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1. STOCHASTIC OSCILLATORS: STATEMENT OF PROBLEM AND RESULTS 

A stochastic oscillator is described mathematically as the solution of an 
appropriate ordinary differential equation, which is driven by an external 
disturbance of white noise. Accordingly, such solutions are stochastic 
processes. We investigate these stochastic oscillations, and the statistical 
distribution of their zeros, particularly, the first zero of the oscillation. 

Our studies deal with the scalar stochastic oscillator (the differential 
equation and its solution x(t)): 

1+ k(x, i-, t) = h+(t) on t30, 

where k(x, y, t) is a suitably smooth and bounded real function, and h > 0 
is a positive parameter. As usual, G(t) represents white noise; that is, w(t) 
on 0 < t < CC is a Brownian motion (or Wiener process). 

The corresponding first-order differential system in the (x, y)-plane 173’ is 

dx=ydt 

dy = -k(x, y, t) dt + h dw on t>O. 

From each initial point x(0)=x0, y(O) = y0 in R2 there exists a unique 
solution x(t), y(t) on 0 d t < co, defined as a stochastic process, according 
to the theory of It6 integration. In particular, the real stochastic function 
x(t) is a stochastic oscillator (although x(r) is not generally a martingale or 
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STOCHASTIC OSCILLATORS 289 

a Markov process), and we shall be interested in the zeros of the C’ 
function x(t) on 0 < t < co. 

The linear stochastic oscillator 

2 + kx = hG( t) on t>,O, 

for positive constants k and h, will be of primary interest for our 
investigations. However, in Section 2 we demonstrate how the nonlinear 
stochastic oscillator can be reduced to the linear case, at least for the 
analysis of properties holding almost surely (a.s.), for instance, the property 
that all zeros of x(t) are simple. 

In Section 3 we demonstrate that the linear stochastic oscillator x(t) has 
inftnitely many zeros (as.). Furthermore we obtain explicit upper and 
lower estimates for the expected values of these zeros, with emphasis on the 
first positive zero of x(t). In Section 4 we offer some comments and conjec- 
tures concerning the stochastic winding angle around the origin in the 
phase-plane. 

2. REDUCTION OF SCALAR NONLINEAR STOCHASTIC OSCILLATOR 

TO THE LINEAR OSCILLATOR %+X=/I+(~) ONt>o 

Consider a real scalar stochastic oscillator 

i + k(x, A, t) = hti( t) on t>O. 

Here k(x, y, t) is a real function on the domain (x, y) E R* and t 2 0, where 
we assume 

(i) k(x, y, t), (ak/dx)(x, y, t), (dk/ay)(x, y, t) are continuous, and 

(ii) Ik(x, y, t)l < y(t)(l + 1x1 + Iyl) for some continuous bound r(t) 
on O<t<co. 

The parameter h > is a positive constant, and the stochastic perturbation is 
scalar white noise k(t). 

The corresponding stochastic differential system is 

where w,(t) and w*(f) z w(t) are independent Brownian motions on 
0 < t < co; that is, w(t) on t 2 0 satisfies the usual axioms: w(0) = 0, and 
independent increments [w(t) - w(s)], normally distributed with mean 
zero, variance (t - ~1. In full notation we designate the stochastic process 
w(t) defined on the Wiener probability space (Q, 9, P) where 
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52 = C,[O, co) and .F is the family of o-fields adapted to MI(~); that is, the 
sample points of C,[O, co ) are real continuous functions w(t) on 0 < f < co 
with w(O)=O, and such a typical sample is denoted by w( .) or w= w( .); 
see [4]. Of course, the 2-vector Wiener process [;I; J is defined on 
52, = Q x Q so the components are stochastically independent, 

Under these circumstances there exists a unique solution (in the sense of 
lt6, and without regard to the particular model of Brownian motion) 
(x(t), y(t)) on 0 6 t < co, through a prescribed initial point x(0)=x,,, 
y(O) = y, in the plane R2. Of course, (x(t), y(t)) is a stochastic process, in 
fact x(t) is a stochastic process on D (with probability induced by the 
Wiener measure on the sample functions w(t)), and the sample functions 
x(t) almost surely lie in class C’ on 0 < t < co. 

We shall show that this curve (x(t), y(t)) in R2 is also a solution of the 
linear stochastic differential equation 

ie+x=hi(t) on t30, 

or the It6 differential system 

but for a different choice of the sample function 6*(t) z w(t) from the 
Wiener probability space Q = C,[O, co). In fact, using techniques of 
Cameron-Martin-Girsanov [4], we shall show that all such scalar 
stochastic oscillators have precisely the same (i.e., stochastically equivalent) 
solution curves (x(t), y(t)) in R2, as for the trivial oscillator: 

2=/&t) on t>O 

or the first-order system 

where B,(t) and B,(t) 3 B(r) are independent Brownian motions on the 
product space s2, = Q x 52, as usual. The main conclusion is that properties 
of the solutions, that hold almost surely, are not influenced by the par- 
ticular choice of the coefficient k(x, A?, t). In order to apply the required 
transformation of Cameron-MartinGirsanov we need a certain a priori 
estimate for the expectation (over 52) of exponentials of B(t) and j’; B(S) ds. 

LEMMA. Let k(x, y, t) be a realfunction continuous for all (x, y) E lR2 and 
O<t<oO, andassume 

lk(x, Y, f)l G r(t)(l + I4 + I ~1) for continuous y(t). 
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Let 

x(t)=~~+y,,t+h~~B(s)ds, Y(f) = Yo + Wth 

forfixed(x,,y,)EIW* andO<tt<. 
LJefine q(t) = k(x(t), y(t), t), and for the indicated exponential we assert 

the following bound: for each positive T>O there exist positiue constants 
,a = p(T) and C = C(T) such that the expectation 

E ewCAdt)121 6 C on O< ft<T. 

This lemma follows from a straightforward calculation using the customary 
inequalities of Schwarz and Jenson [7]. 

THEOREM 1. Let (x(t), y(t)) on 0 < t < co be the unique solution, 
initiating at x(0) = x0, y(0) = y, in I@, for the trivial stochastic oscillator: 

[z]=[i]dt+[i l][Ej on t20. 

Then (x(t), y(t)) is also the unique solution, initiating at (x0, yo) E [W’,for the 
nonlinear stochastic oscillator: 

Here B = (B,, B2) and w = (wl, w2) are each Brownian motions on Q x 52, 
with respect to two probability measures P and P. Moreover for each finite 
duration 0 < t < T, and a-field correspondingly restricted, p and P have the 
same null sets. 

Remark. The conclusion of the theorem implies that a subset of sample 
curves of the stochastic process (x(t), y(t)) on 0 < t < T has ?-probability 
zero, with reference to the trivial oscillator 

i!= hR(t) 

if and only if it also has P-probability zero, with reference to the nonlinear 
oscillator 

2 + k(x, 2, t) = hti( t). 

Here the function k(x, y, t) is assumed to satisfy the standing hypotheses (i) 
and (ii) listed at the beginning of this section, and h > 0 is a constant. 
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Proof of Theorem 1. Write t(t) = [::i:i] as the solution of the It6 
integral equation 

t(t) = t(O) + jt b(s) ds + j'o(s, dB 
0 0 

where b(s) = [,Vg)] and D(S) = [t z]; that is, the solution of the trivial 
stochastic oscillator is 

x(r)=x,+yaf+hS’B(s)ds, Y(f)=Yo+Wt) 
0 

so 

where we write B = (B,, B2) and defme B(s) = B,(s), as before. 
The proof of the theorem consists in verifying the hypotheses of the 

Cameron-Martin-Girsanov theorem [4], and then interpreting its con- 
clusions for the current Theorem 1. 

We define a bijection of 52 x 0 = C,[O, co) x C,[O, co) onto itself by the 
map 

where cp( r) = ( - l/h) k(x( t), y(t), t); that is, 

x,+y,t+h j’B(s)ds,y,+hB(t), t . 
0 > 

The sufficient condition that guarantees that [;;I is again a Brownian 
motion on Q x $2, relative to the same family of o-fields, but with respect to 
a probability measure, possibly different, but with the same null sets (non- 
anticipating T-c co ) is 

for T > 0 there exist positive constants ,U = p(T) and C = C(T) for 
which lEexp[p[~(t)l~]<C on O<t<T. 

Thus the lemma assures us that 

B(t) -+ w(t) = B(t) - j; (p(s) ds 
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(and trivially B, + w L s B,), defines the required bijection on 52 x $2, 
and w = [ ;;] is also a Brownian motion. In fact, w(t) = w2( t) is a scalar 
Brownian motion on Sz. 

Then the Cameron-Martin-Girsanov theorem asserts that r(t) = [;:;/I 
also satisfies the It6 integral equation: 

t(t) = t(O) + j’ h”(s) ds + j-i a(s) dw 
0 

where 

SO 

6(s) = 
[ 

Y(S) 

1 -W(s), Y(S), s) . 

This means that c(t) is the unique solution, initiating at t(O) = [;;I, of the 
stochastic differential equation 

dx=ydt 

dy = -k(x, y, t) dt + h dw on t>O. 

Thus the theorem is proved. [ 

In order to indicate the force of the reduction theorem we apply these 
methods to the study of the simplicity of the zeros of a stochastic oscillator 

Y + k(x, i, t) = hti( t) on t>O; 

that is, we show that, almost surely, 

x( t)Z + i( t)2 > 0 for all f > 0. 

By Theorem 1 it is sufficient to demonstrate the result for the trivial 
oscillator 

with solution 

x(t) = x0 + yet + h J ’ B(s) ds, Y(l) =yo + Wt). 
0 
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In order to measure the deviation of (x(t), y(t)) from the origin (0,O) of 
R*, we utilize a positive real function V(x, v) with a pole at the origin; that 
is, l/V plays a role like that of a polar distance. 

LEMMA. There exists a real function V(x, y) in class C” on its domain 
[w* - (0, 0) where it satisfies 

(1) V(x, Y) > 0, 

(2) lim,xl+l,~+o V(x, Y) = + co, 

and along the stochastic process 

x(t)=x,+yot+h jb(s)ds,y(t)=yo+hB(t) for t >O, 
0 

the ZtB differential of V(x( t), y(t)) reduces to 

dV(x(t), y(t)) = hgdB(t) when x(t)2 + y(t)’ > 0. 

Hence, the differential operator of the stochastic process, namely, 

a h2 a* 
L=y-+-7 

ax 2 ay 

annihilates V(X,JJ); in other words, 

(3) LV(x,y)-0 when (x,y)#(O,O) in Iw*. 

Proof: The proof consists in displaying an explicit formula for V(x, y), 
namely, 

We omit the routine calculations verifying the conditions in the lemma; see 
c71. 

Remark. It is of interest to indicate our motivation for seeking V(x, y) 
in the form 

Vk Y) = jam p(t, x, y) dt, 

and for defining 

d At,4 t)=gexp $[t2y2+3txy+3x2] 
> 

. 
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We start with the Gaussian process 

which can be considered as the solution of the trivial oscillator initiating at 
the origin, but with the time t reversed to - t. Here B(t) is again scalar 
Brownian motion, and we have set h = 1 for clarity of exposition in this 
remark. 

This process has the covariance matrix 

Q(t)= ;g2 -Y] [ 
and the generator 

L*= -ylY+r’ 
ax 2 ay2’ 

which is the formal adjoint of 

,=yL+C 
ax 2 ay” 

Moreover the appropriate probability transition density is 

where 6 = (x, y) and 5 = (u, II) are points in R2. 
In this situation we consider 

P(t, w, y) = p(t. LO) = nt2 exp 
( 

2 [ t’y + 3txy -k 3x2] 
> 

which satisfies the forward parabolic equation for L*, and hence we are led 
to our desired result: 

ap 
LP(C w, Y) =x2 and LV= s 00 ap ‘x 

-dt=p 
o at 1 = 0. 

0 

We are now able to present the theorem concerning the simplicity of the 
zeros for the stochastic oscillator 

2 + k(x, i, t) = hti( t) on t20, 

505/71/2-l 
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where k(x, y, t) satisfies the standing hypothesis listed at the beginning of 
this section, and the constant parameter h > 0. 

THEOREM 2. Let (x(t), y(t)) on 0 d t < co be the unique solution, 
initiating at (x,, y,,) E R* - (0, 0), for the nonlinear stochastic oscillator 

i++(x,i, t)=hGJ(t) on tZ0, 

or the It4 differential system for (x, y) E R2: 

[:I=[ -k(::y,l)]dt+[: J[z:]~ 
us earlier. Then almost surely 

x(t)‘+y(t)*>O forall O<t<co. 

Proof: By use of the reduction Theorem 1, we shall show that we need 
only consider the trivial stochastic oscillator 

or f = I&(t) on t 2 0. Using familiar estimates on B(t) and J:, B(s) ds, we 
investigate the hitting times for (x(t), y(t)) into small disks centered at the 
origin. In this way we prove (see [7]) that with probability one (for the 
appropriate B-measures), 

x(t)=xo+yot+h j;B(s)ds and Y(t) = Yo + Wt) 

do not vanish simultaneously on any finite interval 0 < t < T. 
Take the function 

Vx, Y) = jom P(C x, Y) dl 

with 

fi p(4x,y)=Texp j$[r2y2+3t~y+3~2] , 
( > 

as in the lemma. 
The paths t(t) = [,X{:j] are each continuous so, since xi + yi > 0, there is 

a first time r > 0 when each sample path hits the origin, unless r = + co. 
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Thus r(w) is a random variable defined on the Wiener probability space 
(Q, 9, P). We shall show that the random variable r satisfies 
P[z c T] = 0, for each preassigned positive T, and thus conclude that 
t +co, a.s., that is, the Wiener probability P[r= +co] = 1. 

Certainly P’(x(t), y(t)) c cc on 0 < t < z. Define the random time rn as 
the first time when It( = l/n, for each n = 1,2, 3, . . . . Clearly r,, < z 
(except when both are + co) and rn < t, + 1 with lim, _ m t, = r. From Ito’s 
formula it follows directly that 

EC V&T A ~,))l = f’(to) < 00. 

Let n + cc and use Fatou’s lemma to obtain 

But integrating over the Wiener space (Q, 9, P), we find 

SO 

However, V(<(r)) = + co and so the Wiener probability measure of the set 
[r c T] must be zero. Therefore the Wiener probability P[z < T] = 0, for 
each given T> 0. Thus we conclude that t = + co, almost surely. 

Now refer to the reduction of Theorem 1 for a prescribed finite T> 0. 
Almost surely (relative to the probability measure appropriate for the 
Brownian motion w(t)) we have 

X(Q2 +y(Q2 > 0 on O<t<T. 

But T> 0 is arbitrary, and furthermore the algebra of null sets (for the 
duration 0 < r < T) increases with T. We therefore conclude that, with w- 
probability of one 

x(t)2 +y(t)2 > 0 forall O<t<cc. 1 

3. THE SCALAR LINEAR STOCHASTIC OSCILLATOR 

Consider the scalar linear oscillator 

2 + kx = h3( t) on t>O, 
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where k and h are positive constants, and w(t) is scalar Brownian motion 
or Wiener process on the probability space (Q = C,[O, co), 8, P), as usual. 
The It6 stochastic differential equation 

with w,(t), wZ(f) = w(t) independent scalar Brownian motions, has a uni- 
que solution, from (x,, yO) E R2, 

x(t) = x0 cos JZI+*sinJj;t$ 
& 

$iisin&(l-s)dw 

y(t)= -$x,,sin$t+y,cos&t+h{:cosfi(t-s)dw. 

After integration by parts (via It6 calculus), this solution can be written 

x(t) = x0 cos $r+~sin$t+hjdw(~)cos&(t-~)ds 

y(t)= -$x,sin&t+y,sinfit+hw(r) 

-,,&h[‘w(s)sin&(~--s)ds. 
0 

For simplicity of treatment we shall consider primarily the case k = 1, 
x0 = 1, y, = 0, that is, the stochastic oscillator 

I+x=htii(t) on t>O 

or 

We shall be interested in the zeros of the C’-stochastic process x(t) on 
t 2 0. 

Remark 1. Of course the linear stochastic oscillator 

ji + kx = hk( t) on t>O 

is a special case of the nonlinear stochastic oscillator 

i + k(x, f, t ) = hti( t) on t>O, 
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as discussed in the previous section. Accordingly, many of these general 
results are valid, for instance, the unique solution (x(t), y(t)) on t > 0, from 
(x,, y,,) # (0, 0), almost surely misses the origin for all 0 < t < co (see 
Theorem 2). 

However, certain probabilistic results hold only with some positive 
probability depending on the parameters k and h, and are particular to the 
theory of linear stochastic oscillators. 

Remark 2. Consider the linear stochastic oscillator 

dx=ydt 

dy= -kxdt+hdw on t>O, 

with initial data x(0)=x,,> 0 and 1(O) = y,. By appropriate changes of 
scale we can reduce this study to the case k = 1, x0 = 1, and for simplicity 
we also assume y, = 0. 

THEOREM 3. Consider the scalar stochastic process x(t) satisfying the 
linear stochastic oscillator: 

i+x=hhtif(t) on t>O 

from x(0) = 1, a(O) = 0, with parameter h > 0. Then, almost surely, x(t) has 
infinitely many zeros, all simple, on each half line [to c t < co). Moreover, 
the expectation for the first zero F satisfies 

IE( p) > 2(arc cot h)[Erf((arc cot h)-‘/‘)I. 

Prooj Note. In the next theorem we show that IE( f) < w  and find 
explicit upper bounds for the first two moments of F In Theorem 3 we first 
establish a positive lower estimate for E(F), and thereafter analyse the 
oscillatory behavior of x(t). 

The stochastic process x(t) is defined as the solution of the differential 
equation 

x(t)=cos t+hf:sin(t-s)dw (s) 

or 

x(t) = cos t + h j; w(s) cos( t - s) ds, 

and hence x(t) E C’[O, w  ), almost surely. 
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Consider the random sample function w(r), from the Wiener space 
Q = COIO, co) of real continuous functions, satisfying the constraint 

w(t) > -Y on O,<t<T<n/2, for fixed y > 0. 

Use the Kac-Erdos version of the central limit theorem [l] to obtain the 
familiar formula concerning the measure of such subsets of Wiener space 
(Q, 9, P) (see Cl, 41), 

w-w(t)> -Y on 0 6 I < T] = 2 Erf(yT-‘12), 

where the error function is given by 

Erf( z) = - &Jiep”2i2du, so Erf(co)=). 

Now set y = 1 and T= arc cot(h), so for instance, T= n/4 when h = 1. 
Then for such sample functions w(t) > - 1 on 0 < t < T, and we have 

P[w(t)> -1 on O<t<arccot(h)]=2Erf(T-‘/2). 

Further, since cos( t - S) > 0 on 0 6 s < t < rc/2, we find that 

s I x(t)>cos t-h cos(t-s)ds=cost-hsint>O, 
0 

for 0 < r < arc cot(h). Hence for these sample functions w(t) we find 

f2 arc cot(h), 

and therefore 

P’[T> arc cot(h)] 2 2 Erf((arc cot h)-‘j2). 

This result yields a lower estimate for the expected value of T, 

iE(T) 3 (arc cot h)[2 Erf((arc cot h)-“2)], 

as asserted in the theorem. 
We next proceed to demonstrate the oscillatory behavior of the 

stochastic solution 

s 

f 
x(t)=cost-hcost sin s dw(s) + h sin t ’ cos s dw(s). 

0 s 0 
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For this purpose we can introduce new Brownian motions G,(t) and iCZ(t) 
on Obt< co, so that 

x(t)=cost-hcost@,,(f(t))+hsintE,,(g(t)). 

Here the “changed time rates” are defined by [4] 

f(t)=+(t-fsin2t), g(t)=t(t+$sin2t). 

Now consider x(t) at the discrete instants t = (2m + $) 7c, for 
m = 1, 2, 3, . . . . when 

f( (2m + $) n) = (m + $) 75 g((2m + +) n) = (m + a) n, 

and when 

x((2m + 4) 71) = h G*((rn + a) 7~). 

Next define a sequence of independent normal random variables 
{Y,, Y,, Y,, Y3, . ..>. as 

Y, = C&(71/4) 

Y, = I&( (1 + $) n) - $,(7c/4) 

Y, = &((2 + a, n) - I?,(( 1 + a, R) 

Y, = 9,( (m + a) n) - Gz( (m - 1 + a) n), etc. 

Because of the independence of the increments in the Wiener process on 
disjoint intervals, the sequence { Y,} consists of pairwise independent 
Gaussian random variables, each with mean zero and variance rc, for 
m = 1, 2, 3 ,,.. . 

This construction was arranged so that the partial sums of the sequence 
{Y,) are 

Y,+ Y, + y*+ ... + Y,=(l/h)x((2m++)7r) for m = 1, 2, 3, . . . . 

Familiar theorems on the limits of sums of independent random 
variables (e.g., law of the iterated logarithm) show that, almost surely, the 
terms of the sequence (x((2m + f) a)} have infinitely many switches of sign 
as m -+ co. Moreover, since the solution curves x(t) are each continuous on 
0 < t < co (almost surely), then each x(t) must have infinitely many zeros 
on each right half-line [to < t < co). 

The simplicity of the zeros of x(t) has already been proved in 
Theorem 2. 1 
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It may be of interest to examine this lower estimate for E(Ii’) for par- 
ticular values of h > 0. For example, 

>0.57 for h = 1, 

and 

E(TjaO.42 for O<h< 1. 

But our formula shows only E(F) 2 0.89 as h -+ 0, rather than the correct 
deterministic value fd = n/2 t 1.57. 

We now demonstrate that the probability distribution 

P[P> T] for each positive T, 

has finite moments, and we estimate the first two moments E(p) and iE2(F) 
from above. 

THEOREM 4. Consider the scalar stochastic process x(t) satisfying the 
linear stochastic oscillator: 

jl+x=hlii(t) for t 20. 

from x(0) = 1, x?(O) = 0, with parameter h > 0. Let T> 0 be the first zero of 
x(t) on Ogt<co. 

Then the probability distribution of the random variable T satisfies 

, for each T> II, 

where the constant c(h) = 4 - Erf[( l/h) fi], so lim,,, c(h) = 0. In con- 
sequence, 

lP[~<co]=l, 

and every moment of T is finite, with the first two moments having the upper 
bounds: 

E(T)<n(l+6c(h)),<4x 

and 

E,( f’) < x2( 1 + 22 c(h)) ,< 127r2. 
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Proof. The solution of the stochastic differential equation is 

x(t)=cos t+hj)v(S)Cos(t-S)dS’ 

and again, as in the previous theorem, 

x(t) = cos t-h cos t iC,(f(t)) + h sin t iC2(g(t)) 

where 

f(t)=+(t-$sin2t), g(t)=t(t+tsin2t); 

and i+,(t) and CC*(t) are Brownian motions on 0 <t < co. 
Evaluate x(t) at the discrete instants t = mz for m = 1, 2, 3, . . . . to obtain 

x(mn) = (cos m7r)[l -h Gl(m7r/2)]. 

Hence 
x(mn) > 0 

if and only if 

G,(m7c/2) > l/h for m = 1, 3, 5, . . . 

3,(mn/2) < l/h for m=2,4,6 ,.... 

Using the fundamental formula for the Wiener measure of “an interval in 
52,” we have 

P[~,(71/2)> l/h] = [t-Erf(l/h)&] =c(h). 

Since F> 7c implies that x(71) > 0, we then obtain an upper bound for this 
probability 

P[ T-> 7t] < c(h). 

Furthermore, since the probability that a random sample function G,(t) 
will decrease over the interval 42 < t d 242 is just f, we note that 

P[@,(K/2) > l/h and 6,(27c/2) < l/h] <c(h). (4). 

Thus 

P[f>271]<c(h)*(4). 

Continuing this line of argument, we find 

ap[~>m~]<c(h).(1/2”-‘) for m = 1, 2, 3, . . . 
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or 

In order to estimate the probability that f exceeds an arbitrary positive 
number T > rr, we let [T/n] be the greatest integer not exceeding T/n, so 
[T/n] .rc< T. Then 

and 

From this upper estimate on the probability distribution for the random 
variable ? we easily conclude that 

limlP[~>T]=O or P[T<co]=l. 

Also, for each fixed T> 71, 

lim P’[p> T] =O. 
h-0 

Incidentally, this is a rather weak result in view of the computation for the 
deterministic case (h = 0) where x(t) = cos t has its first positive zero at 71/2. 

Since P[ f> T] satisfies a bound of exponential decay, we are assured 
that each moment of F is finite. We next indicate an elementary method for 
estimating these moments, and give details for the bounds for the expec- 
tation of f and of ( f)2; that is, we shall give upper bounds for E(f) and 
E,(f) = E( F2). 

Recall first that 

P[T>m7c]<2c(h)2-” for m = 1, 2, 3, . . . 

Then a trivial estimate for the mean of F is 

~(~)~~[O<T~n].~+P[n<~~2x].2n+P[2~<~~37~].3n+ ... 

so 

E(T)<7c 
[ 

1+24+24h) 22 .3+ . . . 1 
and 

E@)<47rc(h) 
[ 
;+;+;+;+ .*. 1 + [7c - 27x?(h)]. 
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The sum of the infinite series is easily calculated: 

“!, ;=4’(1)=2 where q(z) = f c=L. 
nz, 2” 2-2 

Thus we have the required estimate 

lE( p) < 8m(h) + n[ 1 - 2c(h)] = 67tc(h) + n. 

Since c(h) < f, we have the uniform estimate 

E(F)<4Z for all h > 0. 

In the same way we estimate the second moment of i! 

1+2c(h) ;+c(h) ;+ ... 1 
so 

E,(f) < 47&(h) 
[ 

2 32 
$+;+F+ ... 1 + [x2 - 271%(h)]. 

Then, using the infinite sum 

we have the estimate for the second moment 

E,(f) < ?Tn’[ 1 + 22c(h)] < 127r2. [ 

We designate the first zero of x(t) by f1 = f, and the subsequent zeros 
by f2, f,, f4, . . . . Since the zeros of x(t) are all simple (a.s.), these random 
variables f1 -C f2 < f, < . . . are all well defined. In the next corollary we 
improve our estimate for the expectation of fl, and then give similar 
estimates for the expectations of all the remaining zeros of x(t). 

COROLLARY. Consider the scalar stochastic process x(t) satisfying the 
linear stochastic oscillator 

+f+x=hhtG(t) for t 20, 

with x(0) = 1, $0) = 0. Let f, < f2 < i; < . . . be the successive positive 
zeros of x(t) on 0 < t < co. Then the expectation for the lth zero satisfies 

E( f,) < 2171 for each I= 1, 2, 3, . . . . 
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ProoJ The calculation in the prior theorem shows that 

P[F, >mn] <c(h)/2”.-’ for m = 1, 2, 3, . . . . 

But a standard result for any non-negative random variable X asserts [ 1 ] 

f P[X>m]<E(X)<l+ 5 P[X3m]. 
m=l IS=1 

Let X= F, /rr to obtain 

1 
; W’,)d 1 +c(h)[l +++a+:+ ...I = 1+24/z), 

so 

IE(Q<rr[1+2c(h)]<271. 

In order to consider the second zero p1 of x(t), we shift the time scale 
from t > 0 to s = t- f, (where f,(w) is constant for each sample path). 
Then write z(s) = x(s + ?,) and note that 

$+z(+h $ B(s), with z(0) = 0, $ (O)=i(P’,)#O, 

where B(s) = w(s + PI(o)) - w( F,(o)) is a new Brownian motion for s 2 0. 
Moreover, the first positive zero 3, of z(s) will yield the second zero 
f2 = T, + S, for x(t). 

In this spirit we proceed as before to write 

z(s) = i(0) sin s + (h cos S) B,(f(s)) - (h sin S) &g(s)) 

where B, and & are Brownian motions and 

f(s) = +(s - + sin 2s), g(s) = +(s + t sin 2s). 

We next examine z(s) at the discrete times s = rr, 271, . . . . mn, . . . to find 

z(m7r) = h( - 1)” B,(m7r/2) 

and thus 

z(m7c) < 0 
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if and only if 

B,(m71/2) > 0 for m = 1, 3, 5, . . . 

B,(mn/2) < 0 for m = 2,4, 6, . . . . 

These results do not depend on the value for i(0) # 0. 
From this calculation we note that 

z(n) < 0 if and only if B1(7c/2)>0 

so 

P[z(s) < 0 on 0 <s < mn] < P[z(x) < 0] < 4. 

Continue as before to compute 

P[z(s) < 0 on 0 < s < m7c] < l/2” for each m = 1, 2, 3, . . . . 

Therefore 

P[S, > mn] < l/2” for each m = 1, 2, 3, . . . . 

Now take the random variable X, = s,/z to compute 

rE(S,)<7C(l+$+++ . ..)=27L 

Therefore 

and an elementary repetition of this argument yields the desire result 

E(F,)<2h for each I= 1, 2, 3, . . . . 1 

The next theorem produces a positive lower bound for the probability 
distribution of p ( = T, ), and the proof involves more difficult calculations 
on Wiener measure, than for the previous results. 

THEOREM 5. Consider the scalar stochastic process x(t) satisfying the 
linear stochastic oscillator 

ji+x=hG(t) for t 20, 

from x(0) = 1, k(O) = 0, with parameter h > 0. Let f> 0 be the first positive 
zero of x(t) on 06 t< W. 

Then the probability distribution of the random variable p satisfies 

P[ p> T] > Ae-BT3, for all suitably large T> 0, 
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for each fixed h > 0. Further, for 0 < h < 1 and T> 2, we have explicit 
estimates with A(h) = e-‘lh2, B(h) = 2/h’. 

Proof The stochastic process [;{;i] solving 

from x(0) = 1, y(O) = 0, can also be understood as the solution of 

that is, x(t) = 1 + h J:, B(s) ds, y(t) = hB(t). Moreover, in the first instance 
the probability measure on [$:{I is induced from the measure P on the 
Brownian motion w(t) = [;;!;{I on Q x Q, whereas in the second instance 
of the trivial oscillator the measure P on 0 x Q is appropriate for the 
Brownian motion B(t) = @{:{I. The bijection of Q x 52 onto itself, that 
connects these Brownian motions, is given by the Cameron-Martin- 
Girsanov formula 

0 

w(fJ=B(t)-!bl [(-l,h)k(x(s),y(s),s)]ds 

where k(x, y, t) =x for this linear oscillator. 
Since we write w(t) = w,(t) and B(t) = B,(t) as scalar Brownian motions 

on Q = COIO, co), we can restrict attention to D whereon 

w(t) = B(t) +; J1: x(s) ds. 

Also the connection between the two measures P and H on Q is given 
by C41 

$ITkdB-$/Tk2ds dij. 
0 0 

Of course, x(t) = 1 + h J& B(s) ds, y(t) = hB(t), and k(x(t), y(t), t) = 
1 + h j& B(s) ds in the case in hand. We seek to estimate the integral over 
Wiener space 8, 

s 
dP 

[x(l)>OonO<r<T] 

= 
s [l+hI;,B(s)ds~OonO~t~T] 

kdiI-& j-‘k’dt 
0 
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Thus we seek a positive lower bound for the integral (denoted by I(/) 

The significance of this integral II/ is that it involves only the Brownian 
motion B(t) on 52, appropriate for the Wiener space probability measure P, 
but some care must be taken in the evaluation of the Ito stochastic 
integrals. 

First we simplify the estimation of II/ by restricting attention to the subset 
of 52 

This smaller subset of 52 has the probability P such that 

n $t2/8) T3h2~ 
1 

4 sup IB(t)l <c 1 +l as T-co. 
OGf<T 

This assertion follows from the familiar limit 

lim n c~*~‘~P[ sup IB(t)( < l] = 1. 
T-02 4 0<r<7- 

But for each 6 > 0 we know that 6B(t/d2) is also Brownian motion (for 
same p), and take 6 = l/Th and then 

P[ sup III(t)1 <l] = P[ sup I13(t/s2)I < 11 
0 d r Q T/S2 0it<7- 

= PC sup (f/S) IB(f)l < 11 
O<l<T 

= P[ sup IIS( <s-J. 
O<l<T 

Hence 

P sup II?(t), <& =P[ sup Ill(t)I < 11 
OSfST I 0 .S I C T’h* 
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and the prior assertion is verified. If we adopt this restriction on the sample 
paths B(t), namely, supoc,< T . . IB(t)l < l/T/z, then we can conclude that 

and the second factor can be replaced by 

4-E 
-e 

(-d/8) T3hz 
9 7t 

for each preassigned E > 0, 

and all sufficiently large T> T(E). 
In order to evaluate the stochastic integrals that appear in the preceding 

exponential we note the It8 formula for the differential 

d(j;B(s)d+B(r)=(j;B(s)ds)dB+B(t)(B(f)dt). 

This yields a formula of “integration by parts” 

5,’ (sd ) oT d B(s)ds dB=B(T). j B(s)ds-j B(t)*dt, 

and so 

S:(l+hj:’ ) B(s)ds dB=B(T)+hB(T) jTB(s)ds-h j%3(t)‘dr. 
0 0 

Once the integrals are deterministic (measure dr on R) then we can use the 
positivity (l/Th) - IB(t)l > 0 to obtain the estimates 

joT(l+h j;B(s)ds)dB<B(T)+hB(T).&<-&, 

and 

Therefore, using the condition supoG ,< T /B(t)1 < l/Th, we compute (for 
each preassigned E > 0) 

$>{exp($--$)].{qexp($ T3h2)} 
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when T+ 00. This yields the desired lower bound 

t+h>exp($i-& T-gh2T3) (when s=4---71). 

But the first zero f of x(t) must occur after time T, since we have x(t) = 
1 + h s:, B(s) ds > 0 on 0 d t < T. Therefore 

P[f>T]={ dP 
[x(r)>OonO<r67-] 

=II/(T)>exp 
-2 1 -7 T-g h2T3 
hZT 6h2 

. 

Set A(h) = e-l’@, B(h)= +2/h2, and then P’[f> T] >A(h) epBchjT3 for 
T>2, when we take O<h< 1. 1 

Remark. It is of interest to investigate the lower bound for P[ f> T] in 
the case of the nonlinear stochastic oscillator 

2 + k(x, i, t) = h3( t) on t>O. 

as specified in Section 2. For the general case where k(x, y, t) satisfies the 
standing conditions (i) and (ii), we have not been able to obtain satisfac- 
tory results. However, we can follow the argument of Theorem 5 quite 
directly for the case k(x, y, t) = k(x, t) + ,!Q, for constant /I and k(x, t) E C’ 
satisfying the usual linear growth condition 

Ikb, t)l d dt)(l+ I.4 )v for continuous r(t) on 0 < t < cc. 

Again we obtain, for each fixed h > 0, and then large T + co, P[ F> T] > 
A,e--B1T3, for positive constants A,, B,. 

4. THE STOCHASTIC WINDING ANGLE 

Once again consider the scalar stochastic oscillator 

it + k(x, i, t) = h3( t) on tb0, 

or the differential system 

[;I=[ -k&y, t)]d’+[i i][::] 

as in the opening paragraph of Section 2. Let (x(t), y(t)) on 0 < t < co be 
the stochastic solution initiating at (x0, y,) # (0,O) in the (x, y)-plane R2. 

505/71/2-8 
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From Theorem 2 we conclude that 

X(t)2+y(t)2>0 for all 0 < t < m (as.). 

In this situation we define the stochastic winding angle Q(t) to be the 
algebraic angle (in radians) from the initial vector (x,, yO) along the 
solution curve to the vector (x(t), y(t)), clockwise around the origin in the 
(x, y)-plane. Of course, Q(t) on 0 ,< t < cc is a scalar stochastic process, 
depending on the stochastic oscillator and on the initial state (x,, yO). 

In the case of a linear stochastic oscillator, say, 

.?++=hb(r) on t30 

with (x,, y,) = (1,0) as in Theorem 3, we conclude that 

P[ lim Q(t) = KJ] = 1; 
*-a 

compare results in [8]. It seems reasonable to conjecture that this result 
also holds in many nonlinear cases (say, k = x3). 

Furthermore, for the linear stochastic oscillator 

R+x=hc(t) on Odt<m 

with x(0) = 1, i(O) = 0 we would conjecture that the expectation 

lE(Q( t)) = t for each t 2 0. 

[Note this is different from the triviality arctan lE(y)/E(x) = t.] But it also 
seems likely that the deviations 1$2(t) - tl should satisfy 

lim sup/Q(t) - t( = cc (a.s.). 
,--to? 

We cannot demonstrate these conjectures, but we can provide a rather 
weak lower bound for Q(t), namely, 

lim inf ‘(‘) 7c 
I--rat, log% 

(a.s.). 

The proof of this lower estimate for Q(t) rests on the calculations 
obtained in Theorem 3 where we found 

(l/h)x((2m+$)a)= r,+ Y, + Y,+ .‘. + Y, for m =O, 1, 2, 3, . . . . 

with Y,, Yi, Y,, . . . mutually independent Gaussian random variables of 
mean zero and variance 71 (except for var Y, = n/4). 
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THEOREM 6. Consider the linear stochastic oscillator 

dx=ydt 

dy= -xdt+hdw on O<t<oo (h > 01, 

with solution x(t), y(t) from x(0) = 1, y(0) = 0, as before. Let Q(t) be the 
stochastic winding angle of this solution clockwise about the origin. Then 

jim infSZ(t)3f 
r-m logt 2 

(a.s.). 

Proof: Let Z(T) be the number of sign changes of x(t) in the open 
interval 0 < t < T, or equally well, the number of zeros of x(t) in (0, T). 
From the geometry of the dynamics in the (x, y)-plane, we note that the 
winding angle Q(t) satisfies 

71. [Z(t)- 11 +lr/2<52(t)<7c. [Z(t)+ 11, for all t > i: 

Let N, be the number of sign changes in the finite sequence So = Y,, 
S,=Yo+Y1,..., S,=Yo+Y,+ *.. + Y,, for each positive integer m > 1. 
Then trivially, from Theorem 3, 

Hence 

G?( (2m + f) n) > ?IN,,, - n/2 for m = 1, 2, 3, . . . . 

Now a celebrated result related to the Central Limit Theorem asserts 
E-21: 

Let fi, be the number of sign changes in the sequence $, = Y,, 
&=Y1+Y2,...,gm=Y1+...+Y,.Then 

lim inf 
IQ 1 

m-t* G&l82 
(a.s.) 

(where log m is the usual natural logarithm). But 

&,,<N,,&,,,+ 1 and so 
N 1 

lim inf 12 - 
m-roo logm 2 

(a.s.) 

From these inequalities it follows easily that 

lim inf QWm + t) n), 72 
logm “2 

(a.s.). 
f-a 
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It is now not too difficult to replace the integral variable m by the real 
variable t 2 0. From the geometry of the dynamics in the (x, y)-plane, we 
note that Q(t) tends to increase with time t, but it might occasionally 
decrease by at most n; that is, 

Q(t,) B Q(t,) -7-l for t,Zt,>O. 

For each given large t > 0 we can bracket t within an interval of 
duration 27~ 

where ~i = (2m + 4) rr and t, = [2(m + 1) + +] rc for a unique positive integer 
m. Then we compute the required limits, 

Hence we obtain the result 

lim inf s(‘)Lliminf D((zg;)rr)>t (a.s.), 
I-+00 logt m-5 

as required. a 
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