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Abstract

We discuss Fayet–Iliopoulos terms in the context of five-dimensional supergravity compactified on an orbifold. F
purpose we use our superfield formulation of the off-shell 5D SUGRA. In the case of tuned FI terms, contrary to other
we find BPS solutions which ensure thatN = 1 supersymmetry is unbroken also in warped geometries. As in the rigid
the FI terms induce odd masses for charged hypermultiplets, leading to the (de)localisation of the KK wave-functions
fix-point branes. In the case of ungauged U(1)R symmetry, we present also supersymmetric warped solutions in the pre
of non-trivial profiles of charged hyperscalars.
 2005 Elsevier B.V. Open access under CC BY license.
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1. Introduction

In this Letter we present a discussion of Fay
Iliopoulos terms within 5D supergravity compactifie
on theS1/Z2 orbifold. When FI terms where consid
ered first, in the context of 4D supersymmetric the
ries[1], they were seen as a means of breaking su
symmetry and/or gauge symmetry. Later, their utm
relevance for cosmology was also recognized, a
became clear that they could be at the origin of de
ter configurations, and more generally of inflationa
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scenarios[2]. While in global (4D) supersymmetri
theories the introduction of FI terms is rather straig
forward, it turns out that in supergravity this is not t
case. In fact, the compatibility of local supersymm
try and FI terms requires the U(1) gauge symme
in question to be anR-symmetry[3–5], and therefore
the gravitino has to be charged. In addition, they o
can be radiatively generated in the presence of a m
U(1)-gravitational anomaly.

In five-dimensional orbifolds the situation gets a
other twist. In the rigid case, the FI terms can
consistently introduced at the 4D fix-point branes,
unlike in the 4D case they can be tuned in such a w
that neither supersymmetry nor the U(1) gauge s
metry are broken[6–9]. As it was pointed out in[7],
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FI terms can be generated radiatively even in the c
that the mixed anomaly is absent, but turn out to be
the tuned type that we just mentioned. The effect
such tuned FI terms is to induce a stepwise VEV
the (odd) scalar component of the U(1) vector mu
plet, which leads to the localisation of zero-modes
charged hypermatter[8,9]. On the other hand, if thi
U(1) symmetry is part of a larger bulk gauge symm
try G, the VEV of the vector scalar will breakG in the
bulk while orbifolding breaks it at the boundary. Th
relevance of this forcalculable power-law unification
has been recently emphasized in[10].

A discussion of the embedding of (tuned) FI ter
in 5D orbifold supergravity was first given in Ref.[7],
where it was pointed out that they are associated w
a bulk Chern–Simons term with one U(1)FI gauge bo-
son and two graviphotons. In particular, the stren
of the FI terms is fixed by the strength of the stepw
coupling of the CS term. As in the rigid case, the tun
FI terms lead to a stepwise VEV of the vector sca
and therefore to the localisation of charged hyperm
tiplets. This analysis was recently extended in[11] to
orbifold SUGRA with warped geometry, i.e., these a
thors considered the possibility of gauging the U(1)R
symmetry. They came to the, in our view, incorre
conclusion that in the presence of a warped geo
try, unless hypermatter is introduced, SUSY is brok
by non-vanishing (tuned) FI terms.

We will here show that tuned FI terms do not le
to the breaking ofN = 1 supersymmetry, even in
warped geometry. In other words, we will see th
the BPS conditions have solutions in the presenc
tuned FI terms, even if we gauge the U(1)R symme-
try. For this reason we call this type of FI terms BP
FI terms. To obtain the BPS conditions, we use the
perfield approach to 5D supergravity, that we recen
have presented in[12] (see also the subsequent wo
[13]), based on the work of Fujita, Kugo and Oha
on off-shell 5D conformal SUGRA in component for
[14,15]. As we have already shown in[12], in this
formalism both the gauging of the U(1)R and the intro-
duction of the BPS FI terms, which are obtained by
introduction ofstepwise couplings, can be consistent
made without having to rely on the 4-form mechani
of Ref.[16]. In fact, the stepwise couplings introduc
directly in the superspace action give rise to the cor
brane-localized couplings upon suitable partial in
grations. In addition, the BPS conditions correspo
to the conditions of D-flatness and F-flatness, wh
as we will see are rather simple to write down with
the superfield formalism.

We consider here two different cases, namely, w
and without charged hypermultiplets, and in bo
cases we find SUSY vacua. While in absence of hy
multiplets we obtain a solution with a warp-factor
the Randall–Sundrum type[17] and a stepwise VEV
for the vector scalar, the inclusion of two bulk h
permultiplets with opposite U(1)FI charges allows fo
more general solutions. In particular, in the case
U(1)R is not gauged, we obtain warped solutions c
responding to the presence of negative brane tens
These are induced by non-vanishing profiles of
two even hyperscalars, which are localised near op
site branes.

2. BPS FI terms

Before we discuss the 5D orbifold SUGRA ca
let us shortly review the status of FI terms in t
rigid case. In 4D they are allowed (for Abelian gau
groups) and cause either the breaking of SUSY
of the corresponding U(1)FI gauge symmetry. In 5D
orbifolds, the situation is different[6–9] due to the ex-
istence of the 4D chiral superfieldΣ = 1

2(M + iAy)

+ · · · (we takee5
y = 1), which accompanies the 4

vector superfieldV . Indeed, the derivative∂yΣ can
cancel the FI terms localized at the fixed point bou
aries, in which case SUSY remains unbroken andM

gets a stepwise VEV. This cancellation takes o
place in case the FI terms in the two boundaries
tuned, having opposite signs and equal absolute va
at different branes. Using the superfield description
5D rigid supersymmetry[18–21], these FI terms ca
be written as

(1)LFI = −4
[
δ(y) − δ(y − πR)

] ∫
d4θ ξV .

We now make the observation that in the rigid case
(tuned) FI term can be rewritten as follows:

LFI = −2
∫

d4θ ξ
(
∂yε(y)

)
V

= 2
∫

d4θ ξε(y)
[
∂yV − (

Σ + Σ+)]
(2)= −2

∫
d4θ ξε(y)Vy,



F. Paccetti Correia et al. / Physics Letters B 613 (2005) 83–90 85

n,
e

ef-
of
.

to
e
the
the

the
s.

u-
s

,
e-
s
ell

ul-
ts

ors
ay
o.

s
of
,

on-

e
ss

eld,
so-

o-
et
,
is

ed,

een
where we introduced the gauge invariantVy ≡ Σ +
Σ+ − ∂yV . There is also a term in the Lagrangia
quadratic inVy , which is responsible for part of th
kinetic terms[18]:

(3)L⊃
∫

d4θ (Vy)
2.

This can be combined with Eq.(2) to get

(4)L⊃
∫

d4θ
(
Vy − ξε(y)

)2
.

From this expression it becomes clear that the only
fect of the FI terms is to shift the lowest component
Σ asM → M + ξε(y), which does not break SUSY
The U(1)FI is also unbroken sinceΣ is neutral under
this group.

2.1. 5D orbifold SUGRA and FI terms

In our study we will use our superfield approach
5D orbifold SUGRA[12]. For the sake of brevity, w
will here only recall the results we need and refer
reader to that work for more details. We assume in
following that the metric is of the warped type, i.e.,

(5)ds2 = e2σ(y)ηµν dxµ dxν − (
e5
y

)2
dy2,

where the fünfbein’s componente5
y can also bey-

dependent. Eventually, we will later on choose
gaugese5

y = e−2σ or e5
y = const for practical reason

Note that the warp factorσ(y) is not fixed a priori but
will be determined from the equations of motion.

The off-shell description of 5D supergravity co
pled tonV physical Abelian vector multiplets require
the introduction ofnV + 1 off-shell vector multiplets
V

I (I = 0, . . . , nV ), connected by constraints to be d
scribed below[14]. One of thenV + 1 gauge boson
will become the graviphoton. Each of the 5D off-sh
vector multiplets corresponds to a vector superfieldV I

and a chiral superfieldΣI of N = 1 SUSY:

V I = −θσµθ̄eσ AI
µ + θ2θ̄ e3σ/22iω̄2I

(6)− θ̄2θe3σ/22iω2I + 1

2
θ2θ̄2e2σ DI ,

ΣI = 1

2

(
e5
yM

I + iAI
y

) + θeσ/22
(
ie5

yω
1I + κMIψ1

y

)
(7)+ θ2eσ F I

Σ.

HereMI is the scalar component of the vector m
tiplet, AI and AI are the 4D and fifth componen
µ y
of the gauge boson, and the 2-component spin
(ω1I ,ω2I ) arise from the 5D gaugino, in the same w
as(ψ1

y ,ψ2
y ) from the 5th component of the gravitin

(The auxiliary fieldsFI
Σ andDI can also be written a

combinations of fields of the 5D off-shell SUGRA
Fujita, Kugo and Ohashi[12,15].) As we stated above
the components of the 5D vector multiplets are c
nected by two constraints, namely,

(8)N (M) = κ−2, NI (M)ωI = 0,

where thenorm function N (M) is a cubic function of
the vector scalars:

(9)N (M) = κcIJKMIMJ MK,

and thecIJK are symmetric real coefficients. (Th
gravity couplingκ is related to the 5D Planck ma
by κ = (M5)

−3/2.)
We must consider also another (even) superfi

Wy , which contains elements associated with the
called radion superfield. It is given by

(10)

Wy = e−σ e5
y + θe−σ/22κψ1

y + θ̄e−σ/22κψ̄1
y + · · · .

The gauge-invariant superfieldV5, that we introduced
above for the rigid case, becomes now

(11)V5 ≡ Σ + Σ+ − ∂yV

Wy

+ · · · ,
where the dots stay for terms involving odd comp
nents of the 5D Weyl multiplet which are here s
to zero. Note that theWy term in the denominator
which involves the 5th component of the gravitino,
necessary to ensure invariance ofV5 under local su-
persymmetry.

In terms of the superfields we have just introduc
the vector part of the Lagrangian reads[12],

LV = 1

4

∫
d2θ

(
−NIJ (Σ)WαIWJ

α

+ 1

12
NIJKD̄2(V IDα∂yV

J

− DαV I ∂yV
J
)
WK

α

)
+ h.c.

(12)−
∫

d4θ WyN (V5).

Note that here the norm functionN , which was earlier
defined as a cubic function of the vector scalarsMI ,
plays now the role of a prepotential, and is to be s
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as a function of its argument (for instance,N (V5) =
κcIJKVI

5VJ
5 VK

5 ).

We now argue that in the case of SUGRA, a te
similar to expression(2) is obtained with anorm-
function of the following form (proposed in[7])

κ−1N (M) = (
M0)3 − M0(M1)2

(13)+ 2κξε(y)
(
M0)2

M1,

where, to ensure thatN has even orbifold parity,M0

andM1 must have positive and negative parities,
spectively. It is not hard to see that the last term
the norm-function contributes to the Lagrangian a te
(see Eq.(12))

−
∫

d4θ WyN (V5)

(14)⊃ −2
(
κM0)2

∫
d4θ e5

ye
σ ξε(y)V1

5,

which indeed has the same form as the tuned FI t
in rigid SUSY but also takes into account the warp
geometry. One sees that here it is the vector multi
V

I=1 which gauges the U(1)FI symmetry, for which
there are FI terms. Due to its orbifold parity, brane
calized FI terms involvingV 0 are not possible.

In addition to the 5D multiplets that we present
already, one can introduce also bulk hypermultiple
both physical and compensator ones. Note that at l
one compensator hypermultiplet is required, to ge
sensible theory. In this section we will consider t
case with no physical hypermultiplets, and only o
compensator multiplet. The compensator hypermu
plet corresponds to a pair of chiral superfields(h,hc),
where we takeh to have positive orbifold parity,hc to
have negative. We have

h = e3σ/2κ−1 + θ2e5σ/2Fh,

(15)hc = θ2e5σ/2Fc
h .

We will gauge an U(1)R subgroup of the SU(2)R
by coupling the compensator hypermultiplet(h,hc) to
the V

0 vector multiplet with anodd gauge coupling
g0ε(y), as in [12]. The D-term Lagrangian does n
only arises from Eq.(12), but also has a contributio
from the compensator Lagrangian

Lcomp= −2
∫

d4θ Wy

(
h+e−g0ε(y)V 0

h

+ hc+eg0ε(y)V 0
hc

)

t

(16)

− 2

(∫
d2θ hc

(
∂y − g0ε(y)Σ0)h + h.c.

)
.

The total D-term Lagrangian is thus

LD = e4σ e5
y

[
−1

4
NIJ (M)DIDJ

(17)

− e−2σ e
y

5

2

(
∂ye

2σNI (M)
)
DI + M3

5g0ε(y)D0
]
.

As it was pointed out in[12], the BPS conditions
are that the F-terms and D-terms vanish. In particu
we must haveDI = 0. Now, it follows from the La-
grangian above that

(18)DI = N IJ
(
2M3

5g0ε(y)δ0
J − e−2σ e

y

5∂ye
2σNJ

)
,

and so the BPS conditionDI = 0 becomes

(19)∂y

(
e2σNJ

) = 2e2σ e5
yM

3
5ε(y)g0δ

0
J .

SinceN1 has negative parity, the BPS equation w
I = 1 is solved by

(20)N1 = 0 ⇒ −2M0M1 + 2κξε(y)
(
M0)2 = 0,

that is[12]

(21)M1 = κξε(y)M0.

The value ofM0 then follows readily fromN = κ−2,
being

(22)M0 = M
3/2
5

(
1+ (κξ)2)−1/3

.

Finally, the metric is obtained by solving the BP
equation withI = 0. In the gaugee5

y = e−2σ , we ob-
tain

(23)e2σN0 = t0 + 2g0M
3
5 |y|,

wheret0 is an integration constant. We get

(24)e2σ = M0

3M3
5

[
t0 + 2g0M

3
5 |y|].

If preferred, one can introduce a new coordinatez de-
fined bydz = e−2σ(y) dy. In terms of this variable the
metric becomes

ds2 = e2σ dx2 − dz2,

(25)with e2σ(z) = exp

(
2
g0M

0|z|
)

.

3
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One notices that sinceM0 decreases with increasingξ ,
a non-vanishing FI term has the effect of reducing
warping of the geometry.

It is clear from this discussion that the presence
the FI terms, even in a warped geometry, does not
to supersymmetry breaking, due to the fact that theodd
scalarM1 absorbs the FI term, just as in the case
rigid SUSY.1

One can consider the warped geometry without
SUGRA setting just by takingM0 and the warp-facto
as constant backgrounds. Then the solution forM1

still would be dictated from the condition of unbr
ken SUSY. However, without the SUGRA (which
gauged) the relations between the bulk cosmolog
constant and the brane tensions are assumed ad
Also, in the rigid limit there is no BPS equation whic
gives the solution for the warp-factor.

Before we close this section let us point out that
above results are robust against radiative correcti
In fact, the form of the tree-level FI term obtained fro
the norm function(13),

ξ(z) ≡ κξe−2σ ∂z

{
e2σ ε(z)

(
M0)2}

,

is compatible with the 1-loop result obtained in t
rigid SUSY case2

(26)

ξ1-loop(z) = Λ

16π2

∑
i

qimi

[(
δ(z) − δ(z − πR)

) + k
]
,

wherek ≡ ∂zσ . Indeed, in the rigid limit we have

ξ(z) → 2κξ
(
M0)2{

δ(z) − δ(z − πR) + ∂zσ
}
.

1 The authors of Ref.[11] obtain the opposite result. The point
that these authors introduce an odd scalar fieldφ to parametrise the
very special manifold defined byN (M) = κ−2. TheMJ are then
functions ofφ, but the relation betweenM1 and φ also involves
ε(y). This means that

∂yM1 = ∂M1

∂φ
∂yφ + ∂M1

∂ε
∂yε(y),

but in [11] the second term on the r.h.s. was neglected, e.g., in g
from the third equation in Eqs. (22) to the third equation in Eqs. (
of [11].

2 We use here the 3rd version of[22], in particular, its Eq. (3.12)
This version of[22] differs from previous ones notably in the use
a position-dependent cut-off. Theirξ1-loop(z) is obtained from ours
by multiplying (26) with a factor ofe2σ and usingmi = cik. The
last term in Eq.(26) differs by a factor of 2. To obtain Eq.(26) we
summed over a non-anomalous bulk field content.
.

Note the bulk term in(26), which comes from the non
trivial warp-factor. This term was neglected in the fin
result of[22], which led to the wrong conclusion th
SUSY is broken.

3. Charged hypermultiplets and localisation

In this section we discuss the consequences o
troducing hypermultiplets charged under the U(1)FI.
To be concrete let us consider in addition to the se
we had before a physical hypermultiplet(H,Hc) with
chargeq1 = 1 (we absorb the charge in the gauge c
pling g1). Here, the chiral superfieldH will be taken
to be even whileHc is odd. One consequence of th
is that the scalar component of the even compens
chiral superfield is now a function ofAH andAc

H , the
scalar components ofH andHc:

h = e3σ/2κ−1{1+ κ2(|AH |2 + ∣∣Ac
H

∣∣2)}1/2

(27)+ θ2e5σ/2Fh.

In addition there are new couplings involvingH and
Hc:

LH = 2
∫

d4θ Wy

(
H+e−g1V

1
H + Hc+eg1V

1
Hc

)
(28)− 2

∫
d2θ Hc

(
∂y − g1Σ

1)H + h.c.

This leads to a new set of BPS conditions. From
conditionsFc

h = 0= Fc
H = FH we get[

∂y − e5
y

2
ε(y)g0M

0
]

(29)× e3σ/2{1+ κ2(|AH |2 + ∣∣Ac
H

∣∣2)}1/2 = 0,

(30)

[
∂y − e5

y

2
g1M

1
]
e3σ/2AH = 0,

(31)

[
∂y + e5

y

2
g1M

1
]
e3σ/2Ac

H = 0,

while fromDI = 0 we obtain (instead of(19))

(32)∂ye
2σNJ = 2M3

5e2σ e5
yε(y)fJ (A),

where

(33)

fJ (A) ≡ gJ

{(
1+ κ2

(|AH |2 + ∣∣Ac
H

∣∣2)), J = 0,

ε(y)κ2
(∣∣Ac

H

∣∣2 − |AH |2), J = 1.
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Now, we can combine Eqs.(29)–(31) to get an
equation for the warp-factorσ(y),

(34)∂yσ = e5
y

ε(y)

3M3
5

W,

where the superpotential W is defined asW ≡
M3

5fI (A)MI . Note that this very same equation fo
lows by multiplication of Eq.(32) with MJ upon
the use of the constraintN = M3

5, showing that one
just needs to solve four of the above five equatio
This constraint defines a 1-dimensional scalar m
fold which can be parametrized by a single scalarφ. In
this way the scalarsMI become functions ofφ. To ob-
tain the equation of motion forφ we therefore have to
contract Eq.(32) with (∂MJ /∂φ). After some manip-
ulations, we get (using∂yNJ = ∂φNJ ∂yφ +∂εNJ ∂yε)

(35)gφφ∂yφ = −e5
yε(y)

∂W
∂φ

+ 1

2

∂MJ

∂φ

∂NJ

∂ ε

∣∣∣∣
φ

∂yε,

where we introduced the sigma-modelmetric, gφφ(φ),
defined by

(36)gφφ(φ) = −1

2
NIJ

∂MI

∂φ

∂MJ

∂φ
.

Note that Eq.(35)is independent of the way we choo
to parametrize the very special manifold. In particu
we can takeφ to be aneven scalar. This choice ha
the property that the second term at the r.h.s. of(35)
vanishes, and we get

(37)gφφ∂yφ = −e5
yε(y)

∂W
∂φ

.

3.1. Solutions of the BPS equations

Let us now discuss the solutions of this new se
BPS equations. The first observation we make is
by integrating Eq.(32)over the whole extra dimensio
we obtain the constraint

(38)
∮

dy e2σ e5
y

(|AH |2 − ∣∣Ac
H

∣∣2) = 0.

On the other hand, from Eq.(31) and the fact tha
Ac

H is odd, one gets thatAc
H = 0. Otherwise, Eq.(31)

would have singularities at the branes positions. It t
readily follows that alsoAH = 0, and we are back t
the case discussed in Section2 so thatM0 andM1 are
given by Eqs.(21) and (22), and the warp-factor is th
one given in that section.
Less trivial solutions, i.e., with non-vanishing h
perscalar VEVs, are possible if we add a sec
(bulk) hypermultiplet,(Ĥ , Ĥ c), with opposite charge
q1 = −1. While the odd hyperscalars are still vanis
ing, Ac = Âc = 0, the constraint(38) now gets re-
placed by

(39)
∮

dy e2σ e5
y

(|AH |2 − |ÂH |2) = 0,

which allows for non-trivial profiles forAH andÂH .
In this case, even ifg0 = 0, the metric will be warped
as follows from Eq.(29):

(40)e3σ = c0

1+ κ2(|AH |2 + |ÂH |2) .

Note that we can obtain some additional knowled
about the solutions to the BPS equations by integra
Eq. (32) for J = 1 over a small neighbourhood of th
fix-point branes. In this way we learn that

(41)M1 = ξε(y)

[1+ (κξ)2]1/3
+ ψ,

whereψ vanishes on the branes. This means that
value ofM1 near the branes is solely determined
the strength of the FI term.

Let us solve the BPS equations for the case w
g0 = 0 and non-trivial profiles of the even hype
scalars. To parametrize the 1-dimensional very spe
scalar manifold we introduce an even scalarφ in the
following way:

(42)M1(φ) = κ(ξ + φ)ε(y)M0(φ),

(43)M0(φ) = κ−1

[1+ (κξ)2 − (κφ)2]1/3
.

We will have to resort to some approximation. We th
assume thatκ|φ| � 1 and get:

(44)

∂yφ � e5
yε(y)g1

(|AH |2 − |ÂH |2)[1+ (κξ)2]2/3
,

while from Eq.(30) (and a similar equation for̂AH )
we obtain

|AH |2 � |a|2 exp
(
e5
yg1r(y)

)
,

(45)|ÂH |2 � |â|2 exp
(−e5

yg1r(y)
)
,

where we chose a gauge with constante5
y , and intro-

ducedr(y) ≡ ∫ y
dy M1. In the bulk (0< y < y ),
0 π
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from Eq. (44), we obtain the following equation fo
r(y):

(46)∂2
y r = d

dr

[|A|2 cosh
(
e5
yg1(r − r̄)

)]
,

where

|A|2 = 2|a||â|[1+ (κξ)2]1/3
,

r̄ = (
e5
yg1

)−1 ln |â/a|.
Eq. (46) has a rather simple interpretation as be

the equation of motion of a particle in a inverted co
potential. The FI terms set boundary conditions at
two branes,y = {0, yπ }, which correspond, in the me
chanical analog, to fixing the start and end velociti
∂yr(0) = ∂yr(yπ ) = ξ [1+ (κξ)2]−1/3. In addition, the
initial position isr(0) = 0, by definition. The fact tha
we have 3 boundary conditions implies that one of
parameters,|A| or r̄ , is fixed by the other, the valu
of the FI terms and the size of the extra dimensi
For special values of these parameters it is poss
to solve Eq.(46) analytically, and in this way to ob
tain the corresponding warp-factor. In particular,
2|A|cosh(g1e

5
y r̄/2) = |ξ |[1+ (κξ)2]−1/3 we get

exp

(
−1

2
e5
yg1

(
r(y) − r̄

))

(47)= 1+ tan
(

ξ
4|ξ | |A|g1e

5
y(yπ − 2y)

)
1− tan

(
ξ

4|ξ | |A|g1e5
y(yπ − 2y)

) ,

where we used

(48)

∣∣∣∣ âa
∣∣∣∣ = tan2

(
π

4
+ ξ

4|ξ | |A|g1e
5
yyπ

)
,

which follows from the boundary condition aty = yπ .
To obtain the warp-factor and hyperscalars profiles,
can use Eqs.(40) and (45). We illustrate our findings
in Fig. 1, with plots for a specific choice of the par
meters.

Perhaps the most salient feature of these soluti
and without the particular assumption we made abo
is the fact that they correspond to vacua with
samenegative tension in both branes. This can b
recognized from Eq.(34) by noting that∂yσ (0+) =
−∂yσ (y−

π ) > 0. To show this, we use again the m
chanical analog: since at the boundaries theveloci-
ties are equal, the potential must also be the sa
This implies thatr(y ) = 2r̄ . From Eq.(45) it follows
π
Fig. 1. Profiles of exp(3σ) and |AH |, |ÂH |, for g1ξ > 0 and the
parameters|â| = 1.36κ−1, |a| = 0.74κ−1.

then that |AH (0+)| = |ÂH (y−
π )| and |ÂH (0+)| =

|AH (y−
π )|, and therefore we obtain

∂yσ
(
0+) = −∂yσ

(
y−
π

)
= ξκ2(|â|2 − |a|2)e5

yg1

3

[
1+ (κξ)2]−1/3

(49)> 0.

The origin of these negative brane tensions is sim
to understand. In each brane, the FI terms induce
calised mass terms for both hyperscalars, which h
the same magnitude but opposite sign. The pos
mass repulses the corresponding hyperscalar from
brane while the hyperscalar with negative mass
attracted. This clearly has the net effect of prod
ing negative tensions at both branes. Because of
we expect the zero-mode of the graviton to be
calised not on (one of) the branes but in the bu
All these interesting features disappear for a van
ing FI term (ξ = 0) since in this case the solutions a
trivial: |AH | = |ÂH | = const, andφ = σ = 0. This
is straightforward to show for the special solutio
above, and can be proved in the general case u
Eqs.(30), (31) and (37)to show that in absence of F
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termsφ is a monotone function ofy. Since we mus
haveφ(0) = φ(πR) = 0 it follows thatφ(y) = 0.

3.2. (De)localisation of hypermatter

Let us now see the consequences of the step
VEV of M1. In the case of rigid SUSY one know
that a hypermultiplet charged under the U(1)FI can get
localised[8,9]. This is due to the fact that it gets a
odd mass. Here the same happens. The Lagrangia
cludes a term

(50)−2
∫

d2θ Hc

[
∂y − 1

2
g1e

5
yM

1(y)

]
H + h.c.

This shows that if there is a hyperscalar KK zero-mo
f0(y), it must satisfy

(51)

[
∂y − 1

2
e5
yg1M

1(y)

]
e3σ/2f0(y) = 0.

In the case that in the vacuum the physical hyp
scalars vanish,AH = 0 = ÂH , the solution is rathe
simple to obtain:

(52)f0 ∝ exp

[
κξ

g1

g0
− 1

]
3σ

2
.

For ξg1 = 0 the localisation is due only to the warp
geometry, while forξg1 �= 0 the FI terms induce a
additional amount of localisation in the same bra
or localize the hyperscalar towards the other fix-po
brane. Note that the best coordinate to evaluate thi
fect of (de)localisation isy, not z. In terms ofy the
kinetic term of the zero-mode is already canonica
normalized.

In the case with hyperscalars developing non-z
VEVs, the solution to Eq.(51) is just proportional to
those VEVs. In the example we studied above,
scalarAH is localised near one of the branes,ÂH near
the other. The same happens with the zero modes
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