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Abstract-We reduce the extended MacKendrick-Von Foerster formalism of Gurney and Nisbet-an 
initial boundary value problem-to the solution of a single Volterra integral equation with a constant 
time lag. We then establish the existence, uniqueness and continuation of solutions for all t > 0, and 
reduce a simplified version of this model to a time-delay version of the classical MacKendrick model, for 
which the standard stability results for persistent distributions are available. 

INTRODUCTION 

In 1954 and 1957 Nicholson performed his now classical experiments on laboratory cultures of the 
sheep blowfly Lucila cuprina [1,2]. Since then, attempts to model this experiment have been made 
by May [3] and Varley et al. [4] among others. According to Blythe et al. [S], these attempts have 
produced at best “generalized insights” and, furthermore, “no theoretical model has yet yielded a 
truly satisfactory quantitative fit to the time history of even a single culture, still less has it been 
possible to formulate a comprehensive framework within which the various subtly different 
experimental results can be systematically interrelated”. In a more recent paper, Gurney et al. [6] 
point out that the failure of these models lies in their lack of a mathematically rigorous foundation. 
Nisbet and Gurney [7] remark that in their 1983 paper with Lawton [6] they “showed that if the 
life history of an insect involved developmental stages of arbitrary duration, then the normal 
integro-differential equations describing a population with overlapping generations reduced to a 
set of coupled ordinary delay-differential equations, provided only that all individuals in a particular 
age class have the same birth and death rates”. Their integro-differential equations were derived 
from the rigorous Lotka-MacKendrick-Von Foerster age-dependent formalism, and when they 
numerically apply their reduced delay-differential equation formalism to the Nicholson experimental 
data they obtain close agreement with his experimental results. They further note that “physiologi- 
tally . . . for most insect species it is not chronological age but weight gain that triggers the various 
moults, a doubling of weight during an instar being typical (Dyar’s ‘law’, Chapman [8])“, and 
they mention several well-documented studies “which demonstrate simple linear or nonlinear 
relationships between growth rate (i.e. weight gained per unit time) and food absorption rate within 
an instar”. Finally, they conclude that “the existence of a well-defined relationship between instar 
duration and food absorption rate can be expected for many insect species”. 

The linear formalism of this paper was developed by Nisbet and Gurney [7] in “response to a 
number of questions raised by the experiments of Lawton et al. [1980] on the damselfly Zschnura 
elegans (van der Lind), certain instars of which have the ability to survive for long periods of a ‘no 
food, no growth’ state without a high level of deaths through starvation. Instars 10 and 12 could 
for instance vary in length from under 20 to over 100 days with significant numbers still surviving 
to the end of the instar”. They later used their formalism to construct “a ‘strategic model’ (in the 
sense of May [3]) designed to demonstrate the effect on population stability of a high level of 
elasticity in instar duration”. 

Although their formalism resembles the MacKendrick-Von Foerster formalism, there is the 
additional assumption of a time lag corresponding to an egg stage of fixed duration (MacKendrick 
models with delay have been studied by Cushing [9]). As in their paper with Lawton [6], they 
reduce their formalism to a set of coupled ordinary delay-differential equations and then they study 
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them numerically. The resulting model, as they point out, “is not a representation of a damselfly 
population, but solely a theoretical construct intended to elucidate a regulating mechanism 
suggested by the damselfly experiments”. 

In this paper, we first provide a careful new derivation of this model, then we proceed to show 
that it is well-posed. This is done by reducing the model to the solution of a single Volterra integral 
equation. Although the possibility of this type of reduction has been mentioned for similar models 
at least as early as 1967 [lo], as far as the author knows, except for the trivial case when the 
characteristic curves are just lines, nobody has provided a systematic way of doing this reduction. 
In this paper, the Osgood-Wintner-Conti-Brauer theory of global solutions for ordinary differential 
equations is used for this purpose [l l-171. This theory is again used by the author in a follow-up 
paper [24] to analyze a nonlinear version of the Gurney-Nisbet model. 

The Gurney-Nisbet Model 

In the Gurney-Nisbet (GN) model the dynamics of a one-sex population are described using a 
density function f(a, m, t), where a denotes age, m denotes size, i.e. mass, and t denotes time. This 
function describes the size-age structure of the population at time t. We assume that the changes 
in f(a, m, t) are due to: 

l individuals aged between a and a + Aa and with size between m and m + Am 
mature and grow to an older age class and a bigger size class or die; 

or, more specifically, 

l individuals aged between a and a + Aa and with size between m and m + Am who 
survive enter the age class a + Au to a + Aa + At and enter the size class 
m + g(a, m, t)At to m + Am + g(a, m + Am, t)At, where g(a, m, t) denotes the average 
growth rate of an individual of size m, age a, at time t. 

These assumptions provide a basis for the following development of the GN model. We begin by 
letting: 

(a) 

(b) 

(c) 

(d) 

f(a, m, t) denote the age-size density function so that the number of members of 
the population at time t with age a between a0 and a, and size m between m, 
and m, is given by 

g(a, m, t) be the average growth rate of an individual of age a with size m at time t; 

19(a, m, t) denote the age-size specific death rate so that @a, m, t) f(a, m, t)AaAm is 
the number of individuals per unit time dying at time t with age between a and 
a + Aa and size between m and m + Am; 

,I(a, m’, m, t) be the age-size specific fertility rate so that 

m a! 
At 

ss 
E.(a, m’, m, t)f(a, m’, t)dm’da 

0 0 

is the total number of offspring of size m in the time interval (t, t + At); 

(e) fo(a, m) be the initial size-age distribution. 
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At time t + At the number of surviving individuals that at time t had sizes between m and 
m + Am and ages between a and a + Aa is given by 

m+Am s s a+& 

f(a’, m’, t)da’dm’ - f3(a, m, t)f(a, m, t)AaAmAt z f(a, m, t)[l - &a, m, t)At]AaAm. (1) 
m (I 

Since the size range at time t + At is between m + g(a, m, t)At and m + Am + g(a, m + Am, t)At with 
age range between a + At and a + Aa + At, we have that the number of individuals at time 
t + At with ages between a + At and a + Aa + At and with sizes between m + g(a,m, t)At and 
m + Am + g(a, m + Am, t)At is therefore given by 

F 
+ Am + g(a.m + Am.t)At a+Aa+At s f(a’, m’, t + At)da’ dm’ 

m +g(o.m.t)At a+Al 

e f(a + At, m + &aim, t)At, t + At)(Am + Cg(a, m + Am, t) - gfa, m, OlAt}Aa. 

If we approximate g(a, m + Am, t) by g(a, m, t) + a/amCg( a, m, t)]Am and equate this expression with 
equation (l), then after dropping the terms of order higher than 1 we arrive at the following partial 
differential equation: 

(2) 

The “recruitment” of population is given by 

m m 

f(O, 4 t) = ss n(a, m’, m, t)f(a, m’, t)dm’da, t > 0, (3) 
0 0 

and the initial size-age distribution is given by 

f(a, 4 0) = f&a, 4. (4) 

The population growth is therefore modelled by the initial boundary value problem (IBVP) 
described by equations (2)-(4). Observe that equation (3) is not required to hold at t = 0. 
This relation will be satisfied at t = 0 iff f. satisfies the compatibility condition 

fo(O, 0) = 50” $7 I.( a, m’, O,O)dm’da, which simply implies that the initial data be consistent with the 
renewal process. This kind of construction will not be imposed throughout because our interest is 
in situations where the initial size-age distribution Jo is completely arbitrary. 

The Age-independent Model 

Assume that g, i., and 0 depend on size and time, but not on age; furthermore, let p(m, t) be such 
that J:+Am p(m’,t)dm’ denotes the number of individuals with sizes in the range m to m + Am 
irrespective of age, so that p(m, t) = j; f( a, m, t)da. After integrating equation (2) formally from 0 to 
co on the age variable and under the assumption that f(oo, m, t) = 0, we arrive at the following 
equation: 

& P + =$w + ep = f(O, m, t). 

Under these circumstances the renewal equation becomes 

OD f(Qm,t) = s ;i(m, m’, t)p(m’, t)dm’, t > 0, 
0 

(6) 
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PM 0) = s mfo(a, mW. (7) 
0 

The size-dependent population growth is then modelled by the IBVP described by equations 
(5)-(7). 

The Renewal Equation 

The derivation of the following renewal equation is entirely due to Nisbet and Gurney [7]. For 
many populations (e.g. insects), the following assumptions are quite reasonable: 

(i) all “eggs” have the same size m,-in other words, all individuals have the same 
size at birth; 

(ii) the egg-stage duration TE and the probability of survivorship PE are constant; 
(iii) g, 3. and 8 depend on size and time. 

Hence, if we let R(t) denote the total rate of recruitment at time t from the egg stage and if we let 
E(t) be the total egg-production rate at time t, then it follows that 

R(t) = P&t - ?E), (8) 

and since 

s 3c 

E(t) = i.(m’, t)p(m’, t)dm’, 
ml 

(9) 

then using equation (9), equation (8) can be written as follows: 

s ct 

R(r) = P, E.(m’, t - s&(m’, t - s,)dm’. (10) 
ml 

Now, first we observe that R(t)At gives the total recruitment during the time interval t to t + At 
and the recruits will have sizes ranging from m, to m, + Am, where Am, = g(ml, t)At. Secondly, 
we see that p(m,, t)Am, also denotes the total number of individuals with sizes in the range m, to 
m, + Am at time t. From these observations and equation (10) we obtain 

dm 1, t) = [PE/,dm 1 ? t)l k(m’, t - s&(m’, t - rE)dm’, t > T’E, (11) 

which in conjunction with 

(12) 

and an appropriate initial condition, provide us with a description of the dynamics of a population 
satisfying assumptions (i)-(iii). To prescribe the initial conditions, we could proceed in at least two 
ways: 

(a) we could assume that the birth rate has been prescribed for the time interval 
[O,?,] by a function Y(t), i.e. 

ph , t) = W), 0 < t < 7E, 
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(b) we could assume an empty system [p(m, t) = 0 for I < 0] which is then instan- 
taneously “seeded” with an initial size distribution p(m,O) = p,(m). 

A Delay-differential Equation 

If we now assume that g, 8, A depend only on time and let F(t) = sg, p(m’, t)dm’ be the total 
population at time t then, under the assumption that p(m, t) + 0 as m + co, we obtain after 

integrating equation (12) formally that 

with a corresponding renewal equation given by 

gtt)p(m, , I) = PEW - 5E)F(t - d. (14) 

Substituting equation (14) into equation (13) we obtain the following delay-differential equation in 
terms of the total population at time t, namely: 

J&) = P,qt - TE)F(t - TE) - e(t)qt). (15) 

We observe that P&t - TJF(t - TV) gives the rate of recruitment for a population of size F(r - rE) 
with maturation period rE if we also observe that e(t)F(t) represents the rate of death of a population 
of size F(t). If i. is constant then we see that equation (15) is a delay-differential equation of the 

form 

$-(t) = R(F(t - TV)) - D(F(t)). 

For an analysis of this type of delay-differential equations see Blythe et al. [S] and Brauer [18]. 

MATHEMATICAL ANALYSIS 

We assume that g, 8 and i. are nonnegative and age independent, and that all individuals have 
the same size m, at birth with egg-stage duration 58 and probability of survivorship P,, both 
assumed constant. Then the population growth is found to be partially modelled by the following 
IBVP in which p,(m) denotes the initial size distribution: 

& ph t) + Am t) & Am, 0 + &g(m, t) + e(m) 
1 

Am, 0 = 0, m > ml, (164 

PE m Am,, 0 = ~ s dm19t) mr 
A(m’)p(m’, t - r,)dm’ G B(t), t > TE. UW 

Remark 1 

For technical, as well as biological, reasons we make the following assumptions: g, 8, A are 
nonnegative and continuously differentiable functions of m and t in [ml, co) x [0, oo), i is assumed 
to have compact support; moreover, we assume that there exists an E > 0, s.t. g(m, t) > 0 for (m, t) 
in (m, - E, cc) x [0, a) with g(ml, t) bounded away from zero V t > 0 by a constant 6, > 0, and 
that Cg(m,, t)]-’ has a uniformly bounded derivative V t > 0. 

In order to have a well-posed problem we still have to prescribe an appropriate set of initial 
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conditions. Promising applications of this model to laboratory insect populations suggest 

p(m,O) = p,(m) (16~) 

and 

p(m, t) = 0, t < 0, (164 

where equation (16d) indicates an empty system and equation (164 that it has been “seeded” 
(instantaneously) at t = 0 by means of an arbitrary size distribution. A second possibility consists 
of taking equation (16~) in conjunction with 

where Ii/(t) is an arbitrary function. 
We will work with equations (16c, d) as our set of initial conditions. Equations (16a-d) provide 

us with an IBVP. In order to reduce it to a single integral equation, we proceed to solve equation 
(16a) by the method of characteristics. 

Let r = {(m, t): 3 m,, t = 0} and parametrize I- as follows: m = l(u) = u; t = p(u) = 0, u 2 m,; 
with h(u) = p,(u) as the initial data on r. It is then clear that r is noncharacteristic. 

Let X,(u) = (M(u, u), T(u, 0))’ (t denotes the transpose) be the unique characteristic through (u, 0) 
parametrized by u. If f(X.) = (g(X,), l)‘, then X,(u) will satisfy 

x: = _w.) (~=~);x.o=(;). (17) 

In order for the system of equations (17) to have global solutions (i.e. for u 2 0) for all values 
u 3 m, we assume the existence of nonnegative continuous functions CQ(W) (i = 1,2) with domain 
in (ml, co) and, such that for i = 1,2, 

:W = ai( w(O) = IX.(O)l = I4 + PI 

with 

a,(lX,l) d IfWJl G aAlX.l), 1x1 < ~0, (19) 

ds 
and such that J,i(w) = fz, -diverges at + cc and at m, - E, where 0 < E << ml. Hence if we have 

ai 

that a,(O) ,< a2(0) then all solutions satisfying a,(O) < IX.(O)l < aJO) exist on (ml - E, 00) and satisfy 
J,&l(J,,(a,(0)) + u - ml) 2 IX.(u)l 2 JP, ‘(J,,(a,(O)) + u - m,), and since Jay1 is an increasing function 
of u we then have that IX,(u)1 -* co as u + 00. These conclusions follow from the Osgood-Wintner- 
Conti-Brauer theory of global solutions for ordinary differential equations. 

We now let Y,(r) = (M(s, r), T(s, r))’ and parametrize r’ = {(m, t): m = m,, t 2 0) by taking 
m = I(s) = m,, t = p(s) = s, s 2 0. Our assumptions on g guarantee us that r’ is noncharacteristic, 
and hence the characteristic curves are the solutions to 

(20) 

Under analagous conditions to those imposed on the system of equations (17) we have that the 
system of equations (20) have unique global solutions. If we now let a(m, t) E (d/dm)g(m, t) + @m, t) 
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and 

cr(m’(s(m’, I),t’))dt’ 1 . 

With these, equation (25) becomes 

(27) 

1 
I(s(m.t) s - rd 

BMm, 0) = 
timIT s(m, 0) ml 

B(s(m’,s(m, t) - r,))K(m’, s(m, t) - r,)dm’ 

+ F(s(m, t) - 5~1, s(m, t) - TE > 0. WE) 

Therefore if B(s) is the unique continuous function satisfying (BIE) for s in [r,, co) then equation 
(24) gives the unique solution to equations (16a)-(16d or 16e) and conversely. 

Hence the determination of the existence of solutions to the initial IBVP (16a-e) has now been 
reduced to the determination of the existence of solutions to a Volterra integral equation with a 
time delay that we will refer to as BIE. 

At this point, for technical reasons, we again mention that equation (16b) is not required to hold 
at t = rE but that it will be satisfied at t = ?E whenever p. satisfies the compatibility condition 

PE m 
dm19TE) = - 

kdmIV5E) s PE 
33 

E.(m’)p(m’, 0)dm = ___ s E.(m’)p,(m’)dm’. 

This condition simply implies that the initial data is consistent with the renewal process. We are 
not assuming this compatibility condition. B, as defined by equation (16b), will exhibit a discontinuity 
at t = ?E and therefore B as defined by equation (16b) at t = 7E will not agree with B as defined 
by BIE as s = rE. We therefore define B.as in equation (16b) for t > TV and take B(rE) = B(T:) 
[which under equation (16d) equals zero]. The following lemma will be of extreme importance 
throughout the analysis of BIE. 

Lemma 1 

If m’ satisfies m, < m’ < J‘(s(m, t) - rE), then 

s(m, t) - sE - s(m', s(m, t) - TE) > 0 for s(m,t) > rE. (29) 

Proof. In order to follow the proof, Fig. 2 is necessary. From it we observe that there exists a 
unique characteristic through A,. Moreover, it does not intersect C,; therefore, it starts at a point 

0 I_________-----____‘______-__m 
ml 4 

Fig. 1 
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(ml, s’) with s’ > 0. The characteristic through (ml, s’) may be denoted by M(s’, r), and T(s’, r) = s’ + r 
is a solution to equations (20). Therefore we have that M(s’,O) = m,, and more importantly, that 
M(s’, s(m, t) - TV) = m'. It is now clear that the definition of s implies that s(m', s(m, t) - 7E) = s’ and 
since s’ < s(m, t) - zE, then it can be concluded that inequality (29) holds. This lemma indicates 
that “left” values of B are being used to compute its “right” values. 

LOCAL EXISTENCE AND UNIQUENESS 

Existence of solutions for BIE can be studied by assuming that the initial history is provided by 
either equations (16~) and (16e) or equations (16~) and (16d). In the first case we can make use of 
Fig. 2 to observe that {s(m’, I): m, < m' < f(~~)} = [0, ~~1 and hence if equation (16e) is assumed, 
B is prescribed on [O,r,]. We then observe that the r.h.s. of BIE defines B on [T~,~T~]; as this 
process can be repeated, it is clear that we obtain global existence and uniqueness. 

When equations (16~) and (16d) are assumed, we only know that B(T~) E B(r:) = 0 and hence a 
fixed-point argument is needed to establish existence and uniqueness. 

We follow the results on Volterra integral equations as found in Miller L-191. A series of technical 
lemmas will be proved that will lead towards the resolution of the questions of existence and 
uniqueness for BIE. If we let s(m,t) - fE = 1 then BIE can be written as follows: 

B(I + rE) = 
1 /(I) 

s gh, 1 + TE) ml 
B(s(m',I))K(m', I)dm’ + F(I), 1 > 0. 

If we set 

G(I,m',B) = 
BK(m',I) if m, d m' <f(l) 

0 otherwise, 

then with this notation the following lemma holds. 

Lemma 2. 

F and G satisfy accordingly the following properties: 

HI. F is defined and continuous for all 12 0. 
H2. G is a Lebesgue measurable function in (I, m’, B) for m, < m’ < f(l), 0 < B < co. 

Moreover, G(I, m', B) is a continuous function of B for each fixed pair (I, m') and 
G(I, m’, B) = 0 if m’ > f(r). 

H3. Let R > m, and S be a bounded subset of the nonnegative reals, then there 
exists a measurable function N such that IG(I,m',B)I < N(I, m') whenever 
ml d m' < f(l) S R and BE S and we also have that 

U 
f(1) 

sup N(l,m’)dm’: m, <f(l) < R c co. 
ml I 

H4. For each compact subinterval J in [m,, 00) and each bounded subset S of the 
nonnegative reals and each I in (0, co) we have that 

sup 
[II 

G(I, m’, $(s(m', I))) - G(I,, m', +(s(m', lo))) dm’: 4 E C(J; S) + 0 as I+ IO, 3 1 

VW 

where C(J;S) denotes the set of all continuous functions 4 with domain J and 
range in S. 



830 

H5. 

C. CASTILLO-CHAVEZ 

For each constant Q > 0 and each bounded subset S of the nonnegative real 
numbers, there exists a measurable function K(I,m’) such that 
IG(I, m’, B,) - G(I, m’, Bzl < K(I, m’)lB, - B21 whenever m, < m’ <f(l) < Q and 
both B, and B, are in S. 

Proof Property Hl follows clearly from the definition of F. Moreover, since G(I,m’,B) is a 
continuous function in (I, m’, B) for m, < m’ <f(l) and B in [0, co) then it satisfies clearly properties 
H2-H4; property H5 is immediate using the given K(I,m’). 

Remark 

We observe that to fulfill property H3 we could use k,K(l,m’) as N(l,m’), where k, is any bound 
for the bounded set S. One more lemma is needed before we reach the main theorem of this section. 

Lemma 3 

For each R > m, there exists an N, as in property H3, such that JLy) N(I, m’)dm’ + 0 as 1 -+ O+. 
Proof: From the above remark it follows that we may take N(I, m’) z k,K(I,m’). Since 

SLY) K(I, m’)dm is a continuous function of 1 and f(r) decreases to m, as I-+ O+, then we see that the 
result follows. 

We have finally arrived at the main result of this section. 

Theorem 1 

Assume that F and G satisfy the conditions specified in Lemmas 2 and 3, then there exists a 
constant /? > 0 such that BIE has a unique continuous solution on the interval [0, /I], i.e. B(I + 5s) 
is in C[O,b]. 

Proof. We will set up matters so that we may apply a contracting argument for maps. Let 

S = (B 2 0: II3 - F(Z)/ < 1 for some I in [0, l]}. 

Lemmas 2 and 3 allow us to choose a p > 0, small enough so that 

1 

s 

00 

s 

f(1) 

s, 
K(1, m’)dm’ < i and $ k&(1, m’)dm’ < 1 for 1 in [O,p]. 

ml o ml 

Let X = C([O,p];S), i.e. the set of all continuous functions 4 with domain CO,/?] and range in S. If 
we take the uniform norm on X, i.e. 11411s = supl4(1)/ where the supremum is taken for 1 in [0,/I], 
then it is easily checked that X becomes a Banach space. A mapping T on X is defined as follows: 

(T&VI = F(I) + g(m, ; + TE) s f(f) 

W, m’, cb(s(m’, Q))dm’, I in [O,p]. 
ml 

Since 

then (T4)(I) is in S. Moreover, if we let q(t) E 1 
R(m19 r) 

and assume that it is a continuously bounded 
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differentiable function of t so that there exists a constant c1 such that [g’(t)1 < cl V t > 0, then we 
can see that 

I(T@o( + h) - (T4XO < IW + h) - HOI + $ 
f(B) s I G(I + h, m', $(s(m’, 1 + II))) 

O ml 

1 
/(l+h) 

=- 
6 IS 

G(I + h, m’, &s(m’, 1 + h)))dm’ G(I, m’, &s(m’, I)))dm’ 
0 /(I) 

= I, + I, + I, + I, + I,. 

The continuity of F and f and property H4 clearly imply that Zi + 0 as h + 0 for i = 1, 2, 3, 4, 
5 and therefore TC#I E X. Moreover, T is a contracting map. To see this, let +1 and & be members 
of X and let I E [0, j?], then 

IV4,V) - V4sHOI G f 
f(l) s WY m’b#+W9 0) - &(s(m’, Uldm’. 

O ml 

Since m, < m’ <f(l), Lemma 1 implies that s(m’, I) < 1. But I is in [0,/I] and s(m’, I) > 0, hence 
s(m’, l) is in [0, 81 V 1 in [0, /?I, and therefore we have that 

IV4,NO - U-4,NOI G $1141 - &II8 s f(1) 

0 

Wm’Vm G i 119, - &IIB. 
ml 

Hence T is a contracting map on X and therefore it has a unique fixed point, i.e. BIE has a unique 

continuous solution on C[O, j?]. 

CONTINUATION OF SOLUTIONS 

The purpose of this section is to show that the unique local solution of Theorem 1 can be 
continued uniquely to the “right” for all time. We begin with the following theorem. 

Theorem 2 

Assume that F and G satisfy the conditions of Lemmas 2 and 3. Let B(I + TV) be the bounded 
solution to BIE for 1 in [0, a]. Then B(I + rE) can be uniquely extended as a continuous solution 
to BIE to an interval [O,a,] with a0 > CL. 

Proof. Let Q be a bound for IB(I + rE)l when 1 E [0, a] and let So = {B 2 0: E < Q}. Choose a 
sequence {I,,,} in [0, a] and such that I, c I,, 1 and lim I, = a when m + 00. For m > n, we then 
have 

lq(l. + G{; s f(L) 

GU,, m’, Wm’, 4,)))dm’ - q(l, + Ed W, , m’, Mm’, I,)))dm’ 
ml 

IW,, m’, Wh’, UN - GV,, m’, BW’, I,)Nldm’ 

II 
I(@) + c,L - 4) G(I,, m’, B(s(m’, I,)))dm’ = I, + I,, 

“1 
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since by definition G(I,,, m’, B) = 0 for m’ > f(l,,). Let X$ = C[[O, a]; So] and 4 in Xz, then 

s 1Um) 

i&J, < sup 
*inX; 

I W,, , m’, 44W, L))) - W, , m’, #Mm’, M)ldm’ + 0 
ml 

as l., l,+a- by virtue of property H4. Since 

s f(L) 

- d, + TE) GU,, m’, BMm’, I,)))dm’ 
ml 

then using the continuity of F and the above estimates we have that I(TB)(I,) - (TB)(I,)I + 0 as 
m,n+ m. Since l,+a- as m + co, we conclude that ,li_mm (T&o(,) exists. So we are able to extend 

B(I + TV) as a continuous function on [o,a] by taking the preceding limit as the definition of 

B(TE + tl). 

Now let P(I) 3 E(T~ + I i- a). We then have that 

(TP)(I) = (T@(T, + a + I) 

= F(I + a) + q(/ + TE + a) G(I + a, m’, B(s(m’, 1 + a)))dm’. (30) 

In order to change this integral to a form suitable to our former analysis we make use of Fig. 3, 
where appropriate points have been identified. There is a unique characteristic through I?, which 
is parametrized by m(r) = M(a, r) and t(r) = r + a. This characteristic intersects the line r = a + 1 
at the point C, = (m’, a + I) and therefore s(m’, a + I) = a. Hence from Fig. 3 we see that 
sfm”, a + I) < s(m’, a + I) = a whenever m’ < m” < f(a + I). With this we can rewrite equation (30) 

as follows: 

s MW) 

(TP)(i) = F(f + a) + q(! + TV + a). G(I + a,m”, B(s(m”, 1 + a)))dm” 
ml 

/@+I) 

i- q(l + TE i- a) 
s 

G(I + a, m”, B(s(m”, 1 + a)))dm”. 
M(4.l) 

(31) 
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By the above remarks B(s(m”, I+ a)) is known for values of m” with M(a, 1) < m“ < f(a + 1). Define 

F.(r) = F(l + a) + q(l + 58 + a) G(1 + a, m”, B(s(m”, 1 + a)))dm”. 

Then equation (31) can be written as 

s M(d) 

(TP)(l) = F,(l) + q(1 + TE + a) G(I + a, m”, B(s(m”, 1 + a)))dm” 
ml 

or as 

s M(d) 

(TB)(TE + i + a) = F,(l) + q(l + TE + a) G(1 + a, m”, B(s(m”, 1 + a)))dm”. (32) 
ml 

We let 

G&l, m”, B(s(m”, 1))) = 
G(1 + a, m”, B(s(m”, 1 + a))), 
0 

9 

and 3 with K,(l, m”) = K(m’, 1 + a). Hence we see that F, and G, satisfy the conditions of Lemmas 2 
With the aid of these lemmas we choose 6 > 0 small enough so that 

for m1 < m” < f(1 + a), 

otherwise. 

1 

s 

M(a.1) 

s, In, 
K,(l,m”)dm” < i and $ 

s 

M(a.0 
k,K,(l, m”)dm” < 1, 

O ml 

for 1 in [0, S]. Then on the Banach space X, = C([O, S]; S,), the mapping 

s M(d) 

(x4)(1) = ( T4)(sE + I+ a) = F,(l) + G(1, m”, &s, m”, 1)))dm” 
ml 

is a contractive map and hence it has a unique fixed point 40. Therefore, V 1 in [0, S], (T,r#~,)(l) = $o(l) 
and in particular #o(O) = (7”4,)(0) = B(rE + a). Hence, $. is the unique continuation of B(1 + rE) 

to [O,a + S]. 

Corollary 1 

Assume F and G in BIE satisfy the conditions of Lemmas 2 and 3. Then there exists a unique 
continuous solution of BIE that can be extended to the right to obtain a unique maximally defined 
solution of BIE. 

Proof. Let B(1 + TJ denote the local solution to BIE, 1 in [0,/I] and B(1 + 5J in C[O,j3]. We now 
use Theorem 2 to extend B(1 + rE) to the right. Two possibilities arise: either B(1 + TV) can be 
defined for V 12 0; or else, B(1 + TV) can only be defined on a bounded interval. By Theorem 2, if 
B(1 + TV) can be defined only on a bounded interval then this interval must be of the form [O,a) 
and B(1 + TV) + + cc as I+ a-. Uniqueness also follows from Theorem 2. 

Theorem 3 

B(1 + rE) can be uniquely continued for V 1 2 0. 
Proof. Let us assume that the unique solution to BIE has been uniquely extended to a maximally 

defined solution B(1 + TV) with 1 in [0, a). If a = + c/3, then there is nothing to prove, therefore we 
assume that a is in (0, co). We will now show that lim B(I + ra) is finite so that Theorem 2 will 

I-a- 
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then contradict the maximality of our solution. For our solution B(I + us) to BIE, we have that 

J(l) 

B(I + rE) = q(l + iE) I K(I, m', B(s(m’, l)))dm’ + F(I) 
ml 

with 0 < s(m', l) -e 1 whenever ml < m’ G/(l). We choose S > 0 such that 0 < 6 < re and 0 < 6 < a 
and let 1 in [O,a - S]. Since B is in C[O,a - S] this implies that there exists a C > 0 such that 
IB(s(m', I))[ < C for I in [0, a - 61 and m' such that ml < m' <f(l) and hence IIBllro,a_al < C. Hence, 

which in turn implies that there exists C’ > 0 such that 

B(/ + TE) < c’ for 1 in 

B(I) < C’ for 1 in 

and since [~,,a) is contained in [~~,a + 6 + ~~1, 

[0, a - S] or equivalently 

[r,, a - 6 + TEI, 

we have the desired contradiction. 
We summarize all the results of this section in the following theorem: 

Theorem 4 

Assume that F and G satisfy the conditions specified in Lemmas 2 and 3, then BIE has a unique 
continuous solution on the interval [TV, co). 

EQUILIBRIUM SIZE DISTRIBUTION-STABILITY 

We will study the problem of stability of solutions for equations (16a-d) in the particular case 
where g is time independent, Cg(m, t) = g(m)]. In this case the change of variable provided by 

J(m) = 
I 

m ds 
- with B(J, f) = C&m(J), Wg(m(Jh y(J, t) 5 Cf’ddmAl4m(Jh t) dm(JN, ho(J) = po(m(J)) 

ffl* g(s) 
and h(J, t) = g(m(J)) p(m(J), t) reduces equations (16a-d) to the following model: 

1 

; h(J, t) + & h(J, t) + p(J, t)h(J, t) = 0, J > 0, (33a) 

s zi 

B,,(t) = y(J, t)h(J, t - r,)dJ, r > 58, (33b) 
0 

h(J,O) = h,(J), (33d 

h(J, t) = 0 t < 0. (33d) 

This model, when 7E = 0, provides us with the familiar set ofequations associated with MacKendrick 
[20] which has the familiar solution 

h(J, t) = , 
for J 2 t 

for t > J. 

(34) 
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If this solution is substituted in equation (33b) with 

p(s, I - J + s)ds y(J, 1 + rE) 1 
and 

s m 

F,(l) = y(J, l)ho(J - I)exp /?(I - c + s, s)ds dJ, 
l+IE 1 

it then reduces the study of equations (33a-d) to the study of 

&(l + TV) = 
s 
1 Bh(l - J)K(J, I)dJ + Fl(f). 
0 

Moreover, if /l and y are assumed independent of t then equation (37) becomes 

B,,(l + TV) = 
s 
‘&(I - J)B,(J)dJ + F,(I). 
0 

If we let b(s), k(s) and f(s), denote the Laplace transforms of B,, K, 
follows that 

b(s) = f(s) 
exp(rd - 4s) 

(35) 

(36) 

(37) 

(38) 

and F,, respectively, it then 

(39) 

exists and defines an analytic function of s V s with a,(s) > s*, where s* is the unique real solution 
of the corresponding Lotka characteristic equation 

exp( - s,s)k(s) = 1. (40) 

Moreover, all other roots (complex conjugate pairs) satisfy Be(s) < s*, and it can be shown that 
B,,(t) = 0 (exp(s*t)) for s values satisfying as(s) > s* and B,,(l) = B,exp(s*t) + O(exp(s*c)) as t + co, 
where B, is the residue of b(s) at s = s*. Also, 

exp(-s*t)h(J,t) + B,exp[ -s*J - [P(u)du] (41) 

uniformly as r + co where the r.h.s. of expression (41) provides the so-called persistent or stable 
distribution. Finally, we observe that s* > 0, whenever k(0) > 1, and s* < 0, whenever k(0) < 1. All 
of the above analysis is well-known; a nice exposition can be found, for example, in [21]. 

If we let 

Wm) = khY&41PEew (42) 

denote the probability that an individual will grow to size m, and if we proceed to determine 
solutions of equation (16a) of the form M(m)T(c). We easily find that a necessary and sufficient 
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condition for the existence of such solutions is given by the Lotka characteristic equation 

g(mJ = Srn lT(m’)i(m’)exp - [ s{re + [ rl/gcw)]dwl]dm’. (43) 
ml 

where s denotes the separation constant. A simple calculus argument such as the one found in 
Pollard [22] shows that equation (43) has a unique real solution sc, such that 

and 

I 
m 

4~V’Wdm > s(q) iff se > 0 (44a) 
ml 

s 

Lo 

J.(m)L’%)dm < g(mr ) iff se < 0. (44b) 
ml 

In addition, complex roots z appear in conjugate pairs with B,(z) < sO. 
Therefore inequality (44b) provides necessary and sufficient conditions (in terms of the original 

variables) for the existence of persistent or stable size distributions. We finally observe that the 
delay just modifies the corresponding Lotka characteristic equation (43). A similar effect is produced 
in the classical MacKendrick-Von Foerster model by a constant rate of harvesting of all individuals 
older than a fixed age [23]. 
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