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Abstract

This paper introduces the concept of Bessel multipliers. These operators are defined by a fixed multi-
plication pattern, which is inserted between the analysis and synthesis operators. The proposed concept
unifies the approach used for Gabor multipliers for arbitrary analysis/synthesis systems, which form Bessel
sequences, like wavelet or irregular Gabor frames. The basic properties of this class of operators are inves-
tigated. In particular the implications of summability properties of the symbol for the membership of the
corresponding operators in certain operator classes are specified. As a special case the multipliers for Riesz
bases are examined and it is shown that multipliers in this case can be easily composed and inverted. Finally
the continuous dependence of a Bessel multiplier on the parameters (i.e., the involved sequences and the
symbol in use) is verified, using a special measure of similarity of sequences.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The applications of signal processing algorithms like adaptive or time-variant filters are nu-
merous [18]. If the STFT, the Short Time Fourier Transformation [10] is used in its sampled
version, the Gabor transform, one possibility to construct a time variant filter is the usage of
Gabor multipliers. These operators are a current topic of research [6,8]. For them the Gabor
transform is used to calculate time frequency coefficients, which are multiplied with a fixed
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time-frequency mask and then the result is synthesized. These operators have been already used
for quite some time implicitly in engineering applications and recently have been used in signal-
processing applications as time-variant filters called Gabor filters [14]. Recent applications can
be found for example in the field of system identification [13].

If another way of calculating these coefficients is chosen or if another synthesis is used, many
modifications can still be implemented as multipliers. For example it seems quite natural to define
wavelet multipliers. Also as irregular Gabor frames get more and more attention [12], Gabor
multipliers on irregular sets can be investigated [1]. As the sampling set, in this irregular case,
does not form a lattice, there is no group structure to work with. Therefore it is quite natural
for this case to generalize even more and look at multipliers with frames without any further
structure.

All these special types of sequences are used in a lot of applications. They have the big advan-
tage, that it is possible to interpret the analysis coefficients. This would also make the formulation
of a concept of a multiplier for other analysis/synthesis systems very profitable, like e.g. gam-
matone filter banks [11], which are mainly used for analysis based on the auditory system. In
[15] a gammatone filter bank was used for analysis and synthesis, for the sound separation part
a neuronal network creates a mask for these coefficients. This complies with the definition of a
multiplier presented here.

Therefore for Bessel sequences the investigation of operators M = ∑
k mk〈f,ψk〉φk , where

the analysis coefficients, 〈f,ψk〉, are multiplied by a fixed symbol (mk) before resynthesis
(with φk), is very natural and useful. These are the Bessel multipliers investigated in this paper.
As stated above there are numerous applications of this kind of operators. It is the goal of this pa-
per to set the mathematical basis to unify the approach to them for all possible analysis/synthesis
sequences, that form a Bessel sequence.

2. Main results

We will introduce the concept of Bessel multipliers and will study their basic properties for
the first time in an article. An important result is dealing with the connection of the symbol, the
fixed multiplication pattern, to the operator. Most notably if the symbol is in the sequence spaces
l∞, c0, l2 or l1, respectively, then the multiplier is a bounded, compact, trace class or Hilbert–
Schmidt operator, respectively. We will also prove that for Riesz bases the Bessel multipliers
behave ‘nicely,’ most importantly that the mapping of the symbol to the operator is an injective
one. The last result states that the Bessel multiplier depends continuously on the symbol and
on the involved Bessel sequences (in a special sense). For this result the investigation of the
perturbation of Bessel sequences is important. This topic is given some thought right after the
introduction.

This article is organized as follows: Section 3 will first fix some notations and review basic
facts in some detail. In Section 4 we are going to present results on the perturbation of Bessel
sequences, frames and Riesz bases needed in Section 8. Section 5 will give the basic definition
and preliminary results for Bessel multipliers. In Section 6 we will look at the influence the
symbol has on the operator and investigate further properties. Section 7 deals with multipliers
for Riesz bases and shows that in this case they behave ‘nicely’ in many ways. In Section 8 the
influence of “small” changes of the parameters on the operator is examined. The paper is finished
with Section 9, Perspectives.

This article is based on parts of [1]. Some straightforward and easy proofs can be found there
and are not given here.
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3. Notation and preliminaries

In this section basic notation and preliminary result are collected. Let H denote a separable
Hilbert space. The inner product will be denoted by 〈.,.〉 and will be linear in the first coordinate.
Let B(H1,H2) be the set of all bounded operators from H1 to H2. With the operator norm,
‖O‖Op = sup‖x‖H1 �1{‖O(x)‖H2}, this set forms a Banach algebra. By O∗ we denote the adjoint
operator. For more details on Hilbert space respectively operator theory see [5].

Recall that an operator T ∈ B(H1,H2) is called compact, if T (B1) is compact with B1 being
the unit ball. We know that T is compact, if and only if there exists a sequence Tn ∈ B(H1,H2)

with finite rank, such that ‖Tn − T ‖Op → 0 for n → ∞. Special classes of compact operators
we are using are the trace class (respectively Hilbert–Schmidt class (HS)) operators, which are
operators, where the singular values are summable (respectively square summable) with the re-
spective norms ‖.‖trace and ‖.‖HS . For details see [16,17] or [1]. We will be using the following
special operator:

Definition 3.1. Let f ∈ H1, g ∈ H2 then define the (inner) tensor product as the operator from
H2 to H1 by (f ⊗i g)(h) = 〈h,g〉f .

For this operator we know [16] that it is a bounded linear operator from H2 to H1 with
‖f ⊗i g‖Op = ‖f ‖H1 · ‖g‖H2 . The last equality is also true for ‖.‖trace and ‖.‖HS .

3.1. Frames and bases

For more details on this topic see e.g. [4] or [3].

Definition 3.2. A sequence (ψk) is called a frame for the Hilbert space H, if constants A,B > 0
exist, such that A · ‖f ‖2

H �
∑

k |〈f,ψk〉|2 � B · ‖f ‖2
H ∀f ∈ H. A is a lower, B an upper frame

bound. If the bounds can be chosen such that A = B the frame is called tight. A sequence is
called Bessel sequence if the right inequality above is fulfilled.

The index set will be omitted in the following, if no distinction is necessary. The optimal
bounds Aopt, Bopt are the biggest A and smallest B that fulfill the corresponding inequality.

Lemma 3.3. Let (ψk) be a Bessel sequence for H. Then ‖ψk‖H �
√

B .

Definition 3.4. For a Bessel sequence (ψk) let

• C(ψk) :H → l2(K) be the analysis operator C(ψk)(f ) = (〈f,ψk〉)k ,
• D(ψk) : l2(K) →H be the synthesis operator D(ψk)((ck)) = ∑

k ck · ψk and
• S(ψk) :H → H be the (associated) frame operator S(ψk)(f ) = ∑

k〈f,ψk〉 · ψk.

If there is no chance of confusion, we will omit the index, so e.g. write C instead of C(ψk).
These operators have the following properties:
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Proposition 3.5.

(1) Let (ψk) be a Bessel sequence. Then C and D are adjoint to each other, D = C∗ and so
‖D‖op = ‖C‖op �

√
B . The series

∑
k ck · ψk converges unconditionally.

(2) Let (ψk) be a frame. C is a bounded, injective operator with closed range.
(3) Let (ψk) be a frame. S = C∗C = DD∗ is a positive invertible operator satisfying

AIH � S � BIH and B−1IH � S−1 � A−1IH.

If we have a frame in H, we can find an expansion of every member of H with this frame:

Theorem 3.6. Let (ψk) be a frame for H with bounds A,B > 0. Then (g̃k) = (S−1ψk) is a frame
with bounds B−1,A−1 > 0, the so-called canonical dual frame. Every f ∈ H has expansions
f = ∑

k∈K 〈f, ψ̃k〉ψk and f = ∑
k∈K〈f,ψk〉ψ̃k where both sums converge unconditionally in H.

Definition 3.7. For two sequences {ψk} and {φk} in H we call Gψk,φk
given by (Gψk,φk

)jm =
〈φm,ψj 〉, j,m ∈ K , the cross-Gram matrix. If (ψk) = (φk) we call this matrix the Gram ma-
trix Gψk

.

We can look at the operator induced by the Gram matrix, defined for c ∈ l2 formally as
(Gψk,φk

c)j = ∑
k ck〈φk,ψj 〉. For two Bessel sequences it is well defined and bounded with

‖Gψk,φk
‖Op � ‖C(ψk)‖Op‖D(φk)‖Op � B.

Definition 3.8. Let (ψk) be a complete sequence. If there exist constants A,B > 0 such that the
inequalities

A‖c‖2
2 �

∥∥∥∥ ∑
k∈K

ckψk

∥∥∥∥
2

H
� B‖c‖2

2

hold for all c ∈ l2 the sequence (ψk) is called a Riesz basis. A sequence (ψk) that is a Riesz basis
only for span(ψk) is called a Riesz sequence.

Every subfamily of a Riesz basis is a Riesz sequence. By the lower and upper bounds for
a Riesz sequence we will denote the Riesz bounds on the closed span of the elements. It is
evident that Riesz bases are frames and the Riesz bounds coincide with the frame bounds. See
Christensen [4].

Theorem 3.9. Let (ψk) be a frame for H. Then the following conditions are equivalent:

(1) (ψk) is a Riesz basis for H.
(2) The coefficients (ck) ∈ l2 for the series expansion with (ψk) are unique, i.e., the synthesis

operator D is injective.
(3) The analysis operator C is surjective.
(4) There exists sequence, which is biorthogonal to (ψk).
(5) (ψk) and (g̃k) are biorthogonal.
(6) (ψk) is a basis.

We also need the following estimation of the norm of the elements:
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Corollary 3.10. Let (ψk) be a Riesz basis with bounds A and B . Then
√

A � ‖ψk‖H �
√

B ∀k ∈ K.

4. Perturbation of Bessel sequences

For the perturbation results of Bessel multipliers, Section 8, we need some special results on
the perturbation of Bessel sequences. The standard question of perturbation theory is whether
the Bessel, frame or Riesz properties of a sequence are shared with ‘similar’ sequences. A well-
known result is the following [4]: Let (φk)

∞
k=1 be a frame for H with bounds A,B . Let (ψk)

∞
k=1

be a sequence in H. If there exist λ,μ � 0 such that λ + μ√
A

< 1 and∥∥∥∥∑
k

ck(φk − ψk)

∥∥∥∥
H

� λ

∥∥∥∥∑
k

ckφk

∥∥∥∥
H

+ μ‖c‖l2

for all finite scalar sequences c (we denote c ∈ c00), then (ψk) is a frame with lower bound
A(1 − (λ + μ/

√
A))2 and upper bound B(1 + λ + μ/

√
B)2. Moreover if (φk) is a Riesz basis

or Riesz sequence, (ψk) is, too. This result can be easily formulated for Bessel sequences using
only these parts of the proofs in [4, Theorem 15.1.1]. which apply for Bessel sequences:

Corollary 4.1. Let (φk)
∞
k=1 be a Bessel sequence for H. Let (ψk)

∞
k=1 be a sequence in H. If there

exist λ,μ � 0 such that∥∥∥∥∑
k

ck(φk − ψk)

∥∥∥∥
H

� λ

∥∥∥∥∑
k

ckφk

∥∥∥∥
H

+ μ‖c‖l2

for all (ck) ∈ c00, then (ψk) is a Bessel sequence with bound B · (1 + λ + μ/
√

B)2.

We can specialize and rephrase these results as needed in the later sections. For that let us
denote the normed vector space of finite sequences in l2 by c2

00 = (c00,‖.‖2).

Proposition 4.2. Let (φk) be a Bessel sequence, frame, Riesz sequence or Riesz basis for H. Let
(ψk) be a sequence in H. If there exists μ such that

‖D(φk) − D(ψk)‖c2
00→H � μ <

√
A

then (ψk) shares this property with upper bound B(1 +μ/
√

B)2 and, if applicable, lower bound
A(1 − μ/

√
A)2 and ‖D(φk) − D(ψk)‖l2→H � μ.

Proof. For every c ∈ c00 we get∥∥(D(φk) − D(ψk))c
∥∥
H � ‖D(φk) − D(ψk)‖Op‖c‖2 � μ‖c‖2.

This is just the condition in the perturbation result mentioned above with λ = 0 and μ <
√

A, so
that λ + μ/

√
A < 1. Because (ψk) is a Bessel sequence, we know that D(ψk) : l2 → H is well

defined. Because c2
00 is dense in l2 we get

‖D(φk) − D(ψk)‖l2→H = ‖D(φk) − D(ψk)‖c2
00→H � μ. �
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Corollary 4.3. Let (φk) be a Bessel sequence, frame, Riesz sequence respectively Riesz basis and
(ψ

(n)
k ) sequences with

‖D
(ψ

(n)
k )

− D(φk)‖c2
00→H → 0

for n → ∞. Then there exists N such that (ψ
(n)
k ) are Bessel sequences, frames, Riesz sequences

respectively Riesz bases for all n � N . For the optimal upper frame bounds we get B
(n)
opt → Bopt.

And ‖D
(ψ

(n)
k )

− D(φk)‖l2→H → 0 for n → ∞.

Proof. The first property is a direct consequence from Proposition 4.2.
To show the second part we note that for all ε > 0 there is N such that for all n � N ,

‖D
(ψ

(n)
k )

‖Op � ‖D(φk)‖Op + ‖D(φk) − D
(ψ

(n)
k )

‖Op � B + ε. �
In Section 8 we are going to investigate the similarity of different frames. Using Proposi-

tion 4.2 and Corollary 4.3 the following definition makes sense:

Definition 4.4. Let Bes(H) be the set of all Bessel sequences in H with the index set K .
We define the Bessel norm on this set: For a sequence (ψk) ∈ Bes(H) we define the norm
‖(ψk)‖Bes = ‖D(ψk)‖Op.

It can be easily shown, that ‖.‖Bes is well defined and induces a norm. As shown above it is
sufficient to use the operator norm on c2

00. In typical perturbation results like Corollary 4.1, for
arbitrary sequences it is investigated, if they share the property with another ‘similar’ sequence,
which is a Bessel sequence, frame or Riesz basis. In these cases we cannot use the above norm,
as we cannot assume at first, that we start out with a Bessel sequence. We are going to define
other measures of similarity of sequences, with the property, that if those are small for two Bessel
sequences also the Bessel norm is small.

A simple way to measure the similarity of two frames would be in a uniform sense, using
supk ‖ψk − φk‖H, but this is not a good measure in general for frames since it makes an ortho-
normal basis similar to every bounded sequence of vectors. Other similarity measures are more
useful, as defined below and motivated in the next result.

Corollary 4.5. Let (ψk) be a Bessel sequence, frame, Riesz sequence respectively a Riesz basis.
Let (φk) be a sequence with

∑
k ‖ψk −φk‖2

H < A (respectively
∑

k ‖ψk −φk‖H < A), then (φk)

is a Bessel sequences, frame, Riesz sequence or Riesz basis.
Let (φ(l)

k | k ∈ K) be sequences such that for all ε there exists N(ε) with
∑

k ‖ψk −φ
(l)
k ‖2

H < ε2

(respectively
∑

k ‖ψk − φ
(l)
k ‖H < ε) for all l � N(ε). Then for ε <

√
A and for all l � N0

the sequences (φ
(l)
k ) are Bessel sequences, frames, Riesz sequences respectively Riesz bases

with the optimal upper frame bound B
(l)
opt → Bopt. Furthermore ‖C

(φ
(l)
k )

− C(ψk)‖Op < ε,

‖D
(φ

(l)
k )

− D(ψk)‖Op < ε and for ε � 1 ‖S
(φ

(l)
k )

− S(ψk)‖Op < ε · (√B + 1 · √B).

Proof. Let c ∈ c00, then

‖D(φk)c − D(ψk)c‖H =
∥∥∥∥∑

ck(φk − ψk)

∥∥∥∥
H

�
∑

|ck|‖ψk − φk‖H

k k
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p

�
√∑

k

|ck|2
√∑

k

‖ψk − φk‖2
H

�⇒ ‖D(φk) − D(ψk)‖Op �
√∑

k

‖ψk − φk‖2
H.

So in the first case ‖D(φk) − D(ψk)‖Op <
√

A and therefore (φk) forms a Bessel sequence,
frame, Riesz sequence or Riesz basis.

In the second case we get ‖D
φ

(l)
k

− D(ψk)‖Op < ε for l � N(ε). With Corollary 4.3 the result

for the bounds is proved,

‖C
(φ

(l)
k )

f − C(ψk)‖Op = ∥∥D∗
(φ

(l)
k )

− D∗
(ψk)

∥∥
Op = ‖D

(φ
(l)
k )

− D(ψk)‖Op < ε,

‖S
(φ

(l)
k )

− S(ψk)‖Op = ‖D
(φ

(l)
k )

◦ C
(φ

(l)
k )

− D(ψk) ◦ C(ψk)‖Op

= ‖D
(φ

(l)
k )

◦ C
(φ

(l)
k )

− D
(φ

(l)
k )

◦ C(ψk) + D
(φ

(l)
k )

◦ C(ψk) − D(ψk) ◦ C(ψk)‖O

� ‖D
(φ

(l)
k )

‖Op‖C(φ
(l)
k )

− C(ψk)‖Op + ‖D
(φ

(l)
k )

− D(ψk)‖Op‖C(ψk)‖Op

�
√

B + 1 · ε + ε · √B = ε · (√B + 1 + √
B

)
,

which follows from Corollary 4.3, as there is N(1) such that for all l � N(1), ‖D
(φ

(l)
k )

‖Op �√
B + 1.
For all sequences C we know ‖c‖1 � ‖c‖2. Therefore the corresponding l1 property above is

also true. �
With these similarity measures in general neither a norm nor a metric is defined on the set of

Bessel sequences. Nevertheless it is useful to use these ‘similarity measures’ as seen in the last
two corollaries.

Definition 4.6. Let (ψk)k∈K and (ψ
(l)
k )k∈K be a sequence of elements for all l ∈ N. The sequences

(ψ
(l)
k ) are said to converge to (ψk) in an lp sense, denoted by (ψ

(l)
k ) lp−→ (ψk), if ∀ε > 0 there

exists N > 0 such that (
∑

k ‖ψ(l)
k − ψk‖p

H)1/p < ε for all l � N .

The convergence in an l∞ sense clearly coincides with uniform convergence, which is not
valuable for our purposes, as seen above. The convergence in an l1 and l2 sense is very useful, in
contrast, see Section 8.

5. Bessel multipliers

In [16] R. Schatten provides a detailed study of ideals of compact operators using their sin-
gular value decomposition. He investigates the operators of the form

∑
λiϕi ⊗i ψi where (ϕi)

and (ψi) are orthonormal families. We are interested in similar operators where the families are
Bessel sequences.

Definition 5.1. Let H1, H2 be Hilbert spaces, let (ψk)k∈K ⊆ H1 and (φk)k∈K ⊆ H2 be Bessel
sequences. Fix m ∈ l∞(K). Define the operator Mm,(φk),(ψk) :H1 → H2, the Bessel multiplier
for the Bessel sequences (ψk) and (φk), as the operator



578 P. Balazs / J. Math. Anal. Appl. 325 (2007) 571–585
Mm,(φk),(ψk)(f ) =
∑

k

mk〈f,ψk〉φk.

The sequence m is called the symbol of M. For frames we will call the resulting Bessel multiplier
a frame multiplier, for Riesz sequence a Riesz multiplier.

Let us denote Mm,(ψk) = Mm,(ψk),(ψk). Furthermore let us simplify the notation, if there is no
chance of confusion, using Mm or even M. The definition of a multiplier can also be expressed
in the following way:

Mm,(φk),(ψk) = D(φk)(m · C(ψk)) =
∑

k

mk · φk ⊗i ψk.

Definition 5.2. For fixed Bessel sequences (ψk) and (φk), let σ be the relation which assigns the
corresponding symbol to a multiplier , σ(Mm,(φk),(ψk)) = m.

This relation σ does not have to be a well-defined function. This is only the case if the opera-
tors φk ⊗i ψk have a basis property, cf. Section 6.1.

In [16] the multipliers for orthonormal sequences were investigated and many ‘nice’ proper-
ties were shown. A powerful property is the ‘symbolic calculus’ for orthonormal sequences as
follows:

Mm(1),(ek)
◦ Mm(2),(ek)

= Mm(1)·m(2),(ek)
.

In the general Bessel sequence case this is not true anymore.

Corollary 5.3. For two multipliers Mm(1),(φk),(ψk)
and Mm(2),(ζk),(ξk)

for the Bessel sequences
(ψk), (ζk) ⊆ H2, (φk) ⊆ H2, (ξk) ⊆ H1 and

Mm(1),(φk),(ψk)
=

∑
k

m
(1)
k 〈f,ψk〉φk and Mm(2),(ζk),(ξk)

=
∑

l

m
(2)
l 〈f, ξl〉ζl

the combination is

(Mm(1),(φk),(ψk)
◦ Mm(2),(ζk),(ξk)

)(f ) =
∑

k

∑
l

m
(1)
k m

(2)
l 〈f, ξl〉〈ζl,ψk〉φk

= (D(φk)Mm(1)Gψk,ζk
Mm(2)C(ξk))(f ).

Thus in the general Bessel sequence case no exact symbolic calculus can be assumed, i.e., the
combination of symbols does not correspond to the combination of the operators. See Section 7
for more details on this. In general the product of two frame multipliers is not even a frame
multiplier any more.

5.1. The multiplier as an operator from l2 to l2

As a preparatory step we will look at this kind of operators on l2. Use the symbol Mm

for the mapping Mm : l2 → l2 and m ∈ lp (for p > 0) given by the pointwise multiplication
Mm((ck)) = (mk · ck). So a Bessel multiplier Mm can be written as

Mm = D ◦Mm ◦ C.

As preparation for one of the main results, Theorem 6.1, we show:
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Lemma 5.4.

(1) Let m ∈ l∞. The operator Mm : l2 → l2 is bounded with ‖Mm‖Op = ‖m‖∞.
(2) M∗

m = Mm.
(3) Let m ∈ l1. The operator Mm : l2 → l2 is trace class with ‖Mm‖trace = ‖m‖1.
(4) Let m ∈ l2. The operator Mm : l2 → l2 is a Hilbert–Schmidt (HS) operator with

‖Mm‖HS = ‖m‖2.
(5) Let m ∈ c0. Then there exist finite sequences mN = (m0, . . . ,mN,0,0, . . .) with

MmN
→ Mm as operators in l2. Therefore Mm is compact.

Proof. (1) Clearly ‖m · c‖2 � ‖m‖∞‖c‖2 ⇒ ‖Mm‖Op � ‖m‖∞. On the other hand,
Mmδi = mi ⇒ ‖Mm‖Op � ‖m‖∞.

(2) 〈Mmc, d〉l2 = ∑
k mkck · dk = ∑

k ck · mkdk = 〈c,Mmd〉l2 .
(3) [Mm] = √

M∗
mMm = √

MmMm = M|m| and so using properties of the trace norm [17]
‖Mm‖trace = ∑

i〈[Mm]δi, δi〉 = ‖m‖1.
(4) ‖Mm‖2

HS
= ∑

i ‖Mmδi‖2 = ‖m‖2
2.

(5) For c ∈ l2 ‖mN · c − m · c‖2 � ‖mN − m‖∞ · ‖c‖2 and so ‖MmN
−Mm‖Op → 0. �

6. Properties of multipliers

Equivalent results as proved in [8] for Gabor multiplier can be shown for Bessel multipliers.

Theorem 6.1. Let M = Mm,(φk),(ψk) be a Bessel multiplier for the Bessel sequences (ψk) ⊆ H1
and (φk) ⊆ H2 with the bounds B and B ′. Then

(1) If m ∈ l∞, M is a well-defined bounded operator with ‖M‖Op �
√

B ′√B · ‖m‖∞. Further-
more the sum

∑
k mk〈f,ψk〉φk converges unconditionally for all f ∈ H1.

(2) (Mm,(φk),(ψk))
∗ = Mm,(ψk),(φk). Therefore if m is real-valued and (φk) = (ψk), M is self-

adjoint.
(3) If m ∈ c0, M is a compact operator.
(4) If m ∈ l1, M is a trace class operator with ‖M‖trace �

√
B ′√B‖m‖1. And tr(M) =∑

k mk〈φk,ψk〉.
(5) If m ∈ l2, M is a Hilbert–Schmidt operator with ‖M‖HS �

√
B ′√B‖m‖2.

Proof. (1)

‖M‖Op = ‖C ◦Mm ◦ D‖Op � ‖C‖Op · ‖m‖∞ · ‖D‖Op �
√

B‖m‖∞
√

B ′.

As (φk) is a Bessel sequence,
∑

ckφk converges unconditionally for all (ck) ∈ l2, in particular
for (mk · 〈f,ψk〉).

(2) M = C(ψk) ◦Mm ◦ D(φk) = C(ψk) ◦Mm ◦ C∗
(φk)

, so with Lemma 5.4 M∗ = C(φk) ◦ M∗
m ◦

C∗
(ψk)

= C(φk) ◦ Mm ◦ D(ψk).

(3) Let mN be the finite sequences from Lemma 5.4, then

‖MmN
− Mm‖Op = ‖DMmN

C − DMmC‖Op = ∥∥D(MmN
−Mm)C

∥∥
Op

� ‖D‖Op‖MmN
−Mm‖Op‖C‖Op �

√
B ′ · ε√B.
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For every ε′ = ε/
√

B · B ′, there is a Nε such that ‖MmN
− Mm‖Op < ε′ and therefore

‖MmN
− Mm‖Op < ε for all N � Nε . MmN

is a finite sum of rank one operators and so has
finite rank. This means that Mm is a limit of finite-rank operators and therefore compact.

(4) M(f ) = ∑
k〈f,ψk〉(mk · φk), so according to the definition of trace class operators [17]

we have to show that ‖M‖trace = ∑
k ‖ψk‖H · ‖mkφk‖H < ∞,

‖M‖trace =
∑

k

‖ψk‖H · ‖mkφk‖H =
∑

k

‖ψk‖H|mk|‖φk‖H �
√

B · √B ′ · ‖m‖1

�⇒ tr(M) =
∑

k

〈mk · φk,ψk〉 =
∑

k

mk〈φk,ψk〉.

(5) The operator Mm : l2 → l2 is in HS due to Lemma 5.4 with bound ‖Mm‖HS =
‖m‖2. Using the properties of HS operators we get ‖DMmC‖HS � ‖D‖Op‖m‖2‖C‖Op �√

B
√

B ′‖m‖2. �
For Riesz and orthonormal bases we can show, see Proposition 7.2, that if the multiplier is

well defined, then the symbol must be in l∞. This is not true for general Bessel sequences, as can
be seen, when using the following frame: Let (ei | i ∈ N) be an ONB for H. Let ψp,q = 1

p
· eq .

Then (ψp,q | (p, q) ∈ N
2) is a tight frame as

∑
p,q

∣∣〈f,ψp,q〉∣∣2 =
∑
p,q

∣∣∣∣
〈
f,

1

p
· eq

〉∣∣∣∣
2

=
∑
p

1

|p|2
∑
q

∣∣〈f, eq〉∣∣2 =
∑
p

1

|p|2 ‖f ‖H

= ‖f ‖H · π2

6
.

Define a symbol m by mp,q = p2. Then

Mm,(ψp,q )(f ) =
∑
p,q

p2
〈
f,

1

p
· eq

〉
1

p
· eq =

∑
p,q

〈f, eq〉 · eq = f.

So the operator Mmk,l ,(ψk,l ) = Id is bounded although the symbol is not.

6.1. From symbol to operator

When is the operator uniquely defined by the symbol? When is the relation σ a function?
This question is equivalent to the question of whether the sequence of operators (φh ⊗i ψk)

forms a Riesz sequence, as the rank one operators ψk ⊗i f k form a Bessel sequence in HS. This
follows directly from the following result, as every subsequence of a Bessel sequence is a Bessel
sequence again [4].

Proposition 6.2. Let (ψk | k ∈ K) and (φk | k ∈ K) be Bessel sequences in H1 respectively H2
with bounds B1 and B2. The rank one operators (ψk ⊗i φl) with (k, l) ∈ K × K form a Bessel
sequence in HS(H2,H1) with bounds B1 · B2.

Proof. Let O ∈HS(H2,H1). Then by properties of the Hilbert–Schmidt inner product,∑∣∣〈O,ψk ⊗i φl〉HS

∣∣2 =
∑∑∣∣〈Oφl,ψk〉

∣∣2 � B1

∑
‖Oφl‖2

H.
k,l l k l
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Let now (ei | i ∈ I ) be any ONB of H2, then∑
l

‖Oφl‖2
H =

∑
l

∑
i

∣∣〈Oφl, ei〉
∣∣2 =

∑
i

∑
l

∣∣〈φl,O
∗ei〉

∣∣2 � B2 ·
∑

i

‖O∗ei‖2
H2

= B2 · ‖O∗‖2
HS = B2 · ‖O‖2

HS

�⇒
∑
k,l

∣∣〈O,ψk ⊗i f l〉
∣∣2 � B1B2‖O‖2

HS. �

7. Riesz multipliers

For Riesz sequences the family (ψk ⊗i φk) is certainly a Riesz sequence in HS, following
Proposition 6.2 and the fact that

〈ψk ⊗i φk, g̃l ⊗i φ̃l〉 = 〈ψk, g̃l〉 · 〈φ̃l , φk〉 = δk,l · δk,l .

In this case for m ∈ l2 the function m �→ Mm is injective as the multiplier is just the synthesis
operator of the sequence (ψk ⊗i φk) applied on m. We can state a more general property:

Lemma 7.1. Let (ψk) ⊆ H1 be a Bessel sequence with no zero elements, and (φk) ⊆ H2 a Riesz
sequence. Then the mapping m �→ Mm,φk,ψk

is injective from l∞ into B(H1,H2).

Proof. Suppose Mm,(φk),(ψk) = Mm′,(φk),(ψk) ⇒ ∑
k mk〈f,ψk〉φk = ∑

k m′
k〈f,ψk〉φk for all f .

As φk is a Riesz basis for its span ⇒ mk〈f,ψk〉 = m′
k〈f,ψk〉 for all f, k. For any k ∈ K we

know ψk �= 0. So there exists f such that 〈f,ψk〉 �= 0. Therefore mk = m′
k for all k. And so

(mk) = (m′
k). �

So if the conditions in Lemma 7.1 are fulfilled, the Bessel sequence (ψk ⊗i f k) is a Riesz
sequence in HS.

For Riesz bases the multiplier is bounded if and only if the symbol is bounded:

Proposition 7.2. Let (ψk) be a Riesz basis with bounds A,B and (φk) be one with bounds A′, B ′.
Then

√
AA′‖m‖∞ � ‖Mm,(φk),(ψk)‖Op �

√
BB ′‖m‖∞.

Particularly Mm,(φk),(ψk) is bounded if and only if m is bounded.

Proof. Theorem 6.1 gives us the upper bound. For the lower bound let k0 be arbitrary, then
Mm,(φk),(ψk)(ψ̃k0) = ∑

k mk〈ψ̃k0,ψk〉φk = ∑
k mkδk0,kφk = mk0φk0 . Therefore

‖Mm,(φk),(ψk)‖Op = sup
f ∈H

{‖Mm,(φk),(ψk)(f )‖H
‖f ‖H

}
� ‖Mm,(φk),(ψk)(ψ̃k0)‖H

‖ψ̃k0‖H

= ‖mk0φk0‖H
‖ψ̃k0‖H

� |mk0 |
√

A′

1/
√

A
�

√
A′A|mk0 |,

using Corollary 3.10 and the properties of the dual frame. �



582 P. Balazs / J. Math. Anal. Appl. 325 (2007) 571–585
For an orthonormal sequence (εk) the combination of multipliers M = Mm,(εk) · Mm′,(εk) is
just the multiplier with symbol σ(M) = m · m′. This is true for all biorthogonal sequences in the
following way:

Corollary 7.3. Let (ψk), (φk), (ζk) and (ξk) be Bessel sequences, such that (φk) and (ψk) are
biorthogonal to each other, then

(Mm(1),(ξk),(ψk)
◦ Mm(2),(φk),(ζk)

)(f ) = Mm(1)·m(2),(ξk),(ζk)
.

So for Riesz sequences we get that the symbol of the combination of multipliers is the multi-
plication of the symbols. The reverse of this is also true as stated in Corollary 7.5. For this result
we first show the following property:

Proposition 7.4. Let (ψk) and (φk) be Bessel sequences in H with the same index set K . If
∀m(1),m(2) ∈ c00,

Mm(1),(ψk),(φk)
◦ Mm(2),(ψk),(φk)

= Mm(1)·m(2),(ψk),(φk)

then for all pairs (k, l) ∈ K × K either φl = 0, ψk = 0 or 〈ψk,φl〉 = δk,l .

Proof. Choose k0, k1 in the index set. Let m(1) = δk0 and m(2) = δk1 .

Mm(1),(ψk),(φk)
◦ Mm(2),(ψk),(φk)

= Mm(1)·m(2),(ψk),(φk)

is in this case equivalent via Lemma 5.3 to

〈f,φk1〉〈ψk1 , φk0〉 · ψk0 = δk0,k1〈f,φk1〉ψk0 ∀f ∈H.

Let k1 �= k0 then this means that we obtain 〈f,φk1〉〈ψk1 , φk0〉 · ψk0 = 0. So either ψk0 = 0 or
〈f,φk1〉 = 0 for all f and so φk1 = 0, or 〈ψk1 , φk0〉 = 0.

Let k1 = k0. 〈f,φk1〉(〈ψk1 , φk0〉 − 1)ψk0 = 0. Either ψk0 = 0 or 〈f,φk1〉 = 0 for all f and so
φk1 = 0 or 〈ψk1, φk0〉 = 1. �

This means we have found a way to classify Riesz bases by multipliers:

Corollary 7.5. Let (ψk) and (φk) be Bessel sequences with ψk �= 0 and φk �= 0 for all k ∈ K .
If and only if σ(Mm(1),(φk),(ψk)

◦ Mm(2),(φk),(ψk)
) = σ(Mm(1),(φk),(ψk)

) · σ(Mm(2),(φk),(ψk)
) for all

multipliers Mm(1),(φk),(ψk)
, Mm(1),(φk),(ψk)

with m(1), m(2) finite, then these frames are biorthog-
onal to each other and therefore have to be Riesz bases.

The commutation of multipliers involving Riesz sequences behaves also very canonically:

Corollary 7.6. Let (ψk) be a Riesz sequence, then

Mm(1),(ψ̃k),(ψk)
◦ Mm(2),(ψ̃k),(ψk)

= Mm(2),(ψ̃k),(ψk)
◦ Mm(1),(ψ̃k),(ψk)

.

Finally we can ask, when a Riesz multiplier is invertible, or more precisely when it is the
inverse of another multiplier. Let us call a sequence (mk) for which 0 < inf |mk| � sup |mk| < ∞
a semi-normalized sequence.
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Proposition 7.7. Let (ψk) and (φk) be Riesz bases and let the symbol m be semi-normalized.
Then M−1

mk,(φk),(ψk)
= M 1

mk
,(ψ̃k),(φ̃k)

.

Proof. If (mk) is semi-normalized, ( 1
mk

) is, too. Therefore ( 1
mk

) ∈ l∞. Corollary 5.3 tells us that

(Mm,(φk),(ψk) ◦ M 1
m

,(ψ̃k),(φ̃k)
)(f ) =

∑
k

∑
l

mk

1

ml

〈f, φ̃l〉〈ψ̃l,ψk〉φk

=
∑

k

∑
l

mk

1

ml

〈f, φ̃l〉δl,kφk =
∑

k

mk

1

mk

〈f, φ̃k〉φk =f.

With the commutativity shown in Corollary 7.6 we can finish the proof. �
8. Changing the ingredients

A Bessel multiplier clearly depends on the chosen symbol, analysis and synthesis sequence.
A natural question arises: What happens if these items are changed? Are the frame multipliers
similar to each other if the symbol or the frames are similar to each other (in the right similarity
sense)?

Theorem 8.1. Let M be a multiplier for the Bessel sequences (ψk) and (φk) with Bessel bounds
B1 and B2, respectively. Then the operator M depends continuously on m, (ψk) and (φk), in the
following sense: Let (ψ

(l)
k ) and (φ

(l)
k ) be sequences indexed by l ∈ N.

(1) (a) Let m(l) → m in l∞ then ‖Mm(l),(ψk),(φk)
− Mm,(ψk),(φk)‖Op → 0.

(b) Let m(l) → m in l2 then ‖Mm(l),(ψk),(φk)
− Mm,(ψk),(φk)‖HS → 0.

(c) Let m(l) → m in l1 then ‖Mm(l),(ψk),(φk)
− Mm,(ψk),(φk)‖trace → 0.

(2) (a) Let m ∈ l1 and let the sequences (ψ
(l)
k ) be Bessel sequences converging uniformly to

(ψk). Then for l → ∞ ‖M
m,(ψ

(l)
k ),(φk)

− Mm,(ψk),(φk)‖trace → 0.

(b) Let m ∈ l2 and let the sequences (ψ
(l)
k ) converge to (ψk) in an l2 sense. Then for l → ∞

‖M
m,(ψ

(l)
k ),(φk)

− Mm,(ψk),(φk)‖HS → 0.

(c) Let m ∈ l∞ and let the sequences (ψ
(l)
k ) converge to (ψk) in an l1 sense. Then for l → ∞

‖M
m,(ψ

(l)
k ),(φk)

− Mm,(ψk),(φk)‖Op → 0.

(3) For Bessel sequences (φ
(l)
k ) converging to (φk), corresponding properties as in (2) apply.

(4) (a) Let m(l) → m in l1, (ψ
(l)
k ) and (φ

(l)
k ) be Bessel sequences with bounds B

(l)
1 and B

(l)
2 ,

such that there exists B1 and B2 with B
(l)
1 � B1 and B

(l)
2 � B2. Let the sequences (ψ

(l)
k )

and (φ
(l)
k ) converge uniformly to (ψk) respectively (φk). Then for l → ∞∥∥M

m(l),(ψ
(l)
k ),(φ

(l)
k )

− Mm,(ψk),(φk)

∥∥
trace → 0.

(b) Let m(l) → m in l2 and let the sequences (ψ
(l)
k ) respectively (φ

(l)
k ) converge to (ψk)

respectively (φk) in an l2 sense. Then for l → ∞ ‖M
m,(ψ

(l)
k ),(φk)

−Mm,(ψk),(φk)‖HS → 0.

(c) Let m(l) → m in l∞ and let the sequences (ψ
(l)
k ) respectively (φ

(l)
k ) converge to (ψk)

respectively (φk) in an l1 sense. Then for l → ∞ ‖M (l) − Mm,ψk,φk
‖Op → 0.
m,(ψk ),(φk)
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Proof. (1) For a sequence of symbols this is a direct result of Theorem 6.1 and∥∥Mm(l),(ψk),(φk)
− Mm,(ψk),(φk)

∥∥
HS

= ∥∥M(m(l)−m),(ψk),(φk)

∥∥
HS

�
∥∥m(l) − m

∥∥
2

√
BB ′.

The result for the operator and infinity norm respectively trace and l1 norms can be proved in an
analogue way.

(2) For points (b) and (c) we know from Corollary 4.5 that the sequences are Bessel sequences.
For all the norms (Op,HS, trace) ‖ψk ⊗i φk‖ = ‖ψk‖H‖φk‖H and so∥∥∑

mkψ
(l)
k ⊗i φk −

∑
mkψk ⊗i φk

∥∥
= ∥∥∑

mk(ψ
(l)
k − ψk) ⊗i φk

∥∥ �
∑

k

|mk|
∥∥ψ

(l)
k − ψk

∥∥
H

√
B ′ = (∗)

case (a): (∗) �
√

B ′(
∑

k |mk|) supl{‖ψ(l)
k − ψk‖H} �

√
B ′‖m‖1ε,

case (b): (∗) �
√

B ′
√∑

k |mk|2
√∑‖ψ(l)

k − ψk‖2
H �

√
B ′‖m‖2ε,

case (c): (∗) �
√

B ′‖m‖∞
∑‖ψ(l)

k − ψk‖H �
√

B ′‖m‖∞ε.

(3) Use a corresponding argumentation as in (2).
(4) For points (b) and (c) Corollary 4.3 states that (ψ

(l)
k ) and (φ

(l)
k ) are Bessel sequences and

there are common Bessel bounds B1 and B2 for l � N1. So using the results above we get

‖M
m(l),(ψ

(l)
k ),(φ

(l)
k )

− Mm,(ψk),(φk)‖
� ‖M

m(l),(ψ
(l)
k ),(φ

(l)
k )

− M
m,(ψ

(l)
k ),(φ

(l)
k )

‖
+ ‖M

m,(ψ
(l)
k ),(φ

(l)
k )

− M
m,(ψk),(φ

(l)
k )

‖ + ‖M
m,(ψk),(φ

(l)
k )

− Mm,(ψk),(φk)‖
� ε

√
BB′ + ‖m‖ε

√
B′ + ‖m‖√

Bε = ε · (√BB′ + ‖m‖(√
B′ + √

B
))

for l bigger than the maximum N needed for the convergence conditions. This is true for all pairs
or norms (Op,∞), (HS, l2) and (trace, l1). �
9. Perspectives

For the future many questions are still open. For example it seems very likely, that for symbols
m ∈ lp the multiplier lies in the p-Schatten operator class. Connected to that an investigation of
the singular values of these operators might be worthwhile. The combination of two multipliers
are connected to the Gram matrix, see Corollary 5.3. It will be interesting to apply the results
for the decay properties of the Gram matrix in [9] to this topic. An interesting step away from
the unstructured frame will be to investigate frame multipliers for structured frames, found e.g.
in [7]. The topic of frame multipliers is closely related to the notion of weighted frames as intro-
duced in [2]. It can be easily proved that for a positive, semi-normalized symbol the multiplier
corresponds to the frame operator of a weighted frame. This connection should be investigated
further and the theory of frame multiplier should be applied to the further context of the paper [2],
computational issues for wavelets on the sphere.

Applications of these objects already exist. It seems that acoustics is a very interesting field
for that. Frame multipliers there are not only used as (irregular or regular) Gabor multipliers like
in [1] or [13], but also as a multipliers for a gammatone filter bank in [15]. In the engineering
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literature frame multipliers for regular Gabor frames are known as Gabor filters [14]. Also first
ideas are investigated to use this concept with wavelets to apply in the context of evaluations of
noise barriers. The importance of the theoretical results in these and other application should be
investigated further.

Acknowledgments

The author thanks Hans G. Feichtinger, Bruno Torrésani, Jean-Pierre Antoine and Wolfgang Kreuzer for many helpful
comments and suggestions. He thanks the hospitality of the LATP, CMI, Marseille, France and FYMA, UCL, Louvain-
la-Neuve, Belgium, where part of this work was prepared, supported by the HASSIP-network.

References

[1] P. Balazs, Regular and irregular Gabor multipliers with application to psychoacoustic masking, PhD thesis, Univer-
sity of Vienna, June 2005.

[2] I. Bogdanova, P. Vandergheynst, J.-P. Antoine, L. Jacques, M. Morvidone, Stereographic wavelet frames on the
sphere, Appl. Comput. Harmon. Anal. 19 (2005) 223–252.

[3] P.G. Casazza, The art of frame theory, Taiwanese J. Math. 4 (2) (2000) 129–202.
[4] O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser, 2003.
[5] J.B. Conway, A Course in Functional Analysis, second ed., Grad. Texts in Math., Springer, New York, 1990.
[6] M. Dörfler, Gabor analysis for a class of signals called music, PhD thesis, University of Vienna, 2003.
[7] Y. Eldar, H. Bölcskei, Geometrically uniform frames, IEEE Trans. Inform. Theory 49 (2003) 993–1006.
[8] H.G. Feichtinger, K. Nowak, A first survey of Gabor multipliers, in: H.G. Feichtinger, T. Strohmer (Eds.), Advances

in Gabor Analysis, Birkhäuser Boston, 2003, pp. 9–128 (Chapter 5).
[9] M. Fornasier, K. Gröchenig, Intrinsic localization of frames, Constr. Approx. 22 (3) (2005) 395–415.

[10] K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, Boston, 2001.
[11] W.M. Hartmann, Signals, Sounds, and Sensation, Springer, 1998.
[12] Y. Liu, Y. Wang, The uniformity of non-uniform Gabor bases, Adv. Comput. Math. 18 (2003) 345–355.
[13] P. Majdak, P. Balazs, Multiple exponential sweep method for acoustic identification of multiple systems in echoic

and noisy rooms, preprint, 2006.
[14] G. Matz, F. Hlawatsch, in: A. Papandreou-Suppappola (Ed.), Linear Time-Frequency Filters: On-line Algorithms

and Applications, CRC Press, Boca Raton, FL, 2002, pp. 205–271 (Chapter 6).
[15] C.F.R. Pichevar, J. Rouat, G. Kubin, A bio-inspired sound source separation technique based on a spiking neural

network in combination with an enhanced analysis/synthesis filterbank, in: EUSIPCO 2004, Vienna, Austria, 2004.
[16] R. Schatten, Norm Ideals of Completely Continuous Operators, Springer, Berlin, 1960.
[17] D. Werner, Funktionalanalysis, Springer, Berlin, 1995.
[18] B. Widrow, S.D. Stearns, Adaptive Signal Processing, Prentice Hall, Englewood Cliffs, NJ, 1985.


