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A B S T R A C T

Theories of prospective memory (PM) posit that it can be subserved either by working memory (WM) or
episodic memory (EM). Testing and refining these multiprocess theories of PM requires a way of tracking
participants' reliance on WM versus EM. Here we use multi-voxel pattern analysis (MVPA) to derive a trial-by-
trial measure of WM use in prospective memory. We manipulated strategy demands by varying the degree of
proactive interference (which impairs EM) and the memory load required to perform the secondary task (which
impairs WM). For the condition in which participants were pushed to rely more on WM, our MVPA measures
showed 1) greater WM use and 2) a trial-by-trial correlation between WM use and PM behavior. Finally, we also
showed that MVPA measures of WM use are not redundant with other behavioral measures: in the condition in
which participants were pushed more to rely on WM, using neural and behavioral measures together led to
better prediction of PM accuracy than either measure on its own.

1. Introduction

Prospective memory (PM) refers to our ability to remember to do
things in the future. Theories of PM (Cohen and O'Reilly, 1996;
Gollwitzer and Brandstätter, 1997; McDaniel and Einstein, 2000) posit
that two strategies can be used: Participants can use working memory
(WM) to actively monitor the environment for an appropriate time or
event (Koechlin and Hyafil, 2007; Gilbert, 2011) or they can store the
intention in episodic memory (EM) and hope that it is automatically
retrieved when the time comes to act on that intention (McDaniel and
Einstein, 2007b; Beck et al., 2014; for related ideas about dual systems
involved in PM and control see Cohen and O'Reilly (1996) and Braver
(2012)). PM is typically studied using a dual-task paradigm in which a
PM task is embedded in another cognitive task that requires vigilance
and frequent behavioral decisions (the “ongoing task”). The PM task
requires a response after a particular event (the PM “target”) or after a
certain amount of time has elapsed (McDaniel and Einstein, 2007a).

This multiprocess view of PM (Cohen and O'Reilly, 1996; McDaniel
and Einstein, 2000) raises important questions about when people will
rely on one memory strategy vs. the other, and how this strategy choice
will affect performance. The current framing of the theory posits an
adaptive view of the memory system in which there is a bias to
minimize the cognitive demands of the PM task, thereby reducing
interference costs from strategic monitoring (Smith, 2003; Einstein

et al., 2005; Hicks et al., 2005). Thus an automatic retrieval strategy
(relying on EM) is favored whenever possible so as not to overly burden
ongoing processing. However, the theory also specifies that some
circumstances, when sustained, should favor strategic monitoring
(relying on WM); for example, “non-focal” tasks in which identification
of a PM target requires attention to features that are not relevant to
ongoing processing demands (Einstein et al., 2005; Scullin et al., 2010)
and thus might be missed if not actively monitored.

To date, the primary approach to tracking use of strategic monitor-
ing has been indirect: measure RT costs on the ongoing task, with the
logic being that greater monitoring for the PM target will lead to slower
RTs on the ongoing task (Smith, 2003, 2010; Einstein et al., 2005;
Einstein and McDaniel, 2010; Scullin et al., 2010). Neural data has also
been used to assist in identifying the strategy in use. fMRI studies of
PM have linked strategic monitoring in PM tasks to sustained activity
in frontoparietal control networks including anterior regions of the
prefrontal cortex (e.g., Reynolds, 2009; McDaniel et al., 2013). In
another study, Gilbert (2011) used multi-voxel pattern analysis
(MVPA; Lewis-Peacock and Norman, 2014b) of fMRI to successfully
decode the contents of WM. However, these measures were unrelated
to PM performance. In subsequent analyses, Gilbert et al. (2011)
demonstrated that PM accuracy could be predicted by regional
increases in fMRI activity and by multivariate measures of similarity
between encoding and retrieval. However, most of the above studies
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used neural measures of WM engagement that were not sensitive
enough to predict PM accuracy on a trial-by-trial basis.

One goal of our study was to use a more sensitive, time-varying
measure of WM engagement (MVPA decoding of PM target processing)
in an effort to improve trial-by-trial predictions of PM behavior beyond
what is possible by observing behavior alone. The other goal was to
gain a richer understanding of the factors that shape PM strategy use.
We designed a PM experiment that manipulated proactive interference
and WM load, and that used a non-focal task design – that is, stimuli
for the ongoing task (letter strings) that were completely non-over-
lapping with stimuli for the PM task (faces and scenes). One condition
was designed to bias participants to use strategic monitoring (WMbias;
high proactive interference+low memory load), and another was
designed to bias participants to rely on automatic retrieval (EMbias;
low proactive interference+high memory load). Using this paradigm,
we found that strategic monitoring (measured using MVPA) was both
higher overall and more tightly linked to behavior in the WMbias

condition than the EMbias condition; we also found that our MVPA
measure of strategic monitoring improved the ability to predict PM
performance from trial to trial, beyond what is possible based on
behavior alone.

2. Materials and methods

2.1. Participants

Twenty-five participants (14 female; ages 18–34, mean=23.2; all
right-handed) were recruited for this study using online scheduling
software provided by the Department of Psychology at Princeton
University. Participants were compensated with $20 per hour for their
participation in the two-hour experiment. Written informed consent
was obtained in a manner approved by the Princeton Institutional
Review Board.

2.2. Behavioral paradigm

We developed a task to examine how participants strategically use
episodic memory (EM) versus working memory (WM) to remember
targets in a dual-task prospective memory (PM) experiment.
Participants were shown a series of words while pictures of faces and
scenes were presented in the background (Fig. 1a). Participants
performed an ongoing task (OG; making lexical decisions about strings
of letters) while monitoring for a picture target (a particular face or a
particular scene) to reappear. Whereas many studies (see McDaniel
and Einstein, 2007a) have used letter stimuli for both the OG task and
the PM task, we used pictures (faces and scenes) in the PM task and
letters in the OG task (making this a “non-focal” PM task; Einstein
et al., 2005; McDaniel et al., 2013). We did this because thoughts about
faces and scenes can be tracked effectively using fMRI (Lewis-Peacock
and Norman, 2014b); as such, using faces and scenes maximized our
ability to use fMRI to track the maintenance of PM targets in WM. Each
“PM+OG” trial (in which participants performed both the PM task and
the OG task) began with the introduction of a picture target for 2 s,
followed by a 2-s blank screen, followed by a variable-length sequence
of 2-s memory probes, each containing two pictures and a string of
letters. In one-third of the trials, randomly selected, the target
introduction screen at the beginning of the trial was blank, indicating
to participants that they could ignore all subsequent pictures for the
remainder of that trial and focus solely on the OG task (we call these
“OG-only” trials). Participants were required to make repeated lexical
judgments about the letter strings until the picture target reappeared
(between 2 s and 42 s after its introduction). In the OG task, a lexical
judgment for a given probe required an n-back comparison (n=1 or 2)
of lexical status: i.e., does the current probe have the same lexical status
(word or non-word) as the 1-back or 2-back probe? For example, in the
1-back condition, the letter string “apple” (a word) on one probe

followed by the letter string “boat” (also a word) on the next probe
required a same response for the OG task. If, instead of “boat”
appearing on the second probe, the letter string “glorb” (a nonword)
appeared, the appropriate response on the OG task was different. The
proportion of same/different responses required was balanced across
the experiment. Participants made lexical judgments by pushing a
button with the index finger (same response) or middle finger
(different response) of their right hands on a four-button response
box. Participants had a 1.9 s deadline within which to register their
responses. For the PM task, participants could identify the picture
target when it reappeared by pushing a third button with their pinky
finger. Participants were instructed to ignore the OG task on such
probes, but they were not prevented from responding to both tasks on
any probe (e.g., they could make an OG task response first and then
make a PM response, or vice versa, before the response deadline). The
PM target reappeared only once per trial, and its reappearance always
marked the end of the trial. The probe in which the PM target appeared
was varied randomly, from the 1st to the 21st, thus trials varied
randomly in their length.

Visual feedback was provided after every response. In the OG task,
white letter strings immediately turned green if the participant
responded correctly, and they turned red if the participant responded
incorrectly. In the PM task, if a participant false-alarmed to a distractor
picture during a probe (i.e., they incorrectly endorsed a distractor
picture as the target picture) the border of the screen turned red for the
duration of that probe, but then the trial continued without disruption.
When a participant correctly identified a picture target, the border of
the screen turned green for the duration of that probe (which was the
final one for the trial, as explained above). After this, a screen appeared
that indicated whether the participant correctly identified the PM
target (black screen with green text stating “You got it!”), or failed to
identify the target (yellow screen with red text stating “Oops, you
missed it…”). This feedback was omitted and the screen remained black
on OG-only trials. There was a brief 6-s rest period between each trial
to allow for the hemodynamic signal to return to baseline. At the end of
each block of trials, participants were shown their average response
accuracy for both the OG task and the PM task on that block.

The logic of our experiment was motivated by the multiprocess
framework of PM (Cohen and O'Reilly, 1996; McDaniel and Einstein,
2000) and the dual mechanisms of control framework (Braver, 2012),
which suggest that there are multiple processes than can support
prospective remembering: strategic/attention-demanding processes,
and also relatively automatic processes. In our PM task, we reasoned
that a participant would be able to identify the picture target by either
maintaining an active representation of the target (in WM) and
strategically monitoring for its reappearance throughout the trial, or
spontaneously retrieving the identity of the target (from EM) at the
moment that it reappeared. To manipulate participants’ strategy use,
we varied the WM load associated with the OG task and the degree of
proactive interference associated with the PM targets across trials.
Specifically, there were two trial conditions that we refer to as
“EMbias” (high working memory load + low proactive interference)
and “WMbias” (low working memory load + high proactive inter-
ference). EMbias trials were designed to bias participants to use
retrieval from EM for prospective remembering. We reasoned that,
when a trial involved a higher WM load for the OG task (2-back lexical
judgments), participants would be less likely to maintain the picture
target in WM, relying instead on retrieval from EM. On these trials, we
also used a large set of trial-unique, heterogeneous pictures to reduce
the amount of proactive interference amongst the target and distractor
pictures and thus further favor use of EM as an effective strategy. Note
that, because participants were shown a target only once, they did not
have the opportunity to establish a stimulus-response association for
that item; therefore, if they were not actively monitoring for the target,
we argue that they must have relied on EM to identify it. In contrast,
WMbias trials were designed to bias participants to use WM to
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Fig. 1. Task diagram and behavioral performance. The dual-task experiment consisted a picture-target detection prospective memory task (“PM”) embedded in an ongoing lexical-
decision task (“OG”). Half of the trials were WMbias trials (1-back lexical decisions and a small set of repeating homogeneous pictures) and half were EMbias trials (2-back lexical
decisions and a large set of trial-unique heterogeneous pictures). Two-thirds of all trials included both tasks (“PM+OG”), and one-third did not require PM responses (“OG only”)
Behavioral performance on (A) the PM task in PM+OG trials and (B) the OG task in all trial conditions. (C) Dual-task costs on reaction time in the OG task due to the addition of the PM
task (“PM cost”), and its relationship to PM accuracy across participants. Error bars indicate s.e.m.,*p < .05.
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maintain the picture target and to actively monitor for its reappear-
ance. We reasoned that high proactive interference (resulting from the
repetition of a small, homogeneous set of pictures that repeated within
and across trials; Wickens et al., 1963) would interfere with EM
retrieval, and that a lower WM load on the ongoing task (Meier and
Zimmermann, 2015; 1-back lexical judgments) would encourage a WM
strategy for prospective remembering in these trials.

The experiment was divided into six 15-trial blocks of trials,
alternating between blocks of WMbias and EMbias trials. The trial
condition used for the first block was randomly assigned to each
participant and counter-balanced across participants. Each block
consisted of 12 “real trials” (with exactly one trial of each length,
ranging from 10 to 21 probes per trial, inclusive) and three “catch
trials” (ranging in length between one and nine probes per trial, with
the selection of trial lengths balanced across blocks). Only data from
real trials were used for analysis; the catch trials were used to balance
cognitive demands throughout the entire trial, i.e., to prevent partici-
pants from ignoring the pictures in the first nine probes before
engaging in the PM task. There were five trials in each block for each
target category (face-target, scene-target, and no-target), consisting of
four real trials and one catch trial per category per block. Ignoring
catch trials, there were eight PM+OG trials (face or scene target) and
four OG-only trials (no target) in each block. The trials were configured
such that there were an equal number of probes in each block (62
probes from real trials, and 15 probes from catch trials). Each target
category was presented in all of the 12 real-trial lengths and in three of
the possible catch-trial lengths in both WMbias and EMbias condi-
tions, resulting in a total of 90 trials (72 real trials, 18 catch trials)
across the entire experiment. The trials were arranged in this way to
reduce participants’ ability to predict the length of any given trial; no
participant reported an ability to predict trial length, or knowledge of
any structure or pattern of trial lengths across the experiment.

2.3. Stimulus details

A large collection of face and scene images was gathered through
various online and in-house sources. A subset of these stimuli were
chosen for this experiment. Words for the lexical comparison task
consisted of nouns, verbs, and adjectives selected from an online
psycholinguistic database (http://websites.psychology.uwa.edu.au/
school/MRCDatabase/uwa_mrc.htm) with concreteness, imageability,
and verbal frequency within one standard deviation of the mean of the
entire database. Pseudo-words consisted of single-syllable,
pronounceable letter strings.

To manipulate proactive interference amongst picture targets, we
varied the type and quantity of pictures used in each trial condition. In
the WMbias condition, we used a small set of eight homogeneous face
images (adult white males) and eight homogeneous scene images
(indoor living rooms) that repeated within and across trials. In the
EMbias condition, we used a large set of heterogeneous faces (789
total; 321 female) and scenes (223 total; 82 indoor) that were trial-
unique. The assignment of stimuli to the targets and distractors in each
trial was done randomly for each participant.

2.4. fMRI data collection

The experiment was presented using Psychophysics Toolbox
Version 3 in Matlab running on a Mac Pro. First, we ran a brief scout
localizer scan (15 s) to verify that head position was within the
designated field of view and to derive automatic AC-PC alignment
parameters for subsequent scans. Next, we used a MPRAGE sequence
to acquire high-resolution T1-weighted images (TR=2300 ms,
TE=3.08 ms, .9 mm3 isotropic voxels, 9 m 0 s acquisition time) while
the participants practiced one block of trials in both WMbias and
EMbias conditions prior to functional scanning. The experiment was
divided into six 15-trial blocks of trials (with each block lasting 10 min

3 s). Total functional scanning time for the experiment was 60 m 18 s.
All blocks were preceded by 20 s of dummy pulses to achieve a steady
state of tissue magnetization. Between blocks, participants were given a
break during which the experimenter checked that the participant was
comfortable and alert. Whole-brain images were acquired with a 3 T
Siemens Skyra MRI scanner. For functional scans, we used a gradient-
echo, echo-planar sequence (TR=2000 ms, TE=34 ms), with automatic
shimming enabled, to acquire T2*-weighted data sensitive to the BOLD
signal within a 64×64 matrix (196 mm FoV, 34 axial slices, 3 mm3

isotropic voxels, AC-PC aligned) using integrated parallel acquisition
techniques (iPAT) with both retrospective and prospective acquisition
motion correction (PACE) enabled.

2.5. fMRI preprocessing

Preprocessing of the functional data was done with the AFNI (Cox,
1996) software package using the following preprocessing steps (in
order): (1) correction for slice time acquisition with 3dTshift, (2)
rotation of oblique data to cardinal direction with 3dWarp, (3)
resample to a 3 mm3 gridset with 3dresample, and (4) realign to the
first volume of the Phase 1 data using rigid body alignment with
3dvolreg. Anatomical data were aligned to the first volume of the
functional data with align_epi_anat.py. A whole-brain voxel mask was
created for each participant by combining the results of 3dAutomask
(dilation=1) across all six functional runs.

2.6. Multi-voxel pattern analysis: overview

Our goal in analyzing the fMRI data was to sensitively measure
processing associated with the PM task. To accomplish this goal, we
used multi-voxel pattern analysis (MVPA; Haynes and Rees, 2006;
Norman et al., 2006; Lewis-Peacock and Norman, 2014b) to decode
face and scene processing (associated with PM task) and lexical
decision processing (associated with the OG task) at every time point
throughout the trials. The use of category classifiers to track memory
maintenance and retrieval has become a standard approach in the
memory literature (see Rissman and Wagner (2012), for a review). We
use the approach here to decode the contents of WM, by identifying the
degree to which the category of the PM target (a face or a scene) is
actively represented prior to its actual reappearance. Neural evidence
of such activity could arise from a combination of maintenance of the
target (e.g. a particular face) in WM and the processing of distractor
pictures from the target's category (non-target faces) during the trials.
Importantly, either source of target-related neural evidence would
indicate the use of a WM-dependent strategic monitoring strategy –

reactive control relying on EM retrieval should not produce target-
related activity prior to the reappearance of the PM target.

2.7. Multi-voxel pattern analysis: details

fMRI pattern classifiers were trained, separately for each partici-
pant, from a subset of all trials and then used to decode independent
data from held-out trials (i.e., using k-fold cross validation: training on
k−1 blocks of data and testing on the kth block and then rotating and
repeating until all blocks had been tested.) Both EMbias and WMbias

trails were combined for classifier training. Specifically, classifiers were
trained on individual brain scans (acquired at 2-s intervals) from the
probe period of each trial, plus data from the 6-s rest intervals between
trials, in the training set. Training scans were labeled according to the
category of the picture target from that trial: either face, scene, or no-
target. Scans from the inter-trial intervals were labeled as rest. Note
that visual input was identical in all three trial conditions (participants
were viewing letter strings in the middle of the screen flanked above/
below by faces and scenes). The purpose of including the no-target
condition in classifier training was to provide additional “negative
examples” for the face and scene target classifiers (i.e., trials where
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faces and scenes were onscreen but participants were not actively
monitoring for face or scene targets). As is standard practice in MVPA
(Lewis-Peacock and Norman, 2014b) all trial regressors were shifted
forward in time by 6 s to account for hemodynamic lag of the BOLD
signal (typically estimated as 4–8 s to peak after event onset). In each
training block, there were 58 scans each for face, scene, and no-target
categories, and 45 scans for the rest category, for a total of 290 scans
for task categories and 225 scans for the rest category in each training
set. We used the trained classifier in each fold of the cross-validation
procedure to decode the moment-to-moment cognitive state through-
out the held-out block of test data. For each individual 2-s scan within a
test block, the four classifiers (face, scene, no-target, and rest) each
produced an estimate (from 0 to 1) of the degree of neural evidence for
the condition they were trained to detect.

All pattern classification analyses were performed using the
Princeton MVPA Toolbox in Matlab (downloadable from http://www.
pni.princeton.edu/mvpa), using L2-penalized logistic regression. The
L2 regularization term biases the algorithm to find a solution that
minimizes the sum of the squared feature weights. Logistic regression
uses a parameter (λ) that determines the impact of the regularization
term. To set the penalty λ, we explored how changing the penalty
affected our ability to classify the data (using the cross-validation
procedure described above). We found that the function relating λ to
cross-validation accuracy was relatively flat across a wide range of λ
values (spanning from .001 to 1,000). We selected a λ value in the
middle of this range (λ=50) and used it for all of our classifier analyses.

2.8. Voxel selection

To select brain regions to use for the pattern classifiers, we ran a
mass-univariate GLM analysis of all functional data using AFNI's
3dDeconvolve to identify brain regions that were more strongly
engaged during probes (i.e., stimulus displays after the target intro-
duction but prior to its reappearance) on PM+OG trials vs. OG-only
trials. This analysis reveals voxels sensitive to the presence of the PM
task on top of the OG task. All trial events were modeled with boxcar
regressors of appropriate lengths: target (2 s), probes (2 s per probe),
PM probes (the final probe of the trial in which the target reappears;
2 s) and feedback (2 s). A third-order polynomial was used for the null
hypothesis, and all basis functions for trial events were normalized to
have an amplitude of one. A contrast of probes from PM+OG trials >
probes from OG-only trials was used to calculate percent-signal-
change in BOLD data for a second-level group analysis. Only voxels
that showed enhanced signal in PM+OG trials were included. The
reverse contrast (OG-only > PM+OG trials) revealed a network of
voxels, including in the anterior medial prefrontal cortex, that deacti-
vated with the addition of the PM task (Gilbert, 2011; Momennejad
and Haynes, 2012, 2013). However, pattern classification of PM
stimulus processing (target and distractor pictures) from these regions
was at chance levels and therefore these voxels were excluded from
further analysis. Participant results in native space were transformed
into atlas space and resampled to 4 mm3 isotropic voxels using AFNI's
@auto_tlrc and then spatially blurred with a 8 mm FWHM kernel
using 3dmerge. The normalized group data were analyzed using 3dttest
++, and the results were extracted using a cluster radius of four voxels
with a minimum cluster size of 40 voxels, and thresholded at the
individual voxel level using AFNI's false discovery rate (FDR) algorithm
with q =.05. Finally, this group-level ROI was backward-transformed
into each participant's native space and intersected with that partici-
pant's whole-brain mask to create subject-specific ROIs. The mean
number of voxels retained in this “PM-sensitive” mask was 11,686 (SD
=1,122) (Fig. 2a). Finally, a feature selection ANOVA was applied to the
preprocessed fMRI data within the PM-sensitive mask to select those
voxels whose activity varied significantly (p < .05) between the four
categories over the course of the experiment. Feature selection was
performed separately for each iteration of the cross-validation classifier

training algorithm to avoid any circularity in the analysis (Kriegeskorte
et al., 2009). The pattern of activity across these feature-selected voxels
was used as the input to the pattern classifiers and the data were
analyzed in each participant's native space.

2.9. Relating classifier evidence to prospective remembering

The primary goal of our analysis was to evaluate the relationship
between neural classifier evidence for PM monitoring during the trial
(prior to target reappearance) to PM accuracy at the end of each trial.
We first extracted (separately for each trial in every subject) the levels
of face and scene classifier evidence at each time point throughout the
trials, and used these data rather than classifier accuracy (whether the
correct category had the highest likelihood estimate) for all subsequent
analyses (see Lewis-Peacock et al., 2012; Lewis-Peacock and Norman,
2014a). Classifier evidence provides a more sensitive measure of neural
processing (and in particular dual-task processing) compared to
classifier accuracy because it does not require forced-choice selection
of a single “best match” category. To aggregate data across trials that
were of varying lengths, we aligned data to the beginning of each trial.
Note that the minimum trial length used for analysis contained 10 2-s
probes. Accounting for the target introduction (2 s) and the brief delay
prior to the probes (2 s), the earliest that the target reappeared in any
trial was 2+2+10*2=24 s. Each trial's data therefore consisted of 11
brain scans (22-s, unshifted for hemodynamic lag) aligned to the start
of the trial and ending prior to the reappearance of the target.

On a PM+OG trial, target classifier output alone does not show how
sensitive the classifier is to the attentional demands of the PM task.
High target activation (e.g., “face” on a face-target PM+OG trial) could
reflect a highly differentiated attentional state in which target (“face”) is
high and distractor (“scene”) is low, or it could reflect a totally
undifferentiated state in which both target and distractor are high.
Therefore, to track neural processing specifically related to the PM task,
we calculated a difference score by subtracting the distractor category
evidence from the target category evidence at each time point. Finally,
we averaged these difference scores during the PM delay period (t=12–
22 s), which started after the evoked neural response to the target
introduction had subsided, and ended before the target reappeared on
any of the trials. This method provides a unique neural estimate of PM
processing for each trial.

2.10. Statistical procedures for assessing reliability

When analyzing behavioral data (without respect to neural data)
and neural data (without respect to behavioral data) we used standard
random-effects statistics (paired t-tests, with subjects as a random
effect) to assess the reliability of results across participants. For
analyses relating neural data to behavior (i.e., PM performance), we
combined individual trial data from each participant into a single
“supersubject” and subsequently performed all statistical analyses on
these amalgamated data (Detre et al., 2013; Kim et al., 2014; Lewis-
Peacock and Norman, 2014a), using bootstrap procedures (Efron,
1979) to assess population-level reliability of the results (see details
below). We used this approach, chosen a priori, instead of the
conventional random-effects approach (used elsewhere in the study)
in which the average results from each subject are used for group-level
hypothesis testing. The reason for using the supersubject approach
here is that, despite a large amount of imaging data per subject, the
total number of behavioral outcomes for each subject was relatively
low, making it difficult to reliably estimate the relationship between
neural data and behavioral outcomes within individual subjects. Note
that each trial lasted between 24 and 46 s, depending on the number of
probes on that trial, but there was only one PM behavioral outcome (hit
or miss) on each trial regardless of its length.

In the experiment, each participant (N=25) contributed 12 trials
per category/condition combination (e.g., face-target and WMbias
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condition) for a total of 300 trials per combination. To assess
population-level reliability of the results (i.e., whether or not they
driven by a small subset of participants) from each of the analyses, we
also ran a bootstrap test in which we resampled data from participants
with replacement and re-computed the analyses for this resampled
data (Efron, 1979). The population-level reliability of the results was
reflected in the proportion of bootstrap samples in which the effect of
interest was present.

3. Results

3.1. Behavioral results

3.1.1. Prospective memory task
We assessed the impact of trial condition (WMbias vs. EMbias) and

target type (face vs. scene) on both accuracy and RT in the prospective
memory task (PM task; Fig. 1A). With regard to PM accuracy: the hit
rate was reliably higher for scene-target trials (p < .01 in both trial
conditions), but we nonetheless combined data from both face-target
and scene-target trials to increase statistical power for subsequent
analyses. PM accuracy was marginally higher for WMbias trials
compared to EMbias trials (t(24)=1.96, p=.061). There was no inter-
action between trial condition and target type (F(1,24)=.017, p=.898).
The false-alarm rate to non-target items was very close to floor across
all trials, although the rate was slightly higher in WMbias trials than
EMbias trials (.6% vs. .2%; t(24)=3.98, p < .001). Because of this very
low false alarm rate, we also calculated PM accuracy using the A' signal
detection metric, which considers both hits and false alarms (Stanislaw
and Todorov, 1999). Consistent with the raw hit rates, the A′ signal
detection analysis showed a non-significant trend for higher accuracy
in WMbias trials (.926) compared to EMbias trials (.914), t(24)=1.71,
p=.100. With regard to PM target detection RTs: mean target detection
RTs did not differ significantly between EMbias trials (1.16 s) and
WMbias trials (1.19 s), t(24) =1.33, p=.197. No speed-accuracy trade-
off (i.e., a positive correlation between accuracy and RT) was observed
in either condition (WMbias:r(23) =−.52, p=.008; EMbias:r(23)=−.08,
p=.714).

3.1.2. Ongoing task
We assessed the impact of trial condition (WMbias vs. EMbias) and

task type (dual-task: PM+OG vs. single-task: OG only) on both RT and
accuracy in the ongoing lexical-judgment task (OG task). There was no
main effect of trial condition on OG task RTs (F(1,24)=2.27, p=.15),
but participants did respond more slowly on dual-task trials compared
to single-task trials (F(1,24)=63.7, p < .001). As noted in the
Introduction, this slowing of responses in the OG task — a dual-task

interference cost that we refer to as “PM cost” — has been interpreted
as a behavioral marker for the use of a WM strategy (i.e., that working
memory resources were deployed for strategic monitoring of the PM
target; McDaniel and Einstein, 2000). We predicted that PM costs
would be higher on WMbias trials, and this prediction was corrobo-
rated. There were PM costs in both trial conditions, but PM costs were
significantly greater in WMbias trials (F(1,24)=18, p < .001; Fig. 1C).
The same result was obtained when restricting analyses to the PM delay
period (t=12–22 s) that was used to extract neural measurements of
PM task processing on each trial (F(1,24)=16.8, p < .001). With regard
to OG task accuracy (Fig. 1B): participants responded more accurately
in WMbias trials compared to EMbias trials (F(1,24)=56.1, p < .001),
and also more accurately on single-task trials compared to dual-task
trials (F(1,24)=28.94, p < .001), but there was no significant interaction
of trial condition and task type (F(1,24)=.47, p=.5). These differences
in accuracy are consistent with the assumption that the OG task was
more demanding in EMbias trials (2-back) compared to WMbias trials
(1-back); similarly, the greater number of errors in the dual-task
condition than the single-task condition is consistent with the greater
demands of the former.

3.1.3. Individual differences in PM performance
PM accuracy and PM cost (i.e., dual-task interference RT costs: OG

RT on dual-task trials [PM+OG] minus OG RT on single-task trials [OG
only]) both reflect the outcome of strategy choices, and specifically,
working memory allocations spread across the dual PM and OG tasks.
These two metrics were positively correlated across subjects (r(24)
=.37, p=.034; Fig. 1C), indicating that higher PM costs were associated
with better PM performance. This relationship was previously reported
by Smith (2003; but see McNerney and West, 2007). The correlation
was significant for WMbias trials (r(24)=.45, p=.024), but not for
EMbias trials (r(24)=.199, p=.340). However, the correlation did not
significantly differ between the two conditions (z=−.755, p=.45).

3.2. fMRI results

3.2.1. Classifier cross-validation
A univariate GLM was used to identify voxels that were more active

on PM+OG trials vs. OG-only trials (see Methods). These voxels were
located mostly in ventral temporal, occipital, and parietal areas
(Fig. 2a), and were used as input for pattern classification. Pattern
classifiers, trained and tested separately for each participant, success-
fully distinguished task-related brain activity on (1) face-target trials,
(2) scene-target trials, and (3) no-target trials, and also task-unrelated
brain activity during (4) rest periods between trials. Cross-validated
classifier accuracy was greater than chance-level performance (.25) for

Fig. 2. Pattern classification of fMRI data during the delay period predicts PM performance. (A) Voxels that showed significantly greater activity (p < .05, FDR) during probes on PM
+OG trials compared to OG-only trials are colored on an inflated atlas brain. This group-level mask was transformed into each participant's native space and used to mask voxel time
series data as input for the pattern classifiers. (B) Trial-averaged classifier evidence for PM trials. PM classifier evidence indicates the difference between target category and distractor
category evidence (e.g., “face minus scene” for face-target trials). Error shades indicate +/− 1 s.e.m., interpolated between mean scores from every 2-s brain scan. Data are not shifted to
account for hemodynamic lag. (C) Relating trial-by-trial classifier evidence scores during the delay period (12–22 s) to PM accuracy (hit vs. miss). Data reflect the logistic regression fits
(β1) between PM classifier evidence and PM accuracy. Error bars indicate 95% bootstrap confidence intervals, *p < .05 for 1,000 bootstrap samples.
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all four categories (all p's < .001), and all three task-related categories
showed higher accuracy in WMbias trials vs. EMbias trials (all p's
< .001), while accuracy for rest-period activity did not differ between
conditions (t(24)=.189, p=.852). Classification performance did not
differ between face-target and scene-target trials (p > .4), therefore
classifier estimates from all target trials were relabeled and combined
(e.g., on a face-target trial, the “face-target” classifier's output was
relabeled as “target” and the “scene-target” classifier's output was
relabeled as “distractor”).

The PM classifier evidence scores (i.e., “target - distractor”) showed
a significant interaction of trial condition (WMbias vs. EMbias)×time
(target introduction: 4–12 s vs. delay period: 12–22 s; F(1,24)=32.37,
p < .001). PM evidence did not differ between WMbias and EMbias

trials during the early part of the trials when the target was introduced
and encoded into WM (8 s following target introduction, t=4–12 s,
p=.598), but it did differ during the subsequent delay period (F(1,24)
=31.26, p < .001; Fig. 2b) with higher PM evidence on WMbias trials
during the delay. The fact that classifier performance was matched for
WMbias and EMbias trials during the early (encoding) phase of the
trial suggests that subsequent differences in classification cannot be
attributed to generally poorer classification of the large set of hetero-
geneous face and scene stimuli on EMbias trials vs. the small set of
homogeneous stimuli on WMbias trials; rather, the difference in
classifier performance appears to be specific to the delay period and
likely reflects a greater use of WM for the PM task on WMbias trials
relative to EMbias trials.

It is possible, however, that lower classifier performance in EMbias

trials was due to increased measurement noise in that condition,
resulting from the presence of a more demanding OG task (2-back).
To address this possibility, we computed the within-trial variability
(standard deviation) of classifier evidence scores during the delay
period. Variability of target evidence was higher in EMbias trials
relative to WMbias trials (.123 vs. .100; t(24)=3.5, p < .001), however,
distractor evidence was less variable in EMbias trials relative to
WMbias trials (.141 vs. .151; t(24)=2.1, p=.024), which by itself is
inconsistent with a “measurement noise” account of these neural data.
However, we also assessed the effects of extra “measurement noise” by
adding random noise, sampled from a Gaussian distribution (mu=0,
sigma=.100), into both the target and distractor classifier evidence
scores from WMbias trials, thus simulating a “noisy WMbias” condi-
tion. If WMbias vs. EMbias differences were merely due to extra
measurement noise in the latter, then the qualitative pattern of results
in the “noisy WMbias” condition should match the pattern that was
observed in the EMbias condition; conversely, if the results do not
match, this indicates that additional measurement noise alone can not
account for WMbias vs. EMbias differences. Adding noise in this
fashion increased the variability of both target and distractor measure-
ments in WMbias trials (ps < .001), and also increased their variabil-
ities relative to EMbias trials (ps < .004). However, the added noise did
not change the mean evidence for either target or distractor (both ps
> .178). The mean distractor evidence remained higher in EMbias

trials relative to the “noisy WMbias” trials (.699 vs. .653; t(24)=3.4,
p=.001), and most importantly the PM evidence (target – distractor
evidence) remained lower in EMbias trials (.066 vs. .166; t(24)=6.2, p
< .001).

3.3. Relating classifier evidence to PM performance

For each trial, we calculated a PM classifier evidence score (as
described above) and used this score to predict PM performance (hit or
miss) at the end of each trial. Logistic regression was used to relate
each continuous classifier evidence score to the binary outcome
variable of PM accuracy. To increase statistical power for this regres-
sion, individual trial data were combined across subjects into a
supersubject analysis (see Methods), and reliability of the regression
analysis was assessed using a bootstrapping procedure.

Consistent with the prediction that participants would rely more
heavily on WM in the WMbias condition, PM classifier evidence scores
were positively correlated with PM accuracy in WMbias trials (logistic
regression β1 > 0 in 99.6% of 1,000 bootstraps), but they were not
reliably correlated with PM accuracy in EMbias trials. Regression
coefficients were higher for WMbias trials compared to EMbias trials in
94.4% of bootstraps (Fig. 2d), indicating that trial-by-trial fluctuations
in PM classifier evidence were more predictive of behavior on WMbias

trials compared to EMbias trials.

3.4. Relating OG task behavior to PM performance

As has previously been observed, OG task behavioral metrics
(accuracy and RT) were also predictive of PM accuracy across trials.
OG task accuracy was positively correlated with PM accuracy in both
trial conditions (β1=.284, which was positive on 99.3% of bootstraps in
both trial conditions), with no reliable difference between the coeffi-
cients in the two conditions. OG task RT was weakly, but positively
correlated with PM accuracy in both trial conditions (β1=.212 for
WMbias and β1=.160 for EMbias). These coefficients were positive on
93.2% and 89.1% of bootstraps, respectively, with no reliable difference
between the coefficients in the two conditions.

3.5. Combining behavioral data and neural data to predict PM
performance

The findings above indicate that both behavioral and neural
measures were predictive of PM performance from trial to trial. Here
we address the question of whether neural evidence provided extra
predictive power beyond what what was possible from behavioral
observations alone. Using our neural measure (PM evidence) and the
two behavioral measures (OG accuracy and RT) together in a three-
predictor logistic regression model explained the most variance in PM
accuracy scores. To control for differences across models in the number
of predictors, we used a leave-one-participant out cross-validation
procedure (Hastie et al., 2005): each model was fit using data from N-1
participants and then used to predict data from the held out partici-
pant. Average log likelihood values across all iterations for each model
were used to calculate Bayes factors (B10), which assess the relative
likelihood of each model (Kass and Raftery, 1995) taking into account
the number of predictors. The three-predictor model outperformed the
two-predictor model (OG accuracy and OG RT) in WMbias trials
(log10(B10)=3.12; this constitutes “decisive” evidence according to Kass
and Raftery (1995)), but not in EMbias trials (log10(B10)=.38; this is
“not worth more than a bare mention” according to Kass and Raftery
(1995)). Importantly, this analysis demonstrates that the neural
measurements of PM task processing contributed predictive power
concerning PM performance on a given trial, above and beyond what
could be predicted based on observable OG task behavior alone.

3.6. Individual differences in relating neural measurements to
performance

The neural findings also revealed individual differences in perfor-
mance across participants. The amount of PM classifier evidence for a
given participant was positively correlated with both overall PM
accuracy (r(25)=.73, p < .001) and overall dual-task PM costs (r(25)
=.43, p < .05; Fig. 3).

4. Discussion

We developed a novel experimental paradigm, designed to bias
strategy choice for prospective memory (PM) on a trial to trial basis, by
concurrently manipulating proactive interference and working memory
load. When participants were biased to use working memory (WM)
over of episodic memory (EM), the PM task exerted a larger cost on the
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ongoing task (as evidenced by slower RTs) — this dual-task inter-
ference cost is considered to be a behavioral hallmark of strategic
monitoring (Smith, 2003; Einstein et al., 2005; Scullin et al., 2010;
Meier and Zimmermann, 2015). Previously, behavioral interference
costs have been used to demonstrate effects of a wide range of factors
on PM strategy use, including: the availability of cognitive resources
and the sensitivity to interference costs (Marsh et al., 2003, 2006;
Smith, 2003), the instructional emphasis on the PM task and the
duration of the ongoing task (Einstein et al., 2005), the degree & type
of planning (Mäntylä, 1996; Burgess and Shallice, 1997), and indivi-
dual differences in cognitive capacities and personality characteristics
(McDaniel and Einstein, 2000). In this study we identified another set
of task demands that bias participants towards a WM strategy: high
proactive interference (which makes it harder to use EM) combined
with a low working memory load (which makes it easier to use WM).

In addition to behavioral evidence, we used pattern classifiers
applied to fMRI data from visual processing regions in temporal and
occipital cortices during the PM task to acquire second-by-second
readouts of neural activity associated with the use of WM to maintain
and/or monitor for a PM picture target. Neural readouts of PM
processing were higher when participants were biased to use WM
(vs. EM). Furthermore, across trials, PM classifier evidence was more
predictive of successful PM performance when participants were biased
to use WM compared to when participants where biased to use EM,
even though PM accuracy was equivalent across the two conditions.
These findings complement and extend prior work that has leveraged
fMRI data to dissociate PM strategies using activity from a distributed
network of brain regions. For example, work by McDaniel et al. (2013)
showed that activity in frontoparietal control networks was greater in
conditions that require greater levels of strategic monitoring (e.g., non-
focal vs. focal PM targets; for other relevant data, see Reynolds et al.
(2009), Burgess et al. (2011), McDaniel et al. (2013), Barban et al.
(2014), Beck et al. (2014)).

Our interpretation of the converging behavioral and neural data of
this study is that participants used WM more for the PM task during
trials when they were biased to do so. A plausible alternative explana-
tion for the neural findings, however, is that PM evidence (i.e., target
evidence – distractor evidence) was lower in EMbias trials due to
increased measurement noise, resulting from the presence of a more
demanding OG task (2-back) in that condition. To address this
concern, we assessed the variability in classifier readouts in both
conditions, and then simulated the effects of adding measurement
noise to the classifier in WMbias trials. Together, the observations in
EMbias trials of (a) more stable distractor evidence relative to WMbias

trials, and (b) lower PM evidence compared to simulated “noisy
WMbias” trials are incompatible with the possibility that differences
in classifier performance between the two conditions could be due to
increased measurement noise in EMbias trials. While alternative
explanations may exist for any individual portion of these data, the

idea of greater WM use in the WMbias vs. EMbias condition
parsimoniously explains, with a single mechanism, the full set of
neural and behavioral findings, including the correlations between
these measures.

Crucially, our neural measure of WM use provided additional
predictive power concerning PM performance, beyond that provided
by behavior alone. This demonstrates how decoding the contents of
WM from fMRI data can provide unique evidence concerning the
selection and success of cognitive strategies deployed during complex
cognitive tasks. Prior work has shown that the content of delayed
intentions (e.g., waiting for a word versus a picture to reappear) can be
decoded from posterior cortical regions (Gilbert, 2011). However, these
neural measurements were unrelated to behavioral metrics of PM
performance (but see Gilbert et al. (2011)). Here, we found that
(particularly when participants were biased to use WM to store their
delayed intention) neural readouts of WM use were diagnostic of PM
target detection accuracy on a trial-by-trial basis. Across participants,
these neural measures were also diagnostic of individual differences
both in PM accuracy and dual-task interference costs.

It is important to note that both the EMbias and WMbias

conditions in our experiment were “non-focal” tests of PM, insofar as
the stimuli pertaining to the ongoing task (letter strings) were distinct
from the stimuli that pertained to the PM task (faces and scenes). As
such, both conditions required some degree of strategic monitoring:
Specifically, participants had to allocate some attention to the stream of
faces and scenes, in order to be able to detect the face or scene target
when it appeared. Our key prediction was that, in the EMbias

condition, participants might favor monitoring for the target category
without actively maintaining the specific identity of the target stimulus.
For example, if the participant knew that the target was a face, they
might actively monitor the stream of faces, with the expectation that
the target face would trigger episodic retrieval of its status as a target.
By contrast, in the WMbias condition, participants might devote extra
WM resources to monitoring for the specific target face. The fact that
some strategic monitoring was required in both conditions fits with the
finding that dual-task costs (on OG task reaction times) were obtained
in both conditions, although (as predicted) they were larger in the
WMbias condition.

Our data are consistent with the multiprocess view of PM (Cohen
and O'Reilly, 1996; McDaniel and Einstein, 2000) and the dual
mechanisms view of PM (Braver, 2012), which posit distinct routes
for successful PM performance: proactive control via working memory,
and reactive control via episodic memory. Here, we found behavioral
and neural signatures of the former, but unlike previous work (Braver
et al., 2003; Reynolds et al., 2009; McDaniel et al., 2013), we did not
find reliable neural signatures for the latter. The reason could be
methodological, insofar as the design of our experiment was tailored to
identify sustained working memory processing during the PM task
(long delay periods, and therefore relatively few PM trials). This may
have reduced our ability to detect transient activity spikes associated
with episodic memory retrieval in the resulting small set of PM trials.
Regardless, we found that PM performance was preserved for trials in
which our neural measurement of WM processing was low (e.g.,
EMbias trials), and thus PM performance had to have been supported
by some process that complemented the diminished engagement of
active monitoring via WM. The multiprocess view of PM suggest that it
is a reactive control process by which the delayed intention is encoded
into episodic memory as a stimulus/response association (e.g., “when
this picture appears, hit a special button”) and the retrieval of this
intention is automatically triggered by the reappearance of the
stimulus.

One potential limitation of the MVPA measure we used to index
WM engagement is that it is sensitive to both of the types of monitoring
described above: checking the “stream” of face stimuli (without holding
a specific face in mind), and monitoring for a specific face. There is no
way to disentangle the contribution of these two processes to our

Fig. 3. Classifier evidence scores predict PM accuracy and dual-task PM costs across
participants. Higher PM classifier evidence was predictive of (A) better PM accuracy and
(B) higher dual-task costs. *p < .05.
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neural measures. Nevertheless, both sources reflect the engagement of
some form of strategic monitoring. The finding that our MVPA measure
of WM function was stronger in WMbias trials is consistent with the
engagement of both monitoring processes on those trials (checking the
target category “stream”, plus monitoring for specific target stimuli),
whereas only the checking process may have been engaged in EMbias

trials. This might also explain why our neural measure of WM was
more predictive of behavior in WMbias trials: monitoring for the
specific target stimulus should substantially increase the likelihood of
responding correctly when the target appears, thus WM use should be
correlated with correct responding. By contrast, merely checking the
target category stream (without actively holding the correct stimulus in
mind) is insufficient to ensure a correct response – even when the
target stimulus is seen, it might fail to trigger the corresponding
episodic memory, resulting in a PM error; thus, there should be a
weaker relationship between WM use and correct responding.

In conclusion, we designed an experiment to bias participants to
use either WM or EM to solve a PM task while simultaneously engaged
in a demanding ongoing task. Using MVPA to measure strategic
monitoring (Lewis-Peacock and Norman, 2014b), we validated that
our manipulation was effective in biasing participants’ strategies. More
generally, using MVPA improved our sensitivity to detect participants'
strategy use beyond what was possible based on behavior alone, leading
to improved trial-by-trial predictions of PM accuracy. Future work can
leverage these improvements to further characterize the factors that
shape PM performance both within and across individuals.
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