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Abstract

We discuss Fayet—lliopoulos terms in the context of five-dimensional supergravity compactified on an orbifold. For this
purpose we use our superfield formulation of the off-shell 5D SUGRA. In the case of tuned FI terms, contrary to other claims,
we find BPS solutions which ensure thét= 1 supersymmetry is unbroken also in warped geometries. As in the rigid case,
the FI terms induce odd masses for charged hypermultiplets, leading to the (de)localisation of the KK wave-functions near the
fix-point branes. In the case of ungaugefl); symmetry, we present also supersymmetric warped solutions in the presence
of non-trivial profiles of charged hyperscalars.

0 2005 Elsevier B.V. Open access under CC BY license,

1. Introduction scenariog2]. While in global (4D) supersymmetric
theories the introduction of FI terms is rather straight-
In this Letter we present a discussion of Fayet— forward, it turns out that in supergravity this is not the
lliopoulos terms within 5D supergravity compactified case. In fact, the compatibility of local supersymme-
on theS1/Z, orbifold. When FI terms where consid- try and FI terms requires the U(1) gauge symmetry
ered first, in the context of 4D supersymmetric theo- in question to be aR-symmetry[3-5], and therefore
ries[1], they were seen as a means of breaking super-the gravitino has to be charged. In addition, they only
symmetry and/or gauge symmetry. Later, their utmost can be radiatively generated in the presence of a mixed
relevance for cosmology was also recognized, as it U(1)-gravitational anomaly.
became clear that they could be at the origin of de Sit-  In five-dimensional orbifolds the situation gets an-
ter configurations, and more generally of inflationary other twist. In the rigid case, the FI terms can be
consistently introduced at the 4D fix-point branes, but
T E-rail addresses: £ paccetii@thphys.uni-heidelberg de unlike in the 4D case they can be tuned in such a way
(F. Paccetti Correiajn.g.schmidt@thphys.uni-heidelberg.de that neither supersymmetry nor the U(1) gauge sym-
(M.G. Schmidt),zurab.tavartkiladze@cern.¢B. Tavartkiladze). metry are brokeri6—9]. As it was pointed out inf7],
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FI terms can be generated radiatively even in the caseto the conditions of D-flathess and F-flatness, which
that the mixed anomaly is absent, but turn out to be of as we will see are rather simple to write down within

the tuned type that we just mentioned. The effect of
such tuned FI terms is to induce a stepwise VEV of
the (odd) scalar component of the U(1) vector multi-
plet, which leads to the localisation of zero-modes of
charged hypermattgB,9]. On the other hand, if this
U(1) symmetry is part of a larger bulk gauge symme-
try G, the VEV of the vector scalar will breagk in the
bulk while orbifolding breaks it at the boundary. The
relevance of this focalculable power-law unification
has been recently emphasizedi0].

A discussion of the embedding of (tuned) FI terms
in 5D orbifold supergravity was first given in RéT],

the superfield formalism.

We consider here two different cases, namely, with
and without charged hypermultiplets, and in both
cases we find SUSY vacua. While in absence of hyper-
multiplets we obtain a solution with a warp-factor of
the Randall-Sundrum tydd 7] and a stepwise VEV
for the vector scalar, the inclusion of two bulk hy-
permultiplets with opposite (1)F charges allows for
more general solutions. In particular, in the case the
U(D)g is not gauged, we obtain warped solutions cor-
responding to the presence of negative brane tensions.
These are induced by non-vanishing profiles of the

where it was pointed out that they are associated with two even hyperscalars, which are localised near oppo-

a bulk Chern—Simons term with ong g gauge bo-
son and two graviphotons. In particular, the strength
of the FI terms is fixed by the strength of the stepwise
coupling of the CS term. As in the rigid case, the tuned
FI terms lead to a stepwise VEV of the vector scalar,
and therefore to the localisation of charged hypermul-
tiplets. This analysis was recently extendedlih] to
orbifold SUGRA with warped geometry, i.e., these au-
thors considered the possibility of gauging théllk
symmetry. They came to the, in our view, incorrect

conclusion that in the presence of a warped geome-

try, unless hypermatter is introduced, SUSY is broken
by non-vanishing (tuned) FI terms.

We will here show that tuned FI terms do not lead
to the breaking of\VV = 1 supersymmetry, even in a
warped geometry. In other words, we will see that

site branes.

2. BPSFI terms

Before we discuss the 5D orbifold SUGRA case
let us shortly review the status of Fl terms in the
rigid case. In 4D they are allowed (for Abelian gauge
groups) and cause either the breaking of SUSY or
of the corresponding (1) gauge symmetry. In 5D
orbifolds, the situation is differeri—9] due to the ex-
istence of the 4D chiral superfield = %(M +iAy)

+ --- (we takee> = 1), which accompanies the 4D
vector superfieldV. Indeed, the derivative, X' can
cancel the FI terms localized at the fixed point bound-
aries, in which case SUSY remains unbroken and

the BPS conditions have solutions in the presence of gets a stepwise VEV. This cancellation takes only

tuned FI terms, even if we gauge thezy symme-
try. For this reason we call this type of FI terms BPS

FI terms. To obtain the BPS conditions, we use the su-

perfield approach to 5D supergravity, that we recently
have presented if12] (see also the subsequent work
[13]), based on the work of Fujita, Kugo and Ohashi
on off-shell 5D conformal SUGRA in component form
[14,15] As we have already shown ii2], in this
formalism both the gauging of the(l) g and the intro-
duction of the BPS Fl terms, which are obtained by the
introduction ofstepwise couplings, can be consistently
made without having to rely on the 4-form mechanism
of Ref.[16]. In fact, the stepwise couplings introduced

directly in the superspace action give rise to the correct

brane-localized couplings upon suitable partial inte-
grations. In addition, the BPS conditions correspond

place in case the Fl terms in the two boundaries are
tuned, having opposite signs and equal absolute values
at different branes. Using the superfield description of
5D rigid supersymmetryl8-21] these FI terms can

be written as
/ dev. 1)

We now make the observation that in the rigid case the
(tuned) FI term can be rewritten as follows:

Le = —2/d49 £(dye(n)V

Lr=—4[8(y) —8(y — 7 R)]

= 2/d49$6(y)[3y" —(Z+27)]

= —2/d40§e(y)V , 2)



F. Paccetti Correia et al. / Physics Letters B 613 (2005) 83-90

where we introduced the gauge invariant= X' +
r+ —9,V. There is also a term in the Lagrangian,
quadratic inVy, which is responsible for part of the
kinetic termg18]:

L> / d*o (V,)2. 3)
This can be combined with EQR) to get
Lo /d“e (Vy —&e()>. (4)

From this expression it becomes clear that the only ef-
fect of the FI terms is to shift the lowest component of
Y asM — M + &¢(y), which does not break SUSY.
The U(1)f is also unbroken sinc& is neutral under
this group.

2.1. 5D orbifold SUGRA and FI terms

In our study we will use our superfield approach to
5D orbifold SUGRA[12]. For the sake of brevity, we
will here only recall the results we need and refer the
reader to that work for more details. We assume in the
following that the metric is of the warped type, i.e.,

®)

where the flinfbein’s componemﬁ can also bey-
dependent. Eventually, we will later on choose the
gaugeSei =e 2 or ej;’ = const for practical reasons.
Note that the warp factar (y) is not fixed a priori but
will be determined from the equations of motion.

The off-shell description of 5D supergravity cou-
pled tony physical Abelian vector multiplets requires
the introduction ofy + 1 off-shell vector multiplets,
V! (I =0,...,ny), connected by constraints to be de-
scribed below[14]. One of theny + 1 gauge bosons
will become the graviphoton. Each of the 5D off-shell
vector multiplets corresponds to a vector superfield
and a chiral superfield! of V' =1 SUSY:

VIi=—00"0e" Al +020e%/%2ip*!

ds? = ezg(y)mw dx*dx" — (e?)zdyz,

_ 1 .-
—0%0%/22i0?! + E929%2"1)’, (6)
1
I Sapl o ial 25(: 5 11 1,1
b)) =§(eyM —{-lAy)—i—Ge”/ 2(leya) +xM wy)
+6%° FL. )
Here M! is the scalar component of the vector mul-
tiplet, A/, and A] are the 4D and fifth components
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of the gauge boson, and the 2-component spinors
(0, 3" arise from the 5D gaugino, in the same way
as(yl, w}z,) from the 5th component of the gravitino.
(The auxiliary fieldsF£ and D’ can also be written as
combinations of fields of the 5D off-shell SUGRA of
Fujita, Kugo and Ohaslfii 2,15].) As we stated above,
the components of the 5D vector multiplets are con-
nected by two constraints, namely,

NM)=«k"2  Ni(M)o' =0, (8)

where thenorm function A/ (M) is a cubic function of
the vector scalars:

NM)=kerjgM M MX, (9)

and thec;yx are symmetric real coefficients. (The
gravity couplingx is related to the 5D Planck mass
by k = (Ms5)~3/2)

We must consider also another (even) superfield,
Wy, which contains elements associated with the so-
called radion superfield. It is given by

w, ef"ef + 9e7“/22/<wvl + éeig/ZZK&)l, + -

(10)
The gauge-invariant superfields, that we introduced
above for the rigid case, becomes now

T+Xt -9,V

5= ———— +,
Wy

where the dots stay for terms involving odd compo-
nents of the 5D Weyl multiplet which are here set
to zero. Note that th&V, term in the denominator,
which involves the 5th component of the gravitino, is
necessary to ensure invariancelaf under local su-
persymmetry.

In terms of the superfields we have just introduced,
the vector part of the Lagrangian reddg],

1
Ly = Z/ 29 (—N”(E)W“IWO{

(11)

1 -

+ =Nk D*(VID* 9, v/
12

—~ D“V’ayvf)wf> +h.c.

— f d*o Wy N (Vs). (12)

Note that here the norm functiod, which was earlier
defined as a cubic function of the vector scals#s,
plays now the role of a prepotential, and is to be seen
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as a function of its argument (for instang€(Vs) =
KC[]KVéngg).

We now argue that in the case of SUGRA, a term
similar to expressior(2) is obtained with anorm-
function of the following form (proposed if7])
kI (M) = (MO)° — MO(MY)?

+ 2ce(y) (M) MY, (13)

where, to ensure that’ has even orbifold parity)/°
and M! must have positive and negative parities, re-
spectively. It is not hard to see that the last term in
the norm-function contributes to the Lagrangian a term
(see Eq(12))

- f d*O Wy N (Vs)

D —Z(KMO)Z/d49 egeoée(y)Vé, (14)

which indeed has the same form as the tuned FI term

in rigid SUSY but also takes into account the warped
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- 2(/ d?0 h°(dy — goe () ZO)h + h.c.).

(16)
The total D-term Lagrangian is thus
1
Lp= e“ei[—ZN,,(M)D’D’
—20 )
e e
- T5(ayez"/\/I(M))D’ + Mggoe(y)Do}.
17)

As it was pointed out if12], the BPS conditions
are that the F-terms and D-terms vanish. In particular,
we must haveD! = 0. Now, it follows from the La-
grangian above that

D' = N1 (2M3goe ()89 — ™27 el 9,e® Nj), (18)
and so the BPS conditioP! = 0 becomes

dy (62"./\/'1) = ZezaefMge(y)go(S?. (19)
Since N1 has negative parity, the BPS equation with

geometry. One sees that here it is the vector multiplet I = 1 is solved by

V=1 which gauges the )r; symmetry, for which
there are FI terms. Due to its orbifold parity, brane lo-
calized FI terms involving/°? are not possible.

In addition to the 5D multiplets that we presented
already, one can introduce also bulk hypermultiplets,

both physical and compensator ones. Note that at Ieast.l.
one compensator hypermultiplet is required, to get a

sensible theory. In this section we will consider the
case with no physical hypermultiplets, and only one
compensator multiplet. The compensator hypermulti-
plet corresponds to a pair of chiral superfie{eish®),
where we také: to have positive orbifold parity;© to
have negative. We have

h= 3121 4 92,59/2F,
he = 62>/ Ff. (15)
We will gauge an W1) subgroup of the S2)g
by coupling the compensator hypermultiplet ) to
the VO vector multiplet with anodd gauge coupling,
goe(y), as in[12]. The D-term Lagrangian does not

only arises from Eq(12), but also has a contribution
from the compensator Lagrangian

Leomp= —2 / A% W, (h+ eV

+ hc+egoe(y)V0hc)

Ni=0 = —2M°M'+ 2te(y)(M?)? =0,  (20)
that is[12]
M =kte(y)MP. (21)

he value ofM© then follows readily from\V = x =2,
being

13 (22)
Finally, the metric is obtained by solving the BPS
equation with/ = 0. In the gaug@z;3 =e 2 we ob-
tain

MO = P (1+ (c8)?)

¢® No = to + 2goMZ|yl, (23)
whererg is an integration constant. We get
MO
20 3
e’ = ——=|to+ 2g0M . 24
3L+ 280M5ly] (24)

5

If preferred, one can introduce a new coordinatke-
fined bydz = e~ dy. In terms of this variable the
metric becomes

ds? = e% dx? — dz?,

2
with 2@ = exp<§goM°|z |> ) (25)
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One notices that sindd® decreases with increasigg Note the bulk term irff26), which comes from the non-
a non-vanishing FI term has the effect of reducing the trivial warp-factor. This term was neglected in the final
warping of the geometry. result of[22], which led to the wrong conclusion that
It is clear from this discussion that the presence of SUSY is broken.
the Fl terms, even in a warped geometry, does not lead
to supersymmetry breaking, due to the fact thatudiae ) o
scalarM? absorbs the FI term, just as in the case of 3 Charged hypermultipletsand localisation
rigid SUSY1
One can consider the warped geometry without the
SUGRA setting just by taking/® and the warp-factor
as constant backgrounds. Then the solution AbY

still would be dictated from the condition of unbro- char, _ 1 (we absorb the charge in the gauge cou-
ken SUSY. However, without the SUGRA (which is  Co 9%1 = . rge in the gaug
| pling g1). Here, the chiral superfieldl will be taken

gauged) the relations between the bulk cosmologica to be even whileH® is odd. One consequence of this

constant and the brane tensions are assumed ad hocl.s that the scalar component of the even compensator
Also, in the rigid limit there is no BPS equation which P P

gives the solution for the warp-factor chiral superfield is now a function o and.A¢,, the

Ce
Before we close this section let us point out that the scalar components df and H*:
i iati i _ C12\01/2

above results are robust against radiative gorrchons.h — 30/2, 1{1+I(2(|AH|2Jr \Am )} /
In fact, the form of the tree-level Fl term obtained from 2 502
the norm functior(13), +6%e>/%Fy. (27)
In addition there are new couplings involvirig and
HE:

Ly = 2/6149 W>,(H+e_g1VlH + Hc+eg1V1HC)

In this section we discuss the consequences of in-
troducing hypermultiplets charged under théllg.
To be concrete let us consider in addition to the setup
we had before a physical hypermultip{éf, H¢) with

£(2) =xEe™ 70, {e¥ () (MO)?),

is compatible with the 1-loop result obtained in the
rigid SUSY casé

- A 2 1

£1100P(z) = T&Tzz%mi[@(z) —8(z—R)) +k], - Z/d OH (9 —g1¥")H +hc.  (28)
(26) This leads to a new set of BPS conditions. From the
wherek = 9.0 Indeed, in the rigid limit we have conditionsFy’ = 0= Fj; = Fy we get
0\2 i >

£(2) — 26 (M®)*{8(z) — 8(z — wR) + 3,0 ). 5, — ?yé(y)gOMo}
P — ) ) o i 30/2 1 2 A 2 AS 2 1/2_0 29

1 The authors of Ref11] obtain the opposite result. The point is xe { tK (| ml™+ | H| )} =4 (29)
that these authors introduce an odd scalar fietd parametrise the r e
very special manifold defined by (M) = « 2. The M7 are then dy — _yg1M1i| > Ay =0, (30)
functions of¢, but the relation betweens! and ¢ also involves 2
e(y). This means that - &>
ayMlzwayqur?aye(y), L 2

. 7 -
butin[11] the second term on the r.h.s. was neglected, e.g., in going while from D” = 0 we obtain (instead dfL9))

from the third equation in Egs. (22) to the third equation in Egs. (23

of [11]. q gs. (22) q gs. (23) ayeZ(rN] — 2Mgezaej?€(y)f](./4), (32)
2 We use here the 3rd version[@P], in particular, its Eq. (3.12).

This version 0f22] differs from previous ones notably in the use of 2

a position-dependent cut-off. Theit'°0P(z) is obtained from ours (1 + K2(|AH 12+ |qu| )), J=0,

by multiplying (26) with a factor ofe?’ and usingn; = c;k. The fr(A) =gy 2 2 2

last term in Eq(26) differs by a factor of 2. To obtain E¢26) we ey« (|A;1| — | An| ), J=1

summed over a non-anomalous bulk field content. (33)

where
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Now, we can combine Eqg€29)—(31)to get an
equation for the warp-facter(y),

5 (y)
% 3M
where the superpotential W is defined asW =
M53f1(A)M’. Note that this very same equation fol-
lows by multiplication of Eq.(32) with M’ upon
the use of the constraidt” = M2, showing that one
just needs to solve four of the above five equations.
This constraint defines a 1-dimensional scalar mani-
fold which can be parametrized by a single scalan
this way the scalarsf’/ become functions af. To ob-
tain the equation of motion fap we therefore have to
contract Eq(32) with (3M 7 /a¢). After some manip-
ulations, we get (usingyN; = dg N0y ¢ + 3N dy€)
oW 1M’ AN, Ny

—e e( )—

3 2 dp e

where we introduced the sigma-modudtric, gs¢(¢),
defined by

: (34)

0yo =

g¢¢8y¢ 3)76, (35)
¢

N oM’ am’
8pp (@) =—Nij—— TSR
Note that Eq(35)is independent of the way we choose
to parametrize the very special manifold. In particular,
we can takep to be aneven scalar. This choice has
the property that the second term at the r.h.g(3&
vanishes, and we get

(36)

ow
—e E(y)— (37)

a¢
3.1. Solutions of the BPS equations

8pp0yd =

Let us now discuss the solutions of this new set of

F. Paccetti Correia et al. / Physics Letters B 613 (2005) 83-90

Less trivial solutions, i.e., with non-vanishing hy-
perscalar VEVs, are possible if we add a second
(bulk) hypermultiplet(H, H¢), with opposite charge,
g1 = —1. While the odd hyperscalars are still vanish-
ing, A° = A¢ = 0, the constrain({38) now gets re-
placed by

7§dy620 HEY IR

(39)

which allows for non-trivial profiles ford ; and Ay.
In this case, even i§o = 0, the metric will be warped,
as follows from Eq(29):

30 _ o

1+ 2 Aul?+ | An?)
Note that we can obtain some additional knowledge
about the solutions to the BPS equations by integrating
Eq. (32) for J/ = 1 over a small neighbourhood of the
fix-point branes. In this way we learn that

Ml §e(y)

[14 (k€)2]2/3
whereyr vanishes on the branes. This means that the
value of M1 near the branes is solely determined by
the strength of the FI term.

Let us solve the BPS equations for the case with
go = 0 and non-trivial profiles of the even hyper-
scalars. To parametrize the 1-dimensional very special
scalar manifold we introduce an even scagpain the
following way:

(40)

Q

+ v, (41)

M) = k(& + P)e(y)MO(g), (42)
-1
0 _ K
M@ =7 (k€)% — (kp)2]1/3 “3)

We will have to resort to some approximation. We thus

BPS equations. The first observation we make is that assume that|¢| < 1 and get:

by integrating Eq(32) over the whole extra dimension
we obtain the constraint

f dy e &3(| Anl? — | A3 |%) = (38)

On the other hand, from Eq31) and the fact that
A, is odd, one gets thad}, = 0. Otherwise, Eq(31)
would have singularities at the branes positions. It then
readily follows that alsedy = 0, and we are back to
the case discussed in Sect®go thatM® andM?* are
given by Eqs(21) and (22)and the warp-factor is the
one given in that section.

Oy =~ €§G(Y)gl(|AH 2~ An |2)[1 + (K§)2]2/37
(44)

while from Eq.(30) (and a similar equation fad )
we obtain

A%~ |al? exp(egglr(y)),
|An|? ~ |a]? exp(—edg1r (),

where we chose a gauge with constaih,t and intro-
ducedr(y) = [§ dy M™. In the bulk (0< y < y,),

(45)
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from Eq. (44), we obtain the following equation for

r(y):
d 1 630
o2 = L [|APRcost(eSa(r 7). o)
where
AR =2lallal[1+ w6,
— (e§g1)71|n|&/a|~ " 0 Y "

Eq. (46) has a rather simple interpretation as being
the equation of motion of a particle in a inverted cosh
potential. The FI terms set boundary conditions at the
two branesy = {0, y. }, which correspond, in the me-
chanical analog, to fixing the start and end velocities:
3yr(0) = dyr (yx) = &[1+ (k&)?1~Y/3. In addition, the
initial position isr(0) = 0, by definition. The fact that
we have 3 boundary conditions implies that one of the
parameters|A| or 7, is fixed by the other, the value
of the FI terms and the size of the extra dimension.
For special values of these parameters it is possible
to solve Eq.(46) analytically, and in this way to ob-
tain the corresponding warp-factor. In particular, for
2|A|coshig1e37/2) = |§[[1+ (€)]~/3 we get

0 Y Yr

Fig. 1. Profiles of ex(80) and | Ay, IAH|, for g1& > 0 and the
parametergd| = 1.36¢ 1, |a| = 0.74¢ 1.

1, ) then that | Ay (0)| = | An(y;)| and | Ay (0h)| =
exp| —Qeyé’l(”(ﬁ —7) | Ax (y;)], and therefore we obtain
1+ tan(z7 1 Alg1ed (3 — 2y)) ) dy0 (07) = —dy0 (v7)
= E N 5
L ezl Algaesm = 2) = &?(1al? ~ 1a?) 22 (14 w6)?]
where we used -0 3 (49)
4 —tar?( + i|A|g1e yn) (48) The origin of these negative brane tensions is simple
4 4§ | to understand. In each brane, the FI terms induce lo-
which follows from the boundary condition at= y, . calised mass terms for both hyperscalars, which have

To obtain the warp-factor and hyperscalars profiles, we the same magnitude but opposite sign. The positive
can use Eqq40) and (45) We illustrate our findings  mass repulses the corresponding hyperscalar from the
in Fig. 1, with plots for a specific choice of the para- brane while the hyperscalar with negative mass is
meters. attracted. This clearly has the net effect of produc-
Perhaps the most salient feature of these solutions,ing negative tensions at both branes. Because of this,
and without the particular assumption we made above, we expect the zero-mode of the graviton to be lo-
is the fact that they correspond to vacua with the calised not on (one of) the branes but in the bulk.
samenegative tension in both branes. This can be All these interesting features disappear for a vanish-

recognized from Eq(34) by noting thatd,o (0") = ing FI term € = 0) since in this case the solutions are
—dyo (y;) > 0. To show this, we use again the me- trivial: |[Ay| = |An| = const, andy = o = 0. This
chanical analog: since at the boundaries Yheci- is straightforward to show for the special solutions

ties are equal, the potential must also be the same. above, and can be proved in the general case using
This implies that (y,) = 2r. From Eq.(45)it follows Eqgs.(30), (31) and (37jo show that in absence of FI



90 F. Paccetti Correia et al. / Physics Letters B 613 (2005) 83-90

terms¢ is a monotone function of. Since we must [2] P. Binetruy, G.R. Dvali, Phys. Lett. B 388 (1996) 241, hep-
have¢ (0) = ¢ (s R) = 0 it follows that¢ (y) = 0. ph/9606342;
E. Halyo, Phys. Lett. B 387 (1996) 43, hep-ph/9606423.
[3] D.Z. Freedman, Phys. Rev. D 15 (1977) 1173;
A. Das, M. Fischler, M. Roek, Phys. Rev. D 16 (1977) 3427;
. B. de Wit, P. van Nieuwenhuizen, Nucl. Phys. B 139 (1978)
Let us now see the consequences of the stepwise  216.
VEV of M. In the case of rigid SUSY one knows  [4] R. Barbieri, S. Ferrara, D.V. Nanopoulos, K.S. Stelle, Phys.
that a hypermultiplet charged under thél)f, can get Lett. B 113 (1982) 219;
Iocalised[8,9]. This is due to the fact that it gets an S. Ferrara, L. Girardello, T. Kugo, A. Van Proeyen, Nucl. Phys.
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