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Abstract DFT calculations performed using Amsterdam Density Functional (ADF 2009.01b) pro-

gram to estimate best geometry of an unsymmetrical cationic organo-diplatinum complex contain-

ing two bridging 2-diphenylphosphinopyridine,(PN), ligands and a platinum-platinum donor–

acceptor bond, ht-[(ph)Pt(l-PN)(l-NP)PtMe2](CF3CO2), as a moderately heavy dimer complex

of platinum(II). The obtained geometry is in excellent agreement with the crystallographic data.

Energy is in all cases about 12–15 kcal mol�1. For the LDA (XC potential in SCF) the DZ and

TZ2P basis sets have been used. Furthermore, for the GGA(BLYP), GGA(BP) and GGA(PW91)

method, the DZ basis set have been just used, due to the cost of calculations. The result showed that

surprisingly the simple LDA(TZP) method has the minimum of energy, comparing the others. All

the attempts for optimizing the mentioned dimer using B3LYP and OLYP methods failed.
ª 2011 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

The basic concepts used to understand the origin of the prop-

erties of transition metal complexes were based on the ligand

field theory (Figgis and Hitchman, 2000) around 1970. Maybe

one of the first reported literatures about computation was the
application of LFT to computing the electronic structure of
the complexes of symmetry lower than cubic, namely five coor-

dinated C3v complexes, which only the valence metal (nd) elec-
trons are correlated on it (Bencini and Gatteschi, 1976). Some
considerations on the proper use of computational tools in

transition metal chemistry are reviewed (Bencini, 2008).
The Amsterdam Density Functional (ADF) package that

we use, its 2009.01b version is software for first-principles elec-

tronic structure calculations and can be used by academic and
industrial researchers (ADF, 2009). It is particularly popular in
the research areas of homogeneous and heterogeneous
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catalysis, inorganic chemistry, heavy element chemistry, vari-
ous types of spectroscopy, and biochemistry. Theoretical and
technical foundations of the ADF program with a survey of
the characteristics of the code (numerical integration, density

fitting for the Coulomb potential, and STO basis functions)
are reported (Bickelhaupt et al, 2001).

Normally, the investigators prefer to calculate geometries

and other properties of small molecules or complexes, due to
cost of computations. The amplitude of selected dimmer com-
plex caused to restrict of used basis set or methods.

2. Experimental and discussion

2.1. Methods

The calculations used the BLYP (Becke, 1988; Lee et al., 1988)
from generalized gradient approximation (GGA), with double-
f Slater-type orbital basis sets (DZ), all as implemented in the
ADF 2009.01b program system mentioned above. All calcula-

tions were also repeated with other functionals, including LDA
using two difference basis sets, DZ and TZ2P (Vosko et al,

1980), PW91 or BP (with DZ basis set) (Perdew et al., 1992;
Perdew et al, 1993).

Choosing the BLYP, PW91 and simple LDA functional
were due to the amplitude of selected dimmer complex,
although there are some recent studies in which OLYP proved

to be one of the better functional for transition metal systems
(Tangen et al 2007; Conradie and Ghosh, 2007; Wasbotten
and Ghosh, 2007). All the attempts for optimizing the men-

tioned dimer using B3LYP and OLYP methods (Sholl and
Steckel, 2009) failed. Due to some restrictions of ADF pro-
gram, we could not define exact nomenclature for atoms as

is in related crystallography.

3. Results and discussion

There is not too enough available structural information for
diplatinum complexes due to their cost of computation. Hence
determination of structural parameters of the ht-[(ph)Pt(l-
PN)(l-NP)PtMe2](CF3CO2) complex could be valuable. One
of the optimized structures, using PW91(DZ) functional, with
labeling of some atoms are shown in Fig. 1. There is a very well

agreement between the theoretically determined parameters of
this complex and the experimental values available in the liter-
ature (Akbari et al. 2007).

Some selected bond lengths of the diplatinum complex
ht-[(ph)Pt(l-PN)(l-NP)PtMe2](CF3CO2) which derived from
its crystallographic data and various calculations are given in
Table 1. Comparison of the errors is shown in Fig. 2.

Figure 1 The PW91/DZ optimized geometry of ht-[(ph)Pt(l-
PN)(l-NP)PtMe2](CF3CO2) dimer complex. Some nomenclatures

in optimized geometry are omitted for clarity.

Table 1 Selected bond lengths of ht-[(ph)Pt(l-PN)(l-NP)PtMe2](CF3CO2) complex, and related errors.

Empirical bond length (Å) Calculated bond length (Å) (methods/error)

Crystallographic

nomenclature

Bond

length (Å)

Cal.

nomenclature

LDA

(DZ)

%Error LDA

(TZ2P)

%Error BP

(DZ)

%Error PW91

(DZ)

%Error BLYP

(DZ)

%Error

1 Pt(1)–C(35) 2.028 Pt8–C25 2.096 3.35 2.096 3.35 2.149 5.97 2.141 5.57 2.181 7.54

2 Pt(1)–N(2) 2.0912 Pt8–N6 2.127 1.71 2.173 3.91 2.206 5.49 2.204 5.39 2.251 7.64

3 Pt(1)–P(1) 2.1911 Pt8–P14 2.341 6.84 2.282 4.15 2.405 9.76 2.404 9.72 2.458 12.2

4 Pt(1)–Pt(2) 2.6588 Pt8–Pt1 2.719 2.26 2.715 2.11 2.793 5.05 2.782 4.63 2.837 6.70

5 Pt(2)–C(41) 2.064 Pt1–C2 2.120 2.71 2.118 2.62 2.167 4.99 2.165 4.89 2.194 6.30

6 Pt(2)–C(42) 2.089 Pt1–C7 2.123 1.63 2.135 2.20 2.169 3.83 2.166 3.69 2.195 5.07

7 Pt(2)–N(1) 2.1516 Pt1–N4 2.198 2.16 2.231 3.69 2.297 6.76 2.293 6.57 2.359 9.64

8 Pt(2)–P(2) 2.3167 Pt1–P13 2.465 6.40 2.412 4.11 2.576 11.19 2.586 11.60 2.695 16.3

9 Pt(2)–O(1) 2.6263 Pt1–O3 2.361 �10.09 2.394 �8.85 2.473 �5.84 2.449 �6.75 2.528 �3.74

Figure 2 Comparison of errors of various calculations for bond

lengths.

S260 A. Akbari et al.



Table 2 Selected bond angles of ht-[(ph)Pt(l-PN)(l-NP)PtMe2](CF3CO2) complex and related errors.

Empirical bond angles Calculated bond angles (methods/error)

Crystallographic nomenclature Bond angle Equivalent cal. nomenclature LDA(DZ) %Error LDA(TZ2P) %Error BP(DZ) %Error PW91(DZ) %Error BLYP(DZ) %Error

1 C(35)–Pt(1)–N(2) 88.44 C25–Pt8–N6 92.9 5.04 89.5 1.20 92.1 4.14 91.1 3.01 91.0 2.89

2 C(35)–Pt(1)–P(1) 93.6 C25–Pt8–P14 89.7 �4.17 93.1 �0.53 92.4 �1.28 93.4 �0.21 93.4 �0.21
3 N(2)–Pt(1)–P(1) 171.25 N6–Pt8–P14 162.3 �5.23 165.4 �3.42 161.8 �5.52 163.3 �4.64 163.5 �4.53
4 C(35)–Pt(1)–Pt(2) 178.22 C25–Pt8–Pt1 172.0 �3.49 176.0 �1.25 171.7 �3.66 172.7 �3.10 172.4 �3.27
5 N(2)–Pt(1)–Pt(2) 90.62 N6–Pt8–Pt1 95.1 4.94 92.3 1.85 93.5 3.18 93.1 2.74 91.7 1.19

6 P(1)–Pt(1)–Pt(2) 87.557 P14–Pt8–Pt1 83.0 �5.20 86.1 �1.66 84.3 �3.72 84.2 �3.83 85.5 �2.35
7 C(41)–Pt(2)–C(42) 84.64 C2–Pt1–C7 84.6 �0.05 83.2 �1.70 83.4 �1.47 83.0 �1.94 82.9 �2.06
8 C(41)–Pt(2)–N(1) 171.47 C2–Pt1–N4 173.7 1.30 170.4 �0.62 171.9 0.25 171.5 0.02 171.2 �0.16
9 C(42)–Pt(2)–N(1) 87.24 C7–Pt1–N4 89.2 2.25 86.8 �0.50 88.5 1.44 88.6 1.56 88.3 1.22

10 C(41)–Pt(2)–P(2) 90.52 C2–Pt1–P13 89.7 �0.906 88.9 �1.79 90.1 �0.46 90.6 0.0884 90.2 �0.35
11 C(42)–Pt(2)–P(2) 173.58 C7–Pt1–P13 167.5 �3.50 166.1 �4.31 167.6 �3.45 167.9 �3.27 166.2 �4.25
12 N(1)–Pt(2)–P(2) 97.77 N4–Pt1–P13 96.3 �1.50 99.8 2.08 97.7 �0.07 97.5 �0.276 99.3 1.56

13 C(41)–Pt(2)–O(1) 91.39 C2–Pt1–O3 99.0 8.33 95.4 4.39 98.2 7.45 98.3 7.56 96.3 5.37

14 C(42)–Pt(2)–O(1) 89.62 C7–Pt1–O3 90.1 0.536 88.0 �1.81 88.4 �1.36 89.0 �0.692 89.5 �0.13
15 N(1)–Pt(2)–O(1) 85.95 N4–Pt1–O3 81.8 �4.83 83.1 �3.32 82.2 �4.36 82.4 �4.13 83.4 �3.00
16 P(2)–Pt(2)–O(1) 94.72 P13–Pt1–O3 101.3 6.95 104.9 10.7 103.0 8.74 102.0 7.69 103.4 9.16

17 C(41)–Pt(2)–Pt(1) 94.8 C2–Pt1–Pt8 86.7 �8.54 91.6 �3.38 88.0 �7.17 88.0 �7.17 89.9 �5.17
18 C(42)–Pt(2)–Pt(1) 101.34 C7–Pt1–Pt8 95.2 �6.06 93.9 �7.34 95.3 �5.96 96.1 �5.17 95.0 �6.26
19 N(1)–Pt(2)–Pt(1) 89.34 N4–Pt1–Pt8 93.1 4.21 90.3 1.07 92.1 3.09 92.0 2.98 90.9 1.75

20 P(2)–Pt(2)–Pt(1) 74.807 P13–Pt1–Pt8 73.3 �2.01 73.9 �1.21 73.9 �1.21 73.3 �2.01 73.4 �1.88
21 O(1)–Pt(2)–Pt(1) 167.85 O3–Pt1–Pt8 172.6 2.83 172.9 3.01 173.1 3.13 172.3 2.65 173.0 3.07
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As one can see from this figure, although all the methods

have been shown acceptable results, less than 10% error, the
LDA(TZ2P) method has been shown the least error from the
X-ray crystallographic data. These results came from nineteen
selected bond lengths, which nine of them are collected in

Table 1.
The Pt(8) center has a distorted square-planar stereochem-

istry with Pt(1)P(14)N(6)C(25) coordination. The P(14) atom

of one of the 2-diphenylphosphine ligands is in a trans arrange-
ment with the N(6) atom of the other one, and the C(25) atom
is trans to Pt(1).

Crystallographic data show 2.6588 Å for the donor–accep-
tor bond of Pt–Pt, while the calculations using LDA(DZ),
LDA(TZ2P), BP(DZ), PW91(DZ) and BLYP(DZ) show

2.719, 2.715, 2.793, 2.782 and 2.837 Å, respectively. Clearly,
the result of LDA(TZ2P) calculation is the most match with
the experimental one, the others also are good too.

The orientation of a plane comprising the carbon atoms of

the phenyl ligand [C(25)–C(30)] is almost perpendicular to the
Pt coordination plane in both theoretical and experimental re-
sults. For example, the LDA(TZ2P) calculation show 176� for
C(25)Pt(8)Pt(1) angle instead of 180�. It means that the
Pt(1)P(14)N(6)C(25) plan (coordinated atoms around Pt(8))
is perpendicular to the other square plane, N(4)P(13)

C(2)C(7), (coordinated atoms around Pt(1)).
As mentioned, the Pt(1) atom is square-pyramidal with

N(4)P(13)C(2)C(7) coordination, in which the P atom of one
of the PN ligands, P(13), is in a cis arrangement with the N

atom of the other PN ligand, N(4), and Pt(8) occupying the
apical position. The basal coordination plane around Pt(1) is
again orienting almost perpendicularly with respect to the

Pt(8) coordination plane [P(14)–Pt(8)–Pt(1) = 83.0�; C(7)–
Pt(1)–Pt(8) = 95.2�; N(4)–Pt(1)–Pt(8) = 93.1� and C(2)–
Pt(1)–Pt(8) = 86.7�, all in LDA–DZ computation].

The coordinated phosphorus atom has more trans influence
compared to the N atom, so we expect less bond length for
Pt(1)–C(2), comparing to Pt(1)–C(7). The crystallographic

data showed 2.064 and 2.089 Å for the first and second respec-

tively. LDA–DZ calculation showed 2.120 and 2.125 Å for the
mentioned bonds and confirmed the expectation. The other
calculations have shown the similar results.

The square-pyramidal coordinated Pt(1) center is also

rather weakly connected to the O(3) atom of the trifluoroace-
tate counter anion [with Pt(1)–O(1) = 2.626 Å (exp), 2.366 Å
(cal., LDA–DZ) to form a quasi-octahedral geometry. The do-

nor–acceptor Pt–Pt bond, with a short distance of 2.6588 Å
(exp), observed in calculations too [LDA–DZ calculation
showed 2.714 Å for example].

The calculated Pt(8)–O(50) bond length in this level (LDA–
DZ) is 5.069 Å and suggest that there is notany bonding inter-
action between these two atoms Table 2.

Table 4 Total bonding energies calculated in various methods.

Total bonding energy (kcal/mol) LDA(DZ) BP(DZ) LDA(TZP) PW91(DZ) BLYP(DZ)

�14259.01 �13003.14 �14792.79 �13246.59 �12454.87

Table 3 Calculated Muliken charges of selected atoms.

Atom LDA(DZ) BP(DZ) LDA(TZP) BLYP(DZ) PW91(DZ)

Pt1 0.6496 0.6767 0.2739 0.6393 0.6820

C2 �1.0220 �0.9855 0.0943 �0.8955 �0.9877
O3 �0.6604 �0.6883 �0.6646 �0.6850 �0.6887
N4 �0.5511 �0.5822 �0.3917 �0.5724 �0.5827
N6 �0.6024 �0.6104 �0.4573 �0.5899 �0.6055
C7 �1.0308 �0.9759 0.1187 �0.8797 �0.9786
Pt8 0.3730 0.3954 0.4025 0.3407 0.4128

C12 �0.1891 �0.1894 �0.0893 �0.1752 �0.1949
P13 0.9627 0.9304 0.9757 0.9182 0.9271

P14 1.0080 0.9899 0.9465 0.9781 0.9823

C16 �0.1848 �0.1696 �0.0989 �0.1566 �0.1714
C25 �0.2692 �0.2965 �0.3902 �0.2674 �0.2954

Figure 3 Comparison of calculated donor–acceptor bonds with

experimental datum.
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Some selected calculated Muliken charges on related atoms

are given in Table 3.
As one can see, the most similar atoms except the Pt(1) and

Pt(8) has somehow the same charges. The calculated charge on
Pt(1) is moderately more than Pt(8) in all cases (except for

LDA(TZP)) which suggest that the donation can occur from
Pt(1) to Pt(8) in donor–acceptor Pt–Pt bond. This bond length
is obtained as 2.719, 2.715, 2.793, 2.782 and 2.837 using

LDA(DZ), LDA(TZP), BP(DZ), PW91(DZ) and BLYP(DZ)
levels, respectively. Fig. 3 shows the comparison between these
results.

The results of BLYP(DZ) and LDA(DZ) methods show the
nearest values to the experimental value for Pt(1)–Pt(8) bond,
while the PW91(DZ) method shows the forest.

The total bonding energy for this dimer has also been com-
puted and collected in the Table 4.

As one can find from this table, the minimum obtained to-
tal bonding energy is about LDA(TZP) method, which con-

firms the previous conclusion mentioned in Fig. 2.
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