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I. INTRODUCTION 

The problem discussed in this paper has grown out of an attempt to con- 
struct a theoretical framework which is suitable for the treatment of some 
of the problems arising in the design of control systems. The fundamental 
problem is to find a suitable control law, i.e., a relationship between the 
observed output and the control signal. In the earlier stages of the develop- 
ment of control theory it was customary to postulate a certain structure for 
the control law which had a few unknown parameters to be determined. 

In more recent developments, the trend is to replace this postulate by the 
postulate that the purpose of the control system is to minimize a cost function 

[I, 21. 
The design problem is then reduced to a variational problem, whose solu- 

tion will yield the control law. In this approach the control law expresses 
the control signal as a function of the state variables. Hence there is no 
dynamic element in the feedback. It should also be noted that with an 
approach of this type there is no analytical difference between a control law 
and a control schedule, or in other words, between a closed loop system and an 
open loop system. 

The control law being a function of the state variables implies that all 
state variables must be measured. If only measurements of a few state varia- 
bles are available and if the system is observable, the other state variables can 
easily be reconstructed by differentiation. Hence there is no natural way to 
introduce, as a limitation, the fact that only a few state variables can be 
measured. Thus, the treatment of the control problem as a deterministic 
variational problem is not a completely satisfactory approach. 

It is clear that this inadequacy arises when disturbances are neglected. 
One way to remedy this definiency is to introduce disturbances as random 
functions. If the control problem is still formulated so as to minimize 
functionals of the trajectories of the system, we are led to a stochastic varia- 
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tional problem. Such a problem is, in general, very difficult to solve. There 
is, however, one special case which can be solved: linear systems with quad- 
ratic criteria. See [3-6]. This solution is the foundation of linear control 
theory which is complete in the sense that many essential problems, such as 
stability, sampling rate, etc., can be solved. See [7]. The solution of the linear 
problem has an interesting structure. The feedback law obtained can be 
considered as consisting of two parts:-the estimation of the state of the 
svstem from the observed measurements, and the calculation of the 
control variable from the estimated state. The first part is reduced to the 
solution of a differential equation. The second part is simply the evaluation 
of a linear function. This function can be obtained as the solution of a deter- 
ministic control problem. Both the differential equation and the linear 
function contain parameters which can be precomputed from the a priori 
data of the problem and stored in tables. By doing this, the amount of real 
time computations required in the implementation of the optimal system is 
significantly reduced. It should also be noted that the linear stochastic control 
theory provides an interesting approach to a class of adaptive systems: a 
typical situation is the case where the disturbances have constant but unknown 
averages. It is easily seen that this case is transformed to the standard linear 
problem by introducing the unknown averages as new state variables. See [7]. 

It would indeed be interesting to pursue the same idea for stationary 
systems with unknown parameters. It is easily seen that this problem can 
be transformed to a nonlinear stochastic variational problem where the 
unknown parameters are considered as state variables. Hence, a generaliza- 
tion of the linear stochastic control problem will lead directly to a stochastic 
variational problem. The solution of such a problem will provide an approach 
to a theory of adaptive control systems. 

In developing a theory for a stochastic variational problem it is natural to 
rely on Markovian theory by making assumptions which will guarantee that 
the solutions of the differential equations with random disturbances which 
describe the system are Markov processes. The main reason for this approach 
is that the transition probabilities of Markov processes are governed by linear 
equations even if the original stochastic differential equations are highly 
nonlinear. 

The control problem can be stated as follows. The system is described by 
a stochastic differential equation containing certain parameters, called control 
variables. The trajectories of the system can be influenced by the choice 
of these control variables. There is incomplete state information, i.e., only 
a few coordinates can be observed and the measurements of these coordinates 
are affected by disturbances. The performance of the system is characterized 
by a functional of the trajectories. The problem is to find values of the control 
variables such that the mathematical expectation of the functional is as 



176 ASTR~M 

small as possible, when the value of the control variable at time t may depend 
on all measurements prior to t. When trying to solve such a problem one is 
soon faced with great mathematical difficulties. However, by quantizing 
both the state and time variables of the problem formulated above, we arrive 
at a problem of essentially the same structure where some of the mathematical 
difficulties are eliminated. Such a problem is studied in this paper. When a 
solution to the quantized problem is obtained we may return to the original 
continuous problem by various limit processes. The quantized problem has, 
however, a value of its own in the sense that it represents a situation which 
arises when a digital computer is used to implement the optimal solution. 
In such a case the quantization in time enters naturally into the problem 
as sampling, and the quantization of the state variables is obtained from the 
analog to digital conversion. 

A precise statement of the quantized problem is given in Section II. The 
solution of the problem is presented in Section III. The solution is obtained 
using Dynamic Programming, and the result is given in terms of a functional 
equation. To obtain the solution, some elementary results of the theory of 
conditional Markov processes are required. The functional equation obtained 
is an analog of the Hamilton-Jacobi equation in classical calculus of varia- 
tions. In Section III we also present an inverse result which shows that if 
the basic functional equation has a solution, then the maximum exists. 
This is the analog of a theorem of Caratheodory in the classical calculus of 
variations [8, p. 2001. In Section IV we give some interpretations of the 
results obtained. It is shown that the optimal control law can be expressed 
as u = u(w, t) where w is a function of the observed outputs. The function 
u = U(W, t) can be calculated a priori, without any knowledge of the actual 
outputs of the system, as the solution of an associated problem with complete 
state information. The function w which is a function of the observations 
must obviously be calculated in real time as the outputs are observed. Dynamic 
feedback is obtained through this computation. We can thus divide the prob- 
lem in the same way as is done in the linear quadratic case. This division is 
of great importance for the practical implementation of the solution, since 
computation of the function u = U(W, t) is complicated and time consuming. 
Precomputing and storing this function greatly reduces requirements for 
real time computations and is a considerable simplification in the realization 
of the optimal system. 

In Section V we compare the solution of our problem with two associated 
problems, namely, those of complete state information and of no state 
information at all. The latter problems are easier to solve and the solutions 
will provide bounds for the solution of our problem. The comparison will 
also make it possible to associate cost with state information. This provides 
an interesting connection between information theory and the theory of 
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stochastic optimal control, which has not been explored. Finally, in Section VI 
we present two examples. 

Although the problem has arisen from study of control systems, its solu- 
tion may have applications in other fields. In queuing theory, to mention one 
example, it will thus be possible to treat queues so that service is made to 
depend on the past status of the queue. 

II. STATEMENT OF THE PROBLEM 

Let {x~, t = 0, 1, . ..} be a Markov process with finite state space and dis- 
crete time. The states are labeled by the positive integers I, 2, . . . . n. The 
initial probability distribution is 

p: = P(xo = i} 

The row vector formed by (pro, pz, . . . p,O) is denoted by p”. Let P(u, t) 
be the matrix of the transition probabilities of the process. The 9 component 
of P, p,(u, t) is defined by 

where 
p&d, t) = P{x, = j 1 xtml = i} 

P&4 t) >, 0, lz)Pid% t) = 1 

(2-l) 

The transition probabilities may depend on time t, and on a set of parameters 
ui , . . . . uk which are combined to form a column vector u, and called control 
variables or decision variables, thereby reflecting the fact that the process xt 
can be influenced by the choice of these parameters. It is assumed that u(t) 
for each t belongs to a closed compact set U, which is called the set of admissible 
controls at fixed times, and that the transition probabilities are continuous 
functions of U. Further, let {yt , t = 1, 2, . ..} be a discrete time random 
process which is related to the x process in the following way 

Yt = fb , 4 
where (et , t = 1, 2, . ..> is a sequence of independent random variables, 
and the range off is the integers 1, . . . . m. 

The realizations of the process {yt , t = 1, 2, . ..} represents the results 
of the physical measurements of the process {xt , t = 0, 1, . ..} and the process 
{yt , t = 1, 2, . ..> is therefore referred to as the output of the system or the 
observable. 

The function f(x, e), which represents the characteristics of the measuring 
instruments, and the random variables {et, t = 1, 2, . ..} are specified by 

qii = Ply, = j 1 xt = i> (2.2) 

I2 
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A particular realization of the process yt or equivalently a particular outcome 
of the measurements is denoted by yl , . . . . qt and these numbers are grouped 
together to form the vector. 

The matrix Q formed by the qij : s and defined by Eq. (2.2) will thus reflect 
measurement errors. Notice that Q is not necessarily a square matrix, the 
number of possible output states may differ from the number of states of 
the x process. When Q equals the unit matrix, we have complete state informa- 
tion, i.e., each measurement gives the exact state with probability one. 

When controlling the process (xt , t = 0, 1, . ..> we want to determine u(t) 
both as a function of the outputs observed up to time t and as a function of 
the previous control variables u(l), . . . . u(t - 1). This is to be done in such 
a way that the behavior of the controlled process is optimal in some sense. 

Let the observed outputs up to time t be y1 = rlI, . . . . yt = TV. The 
relation between the control variable u(t), the observed outputs v1 . . . . vt , 
and the previous control variables u(l), . . . . u(t - 1) is expressed as 

u(t) = C’(Q , a**, vt , u(l), aa.9 u(t), t) t = 1, . . . . N 

By successive substitutions we can immediately eliminate u(l), .,., u(t - I) 
from the right-hand member and we get 

u(t) = 4% , -a*> Tt 7 t), t = 1, . . . . I\i (2.4) 

The set of functions C = (~(7~ , . . . . yt, t), t = I, . . . . N} is referred to as 
strategy or a control law. A control law C is admissible if c(vI , . . . . ?lt , t) E c’ 
for all t and all possible 7% . As the control law C gives a relation between the 
measured outputs and the control signals it will also definefeed6ack. 

The object of controlling the process is specified in the following way. 
Letg(u, x, t) be a scalar function of U, x and t. It is assumed that the depend- 

ence on u is continuous. The function g is called the instantaneous cost 
function and it gives the cost associated with the outcome xt = x and the 
control u. Further, the total cost of the process is defined as 
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The mathematical expectation of L is denoted 

EL = E $Wt), xt , t) = E $g(c(~, . . . . vt , t), xt , 2) (2.6) 
t=1 t=1 

where E denotes expectation with respect to the distributions of xt and yt. 
We will now formulate the following problem. 

P.1 find an admissible control signal whose value at time t is a function 
of the outputs observed up to that time and are such that the expected value 
of the total cost is minimal. 

An alternative formulation is: 

P. 1’ find an admissible control law such that the expected value of the total 
cost (L) is minimal. 

Remark. In the statement of the problem it is postulated that u(t) is a 
function of 7]r , . . . . yt. As u(t) is allowed to be a function of Tt this implies that 
there are no delays in measurements, and that the time required to calculate 
the control signal from the measurements is negligible. There will be no 
essential change in the arguments if we instead postulate that u(t) is a function 
of 71 , **a, Q-~ thereby allowing for a delay of the measurements and the 
control computations of s units of time. The delay s may also be a function 
of time. In this way we can get a hierarchy of problems. 

One particular case which deserves special attention is when s(t) = t. 
This means that u is just a function of time (and of the a priori information) 
and that no measurements are used. The control function u(t) obtained in 
this way is called a control schedule and the system obtained is called an 
open Zoop system, as there is no feedback from the measurements. These 
variations in the formulation of the problem are both of practical and theoreti- 
cal interest; they give us tools to analyze the influence of delays in measure- 
ments and to form estimates of minimal loss. This is of importance when 
analyzing different schemes for implementing a system, and for discussions 
of convergence, etc. 

III. SOLUTION OF THE PROBLEM 

A. Dynamic Programming 

Leaving questions concerning existence and uniqueness of the solution 
aside for a moment, we will now postulate that the problem has a solution, 
and we will characterize this solution by a functional equation. We will 
then go back to find conditions which ensure existence and uniqueness. The 
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function to be minimized is the mathematical expectation of the total cost. 
We will thus have to find 

mm . . . t,r~r E zg(u(t), xt , t) 
UC11 t=1 

(3.1) 

where expectation is taken with respect to the distributions of {xt , t = 0, 1, . ..} 
and (yt, t = 1, 2, . ..> an w d h ere u(t) has to be a function of the outputs 
observed up to time t, i.e., of Q = yr, . . . . r), = yt . The technique of Dynam- 
ic Programming will be used to solve the problem. 

Let us first consider the situation at the last step, i.e., t = N. The outputs 

Yl = 71 3 ***9 YN = -TN have been observed and the problem is to determine 
u(N) as a function of these. We notice that the only term of the sum in ex- 
pression (3.1) for the total cost that depends on u(N) is the last one, i.e., 

hdNh ‘N 7 N). The control signal u(N) must therefore be chosen so as to 
minimize the quantity. 

E&(Nh xN 1 N) (3.2) 

Again E denotes expectation with respect to the distributions of the pro- 
cesses {x+, t = 0, 1, . ..} and {yt = 1, 2, . ..}. The quantity (3.2) has to be 
minimized with respect to all u(N) which are functions of Q , .,., rlN , To 
perform the minimization we will first rewrite (3.2) so that the dependence 

of 71 , . . . . vN is explicit. Using the definition of conditional expectation, 
we get 

Eg(u, xN , w = ,($, I[“$64 XN Y WI (3.3) 

where Elqo) denotes mathematical expectation with respect to the condi- 
tional distribution of xN , given r](N) and ErltNj denotes the mathematical 
expectation with respect to the distribution of 7(N). The expression of the 
right member of (3.3) which is within brackets, is a function only of u, T, ..,, 
qN and we can thus perform the minimization. The minimal cost of the last 
step is thus 

~N,m~,q,j~$U~ xN t N, (3.4) 

Let V, be defined by 
vN = m~,$,g(u7 xN , N) (3.5) 

We notice that V, is a function of Q , . . . . qN and N, but that the dependence 
of VN on 33, . . . . vN only enters through the conditional distribution of xN 
given 7(N). To emphasize this we introduce 

w,(N) = p(xN = i 1 Yl = 71, *-, YN = qN3 (3.6) 
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and 

w(N) = (w,(N), w,(N), 4 (3.7) 
and we write 

VN = ~N@(W (3.8) 

Summarizing our findings so far, we find that the minimal cost during the 
final step is 

&) ~Nb4w) (3.9) 

We now proceed recursively to show that the minimal cost of the N - k 
last steps can be written as 

&q, ... z&E $ &4) 9 xt s t) = ,(&) ~k+l@(k + 1)) 

t=k+l 

(3.10) 

where we have introduced 

V,(w(k)) = min E 
u(k) Iq(k) 

t=k 

t=k 

(3.11) 

in analogy to (3.5). To obtain this result and a recursive equation for V, 
we will use Dynamic Programming and proceed by induction. 

We assume that the statement is true for the N - k last steps and we will 
show that it is also true for the last N - k + 1 steps. Consider the situation 
at time t = k. The situation is this: the output signals y1 = Q , . . . . yk = Q 
have been observed, and the control signal u(k) is to be determined. We notice 
that only the last N - k terms of the cost function are affected by the choice 
of u(k). The control signal u(k) must therefore be chosen so as to minimize 
the sum 

Due to assumption (3.10) we have 

(3.12) 

= 2% Ek’u k), xi , k) + ,(&, vk+l(w(k + I))] (3.13) 



By using hypothesis (3.10), we are thus left with only one minimization. 
The control variable u(k) thus has to be chosen as a function of Q , . . . . 7k 
so as to minimize (3.13). To perform this minimization we rewrite (3.13) 
in such a way that the dependence of u(k) on vr , . . . . Q is explicit. We get 
from the definition of conditional expectation: 

Ek(“(k), xk 7 k) + ,&, vk+dw(k -t- 1 ))I 

= ,g, [,&#4k), %k s k) + ,,g, Ir,+&+ + I)>] (3.14) 

= &, [j&(k), &s ,k) dF(tk t rl(k)) + j” ok+&@ + 1)) dF(?k+l 1 GN] 

whereF(tk 1 ‘I@)) and%k+l 1 T(k)) are the conditional distribution functions 
of x(k) and y(k + l), given T(k). To evaluate the last integral of (3.14), it 
is necessary to exhibit explicitly the dependence of w(k + 1) on yk+r . To 
do this we make a digression. 

B. A Recursive Equation for the Conditional Dirtributions 

In order to obtain the relation between w(t) and 7, we will express w(t) as 
a function of 7jr , . . . . 7t in terms of a recursive equation. To do this we consider 
the probability 

it follows from the multiplication rule for conditional expectations that 

(3.16) 

But 

= zj PC.5 9 ?It I (t-1 7 70 - l)>P(&-1 I ?(t - 1)) (3.17) 
Pi-1 

We have further 

P(E* > ?t I St-1 > dt - 1)) = P(lt I (t-1 7 dt - ~lP(% I It 9 It-1 3 ?O - 1)) 
= P(h I LlPht I 5,) (3.18) 
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where the last equality follows from (2.2) and the fact that x(t, w) is a Markov 
process. We now get from (3.16), (3.17), and (3.18) 

p(Et ’ 71w) = 

5 x Ph I 5tM5t I &-1wt-1 I rl(t - 1)) 

gil Ph I SME, I tt-&(5t-1 I ?(t - 1)) 
(3.19) 

Now introducing p, q and w(t) from the equations (2.1) (2.2), and (3.6) 
we get the following recursive equation for w,(t). 

(3.20) 

where 

7lt+l =j (3.21) 
Introduce the notation 

3&4 w(t)) = I: qijPsi(~)ws(t) (3.22) 
s 

Notice that xij are all nonnegative and that a second index of xii refers to 
the outcome of the measurement. Introduce the vector 

and define the norm 

zj = co1 [Zjj ) . . . . Z,j] (3.23) 

II 24 II = z I zij I (3.24) 
z 

The Equation (3.20) then becomes 

(3.25) 

Notice that the norm /I zj 11 has a physical interpretation as the conditional 
probability 

II zj II = fTy(t + 1) = i I Yl = 71, *-*> Yt = %I 

C. Results 

Having obtained the desired recursive equation for w(t), we will now return 
to Eq. (3.14). We get from (3.14) and (3.25) 

QMk)~ x(k), k) + ,&, ~k+dw(k + 1))l 
(3.26) 
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where 

min . . . n& E J!$ &u(t), s(t), t) = $, [Vk(,(w(k))] 
u(k) 

t=k 

(3.27) 

The minimal cost of the N - k + 1 last steps is thus of the form (3.10). 
Hence, from the assumption that the minimal cost of the last N - R steps 
is of the form (3.10), it follows that the minimal cost of the last N - R + 1 
steps is also of the same form. Further, it was shown in Section III, A that 
the minimal cost of the last step has the form (3.4). We have thus completed 
the induction and have achieved the desired result. 

Summarizing, we get 

THEOREM 1. Let the controE law Co = {cO(w(t), t), t = 1, . . . . N} minimize 
the functional (2.6) and let 

where 

= ,,$,) 2 dc”(w(t), t), Xt 7 t) (3.1 I) 
t=k 

b(t)li = W@) = i I 44 (3.6) 
Then 

= ~&V(k), k), i, kh@) * 
~j(c”(w(k), k), w(k)) 

+ ? ‘k+l iI1 zj(cO(w(k), K), w(k))Il) . iI zj(co(w(kh ‘h w(k)ll 

where 

and 

(3.28) 

(3.22) 
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We have thus obtained a necessary condition. We will also give a sufficient 
condition. 

THEOREM 2. Let the functional equation (3.28) have a solution Vt(w(t)), 
then the problem P.l has a solution, the control law Co minimizes the functional 
(2.6), and the minimal value of (2.6) is 

p5(w(1)) (3.29) 

PROOF : Let C = {c(q(t), t), t = 1, . . . . N} be an admissible control law. 
Introduce 

(3.30) 

The quantity W,(w(K), T(k)) is the expected loss over the time interval 
[k, N] given that the control law C is used and given that at time k T(k) 
is observed. If the control law C is used the expected cost of the last N - k 
steps is thus 

(3.31) 

and the value of the functional (2.6) is 

Notice that w(k) is a function of q(k); it is, however, advantageous to separate 
the dependence of W, on w(k) and r)(k) as is done in (3.30). 

The function W,(w(k), T(k)) satisfies the equation 

Wk(w(k), v(k)) = ~g(cMk), 4, i, k)w@) 
(3.32) 

+ c, Wk,l ( 
~YcMk), k), w(k)) 

5 II 4+/(k), k), w(Wll 
3 dk + 1,) II ~Wdk>, k), WWll 

where 

We will now show that 

Wt(W rlw 2 ~t(wW> for all t (3.33) 

The statement is obviously true for t = N. We will now show by induction 
that it holds for all t. 



,%ssuming that (3.33) is true for t = k + 1, we get from (3.28) and (3.33) 

WAw(k)) = C&W), k), i hh@) 

a ~k(W(k)) (3.34) 

where the first inequality follows from the assumption (3.33) with t = K + 1, 
and the second inequality follows from (3.28). We have thus shown that 
(3.33) with t = K + 1 implies (3.34), thereby completing the induction. 
Now we put k = 1 in (3.33) and take mathematical expectation with respect 
to the distribution of qi , hence 

(3.35) 

Further, the continuity of g(zl, X, t) and pij(u) implies that if (3.28) has a 
solution V, then this solution is continuous in w, which implies that C = Co 
gives equality in (3.35). Q.E.D. 

IV. DISCUSSION OF THE RESULTS 

We will now draw some conclusions from the results of Section III. The 
functional equation (3.28) can be solved a priori, knowing only the instan- 
taneous cost function g(u, x, t), the transition matrix P, and the observation 
matrix Q, and without any knowledge of the actual values of the observed 
output y. A typical element of the control law expresses the control variable 
u(t) as a function of the outputs observed up to time t, that is 

Notice in particular that for the optimal control law the dependence of u 
on s(t) only enters via the conditional distributions w(t). The function 
u = u(w, t) is obtained directly from the solution of Eq. (3.28). This function 
can thus be calculated off-line without any knowledge of the actual output 
signal. 
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The function w = w(r](t), t) which expresses the conditional distributions 
of the state w(t) as functions of the measured output signals q(t), is given 
recursively by the equation (3.25). This function must obviously be evaluated 
in real time, as the outputs are observed. 

We now observe 

LEMMA 1. For a control law such that u(t) = c(w(t), t) the set of conditional 
probabilities (w(t); t = 0, 1, 2, . ..) is a Markov process. For jxed t E [0, 1, . ..] 
w(t) takes its values in the positive o&ant in R”. The transition probabilities 
of the w-process are given by 

qy, c 4 = wJ(t + 1) E r I w(t) = Yl = 2 II -?+, y)ll 
kEK 

(4.1) 

where zk(u, y) is given by Eqs. (3.22), (3.23) and 

1 
Zk(% Y) 

K = k; IIz”(u, y)(l E r 1 (4.2) 

Initially, w(0) equals p” with probability one. 

PROOF: For the optimal contro1 law u(t) is a function of w(t) and the 
equation (3.25) gives 

P[w(t + 1) 1 w(t), w(t - l), .*a, w(l)1 = P[w(t + 1) / w(t)] 

which implies that w is a Markov process. The formula (4.1) for the transition 
probability now follows from (3.25). Q.E.D. 

Notice that the transition probability for the w-process has its mass concen- 
trated in m points. Also, notice that as the transition probabilities (2.1) 
depend on II, the w-process can be influenced by the choice of control 
variables. We will now consider a variational problem relative to the w-process. 

Let g(u, t) denote the vector 

g(u, t) = ~01 [g(u, i, t>, . . . . g(u. n, t)l (4.3) 

where g(u, i, t) is the instantaneous cost function introduced in Section II. 
Introduce the functional 

E i: WV t>, w(t)) 
t=i 

where (a, b) denotes the scalar product of the vectors a and b and E denotes 
mathematical expectation with respect to the distribution of w(O), . . . . w(N). 
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Now consider the following problem: 

P.2 find a sequence of admissible control variables u(t), t = 1, . . . . :\* 
such that (4.4) is minimal. The value of u at time t may depend on w(O), 
w(l), . ..) w(t). 

We have the following result: 

THEOREM 3. The problems P.1 and P.2 are equivalent in the sense that if 
one of the problems has a solution then the other problem also has a solution. 
Furthermore, the optimal control law is 

u(t) = cO(w(t), t) 

in both cases where co is given by Theorem 1. 

PROOF: In problem P.2 there is complete state information and the solution 
is thus well-known. See [9]. Assume that P.2 has a solution and introduce 

Vt = m;ln E 1% (g(u, i), w(i)) / w(t), w(t - l), . . . . w(O)/ (4.5) 
id 

This implies that at each time t the optimal value of the control variable is a 
function of w(l), . . . . w(t). The minimal value of (4.4) is 

But w is a Markov process, hence 

Vt = Vt(w(t)> = m;ln E /t(g(u, 4, w(i)> I w(f)[ i=t (4.7) 

The Markovian property of w thus implies that the optimal control variable 
u(t) is a function of w(t) only. Using the standard argument of Dynamic 
Programming we obtain the following functional equation for V,(w(t)) 

Vt(wW = mjn M4 4, w(t)) + E[Vt+dw(t + 1)) I WI1 (4.8) 

Hence 

Vt(w(t)) = nl;ln /Mu, t), w(t)) + 1 Vt+,(y)P(w(t), dy, u)( (4.9) 

where P(x, r, u) is the transition probability of the Markov porcess 
The equation (4.1) now implies that Eq. (4.9) is identical to (3.28).Hence , 
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if P.2 has a solution then (3.28) holds and Theorem 2 then implies that the 
problem P.l also has a solution. The reverse statement is proved in the same 
way, using the equivalent of the Theorem 2 for problem P.2. Q.E.D. 

Theorem 3 thus implies that the problem of optimal control of a Markov 
process with incomplete state information can be transformed to a problem 
of optimal control of a process with complete state information. Notice that 
the state space of the associated process with complete state information is 
the space of probability distributions over the states of the original problem. 
Also, notice that the transition probability distribution of the associated 
problem has its mass concentrated at most m points, where m is the number 
of possible outcomes of a single measurement. 

The problem of controlling a Markov process with incomplete state infor- 
mation can thus be subdivided into two parts: 

1. The solution of the functional equation (3.28), which is equivalent to 
solving a variational problem for an associated Markov process w with 
complete state information. This will give u = u(w, t). 

2. The calculation of the conditional probability distributions w(t) of the 
states of the associated Markov process from the measured output signals v(t). 

This subdivision is a generalization of a well-known theorem for linear 
systems with a quadratic loss function [3, 4, 6, 91. 

In the theory of linear systems with quadratic criteria the states of the 
associated problem are simply the conditional means of the original states, 
while in the problem studied in this paper the states are probability distri- 
butions on the state space of the original Markov process {xt , t = 0, 1, . ..}. 

The possibility of separating the problem in this way is of great importance 
for the realization of optimal systems. The fact that the first part of the 
problem can be solved off-line means a great reduction of the requirements 
for real time computations. 

V. BOUNDS FOR OPTIMAL RETURNS 

In this section we will give some bounds on the solution of the functional 
equation (3.28). We will obtain these bounds by modifying the amount of 
data which is available for the choice of the control variables. Two particular 
cases will be considered, namely, the case of complete state information 
and the case when control is based only on a priori information and no 
measurements are used (open-loop system, control schedule). The results 
will enable us to assign a value to the information which is available for making 
a decision. 
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A. Complete State Information 

Consider the particular case when the measurements are exact, i.e., the 
measured output y will coincide with the state x with probability one. Hence 

Let m denote the measured output at time k and we get 

w<(k) = a,, (5.2) 

with probability one. Equations (5.1), (5.2) and (3.22) now give 

Introducing this into (3.26) we get 

where 

(5.3) 

(5.4) 

In case of perfect state information V,(w) is thus a linear function of w(k). 
We also notice that the functional equation (5.4) is the equivalent of the 
Hamilton-Jacobi equation for the following variational problem. Let x(t) 
be a Markov process with the transition probability P(U). Find a control 
u(t) which is a function of x(t) such that the functional 

is minimal. 

t-1 

This is easily verified by applying Dynamic Programming to the problem. 

B. Open-Loop System 

In this section we will consider the other extreme case, namely, the case 
when no a posteriori state information is obtainable. We assume 

qij = C = constant for all i and j (5.5) 
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Introducing this into (3.22), (3.24), and (3.25) we get 

The conditional probabilities are thus independent of the outcome of the 
measurements, which means that the measurements do not contain any 
information of use for the calculation of w. Using (5.6), the equation (3.28) 
reduces to 

I&) = m;ln )s .A% i, WdN + ~k+lWW4) \ (5.7) 
z 

Notice that Eq. (5.7) is the equivalent of the Hamilton-Jacobi equation 
for the following variational problem. 

Consider the difference equation 

w(t + 1) = w(t)P(u) (5.8) 

Find an admissible control u which minimizes the functional 

(5.9) 

Also, notice that as the conditional distributions of the state are independent 
of the actual observations, the solution of (5.8) will give the cost associated 
with the best control schedule. Compare Section II. 

The functional equations (5.4) and (5.7) are considerably simpler than the 
equation (3.28). We will now show that the solution of (3.28) is bounded 
from below by the solution of (5.4) and f rom above by the solution of (5.7). 

THEOREM 4. Let the solution of (3.28) by V,(w) and that of (5.3), (5.4) be 
V*‘(w) then 

Vk’(W) G ~?A4 (5.10) 

PROOF: We will obtain the results by going through the steps of the proof 
of Theorem 1 and using the following inequality at each step. 
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Consider Eqs. (3.4) and (3.5). We get 

We will now show by induction that 

~t’(wW> G vt(w) for all t 

Assuming that the inequality holds for t = k + 1 we get 

and the theorem now follows by complete induction. 
We also have 

THEOREM 5. Let the solution of the functional equation (3.28) be V,(w(k)) 
and let that of (5.7) be V:(w), then 

ok G yJw(k)) (5.11) 

PROOF: Equation (3.11) gives 

V,(w(k)) = min E . . . min E 
u(k) Iv(k) 

= m$~ . . . rnn $$ (zg(u(t), i, t)(w(k)Pt-k(u))lj 
t=lc i 

= qyw(k)) 
Q.E.D. 
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The Theorems 4 and 5 thus imply that the minimal value of the loss 
function is bounded by 

where the left-hand member represents the minimal cost in the case of 
perfect measurements and the right-hand member represents the minimal 
cost in the case of no measurements at all. The difference 

y3w) - ~&4W (5.13) 

is thus the value of perfect state information, and the difference 

is the value of incomplete state information. 

VI. EXAMPLES 

In this section we will consider some examples. 

Example 1. Let the transition matrix be 

(5.14) 

The set of admissible controls is U = [0, 11. Further, let the observation 
matrix be 

This means that the probability of getting a correct measurement is p. 
Further, let the cost functions be 

&J(t), *t , t) = I 1 x(4) = 2, t = 0 
0 all other cases (6.3) 

This implies that the total cost equals the probability of being in state i = 2 
at the final step of the four step process. 
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We get from (3.22) 

x 11 = lc kPsP, = 4K1 
II 

x21 = ~q21Ps2% = (1 - t (1 - 44 
(6.4) 

x 22 = Iz 422Pszws = Qf=% + (1 - 4w2l 
s 

Consider the functional equation (3.28). We get 

V*(w) = w2 (6.5) 

= mjn [w2 + u(wl - w2)] = min (wl , w2) 

The minimum occurs for the strategy 

I 
1 

u = 
WI < 0.5 

0 w1 > 0.5 
Now consider the next step. We get from (3.28) 

V,(w) = min i 11 x1 II min ( -__ ,,“,‘:,, , ,$,, 1 + I! 9 II min ( -- 212 222 
I/ 22 /I ’ (1 22 I! II 

= m;ln [min (+ , x2d + min (xl2 , +)I 

We have four cases 

I. Zll > x21 

II. Zll > x21 

III. Zll < zs1 

IV. zu < zs1 

%a > x22 

x12 < 222 

3s > %2 

%a < %2 
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We find that the costs and the optimal strategies of the various cases are 

I. V = min (wr , w2), 1 1 
I.4 = 

w,.< “2 
0 Wl > w2 

II. I/’ = 1 - q 

III. v = q 

u arbitrary 

u arbitrary 

IV. V = min (w, , w2) 
i 
0 

u = 
Wl < w2 

1 Wl > w2 

We find that case II is not possible when q < 0.5 and that case III is not pos- 
sible when q > 0.5. The minimal cost is thus 

v,(w) = min(w, , w2, qo) (6.7) 
where 

q. = min(q, 1 - q) (6.8) 

Notice that the strategy yielding the minimal cost is not unique. It is easily 
verified that either strategy I or II will give the minimal cost. There are also 
other strategies for which this occurs. For example 

We thus have the equivalents of conjugate points in the classical calculus 
of variations, Now consider step 1. We get from Eqs. (3.28) and (6.7) 

Vl = mF @in (zll , z21 , qo// 9 !I) + min h2 , 32 , qoll z2 II)) 
We have now 9 cases 

minh, , z21 , qo/l 9 II) min(.3,, z22 7 qoll z2 II) 

1. 31 

II. z21 

III. qo/l~l II 
IV. zrr 

v. z21 

VI. 40119 II 
VII. zn 

VIII. zar 

IX. %I 9 II 

%2 

32 

32 

222 

222 

222 

qoll~211 
9011 z2 II 
9oll T&r2 ll 
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The minimal costs and the optimal strategies of the various cases are 

I. Vi(w) = min (rut, wx) 

II. V,(w) = I -- q 

where 

a:=l-q+qqo 

P = PO - 440 

IV. V,(w) = q 

V. V,(w) = min (wi , wa) 

where 

a = 4 + 40 - 990 

B = cl!70 

where 

a=l-q++qo 

B = qo - 490 

IX. V,(w) = qrJ 

We find that if q > 0.5 cases IV, VI, and VII are not possible, and similarly 
if q < 0.5, cases II, III, and VIII are not possible. We find that 

v,(w) = min(q , w2, aowl + B0w2, aow2 + Bowl) (6.9) 

where 
a0 = 2qo - PO2 

PO = 402 (6.10) 

In Fig. 1 the functions V,(w). V,( w ), and V,(w) are graphed for q = 0.8. 
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We have thus obtained optimal control strategies, i.e., the optimal values 
of the decision variables have been expressed as functions of the conditional 
probabilities of state, z+(t). To complete the solution it is now necessary to 

6.5 
w1 

1 

FIG. 1. Optimal returns for the four-stage process of Example 1. q = 0.8. 

relate the conditional probabilities of the state to the measured outputs 
of the system. We get from Eq. (3.20) 

w,(t)[q - @)ql + %W . 4 . w 
w,(t)[q + I+)(1 - 2q)l t wa(t)[l - 4 + @)(2!? - 1)l 

w,(t $ 1) = 
ify(t + 1) = 1 

w,(t)[l - q + @)(q - 111 + %!m4w - 4) 
w,(t)[l - U(t) + u(t)(2q - l)] + w,(t)[q + t+)(l - %)I 

if y(t + 1) = 2 

w,(t)[l - q + u(t)(q - I)1 + w&> . Wl - P1 
w,(t)[q + u(t)(l - 2q)l + w,(t)[l - 4 + u(Wq - 111 

w& + 1) = 
if y(t + 1) = 1 

WI(t) u(t) . q + w,(Uq - 4441 
w,(t)[l - u(t) + u(r)(2q - 1)l + W&)[Q + 4t)U - &?)I 

ify(t+1)=2 

which completes the solution of the problem. 



It is of interest to compare these results with those obtained in cases of 
very accurate and very inaccurate measurements. In the case of complete 
state information we get from Eq. (5.3) and (5.4) 

V3’(w) = Vz’(w) = VI’(W) = 0 
(6.11) 

If the measurements are not used at all, that is, a control schedule is used, 
we get from Eq. (5.7) 

v;(w) = w2 
(6.12) 

V:(w) = V,(w) = V,(w) = min (w, , w.J 

From Theorems 4 and 5 it now follows that 

0 < Vi(w) < min(wi , 1 - wi) i= 1,2,3 (6.13) 

An examination of Eqs. (6.5), (6.6), (6.7), (6.9), (6.11), and (6.12) will also 
give the cost associated with the state information. See also Fig. 1. 

Example 2. As a second example we will consider a case where the set of 
admissible controls is a finite discrete set. Theorems 1 and 2 still hold in this 
case. 

The transition matrix of the problem is given by 

I 0.5 0.5 0.4 0.6 
2 0.5 0.5 0.7 0.3 
3 0.8 0.2 0.4 0.6 
4 0.8 0.2 0.7 0.3 

(6.14) 

The instantaneous cost function g(u, x, t) is independent of t and is given by 

u 

\ 

1 2 3 4 
x 

1 20 17 10 7 (6.15) 
2 -5 -8 -15 -18 
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The observation matrix Q is given by 

Q = c:: 3 

199 

(6.16) 

The transition matrix of this example is taken from the toymakers example 
of Howard [lo, p. 281. Howard uses the two-state Markov process as an 
idealized model for a manufacturing process. State x = 1 is associated 
with the production of a successful toy and state x = 2 is associated with 
the production of an unsuccessful toy. The four possible decisions represent 
the following actions: 

u = 1 no advertising and no research 

u = 2 no advertising, but research 

u = 3 advertising, but no research 

u = 4 advertising and research 

The payoff matrix is different from Howards example. 
The inclusion of uncertainty in the state information would correspond to 

the case that the manufacturer does not know whether the toy currently 
being produced is going to be successful or not. The problem we consider 
is to maximize the profit over four steps. 

max $g(xt I u(t)) 
t=1 

(6.17) 

Theorems 1 and 2 are easily modified to handle maximization instead of 
minimization. From (3.5) we get 

V,(w) = max Eg(u, xp)) = 2Ow,(4) - 5w,(4) 

We will now proceed recursively and solve Eq. (3.28). We get from (3.22) 

1 0.08~~ + 0.32 -0.03~~ + 0.18 0.02~~ + 0.08 -O.O7w, + 0.42 
2 -O.l6tu, + 0.56 0.06~~ + 0.09 -o.o4w, + 0.14 O.l4w, + 0.21 
3 0.32~~ + 0.32 -O.l2w, + 0.18 0.08~~ + 0.08 -0.28w, + 0.42 
4 0.08~~ + 0.56 -o.o3w, + 0.09 o.o2w, + 0.14 -o.o7w, + 0.21 
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Hence, for t = 3 

.iSTRdM 

1 2lSw, 
2 2o.chq t 4.5 
3 35.Oq - 10.0 
4 27.5w, - 4.5 

and we get 

I 
2o.ow, + 4.5 

V,(w) = max (27.5~~) 20.0~~ + 4.5) = 27 5w 
w1 < 0.6 

. 1 w1 > 0.6 

Proceeding in the same way we get for t = 2 

1 27.375~~ + 7.650 
2 20.25Ow, + 11.775 
3 34.5OOw, - 2.350 
4 27.750~~~ + 1.250 

hence 

V,(w) = max (27,375~~ -I- 7.650, 20.250~~ + 11.775) 

I 
20.250~~ + 11.775 Wl < 0.5789 

= 27.375~~ + 7.650 Wl > 0.5789 

Similarly, we get for t = 1 

1 27.389w, + 15.092 
2 20.222w, + 19.259 
3 34.555w, + 4.092 
4 27.389w, + 9.259 
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hence 
V,(w) = max (27.389~~ + 15.092,20.222~, + 

20.222~~ + 19.259 WI < 0.5814 
27.389~~ + 15.092 w, > 0.5814 

201 

19.259) 

We now compare the results for the case of incomplete state information 
with those obtained in the case of perfect state information and in the case 
of a control schedule. 

Let us first consider the case of perfect state information. The cost table 
at t =4 is 

\ 
u 

1 2 3 4 
x 

\ 

1 20 17 10 7 
2 -5 -8 -15 -18 

Hence 
v;(w) = 2Owr - 5w, = 25wr - 5 

At t = 3 we get from (4.4) 

u 

\ 

1 2 3. 4 
x 

1 27.5 24.5 25 22 
2 0 4.5 -10 -5.5 

Hence 

v3’(w) = 27.5~~ + 4.5~~ = 23w, + 4.5 

Further, for t = 2 we find 

u 

\ 

1 2 3 4 
x 

1 36 33 32.9 29.9 
2 8.7 12.6 -1.3 2.6 
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Hence 
I/z’(w) = 36w, + 12.6~~ = 23.4~~ + 12.6 

Finally for t = 1 we get 

‘\ 21 

‘\ 
I 2 3 4 

s 

I 44.30 41.30 41.32 38.32 
2 16.96 20.98 6.96 10.98 

Hence 
VI’(w) = 44.3~~ + 20.98~~ = 23.32~~ + 20.98 

Now consider the case of a control schedule. We get 

Vi’(w) = 2ow, - 5w, 

We get the following cost table for t = 3 

u 2 du, 4 w, + vk+lbp) 
i 

I 27sw, 
2 2o.Oq + 4.5 
3 35.ow, - IO 
4 27.5w, - 4.5 

The equation (4.1) now gives 

Vi’(w) = max (27.5~~ ,20.O~, + 4.5) = ,g’!!?i ’ 4’5 
w1 < 0.6 
w1 > 0,6 

Similarly, we get for t = 2 the following cost table 

11 

7 
&Au, i) wi + V,+,(wP) 

1 27q i 7.5 
2 max(19.5w, + 11.25, 21.Ow, + 10.5) 
3 max(33q - 2.5, 36w, - 4) 
4 27.75~~ + 1.25 
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Hence 

V;(w) = max (19.5~~ + ll.25,27.0wo, + 7.5) 
WI < 0.5 
WI > 0.5 

Finally we get for t = 1 

__- -~- 

1 26.5~~ + 14.05 
2 19.6~~ + 18.4 
3 max(32.8w, + 4.05, 35.8w, + 3.30) 
4 21.7w, + 8.4 

Hence 

V;‘(w) = max (26.5~~ + 14.05, 19.6~~ + 18.4) 
(19.6~~ + 18.4 w1 < 0.63 

= )26.5w, + 14.05 w1 > 0.63 

In Fig. 2 we have graphed the optimal value of the cost function for problem 2. 
The shaded areas in the graph represent the bounds obtained on V,(w) 

50 
V 

40 

30 

20 

10 

0 

FIG. 2. Optimal returns for the four-stage process of Example 2. The lower 
limit indicates the maximum return for an open-loop system. The upper limit of the 
shaded area indicates the optimal return for a system with complete state information. 
Lines VI to V, show maximum return for the system with incomplete state information. 



from Theorems 4 and 5. The upper limit of the shaded region is thus the 
maximal gain in the case of complete state information and the lower boundary 
represents the maximal gain when no measurements are made. The differ- 
ence in the ordinates of the curves Iimiting the shaded region will thus 
represent the value of having complete state information. 

VII. NOTES 

The foundations of the stochastic variational calculus have essentially 
been laid by Bellman [9, 11, 121, who first developed the basic tool, used in 
this paper, Dynamic Programming. Bellman has strongly emphasized the 
use of Markovian models for control problems; this is also done by Feldbaum 
[13], Florentin [14], Kolmogorov [15], Krassovskii [16], and Pontryagin 
[2, chap. VII]. 

The case of complete state information is extensively treated. The case 
of continuous time continuous state Markov process is discussed by Fleming 
[17], Florentin [14], Krassovskii [16]. The case of Markov chains with com- 
plete state information is treated by Zachrisson [l&20], who considers the 
game situation. Results on Markov chains are given by BelIman [9] and 
Howard [lo]. 

Apart from the linear quadratic case [3-6, 16, 211, the case of incomplete 
state information is not well-known. The Theorems 1 to 5 of this paper are 
believed to be new. The concept of conditional Markov processes, in partic- 
ular the equation (3.19) of Section III, B is from Stratonovich [22]. 
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