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Abstract

Disruption of the extracellular matrix by proteases is

crucial for tumor invasion. Laminin-10 (Ln-10) has

previously been identified as a substrate for cell mi-

gration and cell adhesion, and is present in the basal

lamina (BL) of both normal prostate and prostate

cancer. Here, we investigate a role for membrane type

1 matrix metalloprotease (MT1-MMP) in modifying this

Ln-10–rich BL. MT1-MMP is a transmembrane mem-

ber of the MMP family that has been demonstrated to

be upregulated as prostate cancer progresses from

normal to prostate intraepithelial neoplasia to invasive

cancer, suggesting a role for MT1-MMP in the invasion

of prostate cancer. We show that MT1-MMP cleaves

the A5 chain of purified human Ln-10 from its 350-kDa

form into 310-, 190-, 160-, and 45-kDa fragments. This

cleavage causes a decrease in DU-145 prostate cancer

cell adhesion to purified Ln-10, and an increase in

transmigration of DU-145 cells through cleaved Ln-10.

We also show that prostate cancer cells expressing

membrane-boundMT1-MMP cleave theA5 chain of Ln-10.

Ln A5-chain cleavage is also observed in human pros-

tate cancer tissues. These findings suggest that pros-

tate cancer cells expressing high levels of MT1-MMP

have increased invasive potential through their ability

to degrade and invade Ln-10 barriers.
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Introduction

Remodeling of the extracellular matrix (ECM) through pro-

teolysis of ECM proteins is an important step in the meta-

static progression of cancer, allowing for invasion of

neoplastic cells through the basal lamina (BL) and into

the stroma [1]. Proteolysis creates paths for migration,

releases signaling molecules such as growth factors bound

in the ECM, and generates biologically active ECM frag-

ments [2–6]. Matrix metalloproteases (MMPs) are a family

of zinc-dependent enzymes that degrade components of the

ECM and have been implicated in the pathologic remodeling

of ECM in tumor invasion and metastasis [7–9]. Membrane-

type MMPs, of which there are currently six members, are not

secreted MMPs; they contain a transmembrane domain that

anchors them into the cell membrane. Membrane type 1 matrix

metalloprotease (MT1-MMP), a member of the transmembrane

metalloproteases, was first described as a 66-kDa activator of

pro-MMP-2 (gelatinase A) [10,11] but has also been found to

proteolytically cleave ECM proteins including gelatin, fibronec-

tin, K-elastin, vitronectin, collagens, and laminin-5 [10,12–17].

MT1-MMP is expressed in a wide variety of human tissues

under both normal and pathologic conditions, although its

expression is enhanced in tumor tissues [18]. MT1-MMP has

been demonstrated to be upregulated in the progression of

prostate cancer, and its expression is correlated with an

increase in the invasiveness of tumor cells [11,19–22], indi-

cating that it may have a role in the invasion and metastasis of

this cancer.

Laminins are ECM glycoprotein components of all BL. They

play essential roles in tissues such as providing the major

structure of BL [12,23], attaching cells to the ECM through

interactions with cell surface components [24], and interact-

ing with cellular receptors such as integrins to induce intra-

cellular signaling [25,26]. Each laminin consists of three

distinct chains (a, b, and g) arranged in a cruciform structure.

All laminin chains share structural similarity, each consisting of

small globular domains, epidermal growth factor (EGF)-like

repeats, and an a helical coiled coil in the long arm [27].

Being the major components of BL, laminins are structural

barriers that separate connective tissues from epithelia and

must be penetrated by tumor cells during invasion and metas-

tasis. This occurs through proteolytic degradation of the BL and
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mobilization of tumor cells through the degraded BL. Some

laminins have previously been shown to be proteolytically

processed [28–32], which may aid in this mobilization.

We have previously shown that MT1-MMP can cleave the

human Ln-5 b3 chain [17]. Cleavage of the b3 chain resulted

in increased migration of prostate cancer cells. However,

although Ln-5 is expressed in normal prostate and focally in

prostate intraepithelial neoplasia (PIN), its expression is lost

in prostate cancer [33], meaning that Ln-5 cleavage in

prostate cancer is involved only in the initial invasion of

neoplastic cells from the PIN lesion. Prostate cancer is sur-

rounded by a BL composed mainly of laminin-10, laminin-2,

type IV collagen, and entactin [34]. In order for prostate

cancer to invade the stroma and intravasate into the vascu-

lature, it must move through this Ln-10–rich BL either by

proteolysis or by ameboid movement [35]. Ln-10 (a5b1g1)
and Ln-11 (a5b2g1) have been previously identified as sub-

strates for cell migration and cell adhesion [36]. Ln-10 binds

the a3b1, a6b1, a6b4 [37], and avb3 [38] integrins and is the

most widely expressed laminin, being expressed in the

prostate, skin, placenta, kidney, pancreas, heart, and lungs

[33,36,39]. Here we demonstrate, for the first time, that MT1-

MMP can cleave purified human Ln-10 a5 chain, and that

this cleavage causes a decrease in adhesion to cleaved

Ln-10 and an increase in prostate cell transmigration and

linear migration through processed Ln-10. We also demon-

strate that this cleavage occurs in vivo in human prostate

cancer. These data suggest that the MT1-MMP cleavage

and induction of migration on Ln-10 will be of importance not

only to prostate cancer but to other cancers where epithelial

cells contact a Ln-10–rich BL and will be of importance to

other cancers regarding intravasation through blood ves-

sels, which are known to express high levels of the laminin

a5 chain.

Materials and Methods

Cell Culture and Reagents

The human prostate cancer cell lines DU-145 and PC3-N

(variant of PC3) and the human lung cancer cell line A549

were maintained in Dulbecco’s modified Eagle’s medium

(Invitrogen Life Technologies, Carlsbad, CA) supplemented

with 10% fetal bovine serum (JRH Biosciences, Lenexa, KS),

penicillin (100 U/ml; Invitrogen Life Technologies), strepto-

mycin (100 mg/ml; Invitrogen Life Technologies), and 0.2 mM

L-glutamine (Invitrogen Life Technologies). All cells were

maintained at 37jC in 5% CO2 and passaged with trypsin/

EDTA (Invitrogen Life Technologies) when confluent. Re-

combinant human MT1-MMP catalytic domain, polyclonal

MT1-MMP antibody (AB815), was obtained from Chemicon

(Temecula, CA). Rabbit polyclonal antibodies (Ab470) raised

against the synthetic peptide RECPYAIREGNEK derived

from the protein sequence of MT1-MMP were obtained from

Dr. Stetler-Stevenson (NCI, Bethesda, MD). Laminin-10/11

a5 chain antibody, 15H5, was purified as described previ-

ously [40], and 4C7 was a gift from Dr. Eva Engvall (The

Burnham Institute, La Jolla, CA).

Immunohistochemistry

For detection of Ln-10, frozen prostate tissue sections

(3 mm) were placed on positively charged glass slides, fixed

in acetone for 5 minutes, and incubated with primary anti-

body in PBS for 30 minutes at room temperature. Antibody

detection was performed by incubating slides with fluores-

cent-labeled secondary antibodies (Alexa 485 and 565;

Molecular Probes, Eugene, OR). For detection of MT1-

MMP, slides were fixed in 2% formaldehyde for 7 minutes,

50 mM NH4Cl for 5 minutes, and 0.2% Triton X-100 for

3 minutes. Slides were analyzed on a Zeiss LSM 410 UV

(Carl Zeiss, Oberkochen, Germany) dual-laser confocal

microscope using the argon/krypton ion laser operating at

488 and 568 nm. Tissue sections were also stained with

hematoxylin and eosin (H&E) to identify tissue structures.

Purification of Human Ln-10 from A549 Serum-Free

Conditioned Medium (CM)

Human Ln-10 was purified as described previously [40].

Briefly, the human lung carcinoma cell line A549 was grown

in 175-cm2 culture flasks. After the cells reached confluence,

the CM were harvested. Endogenous protease activity was

minimized by the addition of 5 mM EDTA, 50 mM phenyl-

methysulfonyl floride, and 50 mM N-ethylmaleimide. The

A549 CM was passed through a 4C7-Sepharose CL-4B

affinity column prepared by coupling the anti–Ln-10 a5 chain

monoclonal antibody 4C7 to cyanogen-activated Sepharose

CL-4B (Amersham Biosciences, Piscataway, NJ). Ln-10 was

eluted from the affinity column with 0.1 M glycine (pH 2.7)

and neutralized by addition of Tris–HCl (pH 8.0). The protein

concentration was determined with Advanced Protein Assay

Reagent (Cytoskeleton, Inc., Denver, CO).

Cleavage of Ln-10 by MT1-MMP

Purified Ln-10 was adsorbed and dried onto a 96-well

plate well and incubated with recombinant catalytic domain

of MT1-MMP (from 0.034 to 2.1 nmol) for 6 to 18 hours at

37jC in 50 mM Tris, pH 7.5, 0.005% Brij-35, and 10 mM

CaCl2 as described previously for Ln-5 [16,17]. After incuba-

tion, each mixture was solubilized off the plate with a sample

buffer and electrophoresed on a 4% to 10% sodium dodecyl

sulfate polyacrylamide gel electrophoresis (SDS-PAGE)

gradient under reducing conditions. Gels were analyzed

by either silver staining method, Coomassie blue staining

method, orWestern analysis as described previously [41] with

mouse monoclonal antibody 15H5 to the a5 chain of Ln-10.

Mass Spectrometry Analysis of Cleaved Fragments

Cleaved Ln-10 samples were separated by SDS-PAGE.

After staining with Biosafe Coomassie Brilliant Blue (Bio-

Rad, Hercules, CA), bands were excised and identified by

mass spectrometry analysis as described previously [17]

using the Proteomics Core facility of the Southwest Environ-

mental Health Sciences Center at the University of Arizona.

Briefly, the protein bands were excised, cut into small pieces

(1 � 1 mm), and subjected to in-gel digestion using tryp-

sin or chymotrypsin. The extracted peptides after digestion

were analysed by liquid chromatography tandem mass
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spectrometry using a quadropole ion trap Finnigan LCQ

class mass spectrometer equipped with a Michrom (Auburn,

CA) MAGIC 2002 high-performance liquid chromatography

and a nanoelectrospray ionization source (University of

Washington, Seattle, WA). The peptides were eluted from

a pulled tip capillary column packed with Vydac (Hesperia,

CA) C18 material. The gradient was from 0% to 65% solvent

B (98% methanol/2% water/0.5% formic acid/0.01% tri-

flouroacetic acid) over 60 minutes at a flow rate of 200 to

300 nl/min. Tandem mass spectrometry spectra of the

peptides were analyzed with the SEQUEST program (Turbo

Sequest) to assign peptide sequence to the spectra.

SEQUEST analyses were performed against the publicly

available nonredundant database.

Adhesion Assays

Ln-10 (1 mg) was adsorbed and dried onto a 96-well plate

well and treated with MT1-MMP (2 mg/ml) for 18 hours at

37jC. Wells were then blocked with 1% BSA in PBS for

30 minutes. DU-145 cells (0.5 � 105) in serum-free me-

dium (SFM) were then added to the wells and adhesion

at 20-minute intervals was determined. Briefly, unattached

cells were removed by aspiration and washing with PBS, and

attached cells were stained for 10 minutes with 5% crystal

violet/20% methanol. Fixed cells were then washed with

ddH2O until no more dye was leached. After air drying, dye

was eluted with 0.1 M citric acid and absorbance was read

on a plate reader at 570 nm. By quantifying the absorbance,

the percentage of attached cells was calculated.

Linear Migration and Transmigration Assays

The migration assays were performed as described pre-

viously [42]. In brief, Teflon-printed microscope slides (CSM,

Inc., Phoenix, AZ) subdivided into 10 wells were precoated

overnight with purified human Ln-10 (1 mg/well) at 4jC. Five
wells were used as control and the other five wells were

treated with MT1-MMP (2mg/ml) for 16 hours in a humidified

incubator at 37jC and 5% CO2. After incubation, the excess

liquid in the wells was removed, and the wells were rinsed

with PBS and covered with 70 ml of SFM. The cell sedimen-

tation manifold was placed on the slide, and 1 ml of cell

suspension (2000 cells) was placed in each cylinder and

incubated at 37jC for 4 hours in 5% CO2, which allows the

cells to attach before removal of the manifold. After the

manifold was removed, the initial sedimentation area was

recorded using an Axiocam camera scanner with CCD

sensor, attached to an inverted microscope (Carl Zeiss,

Göttingen, Germany). Cell migration area was quantified at

each time point with an image analysis system (Axioplan 2;

Carl Zeiss). The initial area of sedimentation was used as a

migration reference point and the migration area was nor-

malized to this initial area. Migration was measured in

microns. Each experiment was performed at least three

times in triplicate. Transmigration assays were preformed

as described previously [43], with modifications. Briefly,

0.8-mm filter bottom cell culture inserts (Corning-Costar,

Action, MA) were coated with 1 mg of purified Ln-10 treated

with either 2 mg/ml MT1-MMP or PBS. DU-145 cells were

then seeded inside the insert and transmigration through

the insert was quantified by crystal violet–methanol staining

of migrated cells. One group of DU-145 cells used in both

migration assays were pretreated for 2 days with 10 mM
human antisense oligonucleotide or scrambled antisense se-

quences against human MT1-MMP as described previously

[16]. These cells were then seeded in either the migration

assay manifold or the cell culture inserts, with the antisense

oligonucleotides (10 mM) added to the medium for the linear

migration assays and to both the upper and lower chambers

of the tissue culture plate for the transmigration assays.

Cell-Mediated Cleavage of Ln-10

Ln-10 (2 mg) was coated on a six-well plate overnight

at 4jC. Cells were plated on the precoated wells (0.5 �
106 cells/well) for 48 hours. CM were collected and precipi-

tated with trichloroacetic acid. After washing the pellet, the

protein was resuspended in sample buffer for Western

analysis. Cells were removed by addition of 1 ml of 5 mM

EDTA for 30 minutes. Wells were washed three times with

PBS and collected cells were lysed with RIPA buffer. The

sample buffer (50 ml) was added to the wells to solubilize the

coated Ln-10. Samples were separated by SDS-PAGE and

immunoblotted with 15H5 (matrix samples, CM, and cell

lysates) and AB815 (cell lysates).

Results

Human MT1-MMP Cleaves Purified Human Laminin-10

To investigate whether MT1-MMP could cleave Ln-10,

2 mg of Ln-10 was adsorbed onto a 96-well tissue culture

plates and incubatedwith 2.1 nmol of recombinantMT1-MMP

or APMA-activated MMP-2 for 16 hours. Samples were solu-

bilized and electrophoresed on 6% SDS-PAGE under reduc-

ing conditions and the gel was silver-stained (Figure 1A). In

all samples, the 350-kDa a5, 220-kDa b1, and 210-kDa

g1 chains were visualized. In the MT1-MMP–treated sample,

we observed a decrease in the 350-kDa a5 band with a

concurrent appearance of a 310-kDa band, suggesting that

MT1-MMP is capable of cleaving the a5 chain of Ln-10.

We did not observe the 310-kDa band in MMP-2–treated

Ln-10, indicating that this cleavage is specific to MT1-MMP.

Minimal endogenous cleavage of Ln-10 to its 310-kDa form

occurs before the purification process and can be seen as a

faint band in the stained gels. This can be explained by the

fact that the cells generating Ln-10, A549, express detectable

levels of MT1-MMP [44]. In order to fully characterize the

cleavage products, we analyzed cleaved Ln-10 samples on a

4% to 10% gradient gel (Figure 1B) followed by Western

blotting. In addition to the 310-kDa product, we could detect

cleavage productswith apparentMWof 190, 160, and 45 kDa.

In order to identify the cleaved fragments of Ln-10, we

utilized a proteomics approach. Cleaved Ln-10 was run on

an SDS-PAGE gel and stained with Coomassie blue. Each

band that stained with Coomassie blue was excised, di-

gested with trypsin, and subjected to mass spectrometry.

Protein bands detected by Western blotting (Figure 1B) with
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apparent MW of 100 and 80 kDa, and faint bands between

80 and 45 kDa were not visualized by Coomassie blue stain-

ing (data not shown) and were therefore not analyzed by mass

spectrometry. We found that the 310-, 190-, 160-, and 45-kDa

bands were all different cleavage products of the 350-kDa a5

chain. Trypsin digestion of the 310-kDa band gave 25 unique

peptide sequences that were identical to the expected amino

acid sequence of the a5 chain. The 45-kDa band gave five

different peptide sequences consistent with thea5 chain and all

five of these peptides clustered at the N-terminus (Figure 1C),

suggesting that cleavage occurs near the N-terminal region

to give rise to the 45-kDa product. Trypsin digestion of the 190-

and 160-kDa bands (Figure 1D) yielded 15 and 10 different

peptide sequences, respectively, all of which are found in the

a5 chain. Chymotrypsin digestion was also performed on the

310-, 190-, and 160-kDa protein bands, all of which were

again identified as the a5 chain of Ln-10 (data not shown).

An inspection of the amino acid sequence of the a5 chain

indicated five distinct potential MT1-MMP consensus cleav-

age sites. MT1-MMP has previously been demonstrated to

cleave at PXX#L (ideally PXP#L or PXG#L) sites [45,46]. At

P319 (GenBank accession no. AF443072) [47] in the

a5 chain, there is a PFR#L consensus cleavage site that

would give rise to cleavage products with theoretical MW of

329 and 31.4 kDa, which corresponds to the apparentMW of

the 310- and 45-kDa cleavage products we observed, ac-

counting for posttranslation modifications, such as glyco-

sylation of the protein (Figure 1C). It is important to note,

however, that cleaving at this consensus cleavage site will

not give rise to a fragment containing the epitope recognized

by the antibody 15H5. We therefore propose that cleavage

also occurs at a second site to give rise to fragments of

similar molecular weight as those that arise from the cleav-

age at the PFRL site. We propose that this site is at D440 in

a CED#L consensus cleavage site. This second cleavage

site explains why the 15H5 antibody is able to detect both

the 45-kDa fragment and the 310-kDa fragment because

the antibody epitope is between these two consensus cleav-

age sites. Another consensus cleavage site is P1243PG#L
and would give rise to a product with a predicted MW of

230 kDa, which corresponds to the apparent MW of the

190-kDa cleavage product. Finally, a fourth consensus

cleavage site at P2000SY#L would yield a product with a

predicted MW of 180 kDa, corresponding to the 160-kDa

band we observed.

MT1-MMP Functions at Physiologically Relevant

Substrate: Enzyme Ratios

We determined whether the cleavage of the a5 chain

could occur at physiologically relevant substrate/enzyme

ratios. For this experiment, 2 mg of Ln-10 was adsorbed onto

a 96-well tissue culture plate and incubated for 6 hours with

decreasing concentrations of MT1-MMP (2.1–0 nmol). Sam-

ples were then separated by 4% to 10% gradient SDS-PAGE

Figure 1. MT1-MMP cleavage of Ln-10 a5 chain and identification of cleavage fragments. (A) Silver-stained gel of Ln-10 treated with MMPs. The figure shows Ln-10

treatedwith eitherMT1-MMPor APMA-activatedMMP-2.MWvalues of protein bands are indicated. (B)Western blot of Ln-10 cleavage.MWand corresponding protein

identification are indicated. Protein bands at 100 and 80 kDa were not detected with methods other than Western blotting. (C) Identification of cleavage products by

mass spectrometry as the a5 chain. Potential glycosylation sites are identified in gray. Structural representation of the a5 chain with potential consensus cleavage site

to yield 310- and 45-kDa products is indicated. The 25 peptides identified in the 310-kDa band and the five peptides identified in the 45-kDa band are represented by

peptide coverage of full-length a5 chain. (D) Structural representation of a5 chain consensus cleavage sites that could give rise to 190- and 160-kDa products. Peptide

coverage of the 25 and 29 peptides identified in the 190- and 160-kDa bands, respectively, by mass spectrometry is represented.
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and Western blotted using the 15H5 antibody. The results

(Figure 2) indicate that even with 0.05 mol MT1-MMP/mol

Ln-10, there is an increase in the 310- and 45-kDa cleaved

products. The cleaved products continue to increase with

increasing amounts of enzyme. Also, with increasing en-

zyme, the 190-kDa band appears to decrease at 0.01 mol

enzyme/mol substrate, although the 160-kDa band begins

to increase at this same substrate/enzyme ratio.

Decreased Adhesion of Prostate Cancer Cells to

Cleaved Ln-10

Because intact laminins are known to interact with adhe-

sion molecules such as integrins, we examined whether

cleaving Ln-10 with MT1-MMP would have an effect on

adhesive interactions. Ln-10 was coated onto a 96-well plate

and cleaved with 2.1 nmol of MT1-MMP for 16 hours. Under

these conditions, 100% of the Ln-10 is cleaved (Figure 2).

ELISA for Ln-10 was performed using the 4C7 antibody to

ensure that there was no significant difference in the amount

of Ln-10 remaining coated on the plate with MT1-MMP

treatment compared to untreated Ln-10 (data not shown).

DU-145 cells, which express the adhesion receptors for

Ln-10 (i.e., a3b1) but do not make the ligand Ln-10, were

then seeded on either cleaved or uncleaved Ln-10 for up to

1 hour. The number of adherent cells was quantified by

crystal violet absorbance. The results (Figure 3) indicate that

there is a 20% decrease in adhesion of DU-145 cells to

cleaved Ln-10. This indicates that cleavage of Ln-10 by MT1-

MMP affects the laminin protein such that cell adhesion is no

longer as effective.

Cleavage of Ln-10 a5 Chain Promotes Migration of Prostate

Cancer Cells

To examine the potential role of MT1-MMP–cleaved

Ln-10 in the migration of DU-145 prostate carcinoma cells,

we used linear migration and transwell migration assays. We

found that at 24 hours, the DU-145 cells were about two-fold

more migratory on cleaved Ln-10 than on uncleaved Ln-10

(Figure 4, A and B). To determine whether the increase in

transmigration of DU-145 cells on cleaved Ln-10 was due to

the cleavage of the a5 chain by MT1-MMP and not due to any

other MT1-MMP effects, we used antisense oligonucleotides

for MT1-MMP as described previously [16]. We have previ-

ously shown that cells treated with antisense oligonucleo-

tides inhibit cell surface MT1-MMP expression by 66% in

DU145 cells, whereas scrambled oligonucleotide had no

effect [17]. MT1-MMP expression in cells treated with anti-

sense is also decreased in these experiments (Figure 5A).

Migration of DU-145 cells was not affected by the scrambled

oligo, but the antisense oligonucleotide did demonstrate

effects onmigration (Figure 4,A and B). Both linear migration

and transmigration on intact Ln-10 were reduced by approx-

imately 70% to 80%, whereas only a 30% to 40% decrease

Figure 3. Cleavage of Ln-10 results in decreased adhesion of prostate

cancer cells. Adhesion assay of DU-145 cells to Ln-10 and Ln-10 treated with

MT1-MMP at indicated timepoints. (x) MT1-MMP–cleaved Ln-10. (n)

Uncleaved Ln-10. Results are representative of three experiments performed

in triplicate. Error bars represent the standard deviation of the representative

experiment. P < .05 at all time points.

Figure 2. MT1-MMP cleavage of Ln-10 occurs at physiologically relevant

substrate/enzyme ratios. Western blot of purified Ln-10 treated with

decreasing amounts of MT1-MMP. Indicated is the mole of MT1-MMP per

mole of Ln-10, and MW values of each identified protein band. Results are

representative of three experiments.

Figure 4. Ln-10 cleavage increases migration and invasion of prostate

cancer cells. (A) Migration of cells on Ln-10–coated microscope slide. (B)

Invasion of cells through Ln-10–coated transwell cell insert chambers coated

with Ln-10 at indicated time points. Groups are Ln-10, cleaved Ln-10

(cLn-10), Ln-10 with cells treated with antisense oligonucleotides (AS), and

Ln-10 with cells treated with scrambled oligonucleotide (sc-AS). Results are

representative of three experiments done in triplicate. Error bars represent

standard deviation of one experiment. *P < .05.
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was observed on cleaved Ln-10 in the presence of the MT1-

MMP antisense oligonucleotides. This demonstrates that

cleavage of Ln-10 allows for increased cell motility regard-

less of MT1-MMP status. Blocking MT1-MMP inhibits cell

motility on intact Ln-10. This indicates a role for MT1-MMP

in cell motility on Ln-10–coated surfaces. The antisense-

treated prostate cancer cells were still able to migrate on

cleaved Ln-10 (although to a lesser extent than untreated

cells). This indicates that cleaving Ln-10 was the major

contributing factor to the increased motility, but MT1-MMP

does play some role in motility in addition to its ability to

cleave the Ln-10 substrate.

Prostate Cancer Cells Are Capable of Processing Ln-10

Purified Ln-10 obtained from A549 cells contains some

cleaved Ln-10. This indicates that MT1-MMP expressed

on the surface of cells can cleave Ln-10, as A549 cells

have been previously shown to express MT1-MMP [44]. To

confirm that cleavage of Ln-10 could occur at the cellular

level, we determined that prostate cancer cell lines express-

ing high levels of MT1-MMP could cleave intact Ln-10.

We seeded an equal number of DU-145 cells treated with

antisense oligonucleotides to MT1-MMP or scrambled oligo-

nucleotides as described in previous experiments in SFM on

tissue culture plates coated with purified Ln-10. As a control,

one well of Ln-10 coated on the plate did not receive any cell,

only SFM. MT1-MMP expression by these cells is shown in

Figure 5A. Also shown is MT1-MMP expression in A549 and

PC3N cells. Densitometry analysis demonstrates that

DU-145 cells treated with antisense oligonucleotides ex-

press lower levels of MT1-MMP compared to untreated

DU-145 cells. We found the 45-kDa cleaved fragment of

Ln-10 to be released from the ECM into the CM, although to a

lesser extent in cells treated with antisense oligos or in

coated Ln-10 without the addition of cells (Figure 5B). In

the matrix removed from the tissue culture plate, full-length

Ln-10 a5 chain was observed, although the amount of full-

length Ln-10 remaining was reduced in the untreated DU-

145 cells or the scrambled oligonucleotide-treated DU-145

cells, indicating that the Ln-10 is being cleaved by these cells

(Figure 5C).

Ln-10 Cleavage Occurs in Prostate Tissue

Expression of both Ln-10 and MT1-MMP in prostate

cancer has been previously reported [17,33]. Here, we show

that MT1-MMP and Ln-10 are expressed in the same area of

prostate cancer (Figure 6A), suggesting that MT1-MMP is

available to cleave Ln-10 in vivo. An H&E stain of the tissue

Figure 5. Prostate cancer cell cleavage of Ln-10. (A) Western blot for MT1-MMP of cell lysates with densitometry analysis. (B) Western blot of total protein in CM

for Ln-10 fragments with densitometry analysis. (C) Western blot for Ln-10 of matrix after removing cells with densitometry analysis. Results are representative of

three experiments. *P < .006.
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area in Figure 6A is included to show tissue morphology

(Figure 6B). To investigate whether Ln-10 cleavage occurs

in vivo, we used immunohistochemical analysis of inva-

sive prostate cancer tissue samples with 4C7 antibody to

determine whether Ln-10 cleavage could be detected. We

observed a discontinuous Ln-10 BL surrounding the

cancer (Figure 6C), indicative of Ln-10 cleavage occur-

ring in vivo. An H&E of this tissue area is also included

(Figure 6D). Also, we manually microdissected snap-frozen

serial sections of prostate tissues (20 mm), separating areas

of high cancer concentration or areas of high normal gland

concentration from the surrounding stroma. These micro-

dissected samples were analyzed by Western blotting with

15H5 antibody. We found detectable levels of the full-length

350-kDa a5 chain in both normal and cancer glands, but the

310-kDa cleavage fragment was only detected in cancer

samples (Figure 6E), suggesting that MT1-MMP expressed

in prostate cancer is capable of cleaving the full-length

Ln-10 a5 chain.

Discussion

We have previously shown that MT1-MMP is capable of

cleaving human Ln-5 b3 chain and that this cleavage in-

creased prostate cancer cell migration and invasion [17]. In

this study, we have explored a potential mechanism for the

invasion of prostate cancer cells through the Ln-10–rich BL

surrounding them in vivo. We have shown that MT1-MMP is

expressed in prostate cancer along with Ln-10, and that

MT1-MMP cleaves the a5 chain of Ln-10 and that this

cleavage has effects on both adhesion and migration.

MT1-MMP is not expressed in normal prostate but its ex-

pression increases in prostate cancer progression. Because

prostate cancer cells reform a BL rich in Ln-10, it seemed

likely that MT1-MMP would be involved in degrading this BL

in order for prostate cancer cells to metastasize. The role of

the BL in cancer biology is not completely understood, but

loss of BL continuity (due to degradation) has been associ-

ated with increasing malignancy [48,49].

The present study shows that incubation of MT1-MMP

with Ln-10 generated novel cleavage products, which were

identified by mass spectrometry analysis to be derived from

the a5 chain. We showed that this cleavage was specific for

MT1-MMP and did not occur with MMP-2 (an MMP that MT1-

MMP is known to activate) [50] treatment. We did not find any

evidence that either the b1 or g1 chains of Ln-10 were cleaved

with MT1-MMP treatment. We found four distinct cleavage

products of different apparent molecular weights: 310, 190,

Figure 6. Cleavage of Ln-10 occurs in human prostate tissue. (A) Immunohistochemistry of area of prostate cancer demonstrating Ln-10 (green) expression

surrounding cancer and MT1-MMP (red) expression in prostate cancer. (B) H&E stain of the tissue area shown in (A). (C) Immunohistochemistry of prostate tissue

with Ln-10 antibody. Areas of normal (N) and cancer (C) are indicated. Ln-10 is stained green and a6 integrin is stained red. (D) H&E stain of tissue area shown in

(C). (E) Western blot for Ln-10 and a-tubulin. Normal and cancer are indicated, as are MW and corresponding protein identification.
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160, and 45 kDa. We propose that the 45-kDa product is the

N-terminal fragment from the cleavage of the 350-kDa full-

length a5 chain into the 310- and 45-kDa products, based on

peptide coverage given by mass spectrometry. We propose

that the 190- and 160-kDa products are additional cleavage

products of the 310-kDa band based on the mass spectrom-

etry analysis. We expect that the additional cleavages by

MT1-MMP give rise to approximately 150, 120, and 30-kDa

products that are not present in high-enough concentrations

to be detected by Coomassie or silver staining.

The Ln-a5 chain is the largest of the a chains and is

considered the primordial a chain. Ln a chains contain EGF-

like domains in their N-terminus, and a5, being the largest a

chain, has the greatest number of EGF-like repeats. Inter-

estingly, the proposed 45-kDa product contains two EGF-like

repeats, and the additional processing of the 310-kDa prod-

uct into 190- and 160-kDa products would yield fragments

consisting almost entirely of EGF-like repeats. This provides

a potential explanation for increased invasion on MT1-

MMP–cleaved Ln-10 if an EGF-like fragment from Ln-10

cleavage can activate the EGF receptor on the cell surface,

signaling for migration (Figure 7). Essentially, the Ln-10

fragments could function as matrikines [51], enzymatic frag-

ments of ECM that contain cryptic biologically active sites,

also called matricryptins [52]. In fact, an EGF-like fragment

from rat Ln-5 cleavage by MT1-MMP has been shown to bind

to the EGFR and stimulate downstream MAPK signaling to

induce migration [53]. Also, colon cancer cells have been

shown to spread on Ln-10 as a result of EGFR stimulation

[54], indicating that EGF-like fragments could have similar

effects on prostate tumor cells. We have demonstrated that

at low molar enzyme/substrate ratios, we are able to detect

these laminin cleavage products. Although the exact ratio of

Ln-10/MT1-MMP in human tissues in unknown, we expect

that due to the localization of MT1-MMP to the invading

tumor front, this ratio might approach 1:1 in tissues. Our

results show that cleavage is possible at 0.5 mol MT1-MMP/

1 mol Ln-10 concentrations, which are likely to occur in vivo.

The increased intensity of the 160-kDa band correlates to the

decreased 190-kDa band. This indicates that the 190-kDa

product is sequentially cleaved into the 160-kDa product,

which corresponds to the mass spectrometry data of protein

coverage of the bands.

We have also shown that cleavage of Ln-10 by MT1-MMP

causes a decrease in adhesion and an increase in migration

of prostate cancer cells. The increase in migration on intact

Ln-10 was inhibited with MT1-MMP antisense oligonucleo-

tide treatment, suggesting that MT1-MMP cleavage of Ln-10

is responsible for the increased motility. Because some

inhibition of migration was seen with MT1-MMP antisense

oligonucleotide treatment on cleaved Ln-10, we suggest that

although cleavage of Ln-10 is the major cause of both

migration and movement on Ln-10, some other effects of

MT1-MMP are necessary for this motility. In fact, recent

studies have suggested and shown a possible role of MT1-

MMP in downstream signaling for cell migration [55–57].

Although proteolysis of the ECM is essential for migration

and invasion, excessive proteolysis can degrade ECM and

disrupt cell–matrix interactions, actually inhibiting migration.

Therefore, although we observed a decrease in adhesion to

MT1-MMP–treated Ln-10, cells eventually did adhere, indi-

cating that the strength of adhesion was modified in MT1-

MMP–cleaved Ln-10 and not that the Ln-10 was degraded.

Indeed, strength of adhesion is one mechanism that controls

the speed of cell motility [58]. In this study, increased mi-

gration and invasion were correlated with a decrease in ad-

hesion of cells to substrates coated with cleaved Ln-10.

We have demonstrated that this processing of Ln-10 can

occur at the cellular level in cells that express high amounts

of MT1-MMP on their cell surface. DU-145 cells were shown

to cleave Ln-10 in tissue culture, and this cleavage was

inhibited with antisense oligonucleotides to MT1-MMP, indi-

cating that endogenous MT1-MMP is responsible for Ln-10

cleavage. Finally, we have demonstrated that Ln-10 cleav-

age occurs in prostate tissues. In areas of normal glands,

full-length a5 chain was detected, although in areas of

cancer, both the full-length a5 chain and the 310-kDa

cleaved a5 chain fragment were detected. Also detected

was a discontinuous Ln-10 BL surrounding prostate cancer,

further indicating that Ln-10 cleavage occurs in vivo. Al-

though our initial experiments demonstrate Ln-10 cleavage

and identify cleavage fragments used in the recombinant

catalytic domain of MT1-MMP, our data demonstrating that

prostate cancer cells can cleave Ln-10 and that Ln-10

cleavage occurs in vivo, along with our linear migration

and transmigration assays, verify that Ln-10 cleavage by

MT1-MMP is biologically significant.

These data clearly indicate that the Ln-10 a5 chain

cleavage plays an important role in tumor cell migration

and invasion. This is a novel and important finding as this

cleavage may enhance the invasion of prostate cancer cells

in vivo. In addition, because Ln-10 is widely expressed, sim-

ilar effects may be seen in other malignant tissues where

Figure 7. Schematic model of MT1-MMP–dependent invasion through

Ln-10. MT1-MMP expressed on the surface of a prostate cancer cell cleaves

Ln-10 in the BL, forming cleavage products. Cleavage of Ln-10 disrupts the

BL, allowing the prostate cancer cells to invade the BL. Additionally, the

cleavage products may have effects on migration through exposure of cryptic

peptides, potentially EGF-like peptides that may bind to the EGF receptor and

induce signaling for migration.
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Ln-10 and MT1-MMP are also expressed. These effects of

Ln-10 cleavage are probably even more widespread with

respect to metastasis because blood vessels are surrounded

by Ln-10. Therefore, any cancer that metastasizes through

the bloodstream and expresses MT1-MMP can use this

mechanism of Ln-10 cleavage to enter the blood vessels

and to extravasate from the blood vessels at a distant

location to form a metastasis. Because this study was

conducted using human MT1-MMP, human Ln-10, and pros-

tate cancer cells, these findings are particularly relevant to

human prostate cancer and can lead to new approaches to

intervention in preventing the metastasis of prostate cancer.
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