
6= ∅

)
= PH,u→−u

(
γ ∩ i

(
0,

1 − L
1 + L

)
6= ∅

)
+ PH, 1

u →−
1
u

(
γ ∩ i

(
0,

1 − L
1 + L

)
6= ∅

)
− PH,u→−u

(
γ ∩ i

((
0,

1 − L
1 + L

)
∪

(
1 + L
1 − L

,∞

))
6= ∅

)
. (45)

The last probability on the right equals

PU,w1→w2(γ ∩ ((−1,−L] ∪ [L , 1)) 6= ∅).

To calculate this probability, note that

gL(w) ≡
1 + w2

−

√
(1 + w2)2 − 4p2w2

2pw

maps U\((−1,−L] ∪ [L , 1)) onto U if 2p = (L + 1/L); see [13, Chapter 3]. Here, the square
root is chosen so that gL(i) = i. Setting w = eiϕ , this can be written as

gL(w) =


1
p

cosϕ + i

√
1 −

1
p2 cos2 ϕ, if ϕ ∈ (0, π/2];

1
p

cosϕ − i

√
1 −

1
p2 cos2 ϕ, if ϕ ∈ [−π/2, 0).

(46)

Then

g′

L(w)g
′

L(w̄) = −
sin2 ϕ

p2 − 1 + sin2 ϕ
.
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Denote by T a (fractional) linear transformation from U onto U sending gL(w1,2) onto w1,2.
Then, as in the proof of Lemma 5.2,

T ′(gL(w1))T ′(gL(w2)) =
sin2 ϕ

1 −
1
p2 cos2 ϕ

,

where now ϕ = argw1. Thus, by conformal restriction,

PU,w1→w2(γ ∩ ((−1,−L] ∪ [L , 1)) 6= ∅) = 1 −

[
p sin2 ϕ

p2 − 1 + sin2 ϕ

]5/4

. (47)

Finally, from the definition of u and ϕ in terms of w1, it follows that u = −cot(ϕ/2) and so
4/ sin2 ϕ = (u + 1/u)2. A calculation now gives

p2
− 1 + sin2 ϕ

p sin2 ϕ
= 1 +

(
1 − L
1 + L

)2 (
u2

+
1
u2

)

+
(1 − L)4

8(L + L3)

[
2 +

(
1 − L
1 + L

)2 (
u2

+
1
u2

)]
. (48)

On the other hand, (44) implies

PH,u→−u

(
γ ∩ i

(
0,

1 − L
1 + L

)
6= ∅

)
= 1 −

(
1 +

(
1 − L
1 + L

)2 1
u2

)−5/4

(49)

and

PH, 1
u →−

1
u

(
γ ∩ i

(
0,

1 − L
1 + L

)
6= ∅

)
= 1 −

(
1 +

(
1 − L
1 + L

)2

u2

)−5/4

. (50)

Combining (49), (50), (47) and (45), we get

PH,u→−u

(
γ ∩ i

(
0,

1 − L
1 + L

)
6= ∅, γ ∩ i

(
1 + L
1 − L

,∞

)
6= ∅

)

= 1 −

(
1 +

(
1 − L
1 + L

)2 1
u2

)−5/4

+ 1 −

(
1 +

(
1 − L
1 + L

)2

u2

)−5/4

− 1 +

(
p2

− 1 + sin2 ϕ

p sin2 ϕ

)−5/4

. (51)

Using (48), straightforward expansion of the right-hand side of (51) shows it to be equal to

5
256

(1 − L)4 +
5

128
(1 − L)5 + (1 − L)4 O(u2(1 − L)2). �

From the upper and lower bounds (43) and (42), Corollary 5.3 and Lemma 5.4 we get

Theorem 5.5. For every x ∈ (0, π] we have

F(a, x) � exp
(

5πx
8a

)
(52)
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as a ↗ 0.

We now combine the previous result and Proposition 4.8 to obtain a stochastic representation
of F(A, x).

Theorem 5.6. Under the measure R̃ we have

sup
a<A∗

|MA,a | < ∞.

Furthermore, if A∗
= 0, then lima↗A∗ MA,a = 0, while if A∗ < 0 and Q∗

= eA∗

, then

lim
a↗A∗

MA,a =

[
∞∏

n=1

1 − 2Q2n
+ Q4n

1 − 2Q2n cos YA,A + Q4n

]3/4

× exp

[
−

∫ A∗

A

(
℘(YA,b)−

1
4

csc2(YA,b/2)
)

db

]
. (53)

Finally, if x = YA,A, then

F(A, x) =

[
∞∏

n=1

1 − 2Q2n
+ Q4n

1 − 2Q2n cos x + Q4n

]3/4

× ER̃

[
exp

[
−

∫ A∗

A

(
℘(YA,b)−

1
4

csc2(YA,b/2)
)

db

]
, A∗ < 0

]
. (54)

Proof. That M is a bounded martingale follows from the limiting behavior as a ↗ A∗, which
we now establish. If A∗ < 0, then YA,A∗ = 0 and (53) follows directly from (36). On the other
hand, if A∗

= 0, then YA,A∗ 6= 0 a.s. and it follows from Theorem 5.5 that F(a, YA,a) decays
like exp(−cx/(1 − q)) with c = 5π/8, and x = min{YA,A, 2π − YA,A}. We will now show that[

∞∏
n=1

1 − 2q2n cos x + q4n

1 − 2q2n + q4n

]3/4

≤ exp
[

1
1 − q

(
π2

8
−

3
8
[Li2(eix )+ Li2(e−ix )]

)]
, (55)

where Li2 denotes the dilogarithm. Set xn = 1 − q2n , n ≥ 0. Then xn − xn−1 = (1 − xn)(1 −

q2)/q2, and by simple integral comparison,

∞∑
n=1

ln(1 − q2n) =
q2

1 − q2

∞∑
n=1

ln xn

1 − xn
(xn − xn−1)

≥
q2

1 − q2

∫ 1

0

ln x
1 − x

dx = −
1

1 − q
·
π2q2

6(1 + q)
.

Thus

−
3
2

∞∑
n=1

ln(1 − q2n) ≤
1

1 − q
·
π2

8
. (56)

Similarly, if we set yn = −q2n , n ≥ 0, then yn − yn−1 = −yn(1 − q2)/q2 for n ≥ 1, and so
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∞∑
n=1

ln(1 − 2q2n cos x + q4n) = −
q2

1 − q2

∞∑
n=1

ln(1 + 2yn cos x + y2
n)

yn
(yn − yn−1)

≤
q2

1 − q2

∫ 1

0

ln(1 − 2y cos x + y2)

y
dy

=
q2

1 − q2

(
−Li2(eix )− Li2(e−ix )

)
. (57)

Now, (56) and (57) imply (55). It is elementary that

5πx ≥ π2
− 3[Li2(eix )+ Li2(e−ix )]

for x ∈ [0, π], with equality holding for x = 0. Thus M is a bounded martingale and (54)
follows from the optional sampling theorem. �

Remark 5.7. Under R̃, Y is a Legendre process whose boundary behavior is that of a zero-
dimensional Bessel process, i.e. 0 and 2π are absorbing; see [24]. It can also be interpreted as
the driving function of a radial SLE(κ, ρ). By (37),

∞∏
n=1

1 − 2Q2n
+ Q4n

1 − 2Q2n cos x + Q4n

is the quotient of y 7→ ϑ1(y/2π)/ sin(y/2) evaluated at y = 0 and at y = x . Also,

exp

[
−

∫ A∗

A

(
℘(YA,a)−

1
4

csc2(YA,a/2)
)

da

]

=

(
Q∗

Q

)1/12

exp

[
−

∫ A∗

A

2nq2n

1 − q2n

(
1 − cos nYA,a

)
da

]
. (58)

Remark 5.8. Obviously, F(a, x) = EP
[1, A∗ < 0], where P is the original SLE measure under

which Y = h(X) is the non-Markov process satisfying Eq. (24). Thus the price we incur for
switching to a Markov process representation is an exponential functional. We note that this
exponential functional can be given an interpretation using the Brownian loop soup.

6. The partial differential equation

It follows from Corollary 4.9 that F(a, x) is smooth enough in (a, x) for applying Itô’s
formula, and we have

Theorem 6.1. If G(a, x) = F(a, x)ϑ1(x/2π)3/4 sin−5/4(x/2), then

−∂aG =
4
3

G ′′
−

(
℘(x)+

9η
4π

)
G. (59)

Furthermore, F(a, x) is the unique solution to the evolution equation

−∂a F =
4
3

F ′′
+

[
2ζ(x)−

2η
π

x −
5
3

cot
x
2

]
F ′

+

[
15
16

csc2 x
2

−
5
4

(
cot

x
2

[
ζ(x)−

η

π
x
]

+ ℘(x)+
2η
π

+
5

12

)]
F, (60)
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for (a, x) ∈ (−∞, 0)× (0, 2π), and with initial condition

lim
a↘−∞

F(a, x) = 1,

and boundary condition

F(a, 0) = F(a, 2π) = 1.

Finally, the solution F is symmetric, F(a, x) = F(a, 2π − x).

Proof. The partial differential equation for G is a consequence of Theorem 4.7 and Itô’s lemma.
The equation for F follows from the equation for G. Finally, that F(a, 0) = 1 is clear and it
is also known, for example by considering the Hausdorff dimension of the SLE8/3 curve, that
lima→−∞ F(a, x) = 1. �

We now briefly discuss the case q ↘ 0. As we could not find stronger convergence results for
PDEs such as (60) in the literature we can only establish the rate in a weak sense; see Remark 6.4.

Using the formulas for ζ , η, and ℘, we can write (60) as

−∂a F =
4
3

F ′′
+

[
−

2
3

cot(x/2)+ 4
∞∑

n=1

q2n

1 − q2n sin nx

]
F ′

+
5
2

∞∑
n=2

q2n

1 − q2n [n(1 + cos nx)− cot(x/2) sin nx] · F. (61)

In particular, the coefficient of the zeroth-order term is non-singular in x and vanishes for
x = 0. We note also that the summation in the zeroth-order term begins with n = 2 because
(1 + cos x)/ sin x = cot x/2.

To guess the behavior of F as q ↘ 0 we consider the PDE obtained by setting q = 0 in (61),

−∂a H = 4/3H ′′
− 2/3 cot x/2H ′. (62)

Then (61) is a perturbation of (62) if q is small. If we replace H by 1 − H , then 1 − H satisfies
the same equation. We consider the mixed initial–boundary value problem for (62) where

lim
a→−∞

H(a, x) = 0, for x ∈ (0, 2π), and H(a, 0) = 0, for a ∈ (−∞, 0). (63)

The solution should describe the asymptotic behavior of PH,cot x→∞{γ ∩ Ca 6= ∅} as a → −∞.

Proposition 6.2. The solutions to the mixed initial–boundary value problem (62) and (63) are
given by

H(a, x) = cq2/3 sin2 x/2,

for an arbitrary positive constant c.

Proof. This follows easily from separation of variables. �

Remark 6.3. The exponent 2/3 is as expected. It is a special case of the “first-moment estimate”
given in [7], where it is shown that the Hausdorff dimension of SLE8/3 is 4/3.

It is clear from the form of the Eq. (62) and the initial–boundary value conditions that
multiplication of a solution by a constant gives another solution. For the full Eq. (61) this is
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not the case. The corresponding equation for 1 − F has the same initial and boundary value
conditions as (63) but the equation is no longer homogeneous.

Remark 6.4. The Galerkin approximation, see [11], for (61) (or rather for the inhomogeneous
equation satisfied by 1 − F), using the orthonormal system (1/

√
π) sin((2k − 1)x/2), k =

1, 2, . . . , gives as first approximation to 1 − F

π−1/2q2/3(1 − q2)1/2
∞∏

n=2

(1 − q2n)5/4 sin(x/2).

It is a weak solution of the equation for 1 − F when testing against the one-dimensional space
spanned by w1. For larger subspaces, the systems of ODEs that the Galerkin approximation give
rise to did not appear tractable to us.
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[10] Julien Dubédat, Commutation relations for SLE, Comm. Pure Appl. Math. (in press).
[11] Lawrence C. Evans, Partial Differential Equations, AMS, Providence, Rhode Island, 1999.
[12] Adolf Hurwitz, Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen, 4th ed., Springer-

Verlag, Berlin, 1964.
[13] V.I. Ivanov, M.K. Trubetskov, Handbook of Conformal Mapping with Computer-Aided Visualization, CRC Press,

Boca Raton, Florida, 1995.
[14] H.P. McKean, V. Moll, Elliptic Curves, Cambridge University Press, Cambridge, 1997.
[15] Ioannis Karatzas, Steven E. Shreve, Brownian Motion and Stochastic Calculus, 2nd ed., in: Graduate Texts in

Mathematics, vol. 113, Springer-Verlag, New York, 1991.
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