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Abstract

A posteriori error estimates are derived for unsteady convection–diffusion equations discretized with the non-
symmetric interior penalty and the local discontinuous Galerkin methods. First, an error representation formula
in a user specified output functional is derived using duality techniques. Then, anL2

t (L
2
x) a posteriori estimate

consisting of elementwise residual-based error indicators isobtained by eliminating the dual solution. Numerical
experiments are performed to assess the convergence rates of the various error indicators on a model problem.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Adaptive finite element methods based on discontinuous approximation spaces have been under rapid
development recently, notably because of their flexibility in both local mesh subdivision and local
polynomial degree variation. The inherent flexibility of discontinuous Galerkin (DG) methods allows for
the general construction of temporal and spatial non-uniformities, more so than conventional continuous
finite element techniques, though at a higher computational expense. Furthermore, they are locally
conservative, allow for nonconforming grids, and successfully handle the difficulties associated with
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high gradient solutions. Cockburn et al. [1] contains a thorough survey of modern implementations in
various applications.

While an extensive body of work with a priori error analysis exists for these methods applied to
transient convection–diffusion equations (see [1–5] and references therein), their a posteriori error
analysis and implementation is significantly less developed. A posteriori estimators rely on the derivation
of computable bounds on the error and may be used to signify where refinement in spatial quantities
or polynomial degree may be adaptively modified. They can be particularly useful in applications
where solution gradients vary in orders of magnitude across spatial domains, such as those arising in
convection-dominated transport.

A posteriori error estimators for DG methods have focused primarily on steady-state equations
of elliptic and hyperbolic type. Recent work by Becker et al. [6] and Karakashian and Pascal [7]
establishes energy norm estimates for elliptic equations. Houston et al. [8] derive computable upper
bounds on a natural DG energy norm for incompressible Stokes flows. We mention work by Rivière and
Wheeler [9] whoutilize a standard elliptic duality technique to deriveL2 estimates. The use of a duality
argument also extends to hyperbolic problems for deriving estimates of functional quantities of interest,
leading to adaptivity based on more physically meaningful quantities than the energy orL2 norm. Such
error bounds for first order hyperbolic problems were derived by Larson and Barth in [10]. Süli and
collaborators [11,12] also derive and implement various error bounds for general linear and nonlinear
target functionals of the solution within an adaptive framework.

There are considerably fewer papers that are concerned with a posteriori error estimation for
DG methods applied to transient problems. Adjerid et al. [13] and Flaherty et al. [14] exploit
superconvergence results to construct asymptotically correct estimates of spatial discretization errors
for unsteady linear and nonlinear hyperbolic conservation laws. This application was also explored
by Hartmann and Houston [15] where they employ duality techniques to derive estimates based on
functional quantities of interest and demonstrate that “weighted” a posteriori error indicators can lead
to sharper bounds and more efficient meshes than corresponding “unweighted” indicators: estimates
based on the elimination of the dual solution in the analysis. Results for transient convection–diffusion
operators remain sparse; we mention the work of Sun and Wheeler [16], where an explicit L2(L2) and
target functional estimates are derived for a symmetric discretization of the diffusion operator. Formal
L2(L2) and target functional estimates of a non-symmetric interior penalty formulation and the related
“local” discontinuous Galerkin formulation remain unexplored in the literature.

In this work, we focusour attention on the derivation of an explicit error estimator for the transient
convection–diffusion problem

φ∂tc + ∇ · (uc− D∇c) = φ f onΩ, t ≥ 0, (1)

(uc− D∇c) · n = (uĝ) · n on∂Ωin, t ≥ 0, (2)

(−D∇c) · n = 0 on∂Ωout, t ≥ 0, (3)

c(x,0) = c0(x) onΩ, (4)

defined on the polygonal bounded domainΩ ∈ R
d, d = 2 or 3, with unit outward normaln to Lipschitz

boundary∂Ω . Let ∂Ω = ∂Ωin ∪ ∂Ωout be partitioned into disjoint inflow and outflow boundary portions:
∂Ωin = {x ∈ ∂Ω : u · n < 0} and∂Ωout = {x ∈ ∂Ω : u · n ≥ 0}, respectively. In typical porous media
applications,c(x, t) represents the concentration of some chemical component,φ(x) is the effective
porosity of the medium and is bounded above and below by positive constants,u(x, t) is the Darcy
velocity, D(x,u, t) is a diffusion/dispersion tensor assumed to be uniformly positive definite (but not
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necessarily symmetric), andf (x, t) is a source term. We will assume that the Darcy velocity field vector
u is given and satisfies the continuity equation∇ · u = 0.

Our approach to deriving a posteriori error estimates is based on the use of a duality argument and
Galerkin orthogonality and is similar to techniques used by Rivière and Wheeler in [9] for elliptic
equations. The particular non-symmetric discontinuous Galerkin method (NIPG) that we consider for
discretizing the diffusion operator was originally developed by Oden et al. in [17], and extended by
Rivière et al. by adding interior penalty terms in the formulation to weakly enforce inner element
continuity; see [18] and references therein. We also consider the local discontinuous Galerkin method
(LDG) developed by Cockburn and Shu [2].

2. Non-symmetric interior penalty Galerkin (NIPG) formulation

Let {Th}h>0 denote a family of finite element subdivisions of domainΩ partitioned into open disjoint
elementsΩe such thatΩ̄ = ∪Ωe∈Th Ω̄e. We denote byHs(Ω) the standard Sobolev spaces equipped with
the usual norms‖ · ‖2

H s(Ω). For a time–space functionu, thenotationu ∈ L2
t (H

s
x ) (resp.u ∈ Ck

t (H
s
x ))

means that the functiont �→ u(t, ·) ∈ Hs(Ω) is in L2(0, T) (resp.Ck(0, T)) whereT is given. Define
P

k(Ωe) to be the set of polynomials of degree less than or equal tok onΩe and consider the finite element
spaceVh = {v ∈ L2(Ω) : ∀Ωe ∈ Th, v|Ωe ∈ P

k(Ωe)}.
We will use the standardL2 inner product notation(·, ·)R for domainsR ∈ R

d, and thenotation
〈·, ·〉R to denote integration over(d − 1)-dimensional manifolds. LetFh be the set of faces belonging
to elementsΩe ∈ Th and partitionFh into F i ∪ F∂in ∪ F∂out, whereF i denotes the set of interior faces,
F∂in the set ofthose located on∂Ωin, and F∂out the set ofthose located on∂Ωout. For a faceF ∈ F i

shared by elementsΩe1 andΩe2 with respective unit outward normalsn1 andn2, define the average and
(vector-valued) jump ofv ∈ Vh as {v} = 1

2(v1 + v2) and [v] = (v1n1 + v2n2), respectively, where
v1 = v|Ωe1 andv2 = v|Ωe2. Define theupwind valuev↑ = v1 whenu · n1 > 0, elsev↑ = v2. Similarly,
for a functionw ∈ [Vh]d, define the average and (scalar-valued) jump as{w} = 1

2(w1 + w2) and
[w] = (w1 · n1 +w2 · n2), respectively.

The NIPG formulation consists of seekinguh ∈ C1
t (Vh) such that∀v ∈ Vh and∀t ≥ 0,

(φ∂tch, v)Ω + aNIPG(ch, v) = (φ f, v)Ω − (uĝ · n, v)∂Ωin, (5)

with the initial condition(c0 − ch(0, ·), v)Ω = 0, ∀v ∈ Vh. Thebilinear formaNIPG is given by

aNIPG(ch, v) = −
∑

Ωe∈Th

(uch − D∇ch,∇v)Ωe +
∑

F∈F∂out

〈uch · n, v〉F

+
∑
F∈F i

(〈uc↑
h, [v]〉F − 〈{D∇ch}, [v]〉F + 〈{D∇v}, [ch]〉F + 〈σF [ch], [v]〉F ), (6)

whereσF = σ0|F | , σ0 is a positive constant, and|F | the(d − 1)-dimensional measure ofF . Let the error
in the solution be defined asec = c − ch. Ourgoal is to control the error in the functional

Ψ (ec) =
∫ T

0
(ψ1(ec),ec)Ω dt + (ψ2(ec(T, ·)),ec(T, ·))Ω , (7)

whereψ1 andψ2 are user specified functions. Letξ satisfy the adjoint equation

φ∂tξ + ∇ · (uξ + DT∇ξ) = ψ1(ec) onΩ, t ≤ T, (8)
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(uξ + DT∇ξ) · n = 0 on∂Ωout, t ≤ T, (9)

(−DT∇ξ) · n = 0 on∂Ωin, t ≤ T, (10)

ξ(x, T) = −ψ2(ec(T, ·)) onΩ . (11)

We first derive anerror representation formula.

Theorem 2.1. Assume that the solution c to(1)–(4) and the solutionξ to (8)–(11) are both in
L2

t (H
2
x ) ∩ C0

t (L
2
x). Assume the diffusion/dispersion tensor D to be continuous. Then,

Ψ (ec) = −
∫ T

0
(Reqn, ξ − ξ∗)Ω dt − (Rt=0, (ξ − ξ∗)(0, ·))Ω

+
∫ T

0


∑

F∈F∂in

〈Rin, ξ − ξ∗〉F +
∑

F∈F∂out

〈Rout, ξ − ξ∗〉F


 dt

+
∫ T

0

∑
F∈F i

(〈R[ch], DT∇ξ + D∇ξ∗〉F − 〈R[D∇ch] − u · R[ch], ξ − ξ∗〉F) dt, (12)

whereξ∗ is arbitrary in Vh ∩ C0(Ω) and where we have introduced the residuals

Reqn = φ f − φ∂tch + ∇ · (uch − D∇ch), (13)

R[ch] = [ch], R[D∇ch] = [D∇ch], (14)

Rin = uĝ · n − (uch − D∇ch) · n, Rout = −D∇ch · n, (15)

Rt=0 = c0 − ch,0. (16)

Proof. Using (7), (8), and (11), we infer

Ψ (ec) = −
∫ T

0
(φ∂tec, ξ)Ω dt − (Rt=0, ξ(0, ·))Ω +

∫ T

0
(∇ · (uξ + DT∇ξ),ec)Ω dt.

Integrate by parts the diffusion contribution to the last term and use (10) to obtain

(∇ · (DT∇ξ),ec)Ω = −
∑

Ωe∈Th

(∇ξ, D∇ec)Ωe +
∑
F∈F i

〈DT∇ξ, [ec]〉F

+
∑

F∈F∂out

〈DT∇ξ · n,ec〉F .

Let ξ∗ be arbitrary inVh ∩ C0(Ω). Using Galerkin orthogonality, we obtain

Ψ (ec) = −
∫ T

0
(φ∂tec, ξ − ξ∗)Ω dt − (Rt=0, (ξ − ξ∗)(0, ·))Ω

+
∫ T

0

∑
Ωe∈Th

(uec − D∇ec,∇(ξ − ξ∗))Ωe dt

+
∫ T

0


∑

F∈F i

〈DT∇ξ, [ec]〉F +
∑

F∈F∂out

〈DT∇ξ · n,ec〉F


 dt
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+
∫ T

0


∑

F∈F i

〈{D∇ξ∗}, [ec]〉F +
∑

F∈F∂out

〈uec · n, ξ∗〉F


 dt.

Integrate by parts the term in the second line of the above equation to infer∑
Ωe∈Th

(uec − D∇ec,∇(ξ − ξ∗))Ωe = −
∑

Ωe∈Th

(∇ · (uec − D∇ec), ξ − ξ∗)Ωe

+
∑
F∈F i

〈[uec − D∇ec], ξ − ξ∗〉F +
∑

F∈F∂in∪F∂out

〈(uec − D∇ec) · n, ξ − ξ∗〉F .

Using (9), we readily deduce the error representation formula (12). �

From the error representation formula (12), it is possible to infer a residual-based a posteriori error
estimate where the dual solution has been eliminated using the Cauchy–Schwarz inequality, local
approximation properties of the finite element spaceVh, and a global stability result for the dual problem.
Setψ1(ec) = ec andψ2(ec) = 0 so thatΨ (ec) = ‖ec‖2

L2
t (L2

x)
. Assume that the resulting dual problem

(8)–(11) satisfies the stability estimate

max
0≤t≤T

‖ξ(·, t)‖2
Ω +

∫ T

0
‖ξ‖2

H 2(Ω)
dt ≤ C

∫ T

0
‖ec‖2

L2(Ω)
dt. (17)

Furthermore, assume that the following approximation properties proven in [19] for d = 2 alsohold for
d = 3. For elementΩe in Th andφ ∈ Hs(Ωe), there exists a constantC depending ons but independent
of φ, k, and element diameterhe and a sequenceφ∗

h ∈ P
k(Ωe), such that for 0 ≤ q ≤ s and for

µ = min(k + 1, s),

‖φ − φ∗
h‖H q(Ωe) ≤ C

hµ−q
e

ks−q
‖φ‖H s(Ωe) s ≥ 0, (18)

‖φ − φ∗
h‖Hr (∂Ωe) ≤ C

hµ−r−1/2
e

ks−r−1/2
‖φ‖H s(Ωe) s>

1

2
+ δ, δ = 0,1. (19)

Corollary 2.1. With the above assumptions, an L2t (L
2
x) a posteriori error estimate holds for the

formulation(5) of the form

‖ec‖2
L2

t (L2
x)

≤ C
∫ T

0

∑
Ωe∈Th

η2
e dt, (20)

with elementwise error indicators

η2
e = h4

e

k4
‖Reqn‖2

L2(Ωe)
+ h4

e

k4
‖Rt=0‖2

L2(Ωe)

+
∑

F∈∂Ωe∩Ω

(
h̃3

e

k3
‖R[D∇ch] + u · R[ch]‖2

L2(F) +
h̃2

e

k2
‖D‖2

L∞‖R[ch]‖2
L2(F)

+‖D‖2
L∞‖R[ch]‖2

L2(F)

)
+

∑
F∈∂Ωe∩∂Ωin

h̃3
e

k3
‖Rin‖2

L2(F) +
∑

F∈∂Ωe∩∂Ωout

h̃3
e

k3
‖Rout‖2

L2(F), (21)
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for h̃e the maximal element diameter over all elements with the common face F and C a constant
independent of hF.

Proof. Use the error representation formula (12) together withthe stability estimate (17) and the
approximation results (18) and (19). The only term requiring special attention is the first one in the
third line of (12). Writing DT∇ξ + D∇ξ∗ = (D + DT )∇ξ − D∇(ξ − ξ∗), the second term yields
the last term in the second line of (21). Thequantity‖∇ξ‖F is estimated by‖ξ‖H 2(Ωe)

whereΩe is an
element to whichF belongs. Using the stability estimate (17), this yields the first term in the third line
of (21). �

Convergence orders of the various contributions to (21) are assessed numerically inSection 4. Note
also that with some additional algebra, it is possible to derive an error representation formula and an a
posteriori error estimate when the diffusion tensor is discontinuous across mesh interfaces.

3. Local discontinuous Galerkin (LDG) formulation

The LDG method consists of seekingch, z̃h, zh ∈ C1
t (Vh) such that∀v ∈ Vh, ∀w ∈ [Vh]d,

∀w̃ ∈ [Vh]d, and∀t ≥ 0,

(φ∂tch, v)Ω −
∑

Ωe∈Th

(uch + zh,∇v)Ωe +
∑
F∈F i

〈uc↑
h + {zh}, [v]〉F

+
∑

F∈F∂out

〈uch · n, v〉F = (φ f, v)Ω − (uĝ · n, v)∂Ωin, (22)

(z̃h, w)Ω −
∑

Ωe∈Th

(ch,∇ ·w)Ωe +
∑
F∈F i

〈{ch}, [w]〉F + (ch, w · n)∂Ω = 0, (23)

(Dz̃h, w̃)Ω − (zh, w̃)Ω = 0, (24)

with the same initial condition as before. Again, letξ satisfy the dual problem (8)–(11).

Theorem 3.1. Assume that the solution c to(1)–(4) and the solutionξ to (8)–(11) are both in
L2

t (H
2
x ) ∩ C0

t (L
2
x). Assume the diffusion/dispersion tensor D to be continuous and piecewise linear

in space. Then,

Ψ (ec) = −
∫ T

0
(Reqn, ξ − ξ∗)Ω dt − (Rt=0, (ξ − ξ∗)(0, ·))Ω

+
∫ T

0


∑

F∈F∂in

〈Rin, ξ − ξ∗〉F +
∑

F∈F∂out

〈Rout, ξ − ξ∗〉F


 dt

+
∫ T

0

∑
F∈F i

(
〈R[ch], DT∇ξ 〉F − 〈R[D∇ch] − u · R[ch], ξ − ξ∗〉F

)
dt, (25)

whereξ∗ is arbitrary in Vh ∩ C0(Ω) and where the residuals Reqn, R[ch], R[D∇ch], Rin, Rout, and Rt=0
are defined in(13)–(16).
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Proof. The proof is similar to that ofTheorem 2.1. The main difference is that Galerkin orthogonality
now yields

Ψ (ec) = −
∫ T

0
(φ∂tec, ξ − ξ∗)Ω dt − (Rt=0, (ξ − ξ∗)(0, ·))Ω

+
∫ T

0

( ∑
Ωe∈Th

(uec,∇(ξ − ξ∗))Ωe − (D∇ec,∇ξ)Ωe − (ez,∇ξ∗)Ωe

)
dt

+
∫ T

0


∑

F∈F i

〈DT∇ξ, [ec]〉F +
∑

F∈F∂out

〈DT∇ξ · n,ec〉F +
∑

F∈F∂out

〈uec · n, ξ∗〉F


 dt,

whereez = z− zh andz = −D∇c. Similarly, setez̃ = z̃− z̃h wherez̃ = −∇c. Owing to the assumption
on D, we inferDT∇ξ∗ ∈ [Vh]d and hence

(ez,∇ξ∗)Ωe = (ez̃, DT∇ξ∗)Ωe = −(∇ec, DT∇ξ∗)Ωe = −(D∇ec,∇ξ∗)Ωe,

whence the error representation formula (25) readily follows. �

Corollary 3.1. With the assumptions ofCorollary 2.1, an L2
t (L

2
x) a posteriori error estimate holds for

the formulation(22)–(24) of the form(20) with elementwise error indicators given by(21).

4. Numerical results

In this section we present numerical results to illustrate theconvergence order of the various terms in
the a posteriori error estimates. For the sake of brevity, we consider the NIPG error estimates (21). As
a model problem, consider a 1D convection–diffusion equation posed over domainΩ = (0,4π) with
initial datau0(x) = sin(x), source termf = 0, inflow dataĝ(t) = −e−Dt sin(ut), diffusioncoefficient
D = 1, and advection velocityu = 1. The simulation time is set toT = 0.5. Since the diffusion length

scale can be estimated asδ = (DT)
1
2 = 0.7, we infer that the restriction of the solution to the interval

(0,2π) is approximately given byc(t, x) = e−Dt sin(x − ut).
Numerical experiments are performed on two series of meshes: a series of uniform meshes with step

sizeh = 2−pπ
8 (0 ≤ p ≤ 3) and a series of non-uniform meshes which are constructed from the uniform

meshes by setting the step size alternatively toh
2 and 3h

2 for adjacent cells. Problem (5) is discretized in
time using an explicit Euler method and a time step of 2.5× 10−5. Results are presented inTables 1and
2. We evaluate the quantities

T1 =

 ∑

x j ∈(0,2π)
[ch(x j )]2




1
2

, T2 =

 ∑

x j ∈(0,2π)
[c′

h(x j )]2



1
2

,

T3 = Rin(t = T, x = 0), T4 =
( ∑

Ωe∈(0,2π)
‖Rt=0‖2

L2(Ωe)

) 1
2

,

where thex j ’s denotes the mesh vertices. On the uniform meshes, superconvergence is obtained so that
the upper bound in (21) scales ash2. On the non-uniform mesh, the first term in the third equation of
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Table 1
Convergence tests on uniform meshes

p T1 Order T2 Order T3 Order T4 Order

0 2.98e–2 – 7.73e–1 – 2.53e–2 – 7.18e–3 –
1 1.79e–2 2.2 5.51e–1 .49 5.97e–3 2.1 1.80e–3 2.0
2 3.36e–3 2.4 3.90e–1 .50 1.22e–3 2.3 4.50e–3 2.0
3 6.07e–4 2.5 2.76e–1 .50 2.03e–4 2.6 1.13e–3 2.0

Table 2
Convergence tests on non-uniform meshes

p T1 Order T2 Order T3 Order T4 Order

0 4.94e–2 – 7.84e–1 – 5.78e–2 – 1.40e–2 –
1 1.95e–2 1.3 5.54e–1 .49 1.37e–2 2.1 3.51e–3 2.0
2 7.82e–3 1.3 3.92e–1 .50 3.30e–3 2.1 8.79e–4 2.0
3 1.04e–3 1.4 2.78e–1 .50 7.29e–4 2.2 2.20e–4 2.0

(21) dominates the upper bound, yielding a convergence order ofh
3
2 approximately. This estimate is

compatible with standard a priori estimates for convection–diffusion equations.
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