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a b s t r a c t

In this letter we report a class of hierarchically architected honeycombs in which struc-
tural hierarchy can be exploited to achieve prominent wave attenuation and load-carrying
capabilities. The hierarchically architected honeycombs can exhibit broad and multiple
phononic band gaps. The mechanisms responsible for these band gaps depend on the ge-
ometric features of the hierarchical honeycombs rather than their composition. Further-
more, the introduction of structural hierarchy also endows the hierarchical honeycombs
with enhanced stiffness.We predict that the proposed hierarchical honeycombs can realize
a unique combination of wave attenuation and load-carrying capabilities, thereby provid-
ing opportunities to design lightweight and stiff phononic crystals for various engineering
applications.

Published by Elsevier Ltd.
Phononic crystals have gained increasing research in-
terests because of their rationally designed periodic archi-
tectures and compositions enabling to modify phononic
dispersion relations, thereby providing avenues to tailor
group velocities and hence the flow of vibrational en-
ergy [1]. When the structural periodicity of phononic crys-
tals is comparable to thewavelength of propagatingwaves,
Bragg interference of elastic waves scattered by the com-
positions arises. This mechanism gives rise to complete
wave band gaps: frequency ranges where incident elas-
tic waves are not allowed to propagate. This fundamen-
tal property offers a variety of promising applications, in-
cludingwave filtering [2,3], waveguiding [4–6], and energy
harvesting [7–9]. However, the inherent architectures and
compositions, if not designed properly, could not generate
desiredwave band gaps and even lead tomechanical insta-
bility that is inapplicable for load-carrying conditions.

Structural hierarchy has been employed as an impor-
tant strategy to explore improved mechanical properties
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and other unusual physical properties. Typical examples
range from Eiffel tower to hierarchically architected nan-
otrusses with multiple length scales [10–12]. Recent stud-
ies show that it is possible to manipulate wave propaga-
tion by harnessing multiscale characteristic of hierarchical
architectures [13–15]. These rationally designed hierarchi-
cal architectures can give rise to multiple and broadband
phononic band gaps as well as low frequency band gaps. In
addition, these hierarchical architectures also enable the
coexisting of multiband wave filtering and waveguiding in
an ultrawide frequency range [16].

Despite these considerable efforts, challenges still re-
main. For example, to achieve the desired wave attenu-
ation, soft materials using thermally coupled dissipation
mechanism are often employed in engineering practice.
As a result, the wave attenuation capability strongly de-
pends on the thickness of thematerials, thus posing a great
challenge to design lightweight and stiff materials with
strong wave attenuation ability. Furthermore, conven-
tional phononic crystals with periodic architectures can
only provide limited frequency band gaps since the Bragg
interference requires that the wavelength must be com-
parable to the given structural periodicity. To overcome
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Fig. 1. (a) Schematics of regular honeycomb and hierarchical honeycombs. Here a1 = (3l0/2,
√
3l0/2), a2 = (3l0/2, −

√
3l0/2) are lattice constants;

l0 and t0 are the length and thickness of cell walls. The dash lines indicate the supercells; (b) schematics of cell walls of regular honeycombs hexagonal,
kagome, and triangular hierarchical honeycombs, respectively.
the bandwidth limitation, numerical approaches such as
topology optimization have been developed to maximize
the band gap size [17,18]. It is worth noting that the ob-
jective function of this approach is to maximize a single
band gap size, and the resultant architectures are still spa-
tially periodic. Lightweight and stiff phononic crystalswith
broadband andmultibandwave attenuation ability remain
unrealized.

Here, we report a class of hierarchically architected
honeycombs in which structural hierarchy is exploited to
simultaneously improve the wave attenuation and load-
carrying capabilities. The proposed hierarchical architec-
tures are constructed by replacing the cell walls of the reg-
ular honeycombs with hexagonal, kagome, and triangu-
lar lattices, respectively (referred to as hexagonal, kagome,
and triangular hierarchical honeycombs for simplicity in
the following, Fig. 1(a)–(e)). For the purpose of fair com-
parison, kagome and triangular hierarchical honeycombs
are subsequently obtained by connecting the midpoints
and vertices of the hexagonal lattice, respectively. The pro-
posed hierarchical honeycombs are characterized by two
geometric parameters, hierarchical length ratio, γ = lh/l0,
and the number of hexagonal lattice away from the cen-
tral axis, N , where l0 and lh are the length of cell walls
of regular lattice and hexagonal lattice, respectively. The
length and thickness of the hexagonal, kagome, and tri-
angular lattices are determined by mass/volume equiva-
lence between regular honeycombs and hierarchical hon-
eycombs (See Supporting Information, Appendix A). The
composition of the regular honeycombs and hierarchical
honeycombs is a glassy polymer, SU-8, whose properties
are characterized by a Young’smodulus Es = 3.3GPa, Pois-
son’s ratio ν = 0.33, a yield stress σy = 105 MPa, and
density ρs = 1200 kg/m3 [19].

To investigate the wave attenuation capability of the
proposed hierarchical honeycombs, phononic dispersion
relations are constructed by performing eigenfrequency
analysis within the finite element framework using the
commercial package COMSOL Multiphysics. Note that
we focus on the in-plane wave propagation in the
hierarchical honeycombs, thus a plane strain assumption
is made without loss of generality. To capture the periodic
feature of the hierarchical honeycombs, Bloch’s periodic
boundary conditions are applied at the boundaries of
the supercell. The supercell is discretized using 6-node
triangular elements. We then solve the wave equation by
scanning the wave vectors in the first irreducible Brillouin
zone. More details concerning the modeling of wave
propagation are provided in the Supporting Information
(see Appendix A).

We start by examining the phononic dispersion rela-
tions of hierarchical honeycombs with γ = 1/5, N =

1, and relative density ρ/ρs = 0.06. For the purpose
of comparison, phononic dispersion relation of the asso-
ciated regular honeycomb is also reported. For the regu-
lar honeycomb, we only observe one narrow band gap at
ϖ = 0.059–0.061 (Fig. 2(a)). By contrast, the introduction
of structural hierarchy in the regular honeycombs leads to
much broader band gaps (Fig. 2(b)–(d)). Specifically, the
maximum band gaps in hexagonal, kagome, and triangu-
lar hierarchical honeycombs are ϖ = 0.047–0.079, ϖ =

0.108–0.133, andϖ = 0.064–0.078, respectively. In addi-
tion, the introduction of structural hierarchy also gives rise
to multiple band gaps, as shown in the phononic disper-
sion relations. To gain a deeper understanding, we plot the
eigenmodes of the high-symmetry points Γ̄ , M̄ , and K̄ at
the lower band edges of the band gaps (Red lines in Fig. 2).
For hexagonal and kagome hierarchical honeycombs, the
vibrational modes of the high-symmetry points exhibit
a global nature, indicating a Bragg-type band gap. Inter-
estingly, localized vibrational modes are observed for the
triangular hierarchical honeycombs, suggesting that local
resonances are responsible for the broad band gaps [20–
23]. This is also supported by the flat band edge of the band
gaps. A direct comparison between the geometric features
of the regular honeycomb and hierarchical honeycombs
leads us to believe that different mechanisms of band gaps
formation are intrinsically dictated by the slenderness ra-
tio and coordination number of the lattice. It should be
pointed out that damping effect resulting from the vis-
coelastic feature of the glassy polymer may make some
contribution to thewave attenuation [24]. However, recent
experimental results indicate that the damping effect will
not swamp the band gaps in the phononic dispersion rela-
tions [25].



Y. Chen, L. Wang / Extreme Mechanics Letters 9 (2016) 91–96 93
Fig. 2. Phonon dispersion relations of regular and hierarchical honeycombs with γ = 1/5, N = 1, and relative density ρ/ρs = 0.06. (a) Regular
honeycomb; (b)–(d) hexagonal, kagome, and triangular hierarchical honeycombs, respectively. Eigenmodes of the high-symmetry points Γ̄ , M̄ , and K̄
at the lower band edges of the band gaps are also plotted. Here Γ̄ = (0, 0), M̄ = (2π/3l0, 0), and K̄ = (2π/3l0, 2

√
3π/9l0). The normalized frequency

is defined as ϖ = ωa/2πct , where ω is frequency, a is the length of lattice constant, ct is the transverse wave velocity of the constituent material. The
legends indicate the amplitude of normalized displacement.
Having demonstrated that the broadband and multiple
band gaps are dictated by the slenderness ratio and coor-
dination number, we now examine effects of two geomet-
ric parameters, γ and N , on the evolution of band gaps.
Note that for a given relative density and a type of hier-
archical honeycomb, the slenderness ratio of the lattice is
uniquely controlled by γ and N . Here we consider the case
that the relative density ρ/ρs = 0.16 for the hierarchi-
cal honeycombs to ensure that the cell walls of each lat-
tice have considerable thickness at large N . To quantita-
tively evaluate the wave attenuation capability of the hier-
archical honeycombs, we define two indicators to consider
the broadband and multiband features: maximum rela-
tive band gaps, (1ω/ω∗)max and total relative band gaps,

(1ω/ω∗), where 1ω is band gap width and ω∗ is the
midgap frequency. As shown in Fig. 3, both the maximum
band gaps and total band gaps tend to diminish for N > 2.
On one hand, for a given relative density, largerN indicates
more substructures and larger slenderness ratio. While for
wave propagation in lattice structures, slenderness ratio
is critical to the band gaps formation [26]. On the other
hand, with the increase ofN , the effect of structural hierar-
chy becomes weaker. At the maximum N , all hierarchical
structures reduce into regular lattice materials, which do
not have or only have small band gaps, depending on the
slenderness ratio andnode connectivity [26,27]. For a given
N ≤ 2, the maximum band gaps and total band gaps tend
to decrease when the hierarchical length ratio decreases
from 1/2 to 1/11. The maximum band gaps and total band
gaps of regular honeycombs are also plotted in Fig. 3 for
the purpose of comparison (γ = 1). We observe that hi-
erarchical honeycombs with γ = 1/2 exhibit compara-
ble or larger maximum band gaps, whereas the total band
gaps strongly dependon the shape of the latticewhen com-
pared with that of the regular honeycomb. These quantita-
tive analyses not only support our conclusion concerning
the mechanisms underlying the band gap formation, but
also provide clues to design phononic crystals with desired
wave attenuation capability.

To demonstrate the potential of designing lightweight
phononic crystals, a quantitative investigation is carried
out to examine the effect of relative density on the band
gap evolution (Fig. 4). Here we choose γ = 1/5 andN = 1,
and ρ/ρs = 0.06–0.32. Noticeably, both the maximum
band gaps and total band gaps are inversely proportional
to the relative density. For the maximum band gaps, hier-
archical honeycombs show much smaller exponents than
that of regular honeycombs, indicating that hierarchical
honeycombs can be potentially designedwith lightweight.
For the total band gaps, we note that hexagonal and trian-
gular hierarchical honeycombs exhibits smaller exponents.
Although the exponent of kagome hierarchical honeycomb
is larger than that of regular honeycomb, an inverse rela-
tion between total band gaps and relative density still can
be observed.
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Fig. 3. Effects of hierarchical length ratio and number of lattice on the evolution of maximum band gaps and total band gaps. (a)–(c) Maximum band gaps
in hexagonal, kagome, and triangular hierarchical honeycombs, respectively; (d)–(f) total band gaps in hexagonal, kagome, and triangular hierarchical
honeycombs, respectively. 1ω is band gap width and ω∗ is the midgap frequency. Here the relative density is ρ/ρs = 0.16.
Fig. 4. Effects of relative density on maximum band gaps and total band gaps. (a) Maximum band gaps and (b) total band gaps of regular and hierarchical
honeycombs. Here γ = 1/5 and N = 1. The solid lines represent the numerical data fitting using scaling law.
It has been demonstrated that hierarchal honeycombs
can have improved mechanical properties. To further ex-
plore the possibility to design phononic crystals with rela-
tively high stiffness, we numerically examine the mechan-
ical response of the proposed hierarchical honeycombs un-
der uniaxial compression. A constitutive stress–strain be-
havior of the glassy polymer SU-8 together with a periodic
representative volume element of each regular and hierar-
chical honeycomb is employed to predict the mechanical
response [19,28]. More details concerning the constitutive
stress–strain behavior of SU-8 and the implementation of
periodic boundary conditions can be found in the Support-
ing Information (see Appendix A).

Fig. 5(a) reports the mechanical response of the hier-
archical honeycombs with γ = 1/5 and N = 1, and
ρ/ρs = 0.06 under uniaxial compression up to 10%macro-
scopic strain. For the regular honeycomb,weobserve a typ-
ical stress–strain relation including an initial linear-elastic
regime and a following non-linear trend induced by plas-
tic deformation. As compared to the regular honeycomb,
hexagonal hierarchical honeycomb exhibits a very similar
response, but a slightly lower stress–strain curve, indicat-
ing a comparable stiffness. For kagome and triangular hi-
erarchical honeycombs, the stress increases rapidly with
the strain followed by higher yield/buckling stress, indicat-
ing much higher stiffness. The highly nonlinear behavior
of hierarchical honeycombs is dictated by local buckling
of the cell walls together with the plastic deformation of
SU-8. Importantly, these deformationmechanismswill en-
dow hierarchical honeycombs with enhanced energy ab-
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Fig. 5. (a) Stress–strain relations of regular honeycomb and hierarchical honeycombs compressed along y direction; (b) Relations between stiffness and
relative density of regular honeycomb and hierarchical honeycombs; (c) and (d): Ashby-type plots of specific modulus and maximum band gaps and total
band gaps. Eh and Es are the Young’s modulus of hierarchical honeycombs and constituent material SU-8, respectively. Here γ = 1/5 and N = 1.
sorption capacity. It should be emphasized that hierar-
chical honeycombs can be constructed by replacing each
vertex of regular honeycombs with a smaller self-similar
hexagon [29]. In this case, broad and multiple band gaps
can be retained, the stiffness, however, will be significantly
sacrificed.

Fig. 5(b) shows the stiffness of the hierarchical honey-
combs at relative density range ρ/ρs = 0.06–0.32. For the
regular honeycombs, the simulated stiffness agrees well
with predictions from linear elastic theory [30], indicating
that our numerical framework can accurately predict the
mechanical response of the regular honeycombs. Hexago-
nal hierarchical honeycombs have comparable yet slightly
lower stiffness than that of regular honeycomb. Notably,
kagome and triangular hierarchical honeycombs show sig-
nificantly improved stiffness. For example, at low relative
density (ρ/ρs = 0.06), kagome and triangular hierarchical
honeycombs exhibit an improved stiffness by nearly one
and two orders of magnitude as compared to the regular
honeycomb and the hexagonal hierarchical honeycomb,
respectively. We fit the stiffness as a function of relative
density using a scaling law, Eh/Es = C (ρ/ρs)

n, where
Eh and Es are the stiffness of hierarchical honeycombs
and solid constituent material SU-8, respectively, C is
geometry-dependent proportionality constant, and n is the
scaling exponent. As a result, the scaling exponents for reg-
ular honeycomb, hexagonal, kagome, and triangular hier-
archical honeycombs are 2.97, 2.69, 1.70, and 1.13, respec-
tively, indicating that regular honeycomb and the hexago-
nal hierarchical honeycomb exhibit a bending-dominated
deformation behavior, whereas kagome and triangular hi-
erarchical honeycombs have a stretching-dominated de-
formation behavior. Intrinsically, the discrepancy between
the bending-dominated and stretching-dominated behav-
ior is governed by the geometric features of the lattice,
i.e., slenderness ratio and coordinate numbers.

By combining the simulated stiffness and band gaps of
the hierarchical honeycombs with different relative den-
sities, we obtain the Ashby-type plots of specific modulus
versus maximum band gaps and total band gaps, as shown
in Fig. 5(c) and (d), respectively. Compared with the reg-
ular honeycombs, hexagonal hierarchical honeycombs re-
tains comparable specific modulus but broader and mul-
tiple band gaps. Remarkably, kagome and triangular hier-
archical honeycombs can achieve specific stiffness that are
40–60 times higher while having similar maximum band
gaps and total band gaps, compared with that of regular
honeycombs. From a practical perspective, the proposed
hierarchical honeycombs have great potential applications
in areas where lightweight, wave attenuation, and load
carrying capacity are simultaneously desired.

In summary, the numerical analyses in this work
provide insights into the effect of structural hierarchy on
the wave attenuation and load-carrying capabilities. We
have demonstrated that broad and multiple band gaps
can be achieved in the proposed hierarchical honeycombs,
providing that the geometric parameters are rationally
selected. In addition, kagome and triangular hierarchical
honeycombs exhibit improved specific stiffness compared
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with regular honeycombs.Weemphasize that the achieved
outstanding wave attenuation capability and enhanced
mechanical properties are attributed to the introduction
of the structural hierarchy. Thus the proposed hierarchical
honeycombs can be termed a new type of metamaterials.
The findings reported here will provide new opportunities
to design lightweight and stiff phononic crystals for various
applications including underwater wave mitigation in
submarines and other structural vibration mitigation in
defense, aerospace, and automotive industries.
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