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Abstract

A posteriori error estimates are derived for unsteady convection—diffusion equations discretized with the non-
symmetric interior penalty and the local discontinuous Galerkin methods. First, an error representation formula
in a user specified output functional is derived using duality techniques. Thdrﬁ(alﬁ) a posteriori estimate
consisting of elementwise residual-based error indisatwbtained by eliminating the dual solution. Numerical
experiments are performed to assess the convergence rates of the various error indicators on a model problem.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Adaptive finite element methods based on discontinuous approximation spaces have been under rapid
development recently, notably because of their flexibility in both local mesh subdivision and local
polynomial degree variation. The inherent flexibility of discontinuous Galerkin (DG) methods allows for
the general construction of temporal and spatial non-uniformities, more so than conventional continuous
finite element techniques, though at a higher computational expense. Furthermore, they are locally
conservative, allow for nonconforming grids, and successfully handle the difficulties associated with
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high gradient solutions. Cockburn et al] contains a thorough survey of modern implementations in
various applications.

While an extensive body of work with a priori error analysis exists for these methods applied to
transent convection—diffusion equations (sek-§ and rderences threin), their a posteriori error
analysis and implementation is significantly less developed. A posteriori estimators rely on the derivation
of computable bounds on the error and may be used to signify where refinement in spatial quantities
or polynomial degree may be adaptively modified. They can be particularly useful in applications
where solution gradients vary in orders of magnitude across spatial domains, such as those arising ir
convection-dominated transport.

A posteriori error estimators for DG methods have focused primarily on steady-state equations
of elliptic and hyperbolic typeRecent work by Becker et al6] and Karkashian and Pascar]
establishes energy norm estimates for elliptic equations. Houston & alerffive computable upper
bounds on a natural DG energy norm for incompressible Stokes flows. We mention work by Riviére and
Wheeler P] who utilize a standard elliptic duality technique to derivé estimates. The use of a duality
argument also extends to hyperbolic problems for deriving estimates of functional quantities of interest,
leading to adaptivity based on more physically meaningful quantities than the endryorm. Such
error bounds for first order hyperbolic problems were derived by Larson and Barii®]inJuli and
collaborators 11,12] also derive and implement various error bounds for general linear and nonlinear
target functonals of the solution within an adaptive framework.

There are considerably fewer papers that are concerned with a posteriori error estimation for
DG methods applied to transient problems. Adjerid et &B] [and Fhherty et al. 14] exploit
superconvergence results to construct asymptotically correct estimates of spatial discretization errors
for unsteady linear and nonlinear hyperbolic conservation laws. This application was also explored
by Hartmann and Houstorlp] where they emloy duality techniques to derive estimates based on
functional quantities of interest and demonstrate that “weighted” a posteriori error indicators can lead
to sharper bounds and more efficient meshes than corresponding “unweighted” indicators: estimates
based on the elimination of the dual solution in the analysis. Results for transient convection—diffusion
operators remain sparse; we mention the work of Sun and Whdélemhere a explicit L2(L?) and
target functional estimas are derived for a symmetric discretization of the diffusion operator. Formal
L2(L?) and target functional estimates of a non-symmetric interior penalty formulation and the related
“local” discontinuous Galerkin formulation remain unexplored in the literature.

In this work, we focusour attention on the derivation of an explicit error estimator for the transient
convection—diffusion problem

¢dc+ V.-(uc— DVec) =¢f onf2, t>0, Q)
(uc—DVe)-n=(ug) -n on a2, t>0, (2)
(=DVe)-n=0 ona out, t>0, 3)
c(X, 0) = co(x) on {2, 4)

defined on the polygonal bounded domé&ire RY, d = 2 or 3, with unit outward normah to Lipschitz
boundaryd 2. Letd 2 = 92 U 3 2oyt be partitioned into disjoint inflow and outflow boundary portions:
02n ={x€df2:u-n<0}anddfdoy = {X € 32 : u-n > 0}, resgectively. In typical porous media
applications,c(x, t) represents the concentration of some chemical compogéry, is the effective
porosity of the medium and is bounded above and below by positive conaligxis) is the Darcy
velocity, D(x, u, t) is a diffusionflispersion tensor assumed to be uniformly positive definite (but not
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necessarily symmetric), anfd x, t) is a source term. We will assume that the Darcy velocity field vector
u is given and satisfies the continuity equatiéh- u = 0.

Our approach to deriving a posteriori error estimates is based on the use of a duality argument and
Galerkin orthogonality and is similar to techniques used by Riviere and Wheel&} ior[elliptic
equations. The particular non-symmetric discontinuous Galerkin method (NIPG) that we consider for
discretizing the diffusion operator was originally developed by Oden et ally &nd exended by
Riviere et al. by adding interior penalty terms in the formulation to weakly enforce inner element
continuty; see [L8] and references therein. We also consider the local discontinuous Galerkin method
(LDG) developed by Cockburn and St}.[

2. Non-symmetric interior penalty Galerkin (NIPG) formulation

Let {Th}h>0 denote a family of finite element subdivisions of dom&ipartitioned into open disjoint
elements? such that? = UeeTh . We denote byHS(12) the gandard Sobolev spaces equipped with
the us@l norms|| - [1§s,,,- For a time—spce functioru, thenotationu € LZ(H) (resp.u € CE(HY))
means that the function— u(t,-) € H3(£2) is in L2(0, T) (resp.CX(0, T)) whereT is given. Define
PK(£2) to be the set of polynomials of degree less than or equabiof2. and consider the finite element
spaceVh = {v € L2(2) : Ve € Th, v| g, € PX(2e)}.

We will use the standard.? inner product notatioft-, -)r for domainsR e RY, and thenotation
(-, -)r to denote integration ove(d — 1)-dimensonal manifolds. Lef, be the set of faces belonging
to elements(% € Ty and partitionFy into F' U F2 U Fd,,, whereF' denotes the set of interior faces,

F2 the set ofthose located 0@ 2ih, and F&,, the set ofthose located 0@ 2ot For a faceF e F!
shared by element3e; and (2, with respective unit outward normatg andn.,, define the werage and
(vector-alued) jump ofv € V, as{v} = %(vl + vp) and[v] = (vin1 + v2n2), resgectively, where
v1 = V|, andvy = v|g,,. Define theupwind valuev? = vy whenu - ny > 0, elsev’ = v,. Similarly,
for a functionw e [Vn]9, define the avege and (scalar-valued) jump &®} = %(wl + w»y) and
[w] = (w1 - N1+ w2 - Ny), resgectively.
The NIPG formiation consists of seekingy, € Ctl(Vh) such thatvv € V,, andvt > 0,

(@diCh, v) o + anpa(Ch, v) = (pf, V)0 — (UG - N, V)50, 6))

with the initial condition(cg — ¢ch (0, -), v)» = 0, Vv € V. Thebilinear formaypg is given by

anpG(Ch, v) = — Y (UG — DVeCh, Vo), + D (UG- N, v)E
{e€Th FeFdu

+ )" (U, [v)E — ({DVen), [vl)E + ((DV), [enl)k + (o [enl, [v])F), (6)

FeFi

whereor = ‘%0 oo IS a positive onstant, andF | the (d — 1)-dimensonal measure of . Let the eror
in the solution be defined & = ¢ — ¢,. Ourgoal is to control the error in the functional

°
V() = /O (Wi(0), €)o dt + (Ya(es(T, ), (T, o, @

whereyr; andyr, are user specified functions. Lesatisfy the adjoint equation

pdhE+V-(UE+DTVE) =yn(eg) onf, t<T, (8
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(UE+DTVE).n=0 ona Qout, t<T, 9)
(-DTVE) .n=0 onad Zn, t<T, (10)
EX, T) = —v2(ec(T,)) on{2 (11)

We first derive arerror representation formula.
Theorem 2.1. Assume that the solution ¢ td)—(4) and the solutioné to (8)—(11) are both in
L2(H2) N CA(L2). Assume the diffusion/dispersion tensor D to be continuous. Then,

]
W (e) = —/0 (Regn £ — %0 dt — (Rico, (€ — £9)(0, )

;
+/0 (Z (Rn & —EF+ Y <Rout,s—s*>F) dt

FeF? FeFd,

)
+/0 3" ({Ricy). DTVE + DVE*)E — (Rpvay, — U~ Rigy) & — §*)F) (12)

FeFi

whereg* is arbitrary in Vi, N C°(£2) and where we have introduced the residuals

Regn= ¢ — ¢dich + V- (U, — DVey), (13)
R, = [Cnl, Ripve, = [DVen], (14)
Rn=ug-n—(ucy — DVep) - n, Rout = —DVeh - n, (15)
Rt=0 = Co — Cn,0. (16)

Proof. Using (7), (8), and (L1), we infer

T T
V(e) = —fo (porec, §) o dt — (Ri=0,4(0, ) +fo (V- (UE + DTVE), &) dt.
Integrate by parts the diffusioroatribution to the last term and usgdj to obtain

(V- (DTV&),&)o=— Y (V& DVe)o, + Y (DTVE, [el)r
2e€Th FeFi

+ > (DTVE-n e)r.

FeFd,

Let £* be arbitrary inv, N CO(12). Using Galerkin orthogonality, we obtain

T
V(&) = —/0 (porec, & — &) dt — (R0, 6 —6)(0, )e

.QeETh

)
+ [ 3 we—Dve. Ve -
T

+/0 (Z(DTvé,[ec])FJr Z (DTVS-n,eC)F) dt

FeFi FeFu
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.
+f0 Z<{DV§*},[ec])F+ Z (ues-n, E*)g | dt.

FeFl FeFdy
Integrate by parts the term in the second line of the above equation to infer

Y (ue—DVeg, V(E —£)g,=— Y (V- (Ue— DVer), £ —E%)q,

.QeGTh .QeeTh
+ > (lue—DVec.&£ —&"r+ > ((ue— DVer)-n.& —&)p.
FeFi FeFJUFd,

Using @), we readily deduce the emcepreseatation formula {2). 0O

From the error representation formulk2), it is possible to infer a residual-based a posteriori error
edimate where the dual solution has been eliminated using the Cauchy—Schwarz inequality, local
approximation properties of the finite element spdgeand a gbbal stability result for the dual problem.
Sety(e.) = e andyo(e:) = 0 so that¥(e;) = |le|| Assume that the resulting dual problem

LELD”
(8)—(11) satisfies the stability estimate

T T
2 2 2

Furthermore, assume that the following approximation properties provasjifof d = 2 alsohold for
d = 3. For elementl in Tj, and¢ € H3(f2%), there exits a @nstantC depending ors but independent
of ¢, k, and eement diametehe and a sequence,, < IP"‘(Qe), such hat for 0 < q < s and for
w=min(k + 1, ),

n—q
I¢ = #hllnaco < Crog ldlnsy 520, (18)
n—r—1/2 1
* e
Ié = dilinr @0 < Croz lolnswy s> 5+8,6=01 (19)

Corollary 2.1. With the above asumptions, an #(L2) a posteriori error estimate holds for the
formulation(5) of the form

T
lecly g <C [ 3 et (20)
0 (eeTh
with elementwise error indicators
2 . 2 he 2
_ _e e
Ne = F ” Reqn” Lz(Qe) + F || Rt=0|| LZ(Qe)

A3 A2
+ ) (k—§||R[DvCh]+u-R[ch]nfz(F)+k—§||D||Em||R[ch]nﬁz(F)
Fed2ens?

h3 h
+||D||Em||R[Ch]||fz(F)>+ > @lRalfee + > FIRulEaey, (@)

F €0 £2eN0 2 F €0 42eN0d Qout
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for he the maximal element diametever all elements with the common face F and C a constant
independent of f.

Proof. Use the error representation formuld2)f together withthe stability estimatel1(7) and the
approximation results1®) and (9). The only term requiring special attention is the first one in the
third line of (12). Writing DTVE + DVE* = (D + DT)VE — DV(¢ — £%), the seond term yields
the last érm in the second line oR2(). Thequantity | V& || is estimated byl§ [|,y2((,,,) wherefle is an
element to which~ belongs. Using the stability estimat&7}, this yields the first term in the third line
of (21). O

Convergence orders of the various contributions2tt) @re asessed numerically fBection 4 Note
also that with some additional algebra, it is possible to derive an error representation formula and an a
posteriori error estimate when the diffusion tensor is discontinuous across mesh interfaces.

3. Local discontinuous Galerkin (LDG) formulation

The LDG method consists of seekimg, Z,, zn € Ctl(Vh) such thatvv € Vy, Yw € [Vh]9,
Vi € [Vh]9, andvt > 0,

(¢%Ch. v)o — Y (UG + Zn, Vi)go + Y (UG + {zn}. [v])F

2e€Th FeFi
+ Y (U nv)E = (¢f,v)0 — (UG- N, v)sa,, (22)
FeFd,
(Zn, w)o— Y (€n, V-w)g + Y ek [whF + (Ch, w Ny =0, (23)
2e€Th FeFi

with the same initial condition as before. Again, §etatisfy the dual problen8f—(11).

Theorem 3.1. Assume that the solution ¢ td)—(4) and the solutiont to (8)—(11) are both in
LZ2(H2) N CP(L2). Assume the diffusion/dispersion tensor D to be continuous and piecewise linear
in space. Then,

]
V(&) = —fo (Regn & — £ dt — (Ri—o, (€ — £9)(0, )

.
+/0 (Z<an,ss*>p+ > <Rout,ss*>p) d

FeF? FeFd,
.
+ /0 > ((R[ch], DTVE)r — (Ripvey — U+ Rigy. € —E*)F) at, (25)
FeFi

whereg* is arbitrary in Vi, N C%(2) and where the residualsein, Ric,» Rpven]: Rin, Rout, and R—g
are defined in(13)—(16).
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Proof. The proof is siniar to that of Theorem 2.1 The main difference is that Galerkin orthogonality
now yidds

T
V(&) = _./o (pdrec, & — M) dt — (R0, 6 —§M)(0, )e

.
+ fo (Z (e, V(& — %), — (DVeg, Vé) g, — (€, vs*m) dt

.QeGTh

]
+ [ | ZoTvelehe+ 3 0TVE e+ Y wan e | o

FeFi FeFd, FeFd,

wheree, = z— z;, andz = —DVc. Similaty, setes = Z— Z;, wherez = —Vc. Owing to the assumption
on D, we inferDTVE* e [Vy]9 and hence

(62, VE") g, = (65, DTVE¥) o, = —(Ve, DTVE ) o, = —(DVeg, VE) .,

whence the error representation formw2&)(readily follows. O

Corollary 3.1. With the assumptions @orollary 2.1, an LTZ(LE) a posteriori error estimate holds for
the formulation(22)—(24) of the form(20) with elementwise error indicators given (1).

4, Numerical results

In this section we present numerical results to tHate theconvergence order of the various terms in
the a posteriori error estimates. For the sake of brevity, we consider the NIPG error estRiatas (
a nodel problem, consider a 1D convection—diffusion equation posed over ddinain(0, 4sr) with
initial dataug(x) = sin(x), source termf = 0, inflow datag(t) = —e~P! sin(ut), diffusion coefficient
D = 1, and advection velocity = 1. The simulatio time is set toT = 0.5. Since the diffusion length
scale can be estimated &s= (DT)% = 0.7, we infer that the restriction of the solution to the interval
(0, 27) is goproximately given by(t, x) = e Plsin(x — ut).

Numerical experimentsa performed on two series of meshes: a series of uniform meshes with step
sizeh = 2—p% (0 < p < 3) and a series of non-uniform meshes which are constructed from the uniform

meshes by setting the step size alternativelg tmd% for adjacent cells. Problendj is discetized in

time using an explicit Euler method and a time step.6f210°. Resilts are presented ifiables land
2. We evaluatette quantities

To= > laexpP| . Te=| > lh&xpP| .
Xj€(0,2m) Xj€(0,2m)
2
.QeE(O,ZT[)

where thex;’s denotes the mesh vertices. On the uniform meshes, superconvergence is obtained so that
the upper bound inZ1) scales a$h?. On the non-uniform mesh, the first term in the third equation of
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Table 1

Convergeace tests on uniform meshes
p T Order T Order T3 Order Ta Order
0 298e-2 - 7.73e-1 - 2.53e-2 - 7.18e-3 -
1 1.79e-2 2.2 5.51e-1 .49 5.97e-3 2.1 1.80e-3 2.0
2 3.36e-3 2.4 3.90e-1 .50 1.22e-3 2.3 4.50e-3 2.0
3 607e—4 25 2.76e-1 .50 2.03e-4 2.6 1.13e-3 2.0

Table 2

Convergence tests on non-uniform meshes
p T Order To Order T3 Order T4 Order
0 494e-2 - 7.84e-1 - 5.78e-2 - 1.40e-2 -
1 195e-2 1.3 5.54e-1 .49 1.37e-2 2.1 3.51e-3 2.0
2 782e-3 1.3 3.92e-1 .50 3.30e-3 2.1 8.79e—-4 2.0
3 104e-3 1.4 2.78e-1 .50 7.29e-4 2.2 2.20e-4 2.0

(21) dominates the upper bound, yielding a convergence ordap approximately. This estimate is
compatible with standard a priori estimates for convection—diffusion equations.
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