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L` Metric Criteria for Convergence in Bayesian
Recursive Inference SystemsU

Bruce M. Bennett and Rachel B. Cohen

Department of Mathematics and Institute for Mathematical Beha¨ioral Sciences,
Unï ersity of California, Ir¨ine, California 92697-3875

Motivated by applications to probabilistic inference, we consider a sequence of
probability measures, called ‘‘conclusion measures,’’ on a fixed space X. The
sequence is generated recursively via conditional probability, driven by a sequence

Žof input measures rather than by a sequence of punctual data, as in Bayesian
.statistical inference . The general problem is to give conditions on the input

measures such that the sequence of conclusion measures converges weakly. We
develop L`-metric criteria defined recursively on the input measures, which are

Ž .sufficient but not necessary for the sequence of conclusion measures to converge
at a given rate. We discuss the applications of this to the ‘‘directed convergence

w xstrategy’’ introduced in 1 . Finally, we show that if the input measures satisfy the
criteria, then the input sequence also converges at a comparable rate. Q 1999

Academic Press

INTRODUCTION

Probabilistic inference arises naturally in models of perception, rational
deliberation, and other cognitive capacities. In this paper we are interested
in the convergence of certain kinds of sequences of probabilistic infer-
ences; a convergent sequence corresponds to a stable state of the inferenc-
ing system, e.g., a ‘‘stable percept’’ or ‘‘stable concept.’’

An inference is a function C: G ª F where F and G are sets of
propositions; the elements of G are called the premises and the elements
of F are called the conclusions. For example, in applications to perception,
a conclusion proposition asserts that some state of affairs holds in an
environment, and a premise proposition asserts that some state of affairs
holds on a sensorium, or input receptor array. Given C, we also use the
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term ‘‘inference’’ to refer to the effect of C on a particular element l of
Ž .G, i.e., l ¬ C l . A probabilistic inference is an inference for which there

Ž . Ž .are measurable spaces Y and X, so that G s PP Y and F s PP X , where
Ž . Ž .PP Y and PP X denote the sets of probability measures on Y and X

Žrespectively. We view a probability measure m as the conjunction of
Ž .propositions of the form ‘‘the probability of A is m A ,’’ as A ranges over

.the measurable sets. X is called the conclusion configuration space, and Y
is called the input configuration space. Intuitively, X and Y are what the
conclusions and premises ‘‘would be’’ if there were no noise and perfect
resolution.

In Section 1 we introduce recursï ely updated Bayesian probabilistic
inference, which is a dynamical system on a space of ‘‘conclusion’’ probabil-
ity measures driven by ‘‘input’’ probability measures. This is a truly
recursive system where the prior and the Bayes posterior are recalculated
at every step. It should be distinguished from the usual Bayesian statistical
inference where a fixed prior is successively conditioned on a sequence of
punctual inputs. It is in this Bayesian recursive context that we will study
convergence of inference sequences of probability measures: the main
point of this article is to develop conditions on the sequence of input

Ž .measures in PP Y such that the corresponding sequence of conclusion
Ž .measures in PP X converges weakly.

Ž .Thus the natural spaces for our consideration are F s PP X and
Ž .G s PP Y with their weak topologies. But in the present paper we take an

indirect approach: we look at these spaces through an ‘‘L`-window.’’ This
means that we choose some measure n , say on X, and associate to each
n-essentially bounded measurable function f the measure fdn ; this associ-

`Ž . Ž .ation is a continuous 1]1 map from L X, n to PP X . In this way, we can
` Ž . Žtransport the L metric to appropriate subsets of PP X to obtain a

.stronger topology than the weak topology . When we do this, we get
effective recursively determined L` metric criteria on the sequence of
input measures, for the sequence of conclusion measures to be L`-conver-

Ž .gent and hence to be weakly convergent Theorems 13, 14 .
Of course, the topology of weak convergence itself is metrizable in

w xvarious ways, notably by means of the Prohorov metric 3 ; in principle one
can develop convergence criteria in terms of such metrics. In practice,
however, it is dramatically less computationally expensive to use these L`

criteria for weak convergence than to use, for example, the Prohorov
metric criteria. However, since the L` topology on these measures is
stronger than the weak topology, we cannot detect all weakly convergent
sequences of measures by looking through the L` window. In other words,
if we use the L` criteria we may miss some convergent inference se-
quences. Which ones will we miss? They are typified by the well-known
example of a sequence of normal distributions with variances decreasing to
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0, which converges weakly to Dirac measure at a point. Intuitively, say in
the case of visual perception, for such sequences some feature of an input
image is becoming perfectly resolved. But in practice, in any actual
environment there is always a bound on the possible degree of resolution
of inputs, so that sequences of this type would not be expected to occur.
Thus, in applications to real-world perceptual inferences, for example, the
theoretical limitations of the use of L` may be of minimal significance.

One of the main applications of our convergence criteria is to the
Žw x.formulation of directed con¨ergence strategies 1 . A directed convergence

strategy provides metric criteria to recursively select or reject inputs at a
given stage of an inference sequence. To ‘‘select’’ an input means to use it
to update the procedure to the next stage, and to ‘‘reject’’ an input means
to ignore it for updating purposes, i.e., to wait for another input. In this
manner a convergent inference sequence is generated, provided that
inputs which satisfy the directed convergence criteria at each stage are
forthcoming. Intuitively, we can think of directed convergence as a kind of
‘‘tracking procedure’’ whose goal is to ‘‘lock on’’ to some object in the
environment; the ‘‘forthcomingness’’ of the criteria-satisfying inputs means
that the rate of convergence of the sequence is consistent with locking on
to an accessible object. But if the appropriate inputs are not sufficiently
forthcoming to maintain a feasible rate of convergence, then the directed
convergence strategy naturally leads to the casting of a wider net for
accessible objects. Theorems 13 and 14 in Section 2 expresses the key
technical point for directed convergence strategy via the L` criteria.

1. RECURSIVELY UPDATED BAYESIAN
PROBABILISTIC INFERENCE

Having defined inference and probabilistic inference in the Introduction
we now define Bayesian probabilistic inference. For this purpose, we will
assume that we are given measurable spaces X and Y, which are to be the
conclusion and premise configuration spaces. We will also assume that we

w xare given a Markovian kernel N: X = YY ª 0, 1 , where YY denotes the
Žs-algebra of measurable sets of Y. Recall that to say N is ‘‘Markovian’’

Ž . .means that for x in X, N x, ? is a probability measure on Y. Intuitively,
Ž .for x in X and B in YY , N x, B is the probability that a premise y in B

Ž .would be acquired assuming perfect resolution at the receptor array
given that an environmental state of affairs represented by x is transduced
at the receptor array. N is called a noise kernel; in statistics N is
sometimes called a ‘‘likelihood function.’’ N acts in a natural way as a
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function

N : PP X ª PP Y ,Ž . Ž .

via m ¬ mN, where mN is defined by

mN x , B s m dx N x , BŽ . Ž . Ž .H
X

Ž .for m in PP X and B in YY. Finally, we will assume that we are given a
Ž .probability measure m in PP X , called the prior. Intuitively, the prior m

represents the current preconception of the state of affairs in the world;
the purpose of an inference now is to update that preconception, given a

Ž .premise measure l in PP Y .
Ž .With the data N, m , the apparatus of conditional probability canoni-

w xcally gives rise to a kernel P : Y = XX ª 0, 1 , called the Bayes adjointŽ m , N .
or Bayes posterior of N with respect to the prior measure m. Let us assume
that m is a correct description of the probabilities of states of affairs in the
world and that N correctly describes the likelihood of sets in Y given

Ž .points of X. For y in Y and A ; X, P y, A is the conditionalŽ m , N .
probability that the state of affairs in the world is ideally represented by a
point in A, given that the punctual premise y is input. The probability

Ž .measures P y, ? are called the Bayesian posterior probabilities on X.Ž m , N .
Now, via the usual operation of kernels on measures, P defines theŽ m , N .

Ž . Ž . Ž .map PP Y ª PP X given by l ¬ lP , where lP A sŽ m , N . Ž m , N . def
Ž . Ž .H l dy P y, A for A in XX . In this sense we can view P as anY Ž m , N . Ž m , N .

inference map; i.e., we have

C : PP Y ª PP XŽ . Ž .
l ¬ lP .Ž m , N .

DEFINITION 1. A Bayesian probabilistic inference is the probabilistic
inference

C : l ¬ lPŽ m , N .

for given X, Y, N, m as above.
In other words, ‘‘Bayesian probabilistic inference’’ means that the infer-

ence is made exclusively on the basis of conditional probability in the form
of the Bayesian posterior kernel. It will be useful to conceptualize this
conditional probability mathematically as follows: Given spaces X and Y, a

w xmeasure m on X together with a kernel N: X = YY ª 0, 1 gives rise
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to a measure on X = Y, denoted m m N, defined by

m m N A = B s m dx N x , BŽ . Ž . Ž .Hdef
A

Ž . Ž .for the sets A ; X and B ; Y . Then P y, A expresses the condi-Ž m , N .
tional probability of the set A ; X given the point y in Y with respect to
this measure m m N on X = Y. To make this completely precise, since the
underlying measure m m N of the conditional probability is on X = Y, we
should express everything in terms of sets on X = Y and say that

Ž .P y, A is the conditional probability of the set A = Y ; X = Y givenŽ m , N .
� 4 Ž .the set X = y in X = Y. P y, A may be expressed as the appropri-Ž m , N .

ate conditional expectation, or equivalently as a Radon]Nikodym deriva-
tive;

� 4P y , A s Prob A N y s m m N A = Y N X = yŽ . Ž . Ž . Ž .Ž m , N .

or

d m 1 NŽ .Ž .A
P y , A s y mN-a.e.Ž . Ž .Ž m , N . d mNŽ .

PROPOSITION 2. mNP s m.Ž m , N .

Proof. If s is any measure on Y and K is any kernel from Y to X, it
follows form the definitions of s P and s m P that for a measurable set A
in X,

s P A s s m P Y = A .Ž . Ž . Ž .

Ž . Ž .In particular mN P is the marginal measure of mN m P onŽ m , N . Ž m , N .
X. But since N and P are Bayes adjoints, the measures m m N andŽ m , N .

Ž .mN m P on X = Y are the same. Therefore mN P is theŽ m , N . Ž m , N .
marginal on X of m m N, which is m.

Note. For s / m, the equation s NP s s will not hold in general.Ž m , N .
The type of Bayesian inference described in Definition 1 can be updated

recursively in a natural way. Given X, Y, N, and m , we get the Bayes0
Ž .posterior P which gives the inference map l ¬ lP from PP YŽ m , N . Ž m , N .0 0

Ž .to PP X . To simplify notation, let us denote this map by P . We use the0
following time index convention: we will view m and the associated0
inference map P as arising at time t s 0, but the argument l to which P0 0
is applied as arising at t s 1. For this reason it is appropriate to denote the
argument of the map P by l , and to view the new measure l P on X as0 1 1 0
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a new prior m which arises at t s 1 together with its associated inference1
map P s P . We remind the reader that N is time invariant.1 Ž m , N .1

� 4In this way, given a sequence of premise measures l , there isn
� 4generated a sequence of priors m and the associated sequence ofn

� 4Bayesian posteriors, i.e., of inference maps P , where P s P . It isn n Ž m , N .n

appropriate to think of the inference map P as the ‘‘learning strategy’’n
prepared at time n to be applied to a new premise l which will benq1
acquired at time n q 1. Thus at each time n there arises a pair consisting
of a new prior m and its associated learning strategy P . The acquisitionn n

Ž . Ž .of the premise l triggers the transition m , P ¬ m , P . Thisnq1 n n nq1 nq1
procedure is truly recursive, and we will call it Bayesian recursï e updating
or Bayesian structural updating.

As we mentioned in the Introduction, this Bayesian recursive inference
is not the same as the classical ‘‘Bayesian statistical inference’’ as that
term is used in the statistics literature. However, it is not hard to show that
the recursive inference is a generalization of the classical; we will not
pursue this here.

2. THE L` WINDOW

Notation 3. Let U be a metric space. Let A ; U, and let e ) 0. We
denote

Ae s u g U: distance u , A - e .� 4Ž .

With this we have:

DEFINITION 4. Let U be a metric space with its associated Borel
measurable structure. Let m , m be measures on U. Then the Prokhorö1 2

Ž .distance between m and m , denoted by r m , m , is defined as1 2 Prok 1 2

r m , m s max e , e ,Ž . Ž .Prok 1 2 12 21

where

e s inf e : m A - m Ae q e for all A g UU� 4Ž . Ž .12 1 2

e s inf e : m A - m Ae q e for all A g UU� 4Ž . Ž .21 2 1

We will call convergence with respect to the Prokhorov metric Prokhorö
con¨ergence or r -con¨ergence.Prok

Ž w x w x.THEOREM 5 Prokhorov 3 ; see also 2 .

Ž .i If U is a metric space then the Prokhorö metric topology is the
Ž .weak topology on PP U .
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Ž . Ž .ii If U is a complete separable metric space, then PP U , with the
Ž .Prokhorö metric topology i.e., the weak topology , is also a complete

separable metric space.

Let U be a complete separable metric space with a metric d; U is a
measurable space with Borel algebra UU associated to the metric topology.

Ž .Let PP U denote the set of probability measures on U. For a given
measure n on U, let

` � 4L U, n s all measurable, n-essentially bounded functions on U ,Ž .

where recall that a function f on U is n-essentially bounded if there exists
Ž� Ž . 4.a real number b such that n u g U: f y ) b s 0. In that case, the

5 5essential sup norm f is the infimum of the set of such b’s. We denoten
`Ž .by r the metric on L U, n associated to this norm. Letn

ds
`BB U s s g PP U : s < n and g L U, n ,Ž . Ž . Ž .n ½ 5dn

Ž .where < denotes absolute continuity. BB U is a topological space forn

Ž .the weak topology induced from PP U .
Define the function

F : L` U, n ª BB UŽ . Ž .n

by

F g s gn .Ž .

With this we have the following theorem:

THEOREM 6.

Ž . Ž .i F is a continuous bijectï e function onto its image BB U .n

Ž . Ž . Ž Ž . Ž ..ii F is non-expansï e: r f , g - e implies r F f , F g - e .n Prok

Ž .Proof. i That F is a one-to-one correspondence follows immediately
from the definitions. To show F is continuous, we will show that for any

� 4 Ž .sequence s and any element s in BB U ,n n

rds dsn wn ª « s ª s ,ndn dn

rn w
whre ª and ª denote conergence in the r -metric and weak topologies,n

rn Ž .respectively. Suppose ds rdn ª dsrdn . Then in particular ds rdn u ªn n
Ž .dsrdn u as n ª ` for n-a.e. u g U. Let f be an arbitrary bounded



BENNETT AND COHEN262

continuous function on U. Then as n ª `,

dsn
s du f u s n du u f u ªŽ . Ž . Ž . Ž . Ž .H Hn dnU U

ds
n dn u f u s s du f u .Ž . Ž . Ž . Ž . Ž .H HdnU U

w
Therefore, s ª s .n

Ž . `Ž . Ž .ii Suppose f , g are in L U, n , with r f , g - e . Let s s fn andn

t s gn , so that we may write

ds dt
r , - e ,n ž /dn dn

in other words

ds dt
u y u - e for n-a.e. u g U.Ž . Ž .

dn dn

Choose B g UU. We have

s B s s duŽ . Ž .H
B

ds
s n du uŽ . Ž .H dnB

dt
- n du u q eŽ . Ž .H dnB

dt
s n du u q n du eŽ . Ž . Ž .H HdnB B

F t B q e .Ž .
A fortiori,

s B - t B e q e .Ž . Ž .

Reversing the roles of s and t , we obtain similarly

t B - s B e q e .Ž . Ž .n

These last two inequalities imply that

r s , t - e ,Ž .Prok

and the proof is concluded.



L` METRIC CRITERIA 263

Ž . Ž .THEOREM 7. Let U, UU and V, VV be two measurable spaces. Let K be
any Markö ian kernel from U to V, and let m and n be probability measures
on U; then

m < n « mK < n K .

Ž .Proof. Let B be an arbitrary subset of V, such that n K B s 0; we
Ž .show that mK B s 0. We have

n K B s n du K u , B s 0,Ž . Ž . Ž .H
U

Ž . Ž .and therefore, since K u, B G 0, K u, B s 0 for n-a.e. u g U.
� Ž . 4 Ž .So, letting A s u g U: K u, B ) 0 , we have that n A s 0, and

Ž . Ž . c �hence m A s 0 by hypothesis. Therefore, since K u, B F 1 and A s u
Ž . 4g U: K u, B s 0 ,

mK B s m du K u , B q m du K u , BŽ . Ž . Ž . Ž . Ž .H H
cA A

mK B F m A q 0Ž . Ž .
s 0.

We now apply Theorem 7 to Bayesian recursive updating using the
notation and terminology introduced at the end of Section 1.

COROLLARY 8. Let m be a fixed prior probability measure on X, let N be0
� 4a time in¨ariant noise kernel from X to Y, let l be a sequence of premisen

� 4measures on Y, and let m be the sequence of percepts generated thereby.n
Then for each n s 1, 2, . . . ,

l < m N « m < m .n ny1 n ny1

Proof. By definition l P s m , and by Proposition 2 m NP sn ny1 n ny1 ny1
m . Therefore, applying Theorem 7 with n s l , m s m N, and K sny1 n ny1

Ž .P which is a Markovian kernel for each n G 0 , we obtain the desiredny1
result.

COROLLARY 9. For each n G 0,

m < m « m N < m N.n ny1 n ny1

Proof. Since N is a Markovian kernel, the result follows immediately
from Theorem 7.



BENNETT AND COHEN264

Notation. Let l and s be probability measures on a measurable space
U. For convenience, put

dl ds dl ds
r l, s s r , s y .Ž .n n ž /dn dn dn dn n

Ž .Thus, the notation ‘‘r l, s ’’ means that we transport the metric r ton n

Ž .BB U via F as in Theorem 6.n

Let m and n be probability measures on a measurable space X. If
m < n , let us adopt the convention that dmrdn s 0 outside the support

Ž .‘‘supp n ’’ of n ; in other words, we assume chosen a version of the
Radon]Nikodym derivative with this property. Denote

1 s 1 .n suppŽn .

Then, by our convention, we have

dm dm
s 1 .ndn dn

Ž . Ž .THEOREM 10. Let U, UU and V, VV be two measurable spaces. Let K
be any Markö ian kernel from U to V, and let m and n be probability
measures on U such that m < n . Then for any e ) 0,

r m , n - e « r mK , n K - e .Ž . Ž .n n K

Ž .Proof. Let e ) 0 be fixed, and r m, n - e ; then this implies thatn

dm
y 1 - e for n-a.e. u g U. 1Ž .ndn n

Ž .Let B be an arbitrary subset of V such that n K B / 0. Then

mK B s m du K u , BŽ . Ž . Ž .H
U

dm
s n du u K u , B .Ž . Ž . Ž .H dnU

Ž .Therefore, in view of 1 ,

mK B - n du K u , B 1 q e s n K B 1 q eŽ . Ž . Ž . Ž . Ž . Ž .H
U

and

mK B ) n du K u , B 1 y e s n K B 1 y e ,Ž . Ž . Ž . Ž . Ž . Ž .H
U
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i.e.,

n K B 1 y e - mK B - n K B 1 q e .Ž . Ž . Ž . Ž . Ž .

Ž .Therefore, for any subset B of U, such that n K B / 0, we have

mK BŽ .
1 y e - - 1 q e . 2Ž . Ž . Ž .

n K BŽ .

Since n < m, by Theorem 7 we know that n K < mK ; hence dmrdn
Ž .makes sense and 2 implies

dmK y 1 - e ,n Kdn K n K

in other words

r mK , n K - e .Ž .n K

We now apply Theorem 10 to Bayesian recursive updating; as always the
notation is as introduced at the end of Section 1.

COROLLARY 11. For any n G 0 and any e ) 0, if l < m N, thennq1 n

r l , m N - e « r m , m - e .Ž . Ž .m N nq1 n m nq1 nn n

Proof. Since for any n P is a Markovian kernel from Y to X, andn
since l < m N, we get l P < m NP by Theorem 7. However,nq1 n nq1 n n n
l P s m and m NP s m , so the result follows immediately fromnq1 n nq1 n n n
Theorem 10.

COROLLARY 12. For any n G 0 and any e ) 0, if m < m , thennq1 n

r m , m - e « r m N , m N - e .Ž . Ž .m nq1 n m N nq1 nn n

Proof. Since N is a Markovian kernel from X to Y, and from Corollary
9, since m < m implies that m N < m N, the result follows imme-nq1 n nq1 n
diately from Theorem 10.

THEOREM 13. Let m be gï en. Suppose that l < m N for k s0 k ky1
Ž .1, 2, . . . , n and suppose that r l , m N F e for e ) 0, k sm N k ky1 ky1 ky1ky 1

1, 2, . . . , n. Then, gï en k ) 0, if l < m N and ifnq1 n

k
r l , m N - ,Ž .m N nq1 nn 1 q e 1 q e ??? 1 q eŽ . Ž . Ž .0 2 ny1
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then

r m , m - k .Ž .m nq1 n0

Proof. Note first that since l < m N for k s 1, 2, . . . , n, by succes-k ky1
sively applying Corollary 8 and Corollary 9 for m s 0, 1, . . . , n, we have
that m < m and m N < m N. We will use these facts freely belown m n m

dm dm dm dm dmnq1 n nq1 n ny s y 1mndm dm dm dm dm0 0 n 0 0m m0 0

dm dmnq1 nF y 1mndm dmn 0m m0 0

dm dm dm dmnq1 n ny1 1F y1 ??? .mndm dm dm dmn ny1 ny2 0m m m m0 0 0 0

So we have that

dm dmnq1 n
r m , m s yŽ .m nq1 n0 dm dm0 0 m 0

dm dm dm dmnq1 n ny1 1F y 1 ??? .mndm dm dm dmn ny1 ny2 0m m m m0 0 0 0

1Ž .

Now for d ) 0, if

dlnq1
r l , m N s y 1 - d ,Ž .m N nq1 n m Nn ndm Nn m Nn

then, by Corollary 11, we have that

dmnq1
r m , m s y 1 - d .Ž .m nq1 n mn ndmn m n

< < Ž .But since dm rdm y 1 s 0 outside supp m , we may writenq1 n m nn

dm dmnq1 nq1y 1 s y 1 .m mn ndm dmn nm mn 0

Hence

dmnq1
r l , m N - d « y 1 - d .Ž .m N nq1 n mn ndmn m 0
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Ž . Ž .With this, and in view of 1 , if r l , m N - d , thenm N nq1 nn

dm dm dmn ny1 1
r m , m - d ??? . 2Ž . Ž .m nq1 n0 dm dm dmny1 ny2 0m m m0 0 0

But by assumption, for k s 1, 2, . . . , n,

r l , m N F e ,Ž .m N k ky1 ky1ky 1

5 5so by Corollary 8, dm rdm y 1 F e . Hence, since we canmk ky1 m ky1ky 1ky1

write

dm dmk ky 1 s y 1 ,m mky 1 ky1dm dmky1 ky1m mky 1 0

we have

dmk y 1 F e ,m ky1ky 1dmky1 m 0

whence

dmk F 1 q eky1dmky1 m 0

Ž . Ž .for k s 1, 2, . . . , n. So in view of 2 , if r l , m N - d , thenm N nq1 nn

r m , m - d 1 q e ??? 1 q e 1 q e .Ž . Ž . Ž . Ž .m nq1 n ny1 1 00

Therefore, if

k
r l , m N - ,Ž .m N nq1 nn 1 q e ??? 1 q e 1 q eŽ . Ž . Ž .ny1 1 0

then

r m , m - k .Ž .m nq1 n0

� 4THEOREM 14. With the notation of Theorem 13, suppose that l is an nG1
sequence of probability measures on Y which recursï ely generate the sequence
� 4m on X ¨ia m s l P . Suppose we are gï en a decreasingn nG1 nq1 nq1 Ž m , N .n

sequence k ) k ) . . . of positï e numbers such that Ý` k con¨erges.1 2 is1 i
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Ž .Let e s r l , m N and suppose for each nk m N kq1 kk

kn
e F ; 1Ž .n 1 q e 1 q e ??? 1 q eŽ . Ž . Ž .0 1 ny1

� 4 Ž . Ž .then the sequence m con¨erges weakly in PP X , with r m , m - e .n Prok nq1 n

Ž .Proof. By Theorem 13, 1 above implies that for all n,

dm dmnq1 n
r m , m s y - k .Ž .m nq1 n n0 dm dm0 0 m 0

` � 4Then since Ý k converges, this means that dm rdm is a Cauchyis1 i n 0 n
`Ž . `sequence in L X, m so it converges since L is complete. Then by0

Ž . � 4 Ž . Ž .Theorem 6 i , m converges weakly in BB X ; PP X . By Theoremn m 0
Ž . Ž . Ž .6 ii , since r m , m - k , we also have r m , m - k .m nq1 n n Prok nq1 n n0

Ž .Note. The condition 1 on the l’s may be verified recursively.
Theorem 14 describes concretely how a system can formulate a directed

con¨ergence strategy. The goal of the system is to acquire a ‘‘stable percept,’’
i.e., a weakly convergent sequence of conclusion measures m . Supposen
that the system has the capability to accept or reject input measures l. To

Ž .accept a l at the n q 1 st stage of the process means to take l s l ,nq1
and use it to acquire m in the form m s l P . To reject lnq1 nq1 nq1 Ž m , N .n

means to not use l for purposes of updating the conclusion. Suppose
moreover that the system has the capability to measure, for each n, the

`Ž .L Y, m N -metric distance of input measures l to m N, i.e., to measuren n
Ž . `r l, m N . Suppose a sequence of numbers k such that Ý km N n n is1 in

converges is given. Suppose l , . . . , l have already been chosen so that, if1 n
Ž .e denotes r l , m N , thenk m N kq1 kk

kk
e F ,k 1 q e 1 q e ??? 1 q eŽ . Ž . Ž .0 1 ky1

for k s 1, . . . , n y 1. Then the system can wait for an input measure l
such that

kn
r l, m N F .Ž .m N nn 1 q e 1 q e ??? 1 q eŽ . Ž . Ž .0 1 ny1

When such a l is acquired, it will be accepted as l . According tonq1
Theorem 14, the sequence of conclusions m corresponding to the se-n

Ž .quence of inputs l selected in this manner will converge weakly in PP X .n

Remark. The choice of the sequence of k ’s corresponds to the system’sn
degree of confidence at each stage about how close the current conclusion
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m is to a ‘‘correct’’ conclusion m; by definition, a correct conclusion is an
Ž .weak limit in PP X of a recursively generated sequence of m ’s. Then

greater the confidence, the smaller k is, i.e., the more restrictive is then
condition on an incoming input measure l for it to be accepted as l . Ifnq1

Žsuch a l is forthcoming, we say that the system’s belief about the
.closeness of the current conclusion m to a correct conclusion m isn

confirmed. For this purpose the environment must cooperate with the
system to provide enough belief-confirming inputs l so that one of them
will be acquired at the nth stage after not too long a wait. The idea is that

Žthe successive acquisition of belief-confirming inputs at each stage n so
.that a convergent sequence m is actually generated occurs with probabil-n

ity 0, unless there is an object in the environment which transduces the
successive inputs. Note that if a belief-confirming premise is not acquired
in a reasonable length of time at the nth stage, then the system’s confi-
dence in m may justifiably decrease; in this case it will be reasonable forn
the system to modify k , replacing it with a larger number, to enhance then
possibility of acquiring an acceptable l to be used for l . This intro-nq1
duces flexibility into the system, so that the ‘‘direction’’ of the quest for

Ž .stable percepts i.e., for convergent sequences of conclusions is responsive
to the actual environmental conditions. For more details on directed

w xconvergence, the reader is referred to 1 .
Consider a directed convergence procedure for a Cauchy sequence kn

as in Theorem 14, i.e., consider a sequence of input measures l for whichn
the hypotheses of Theorem 14 are satisfied. Then, by that theorem, the
corresponding sequence of recursively generated conclusions m convergesn

Ž .weakly in PP X . This paper concludes with several results which enable us
� 4to state that in directed con¨ergence, when the sequence m con¨erges, then

( ( )))sequence of inputs l must also con¨erge weakly in PP Y , and at a raten
( )comparable to that of m in PP X . Recall that directed convergencen

� 4proceeds by comparing l to m N, and not to l . Hence that the l isnq1 n n n
� 4a Cauchy sequence is not transparent from the fact that m is a Cauchyn

sequence}naive triangle inequality arguments adduced for this purpose
seem to blow up as n ª `.

THEOREM 15. For e¨ery n and for e¨ery e ) 0, if m < m , thenn 0

r m , m - e « r m N , m N - e .Ž . Ž .m n ny1 m N n ny10 0

Proof. Let e ) 0 be fixed. Let B be an arbitrary subset of Y such that
Ž .m N B ) 0. Then0

dmn
m N B s m dx N x , B s m dx x N x , B .Ž . Ž . Ž . Ž . Ž . Ž .H Hn n 0 dmX X 0
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Ž .Now, since r m , m - e , this means thatm n ny10

dm dmn ny1y - e ,
dm dm0 0 m 0

so that we have for m -a.e. x g X0

dm dmn ny1
x - x q eŽ . Ž .

dm dm0 0

and

dm dmn ny1
x ) x y eŽ . Ž .

dm dm0 0

Therefore, we have that

dmny1
m N B - m dx x q e N x , BŽ . Ž . Ž . Ž .Hn 0 ž /dmX 0

s m N B q em N B ,Ž . Ž .ny1 0

and similarly

dmny1
m N B ) m dx x y e N x , BŽ . Ž . Ž . Ž .Hn 0 ž /dmX 0

s m N B y em N B ,Ž . Ž .ny1 0

so that

m N B y em N B - m N B - m N B q em N B .Ž . Ž . Ž . Ž . Ž .ny1 0 n ny1 0

Ž .Therefore, for any subset B of Y such that m N B / 0,0

m N B m N B m N BŽ . Ž . Ž .ny1 n ny1y e - - q e . 1Ž .
m N B m N B m N BŽ . Ž . Ž .0 0 0

However, if we iteratively apply Corollary 9 we have that m < m «k 0
Ž .m N < m N. Hence dm Nrdm N makes sense and 1 shows thatk 0 k 0

dm N dm Nn ny1y - e ,
dm N dm N0 0 m N0

so that

r m N , m N - e .Ž .m N n ny10
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THEOREM 16. Suppose we ha¨e a sequence m , m , . . . , m , . . . which is0 1 n
� 4obtained recursï ely from a sequence of premises l , l , . . . , l , . . . Let k0 1 n n

be a decreasing sequence of positï e numbers such that Ýk con¨erges. Letn
Ž .e s r l , m N , and assume thatn m N nq1 nn

kn
e F . 1Ž .n 1 q e 1 q e ??? 1 q eŽ . Ž . Ž .0 1 ny1

Then

r l , l - k 3 q 2 K ,Ž . Ž .m N nq1 n ny10

where
`

K s k .Ý n
ns0

Ž . Ž .Proof. In view of 1 and the fact that e s r l , m N , Theoremn m N nq1 nn

13 guarantees that

k ) r m , m ,Ž .n m nq1 n0

Ž .which then guarantees by Theorem 15 that

k ) r m N , m N . 2Ž . Ž .n m N nq1 n0

This means

dm N dm Ni iy1y - k idm N dm N0 0 m N0

for i s 1, . . . , n, so that

dm N dm Ni iy1
- k q ,idm N dm N0 0m N m N0 0

for i s 1, . . . , n. Therefore, applying this iteratively as i decreases from n
to 1, we obtain

dm Nn
- k q k q ??? qk q 1. 3Ž .n ny1 0dm N0 m N0

From the triangle inequality we have

r l , l - r l , m N q r m N , m NŽ . Ž . Ž .m N nq1 n m N nq1 n m N n ny10 0 0

q r m N , l . 4Ž . Ž .m N ny1 n0
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However,

dm Niy1
r l , m N s r l , m N , 5Ž . Ž . Ž .m N i iy1 m N i iy10 iy1 dm N0 m N0

Ž . Ž .for every i. Hence 2 ] 5 yield

dm Nn
r l , l - r l , m N q kŽ . Ž .m N nq1 n m N nq1 n ny10 n dm N0 m N0

dm Nny1q r l , m NŽ .m N n ny1ny 1 dm N0 m N0

n ny1

- e k q 1 q k q e k q 1Ý Ýn i ny1 ny1 iž / ž /
is0 is0

- e K q e q k q e K q en n ny1 ny1 ny1

- k K q k q k q k K q kn n ny1 ny1 ny1

- k K q k q k q k K q kny1 ny1 ny1 ny1 ny1

s k 3 q 2 K .Ž .ny1

� 4COROLLARY 17. With the hypotheses of Theorem 16 l is Cauchy forn
Ž . Ž .r , with r l , l - k 3 q 2 K .Prok Prok nq1 n ny1

Proof. Since the same conditions hold as in Theorem 16, this means
that

r l , l - k 3 q 2 K .Ž . Ž .m N nq1 n ny10

Ž . Ž . Ž .By Theorem 6 ii , this implies r l , l - k 3 q 2 K .Prok nq1 n ny1

Remark. In this case, the rate of convergence of the l’s is ‘‘comparable’’
to that of the m’s, in that the Cauchy distances differ by the constant factor
Ž . Ž .3 q 2 K and they are offset by one index .
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