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1. Introduction

In [2], Atiyah introduced a mathematical definition of topological quantum field theories (TQFTs). A (d + 1)-TQFT assigns
a module to each d-dimensional manifold and assigns a homomorphism of modules to each (d + 1)-dimensional cobordism.
Abrams [1] showed that there is a bijective correspondence between oriented (1 + 1)-TQFTs and Frobenius algebras. Tu-
raev [6] defined a concept of homotopy quantum field theories (HQFTs) with target X , where X is a connected topological
space. An HQFT assigns a module and a homomorphism of modules to each “X-manifold” and “X-cobordism” respectively.
For any group π , he constructed a bijective correspondence between oriented (1 + 1)-dimensional HQFTs with target X for
X = K (π,1) and crossed π algebras in [6], where a crossed π algebra V is a Frobenius π -algebra endowed with a group
homomorphism ϕ : π → Aut(V ). In [5] Staic and Turaev discussed (1 + 1)-dimensional HQFTs more generally. Turaev and
Turner [8] showed that there exists a bijective correspondence between unoriented (1 + 1)-TQFTs and extended Frobenius
algebras. An extended Frobenius algebra K is a Frobenius algebra endowed with an element θ ∈ K and a homomorphism
Φ : K → K .

In this paper, we consider a group π such that α2 = 1 for any α ∈ π , X = K (π,1) and unoriented (1 + 1)-dimensional
HQFTs with target X . Note that such a group π is a Z/2Z vector space. Moreover we introduce “extended crossed π -
algebra” L which consists of a Frobenius π -algebra, a group homomorphism ϕ : π → Aut(L), elements {θα ∈ L}α∈π and
a homomorphism Φ : L → L (Definition 2.8). We will show that there is a bijective correspondence between unoriented
(1 + 1)-dimensional HQFTs with target X and extended crossed π -algebras (Theorem 3.11).

In Section 2, we recall definitions of HQFTs and some algebras introduced in [6] and will define unoriented HQFTs and
extended crossed group algebras. In Section 3, we construct an extended crossed group algebra from an HQFT (A, τ ). We
call it underlying extended crossed group algebra of (A, τ ). At the end of this section, we introduce our main theorem
(Theorem 3.11). In Sections 4 and 5, we prove the main theorem. In Section 6, we give some examples.

Throughout this paper, the symbol R denotes a commutative ring with unit and the symbol π denotes a group.
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2. Unoriented HQFTs and extended crossed group algebras

Here we will explain terminology used in this paper.

2.1. Unoriented HQFTs

In this subsection, we recall the definition of unoriented homotopy quantum field theories. An oriented homotopy quan-
tum field theory is introduced by Turaev [6].

Definition 2.1. ([6]) Let X be a K (π , 1) space with a base point x0 ∈ X . A pair (M , gM ) is called an unoriented X-manifold
if M is a pointed closed unoriented manifold and gM is a map from M to X . We call the map gM the characteristic map.
Since the spaces M and X are pointed, the map gM sends the base points of all components of M to x0. A disjoint union of
unoriented X-manifolds and the empty set are also unoriented X-manifolds. An unoriented X-homeomorphism of unoriented
X-manifolds f : (M, gM) → (M ′, gM′ ) is a homeomorphism from M to M ′ sending the base points of M to those of M ′ such
that gM = gM′ ◦ f .

Definition 2.2. ([6]) Let X be a K (π , 1) space with a base point x0 ∈ X . An unoriented X-cobordism is a tuple (W , M0, M1, g)
such that the triple (W , M0, M1) is an unoriented cobordism, that M0 and M1 are unoriented X-manifolds and that g :
W → X is a map which sends the base points of M0 and M1 to x0 ∈ X . We call the boundary M0 the bottom base, M1
the top base and the map g the characteristic map. An unoriented X-homeomorphism of X-cobordisms f : (W , M0, M1, g) →
(W ′, M ′

0, M ′
1, g′) is a homeomorphism from W to W ′ inducing unoriented X-homeomorphisms M0 → M ′

0 and M1 → M ′
1

such that g = g′ ◦ f .

Definition 2.3. ([6]) Fix an integer d � 0 and a path connected topological space X with base point x ∈ X . An unoriented
(d + 1)-dimensional homotopy quantum field theory (HQFT for short) (A, τ ) over R with target X assigns

• a finitely generated projective R-module A(M, g) (A(M) for short) to any unoriented d-dimensional X-manifold (M, g),
• an R-isomorphism f� : A(M, g) → A(M ′, g′) to any unoriented X-homeomorphism of d-dimensional X-manifolds f :

(M, g) → (M ′, g′),
• an R-homomorphism τ (W , g) : A(M0, g|M0) → A(M1, g|M1 ) to any (d + 1)-dimensional X-cobordism (W , M0, M1, g).

Moreover these modules and homomorphisms should satisfy the following axioms:

(1) for unoriented X-homeomorphisms of unoriented X-manifolds f : M → M ′ and f ′ : M ′ → M ′′ , we have ( f ′ ◦ f )� =
f ′
� ◦ f� ,

(2) for unoriented d-dimensional X-manifolds M and N , there is a natural isomorphism A(M � N) = A(M) ⊗ A(N), where
M � N is the disjoint union of M and N ,

(3) A(∅) = R ,
(4) for any unoriented X-cobordism W , the homomorphism τ (W ) is natural with respect to unoriented X-homeomor-

phisms,
(5) if an unoriented (d + 1)-dimensional X-cobordism (W , M0, M1, g) is the disjoint union of two unoriented (d + 1)-

dimensional X-cobordisms W0 and W1, then τ (W ) = τ (W1) ⊗ τ (W0),
(6) if an oriented (d+1)-dimensional X-cobordism (W , M0, M1, g) is obtained from two (d+1)-dimensional X-cobordisms

(W0, M0, N) and (W1, N ′, M1) by gluing along f : N → N ′ , then τ (W ) = τ (W1) ◦ f� ◦ τ (W0),
(7) for any unoriented d-dimensional X-manifold (M, g) and any continuous map F : M × [0,1] → X such that F |M×0 =

F |M×1 = g and that F (m × [0,1]) = {x} for any base point m of M , we have τ (M × [0,1], M × 0, M × 1, F ) = idA(M) :
A(M) → A(M),

(8) for any unoriented (d + 1)-dimensional X-cobordism (W , g), τ (W ) is preserved under any homotopy of g relative to
∂W .

If two maps f and f ′ : M → X are homotopic, there is a natural isomorphism A(M, f ) ∼= A(M, f ′). Hence we can suppose
that A(M, f ) is preserved under any homotopy of f . Similary τ (W , g) is preserved under any homotopy of g (maybe not
relative to ∂W ).

2.2. Extended crossed group algebras

In this subsection, we recall some algebras which are introduced in [6] and define extended crossed group algebras.

Definition 2.4. An R-algebra L is a π -algebra over the ring R if L is an associative algebra over R endowed with a splitting
L = ⊕

α∈π Lα such that each Lα is a finitely generated projective R-module, that Lα Lβ ⊂ Lαβ for any α,β ∈ π , and that L
has the unit element 1L ∈ L1.
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Let V and W be R-modules and η : V ⊗W → R be a bilinear form. The map η is non-degenerate if the two maps d : V →
HomR(W , R) defined by d(v)(w) := η(v, w) and s : W → HomR(V , R) defined by s(w)(v) := η(v, w) are isomorphisms,
where v ∈ V and w ∈ W .

Definition 2.5. ([6]) A pair (L, η) is a Frobenius π -algebra over R if L is a π -algebra over R and η : Lα ⊗ Lβ → R is an
R-bilinear form such that

(1) η(Lα ⊗ Lβ) = 0 if αβ �= 1 and the restriction of η to Lα ⊗ Lα−1 is non-degenerate for any α ∈ π ,
(2) η(ab, c) = η(a,bc) for any a,b, c ∈ L.

A Frobenius π -algebra with π a trivial group is called a Frobenius algebra [1].
For any Frobenius π -algebra (L, η), Aut(L) is a group which consists of algebra automorphisms preserving η.

Definition 2.6. ([6]) A triple (L, η,ϕ) is a crossed π -algebra over R if the pair (L, η) is a Frobenius π -algebra over R and
ϕ : π → Aut(L) is a group homomorphism satisfying the following axioms:

(1) for any β ∈ π , ϕβ := ϕ(β) satisfies ϕβ(Lα) ⊂ Lβαβ−1 for any α ∈ π ,
(2) ϕα |Lα = idLα for any α ∈ π ,
(3) for any a ∈ Lα and b ∈ Lβ , we have ϕβ(a)b = ba,
(4) for any α,β ∈ π and any c ∈ Lαβα−1β−1 , we have Tr(cϕβ : Lα → Lα) = Tr(ϕα−1 c : Lβ → Lβ), where Tr is the R-valued

trace of endmorphisms of finitely generated projective R-modules (see for instance [7]).

In [6], Turaev showed that there exists a relation between oriented HQFTs with target K (π,1) space and crossed π -
algebras.

Theorem 2.7. (Theorem 4.1 in [6]) Let π be a group and X be a K (π,1) space. Then every oriented (1 + 1)-dimensional HQFT with
target X over the ring R determines an underlying crossed π -algebra over R. This induces a bijection between the set of isomorphism
classes of oriented (1 + 1)-dimensional HQFTs and the set of isomorphism classes of crossed π -algebras.

For any crossed π -algebra (L, η,ϕ), we denote the HQFT corresponding to the crossed π -algebra by (AL, τ L). Now we
define extended crossed group-algebras.

Definition 2.8. Let π be a group such that α2 = 1 for any α ∈ π . A tuple (L, η,ϕ, {θα}α∈π ,Φ) is an extended crossed π -algebra
over R if the triple (L, η,ϕ) is a crossed π -algebra, and the family of elements {θα ∈ L1}α∈π and the homomorphism of
R-modules Φ : L → L satisfy the following axioms:

(1) Φ2 = id,
(2) Φ(Lα) ⊂ Lα for any α ∈ π ,
(3) for any v, w ∈ L, Φ(v w) = Φ(w)Φ(v),
(4) Φ(1L) = 1L ,
(5) η ◦ (Φ ⊗ Φ) = η,
(6) for any α ∈ π , Φ ◦ ϕα = ϕα ◦ Φ ,
(7) for any α,β,γ ∈ π and v ∈ Lαβ , we have

m ◦ (Φ ⊗ ϕγ ) ◦ 
α,β(v) = ϕγ (θαγ θγ v),

m ◦ (ϕγ ⊗ Φ) ◦ 
α,β(v) = ϕγ (θβγ θγ v),

where 
α,β : Lαβ → Lα ⊗ Lβ is defined by the following relation:

(id ⊗η) ◦ (
α,β ⊗ id) = m. (2.1)

Since η is non-degenerate and each Lα is finitely generated, such a map 
α,β is uniquely determined.
(8) for any α,β ∈ π and v ∈ Lα , we have Φ(θβ vα) = ϕβα(θβα vα),
(9) for any α ∈ π , we have Φ(θα) = θα ,

(10) for any α,β ∈ π , we have ϕβ(θα) = θα ,
(11) for any α,β,γ ∈ π , we have θαθβθγ = q(1)θαβγ , where q : R → L1 is defined as follows. Let {ai ∈ Lαβ}n

i=1 and {bi ∈
Lαβ}n

i=1 be families of elements of Lαβ satisfying the following condition: for any v ∈ Lαβ∑
i

η(bi ⊗ v)ai = ϕβγ (v). (2.2)

From the same reason as (7), such as ai and bi are uniquely determined. Then we put q(1) := ∑
i aibi .
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Fig. 1. The cobordism D+,+,−(α,β;1,1).

Fig. 2. Definition of the cobordism (Q ,∅, (S1,1)).

Fig. 3. Orientations.

Fig. 4. Relation of cobordisms (id⊗η) ◦ (
α,β ⊗ id) = m.

Remark 2.9. (1) Let D+,+,−(α,β;1,1) be the oriented X-cobordism given by Fig. 1. Its bottom base is an X-manifold
(S1,αβ) and its top base is the disjoint union of two X-manifolds (S1,α) and (S1, β). Its characteristic map sends each
labeled arc to the loop corresponding to the label. Such a map is uniquely determined up to homotopy since X is K (π,1)

space. The orientation of D+,+,−(α,β;1,1) is given by Fig. 3. Then we have τ L(D+,+,−(α,β;1,1)) = 
α,β . The relation
(2.1) corresponds to Fig. 4.

(2) Let Q be the X-cobordism depicted in Fig. 2. It is a once-punctured torus whose bottom base is empty and whose
top base is an X-manifold (S1,1). Its characteristic map sends each labeled arc to the loops corresponding to the label. Its
orientation is given by Fig. 3. Then we have q = τ L(Q ). The relation (2.2) corresponds to Fig. 5.

3. Underlying algebraic structures of HQFTs

In this section, we construct an extended crossed group algebra from an HQFT. Assume that π is a group such that any
element α ∈ π satisfies α2 = 1(= 1π ), where 1π is the unit of π (in particular, π is an Abelian group). Moreover let X be a
K (π,1) space with a base point x0 ∈ X . Throughout this section, let (A, τ ) be an unoriented (1 + 1)-dimensional HQFT with
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Fig. 5. Relation of cobordisms (id⊗η) ◦ τ (Q ′) ⊗ id = ϕβγ .

Fig. 6. The cobordism (Mb,∅, ∂(Mb), gα). Three edges are labeled by α,α,1 ∈ π . Two edges of the triangle labeled by α ∈ π are identified along the arrows
depicted in this figure. The map gα is a continuous map from Mb to X sending each edge to the loop corresponding to the label.

target X . Let S1 be an (unoriented) circle. For any unoriented 1-dimensional X-manifold (S1, g), if we give S1 an orientation,
we can regard the homotopy class of g as an element α ∈ π = π1(X). The element α does not depend on the choice of
the orientation of S1 since α = α−1. Since we consider the module A(S1, g), we can denote the unoriented 1-dimensional
X-manifold (S1, g) by (S1,α).

Definition 3.1. Let Mb be a Möbius band. For any α ∈ π , we define an unoriented (1 + 1)-dimensional X-cobordism
(Mb,∅, ∂(Mb), gα) as the unoriented (1 + 1)-dimensional X-cobordism in Fig. 6. Choose an unoriented X-homeomorphism
f : (∂(Mb), g|∂(Mb)) → (S1,1), and define an element θα by

θα := f�
(
τ
((

Mb,∅, ∂(Mb), gα

))
(1)

) ∈ A
(
S1,1

)
.

Lemma 3.2. The element θα does not depend on the choice of an unoriented X-homeomorphism f .

Proof. Let f and f ′ : (∂(Mb), g|∂(Mb)) → (S1,1) be unoriented X-homeomorphisms such that f is not isotopic to f ′ . Let
T : Mb → Mb be a homeomorphism reversing the orientation of the boundary. The map T induces an unoriented X-homeo-
morphism T : (Mb, gα) → (Mb, gα). Then f ◦ T |∂(Mb) is isotopic to f ′ . By Definition 2.3, we have

f�
(
τ (Mb, gα)(1)

) = f�
(
τ
(
T (Mb), gα

)
(1)

)
= f� ◦ (T |∂(Mb))�

(
τ (Mb, gα)(1)

)
= f ′

�

(
τ (Mb, gα)(1)

)
.

Therefore the element θα does not depend on the choice of f . �
Let χ : S1 → S1 be a homeomorphism reversing the orientation. For any α ∈ π , we define an isomorphism of R-modules

Φα = Φ : A(S1,α) → A(S1,α) by χ� : A(S1,α) → A(S1,α), where χ� is the R-homomorphism induced by χ . Clearly we
have Φ(θα) = θα for any α ∈ π .

For any α ∈ π , let C−,−(α;1) be an unoriented X-cobordism depicted in Fig. 7. The unoriented X-cobordism C−,−(α;1)

is an annulus whose bottom base is the disjoint union of two copies of X-manifolds (S1,α), whose top base is empty and
whose characteristic map sends the arc labeled by 1 ∈ π onto x0 ∈ X . For any element α ∈ π , we define a homomorphism
of R-modules ηα = η : A(S1,α) ⊗ A(S1,α) → R by τ (C−,−(α,1)).

Lemma 3.3. We have η ◦ (Φ ⊗ Φ) = η.

Proof. Let a map μ : C−,−(α;1) → C−,−(α;1) be an orientation reversing homeomorphism. From Definition 2.3, we have

τ
(
C−,−(α,1)

) = τ
(
μ

(
C−,−(α,1)

)) ◦ (μ|(S1,α)�(S1,α))� = τ
(
C−,−(α,1)

) ◦ (Φ ⊗ Φ). �
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Fig. 7. The cobordism C−,−(α;1).

Fig. 8. The cobordism D−,−,+(α,β;1,1).

Fig. 9. The cobordism C−,+(α;β).

For any α,β ∈ π , let D−,−,+(α,β;1,1) be an unoriented X-cobordism depicted in Fig. 8. The unoriented X-cobordism
D−,−,+(α,β;1,1) is a twice-punctured disk whose bottom base is the disjoint union of two unoriented X-manifolds (S1,α)

and (S1, β), whose top base is an unoriented X-manifold (S1,αβ) and whose characteristic map sends the arcs labeled by
1 ∈ π onto x0 ∈ X . For any α,β ∈ π , we define a homomorphism of R-modules mα,β = m : A(S1,α) ⊗ A(S1, β) → A(S1,αβ)

by τ (D−,−,+(α,β;1,1)). For any v ∈ A(S1,α) and w ∈ A(S1, β), we denote m(v ⊗ w) by v w ∈ A(S1,αβ).

Lemma 3.4. For two elements v ∈ A(S1,α) and w ∈ A(S1, β), we have Φ(v w) = Φ(w)Φ(v).

Proof. The proof of this lemma is similar to that of Lemma 3.3. �
For any α,β ∈ π , let C−,+(α;β) be an unoriented X-cobordism depicted in Fig. 9. The unoriented X-cobordism

C−,+(α;β) is an annulus whose bottom base is an unoriented X-manifold (S1,α), whose top base is also an unoriented
X-manifold (S1,α) and whose characteristic map sends the arc labeled by β ∈ π onto a loop on X whose homotopy
class is β ∈ π . For any α,β ∈ π , we define a homomorphism of R-modules ϕβ : ⊕

α∈π A(S1,α) → ⊕
α∈π A(S1,α) by⊕

α∈π τ (C−,+(α;β)).

Lemma 3.5. For any β ∈ π , we have Φ ◦ ϕβ ◦ Φ = ϕβ .

Proof. We can prove this lemma by using the same argument as in Lemma 3.3. �
Lemma 3.6. For any α ∈ π and vα ∈ A(S1,α), we have Φ(θβ vα) = ϕβα(θβα vα).

Proof. Fig. 10 shows this lemma. In Fig. 10 the first cobordism corresponds to θβ vα and the fifth cobordism corresponds to
ϕβα(θβα vα), where two arrows depicted in Fig. 10 mean that two edges endowed with the arrows are identified respecting
the orientations indicated by them. Sliding the top base of the first cobordism, we obtain the second, the third and the
fourth cobordisms. As a result the top base is reversed. From these transformations and Definition 2.3, we have Φ(θβ vα) =
ϕβα(θβα vα). �

Lemma 3.7. For any α,β ∈ π , we have ϕβ(θα) = θα .

Proof. In Fig. 11, the first cobordism corresponds to ϕβ(θα), where arrows depicted in Fig. 11 mean that edges endowed
with these arrows are identified along the same arrows. The fourth cobordism corresponds to θα because βαβ = α. �
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Fig. 10. Proof of Lemma 3.6.

Fig. 11. Proof of Lemma 3.7.

Lemma 3.8. For any α,β,γ ∈ π , let Q be the unoriented (1 + 1)-dimensional X-cobordism introduced in Definition 2.8 and depicted
in Fig. 2. Then we have θαθβθγ = τ (Q )(1)θαβγ , where 1 is the unit of R.

Proof. Fig. 12 shows this lemma. In Fig. 12 the first cobordism corresponds to θαθβθγ and the eighth cobordism corresponds
to τ (Q )(1)θαβγ . �

Lemma 3.9. For any α,β,γ ∈ π and v ∈ A(S1,αβ), we have the following equations:

m ◦ (Φ ⊗ ϕγ ) ◦ 
α,β(v) = ϕγ (θαγ θγ v),

m ◦ (ϕγ ⊗ Φ) ◦ 
α,β(v) = ϕγ (θβγ θγ v),

where 
α,β = τ (D+,+,−(α,β;1,1)) and D+,+,−(α,β;1,1) is the unoriented X-cobordism introduced in Definition 2.8.

Proof. This lemma follows from Fig. 13. In Fig. 13 the first cobordism corresponds to m ◦ (ϕγ ⊗Φ) ◦
α,β(v) and the fourth
cobordism corresponds to ϕγ (θαγ θγ v). Similarly we can prove m ◦ (ϕγ ⊗ Φ) ◦ 
α,β(v) = ϕγ (θβγ θγ v). �

Lemma 3.10. We have Φ(1L) = 1L , where 1L = τ (D,∅, ∂ D)(1), 1 is the unit of R and D is a cup which is an unoriented X-cobordism
depicted in Fig. 14. Note that the characteristic map of D is uniquely determined.

Proof. By using similar argument of Lemma 3.3, we can prove this. �
Theorem 2.7 and Lemmas 3.2–3.10 show that any unoriented (1 + 1)-dimensional HQFT (A, τ ) with target X induces

an extended crossed π -algebra. We call the extended crossed π -algebra the underlying extended crossed π -algebra of the
unoriented (1 + 1)-dimensional HQFT (A, τ ).
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Fig. 12. Proof of Lemma 3.8. As usual, we identify edges with some types of arrows in these pictures.

Fig. 13. Proof of Lemma 3.9. m ◦ (Φ ⊗ ϕγ ) ◦ 
α,β (v) = ϕγ (θαγ θγ v). In the last picture, we identify edges with some types of arrows in these pictures.

Fig. 14. The cobordism (D,∅, ∂D).

The following theorem is our main theorem which is proved in Sections 4 and 5.

Theorem 3.11 (Main theorem). Let π be a group with α2 = 1 for any α ∈ π and X be a K (π,1) space. Then every unoriented (1+1)-
dimensional HQFT with target X over the ring R determines an underlying extended crossed π -algebra over R. This induces a bijection
between the set of isomorphism classes of unoriented (1+1)-dimensional HQFTs over R and the set of isomorphism classes of extended
crossed π -algebras over R.
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4. Proof of main theorem

In this section, we prove Theorem 3.11. To prove the theorem, we need to make an unoriented HQFT (A, τ ) from a given
extended crossed π -algebra (L, η, ϕ , {θα}α∈π , Φ). Our proof has three steps. In Step 1, we construct a functor A. In Step 2,
we make a functor τ . In Step 3, we prove that the pair (A, τ ) satisfies the axioms of HQFTs. To construct them we use the
same method as in [8].

Step 1: Construction of a functor A.
Let (M, g) be a connected unoriented 1-dimensional X-manifold. We define an R-module A(M, g) by

A(M, g) := {
(r, v)

∣∣ r : (S1,α
) → (M, g): unoriented X-homeomorphism, v ∈ Lα

}
/ ≈,

where (r, v) ≈ (r,′ v ′) if and only if r is isotopic to r′ and v = v ′ , or r is not isotopic to r′ and v = Φ(v ′). For any (M, g),
such an α ∈ π is uniquely determined. For any unoriented X-homeomorphism h : (S1,α) → (M, g), we define a map h̃ :
A(M, g) → Lα by

h̃(r, v) :=
{

v (if r is isotopic to h),

Φ(v) (if r is not isotopic to h).

Then the map h̃ is bijective. In fact it has inverse map (̃h)−1 : Lα → A(M, g) which is defined by (̃h)−1(v) = (h, v) for any
v ∈ Lα . Moreover we can use the R-module structure of Lα to turn A(M, g) into an R-module. The R-module structure of
A(M, g) does not depend on the choice of the map h. This follows from the following:

a(r, v) = (̃h)−1(ãh(r, v)
)

=
{

(h,av) (if r is isotopic to h),

(h,aΦ(v)) (if r is not isotopic to h)

=
{

(r,av) (if r is isotopic to h),

(r,Φ(aΦ(v))) (if r is not isotopic to h)

= (r,av),

where (r, v) ∈ A(M, g) and a ∈ R . Since Lα is a projective R-module, so is A(M, g). In general we define A(∅) by R and
A(M � N) by A(M) ⊗ A(N) for all connected unoriented 1-dimensional X-manifolds M and N (more precisely M � N is an
ordered disjoint union and A(M)⊗ A(N) is an ordered tensor product). For any unoriented X-homeomorphism of unoriented
X-manifolds f : (M, g) → (M ′, g′), we define an R-homomorphism f� : A(M, g) → A(M ′, g′) by f�(r, v) = ( f ◦ r, v) for any
(r, v) ∈ A(M, g).

Step 2: Construction of a functor τ .
For any unoriented (1 + 1)-dimensional X-cobordism (W , M0, M1, g), we define an R-homomorphism τ (W , g) :

A(M0, g|M0) → A(M1, g|M1) as follows:
Case 1: W is orientable and connected.
Fix an orientation of S1 and give W an orientation, and take unoriented X-homeomorphisms hM0 : (S1,α1) � · · · �

(S1,αn) → (M0, g|M0) and hM1 : (S1, β1) � · · · � (S1, βn) → (M1, g|M1) which preserve orientations. Then we define an

R-homomorphism τ (W , g) : A(M0, g|M0) → A(M1, g|M1) by h̃M1

−1 ◦ τ L(W , g) ◦ h̃M0 . The definition of τ L is introduced
in Theorem 2.7. We need to prove that τ (W , g) does not depend on the choice of their orientations. It is sufficient that we
check it in the cases where W is an unoriented basic cobordism depicted in Fig. 15. When W is an unoriented X-cobordism
at the upper left in Fig. 15, take unoriented X-homeomorphisms hM0 : (S1,α)� (S1, β) → M0 and hM1 : (S1,αβ) → M1. Then
we have

h̃M1

−1 ◦ m ◦ h̃M0 = h̃M1

−1 ◦ Φ ◦ m ◦ P ◦ (Φ ⊗ Φ) ◦ h̃M0

= ( ˜hM1 ◦ χ)−1 ◦ m ◦ P ◦ (
˜hM0 ◦ (χ � χ)

)
,

where P is the permutation. This equation implies that τ (W , g) does not depend on the choice of the orientation of W . In
other cases, we can use similar arguments.

Case 2: W is non-orientable and connected.
Let RP 2 be the projective plane. For any α ∈ π , we define an unoriented X-cobordism (RP 2, fα, p) with p a point of RP 2

as follows. The pair (RP 2, fα) is an unoriented X-cobordism (RP 2,∅,∅, fα) such that fα(p) = x0 and that the homotopy
class of fα |l equals α ∈ π for the loop l on RP 2 depicted in Fig. 16 (in Fig. 16, l is presented by the upper arc with
arrow, which is identified with the lower arc with arrow). Such an unoriented X-cobordism is uniquely determined up to
homotopy by α := [l] ∈ π . In general for any unoriented X-cobordism (RP 2, g), (by using a homotopy) we can assume that
there are p ∈ RP 2 and α ∈ π which satisfy the following conditions:
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Fig. 15. Oriented basic cobordisms.

Fig. 16. The cobordism (RP 2, fα).

• g(p) = x0,
• g is homotopic to fα .

Then we denote the unoriented X-cobordism (RP 2, g) by (RP 2, fα). Now we represent (W , g) as the connected sum of an
orientable (unoriented) X-cobordism (W or, g|W or) and unoriented X-cobordisms (RP 2, fα1 ), . . . , (RP 2, fαn ), that is,

(W , g) ∼= (
W or, g|W or

)
�
(
RP 2, fα1

)
� · · · �(RP 2, fαn

)
.

Note that ∂W or = ∂W and that a homomorphism τ (W or, g|W or) is defined in the orientable case. Let m be the number of
components of M1. We define a homomorphism τ (W , g) as follows. If m > 0, take an unoriented X-homeomorphism h :
(S1, β1)�· · ·� (S1, βm) → (M1, g|M1) and identify two R-modules A(M1, g|M1 ) and

⊗m
i=1 Lβi by h̃ : A(M1, g|M1) → ⊗m

i=1 Lβi .
Under this identification, we define a map ψα1,...,αn : A(M1, g|M1) → A(M1, g|M1) to be the identity on all factors except one
where it is multiplication by

∏n
i=1 θαi . We define

τ (W , g) := ψα1,...,αn ◦ τ
(
W or, g|W or

)
.

If m = 0, consider an unoriented X-cobordism W or − D2 = (W or − D2, M0, M1 � ∂(D2), g|W or−D2 ), where D2 is any disk
on W . Take an unoriented X-homeomorphism h : (S1,1) → (∂(D2), g|∂(D2)) and identify two R-modules A(∂(D2), g|∂(D2))

and L1 by h̃ : A(∂(D2), g|∂(D2)) → L1. Under this identification, we define a homomorphism τ (W , g) by

τ (W , g)(v) := η

(
τ
(
W or − D2, g|W or−D2

)
(v),

n∏
i=1

θαi

)
for any v ∈ A(M0, g|M0). From Lemmas 4.1 and 4.2 below, the functor τ is well defined.

Case 3: W is not connected:
We can extend the definition of τ constructed as above to non-connected cases by using tensor products as in Step 1.
Step 3: The pair (A, τ ) is an unoriented (1 + 1)-dimensional HQFT with target X .
We need to check the axioms of unoriented HQFTs (see Definition 2.3). The pair (A, τ ) clearly satisfies the axioms except

for (4) and (6). In the next section, we show that (A, τ ) satisfies the axioms (4) and (6) (Propositions 5.1 and 5.4).
From Steps 1, 2 and 3, we complete the proof of Theorem 3.11 (except for Propositions 5.1 and 5.4 and Lemmas 4.1

and 4.2).

Lemma 4.1. (i) The map τ (W , g) does not depend on the choice of h.
(ii) The map τ (W , g) does not depend on the choice of a factor multiplied the element

∏n
i=1 θαi ∈ L1 .

(iii) The map τ (W , g) does not depend on the choice of the connected sum (W , g) ∼= (W or, g|W or)�(RP 2, fα1 )� · · · �(RP 2, fαn ).

Proof. (i): In the case where m = 1, take any unoriented X-homeomorphism h : (S1,α) → (M1, g|M1 ). For any (r, v) ∈
A(M1, g|M1), we have
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Fig. 17. Cobordism relation.

Fig. 18. The cobordism (T 2, gα,β,γ ).

(̃h)−1

(
n∏

i=1

θαi h̃(r, v)

)
=

{
(r,

∏n
i=1 θαi v) (if r is isotopic to h),

(r,Φ(
∏n

i=1 θαi Φ(v))) (if r is not isotopic to h)

=
(

r,
n∏

i=1

θαi v

)
.

Hence the map τ (W , g) does not depend on the choice of h. Similarly we can prove the case where m > 1. In the case
where m = 0, (i) follows from the fact that Φ preserves η and θα for any α.

(ii): It follows from Fig. 17 and Theorem 2.7.
(iii): In the proof of Lemma 3.8, we proved that (RP 2, fα)�(RP 2, fβ)�(RP 2, fγ ) is unoriented X-homeomorphic to

(T 2, gα,β,γ )�(RP 2, fαβγ ), where (T 2, gα,β,γ ) is the unoriented X-cobordism depicted in Fig. 18 whose bottom base and
top base are empty and whose characteristic map gα,β,γ sends the arcs labeled by 1, βα,βγ ∈ π onto the loops with the
corresponding labels. It follows from the definitions that τ ((RP 2, fα)�(RP 2, fβ)�(RP 2, fγ )) = τ ((T 2, gα,β,γ )�(RP 2, fαβγ )).
Hence it is sufficient to prove (iii) for the case where n = 1 or 2, which is shown in Lemma 4.2 below. �
Lemma 4.2.

(I) Assume that we have two connected sums

(W , g) ∼= (
W or, g|W or

)
�
(
RP 2, fα

)
and

(W , g) ∼= (
W̃ or, g|W̃ or

)
�
(
RP 2, fβ

)
.

(I-a) If we have an unoriented X-homeomorphism of unoriented X-manifolds f : (W or, g|W or) → (W̃ or, g|W̃ or) and α = β , we
have ψα ◦ τ (W or, g|W or) = ψβ ◦ τ (W̃ or, g|W̃ or).

(I-b) If we have an unoriented X-homeomorphism of unoriented X-manifolds f : (RP 2, fα) → (RP 2, fβ) and W or = W̃ or , we
have ψα ◦ τ (W or, g|W or) = ψβ ◦ τ (W̃ or, g|W̃ or).

(I-c) We have ψα ◦ τ (W or, g|W or) = ψβ ◦ τ (W̃ or, g|W̃ or).
(II) Assume that we have two connected sums

(W , g) ∼= (
W or, g|W or

)
�
(
RP 2, fα1

)
�
(
RP 2, fα2

)
and

(W , g) ∼= (
W̃ or, g|W̃ or

)
�
(
RP 2, fβ1

)
�
(
RP 2, fβ2

)
.

(II-a) If we have an unoriented X-homeomorphism of unoriented X-manifolds f : (W or, g|W or) → (W̃ or, g|W̃ or) and {α1,α2} =
{β1, β2}, we have ψα1,α2 ◦ τ (W or, g|W or) = ψβ1,β2 ◦ τ (W̃ or, g|W̃ or).
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Fig. 19. Loops c, f (c) and c′ .

Fig. 20. A transformation.

(II-b) If we have an unoriented X-homeomorphism of unoriented X-manifolds f : (RP 2, fα1 )�(RP 2, fα2) → (RP 2, fβ1)�

(RP 2, fβ2 ) and W or = W̃ or , we have ψα1,α2 ◦ τ (W or, g|W or) = ψβ1,β2 ◦ τ (W̃ or, g|W̃ or).
(II-c) We have ψα1,α2 ◦ τ (W or, g|W or) = ψβ1,β2 ◦ τ (W̃ or, g|W̃ or).

Proof. (I-a): We can naturally identify ∂(W or) and ∂(W̃ or) with ∂(W ). It follows from the definition of τ (W or) and τ (W̃ or)

and Theorem 2.3 that

( f |M1)� ◦ τ
(
W or) = τ

(
W̃ or) ◦ ( f |M0)�. (4.1)

The map ( f |M1 )� is the identity map or Φ on each factor of A(M1, g|M1). It follows from the definition of extended crossed
π -algebras that the center of L contains L1 and that Φ(θα v) = θαΦ(v) for any α ∈ π and v ∈ L. Hence we have

ψα ◦ ( f |M1)� = ( f |M1)� ◦ ψα. (4.2)

It follows from (4.1) and (4.2) that

( f |M1)� ◦ ψα ◦ τ
(
W or) = ψα ◦ τ

(
W̃ or) ◦ ( f |M0)�. (4.3)

Eq. (4.3) implies (I-a).
(I-b): Since the mapping class group of the projective plane RP 2 is trivial, the map f is isotopic to the identity map, that

is, there exists a continuous map H : RP 2 × [0,1] → RP 2 such that the map Ht : RP 2 → RP 2 defined by Ht(x) = H(x, t) for
any x ∈ RP 2 is a homeomorphism for all t ∈ [0,1] and satisfies H0 = f and H1 = id. We do not know if the map H fixes
p ∈ RP 2, where p is the point introduced in the proof of Theorem 3.11. Let γ ∈ π be an element corresponding to the loop
fβ(H({p} × [0,1])) on X . Then we have α = γ βγ = βγ 2 = β . This implies (I-b).

(I-c): Consider the loops c, f (c) and c′ as depicted in Fig. 19. In general, f (c) is not homotopic to c′ . For any α,β ∈ π and
v ∈ Lα , we have Φ(θβ v) = ϕαβ(θαβ v). This equation means that τ (W , g) is preserved under the transformation depicted
in Fig. 20 (see the proof of Lemma 3.6). By the definition of τ (W , g) and Theorem 2.7, the map τ (W , g) is preserved by
Dehn twists on W . By using the transformation depicted in Fig. 20 and Dehn twists, we can assume that f (c) is homotopic
to c′ . If f (c) is homotopic to c′ , there exists an unoriented X-homeomorphism f ′ : (RP 2, fα) → (RP 2, fβ) and we can use
arguments in (I-b).

(II-a): We can show this by using similar arguments in the proof of (I-a).
(II-b): We can show this by using similar arguments in the proof of (I-b). Instead of the mapping class group of RP 2,

we use that of the Klein bottle. The mapping class group of the Klein bottle is generated by two elements x and y (see
Theorem 4.3 below). We can assume that the cobordism (RP 2, fα)�(RP 2, fβ) is given by the right-hand side in Fig. 21. If f
is isotopic to x, we have α1 = β2 and α2 = β1. If f is isotopic to y, we have α1 = β1, α2 = β2 (see Figs. 22 and 23).

(II-c): We can show this by using similar arguments in the proof of (I-c). �



K. Tagami / Topology and its Applications 159 (2012) 833–849 845
Fig. 21. The cobordism (RP 2, fα)�(RP 2, fβ ).

Fig. 22. In the case f = x.

Fig. 23. In the case f = y.

Fig. 24. Two generators of the mapping class group of the Klein bottle.

Theorem 4.3. ([4]) Let K be the Klein bottle. We define a homeomorphism x : K → K as a Dehn twist along the loop c depicted in
Fig. 24 and a homeomorphism y : K → K as taking the mirror image with respect to the line d depicted in Fig. 24. Then the mapping
class group of K is generated by the isotopy classes of x and y.

5. The axioms of HQFT

In this section, we check that the pair (A, τ ) constructed in Section 4 satisfies the axioms of HQFTs (see Definition 2.3).

Proposition 5.1. The functor τ constructed in Theorem 3.11 from an extended crossed π -algebra (L, η,ϕ, {θα}α∈π ,Φ) is natural
with respect to unoriented X-homeomorphisms of unoriented X-manifolds.

Proof. Let (W1, M1, N1, g1) and (W2, M2, N2, g2) be two unoriented X-cobordisms and f : (W1, M1, N1, g1) → (W2, M2,

N2, g2) be an unoriented X-homeomorphism of unoriented X-cobordisms. If we are given an unoriented X-homeomorphism

(W1, g1) ∼= (
W or

1 , g1|W or
1

)
�
(
RP 2, fα1

)
� · · · �(RP 2, fαn

)
,

then we have

(W2, g2) ∼= (
f
(
W or

1

)
, (g1|W or

1
) ◦ f −1)�(RP 2, fα1 ◦ f −1)� · · · �(RP 2, fαn ◦ f −1).

There is an element βi ∈ π such that fβi is isotopic to fαi ◦ f −1 for all i = 1, . . . ,n. It follows from the proof of
Lemma 4.2(I-b) that αi = βi for all i = 1, . . . ,n. From Theorem 2.7, we have ( f |N1

)� ◦ τ (W or
1 , g1|W or

1
) = τ ( f (W or

1 ), (g1|W or
1

) ◦
f −1) ◦ ( f |M1

)� . This completes the proof. �
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Fig. 25. Basic X-cobordisms.

Definition 5.2. Let (A, τ ) be the pair constructed in Section 4 from an extended crossed π -algebra (L, η,ϕ, {θα}α∈π ,Φ). An
unoriented X-cobordism (W0, M0, N) is X-nice if for any unoriented X-cobordism (W1, N ′, M1) and unoriented X-homeo-
morphism f : N → N ′ , we have τ (W ) = τ (W1) ◦ f� ◦ τ (W0), where W is the unoriented X-cobordism obtained from W1
and W0 by gluing along f .

In the case where π is trivial, X-niceness is equal to niceness introduced in [8]. Then the following lemma is an easy
consequence of Theorem 2.7.

Lemma 5.3. ([8]) (1) Let (W0, M0, N0) be an unoriented X-cobordism obtained from two unoriented X-cobordisms (W ′
0, M0, N ′

0)

and (W ′′
0 , M ′′

0, N0) by gluing along an unoriented X-homeomorphism g : N ′
0 → M ′′

0 . If W ′
0 and W ′′

0 are X-nice, so is W0 .
(2) Let (W0, M0, N0) and (W1, M1, N1) be oriented X-cobordisms and f : N0 → M1 be an orientation preserving X-homeomor-

phism. Then we have τ (W ) = τ (W1) ◦ f� ◦ τ (W0), where W is the oriented X-cobordism obtained from W1 and W0 by gluing
along f .

Proposition 5.4. The six unoriented X-cobordisms depicted in Fig. 25 are X-nice. Hence the pair (A, τ ) constructed in Theorem 3.11
from an extended crossed π -algebra (L, η,ϕ, {θα}α∈π ,Φ) satisfies the axioms of Definition 2.3.

Proof. Let (W0, M0, N, g) and (W1, N ′, M1, g′) be two unoriented X-cobordisms and f : N → N ′ be an unoriented X-ho-
meomorphism of unoriented X-cobordisms. Let (W1 ∪ f W0, g′ ∪ f g) be an unoriented cobordism obtained from W0 and
W1 by gluing along f . Moreover we suppose that we have (W1, g′) ∼= (W or

1 , g′|W or
1

)�(RP 2, fα1 )� · · · �(RP 2, fαn ).
(I) The case where (W0, M0, N, g) is a cobordism depicted in Fig. 25(3).
In this case, we can choose orientations of W1 and W0 such that f is an orientation preserving homeomorphism. By

Lemma 5.3, we have the following equation:

τ
(
W1 ∪ f W0, g′ ∪ f g

) = ψα1,...,αn ◦ τ
(
W or

1 ∪ f W0
)

= ψα1,...,αn ◦ τ
(
W or

1

) ◦ f� ◦ τ (W0)

= τ
(
W1, g′) ◦ f� ◦ τ (W0, g).

Hence (W0, M0, N, g) is X-nice.
(II) The case where (W0, M0, N, g) is a cobordism depicted in Fig. 25(1), (4) and (5).
In this case, we can use the same proof as in (I).
(III) The case where (W0, M0, N, g) is a cobordism depicted in Fig. 25(6).
Suppose that (W0, M0, N, g) is given an unoriented X-homeomorphism (W0, g) ∼= (W or

0 , g|W or
0

)�(RP 2, fα). Then we have(
W1 ∪ f W0, g′ ∪ f g

) ∼= (
W or

1 ∪ f W or
0 , g′|W or

1
∪ f g|W or

0

)
�
(
RP 2, fα

)
�
(
RP 2, fα1

)
� · · · �(RP 2, fαn

)
.

Furthermore we can give orientations of W or
1 and W or

0 such that f preserves the orientations. Then we have the following
equation:
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Fig. 26. ψα ◦ ψα1,...,αn ◦ τ (W or
1 ) ◦ f� ◦ τ (W or

0 ) = ψα1,...,αn ◦ τ (W or
1 ) ◦ f� ◦ ψα ◦ τ (W or

0 ).

Fig. 27. W1 = W3 ∪ f ′ W2.

Fig. 28. W4 = W2 ∪ f W0.

τ
(
W1 ∪ f W0, g′ ∪ f g

) = ψα ◦ ψα1,...,αn ◦ τ
(
W or

1 ∪ f W or
0

)
= ψα ◦ ψα1,...,αn ◦ τ

(
W or

1

) ◦ f� ◦ τ
(
W or

0

)
= ψα1,...,αn ◦ τ

(
W or

1

) ◦ f� ◦ ψα ◦ τ
(
W or

0

)
= τ

(
W1, g′) ◦ f� ◦ τ (W0, g).

The third equality follows from Fig. 26. The equation in Fig. 26 follows from the fact that f� = id or Φ and that Φ(θα) = θα

for any θα ∈ π . Hence (W0, M0, N, g) is X-nice.
(IV) The case where (W0, M0, N, g) is a cobordism depicted in Fig. 25(2).
If we can give orientations of W or

1 and W0 so that f preserves them, we can use the same argument as in (I).
Suppose that we cannot give such orientations. Then there are an unoriented X-cobordism (W3, M3, N3), an unori-
ented X-cobordism (W2, M2, N2) and an unoriented X-homeomorphism f ′ : N2 → M3 such that W1 = W3 ∪ f W2 (see
Fig. 27), where (W2, M2, N2) is unoriented X-homeomorphic to the unoriented X-cobordism depicted in Fig. 25(3). Let
W4 be an unoriented X-cobordism W2 ∪ f W0 (see Fig. 28). It follows from the proof of Lemma 3.9 that (W4, g) ∼=
(W or

4 , g|W or
4

)�(RP 2, fαγ )�(RP 2, fα). Moreover it follows from Lemma 3.9 and the definition of extended crossed group-
algebra (see Definition 2.8(7)) that

τ (W4) = τ (W2) ◦ f� ◦ τ (W0).

Now we have(
W3 ∪ f ′ W4, g′ ∪ f g

)
∼= (

W or ∪ f ′ W or,
(

g′ ∪ f g
)|W or ∪ ′ W or

)
�
(
RP 2, fαγ

)
�
(
RP 2, fα

)
�
(
RP 2, fα1

)
� · · · �(RP 2, fαn

)

3 4 3 f 4
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and we can give orientations of W or
3 and W or

4 so that f ′ preserve them. Hence we have the following equation:

τ
(
W1 ∪ f W0, g′ ∪ f g

) = (
W3 ∪ f ′ W4, g′ ∪ f g

)
= ψα1,...,αn ◦ ψαγ ◦ ψα ◦ τ

(
W or

3 ∪ f ′ W or
4

)
= ψα1,...,αn ◦ ψαγ ◦ ψα ◦ τ

(
W or

3

) ◦ f ′
� ◦ τ

(
W or

4

)
= ψα1,...,αn ◦ τ

(
W or

3

) ◦ f ′
� ◦ ψαγ ◦ ψα ◦ τ

(
W or

4

)
= τ (W3) ◦ f ′

� ◦ τ (W4)

= τ (W3) ◦ f ′
� ◦ τ (W2) ◦ f� ◦ τ (W0)

= τ (W1) ◦ f� ◦ τ (W0).

Hence W0 is X-nice. �
6. Examples

In this section, we construct examples of HQFTs and extended crossed group algebras.
Firstly we will construct an example of unoriented HQFTs.

Example 6.1. This construction is similar to “primitive cohomological HQFT" constructed by Turaev [6] and his construction
is inspired by the work of Freed and Quinn [3]. Let π be Z/2Z and X be a K (π,1) space (in particular X is homotopy
equivalent to RP∞). Given d � 0 we take a (d + 1)-dimensional cocycle θ ∈ Cd+1(X; R×), where R× is the unit group of R .
For any unoriented d-dimensional X-manifold (M, g), we define an R-module A(M, g) by R va , where a ∈ Cd(M;Z/2Z) is a
fundamental cycle and R va is the free R-module of rank 1 generated by va . If a,b ∈ Cd(M;Z/2Z) are two fundamental cycles,
then we give the relation va = g∗(θ)(c)vb , where c is a (d + 1)-dimensional singular chain in M such that ∂c = a + b. The
element g∗(θ)(c) ∈ R× does not depend on the choice of c. For any unoriented X-homeomorphism f : (M, g) → (M ′, g′),
we define an R-homomorphism f� : A(M, g) → A(M ′, g′) by f�(va) = v f∗(a) .

Let (W , M0, M1, g) be an unoriented (d + 1)-dimensional X-cobordism. Take a cycle B ∈ Cd+1(W , ∂W ;Z/2Z) such
that [B] ∈ Hd+1(W , ∂W ;Z/2Z) is the fundamental class. Then we have ∂ B = a0 + a1, where ∂ : Cd+1(W , ∂W ;Z/2Z) →
Cd(M0;Z/2Z) ⊕ Cd(M1;Z/2Z) is the connected homomorphism and a0 ∈ Cd(M0;Z/2Z), a1 ∈ Cd(M1;Z/2Z) are fundamental
cycles. Then we define an R-homomorphism τ (W , g) : A(M0, gM0 ) → A(M1, gM1 ) by τ (W , g)(va0 ) = (g∗(θ)(B))−1 va1 . The
map τ (W , g) does not depend on the choice of B .

The pair (A, τ ) is an unoriented (d + 1)-dimensional HQFT with target X . Moreover the isomorphism class (A, τ ) does
not depend on the choice of a singular cocycle representation θ of the homology class [θ] ∈ Hd+1(X, ; R×). For any closed
unoriented (d + 1)-dimensional X-cobordism (W , g), the map τ (W , g) is an involution.

Secondly we make an example of extended crossed group algebras below.

Example 6.2. Let π be the group Z/2Z = {1,−1} and {lα}α∈π be a set whose index set is π . Let {κα,β ∈ R×}α,β∈π be a
normalized 2-cocycle, that is, κ1,1 = 1 and κα,βκαβ,γ = κα,βγ κβ,γ , where R× is the group of units of R . Note that for any
α ∈ π , we have κ1,α = κα,1 = 1.

For any α ∈ π , let Lα be the free R-module of rank 1 generated by lα , that is, Lα = Rlα . Put L = L1 ⊕L−1. Multiplication of
L is defined by lαlβ = κα,β lαβ . A bilinear form η : L ⊗ L → R is defined by η(lα ⊗ lα) = κα,α for any α ∈ π and η(lα ⊗ lβ) = 0
for β �= α. For any β ∈ π , put ϕβ = id. Take an element a ∈ R which satisfies a2 = 1 and put θα = al1 for any α ∈ π . Then
(L = ⊕

Lα,η,ϕ, {θα}α∈π ,Φ) is an extended crossed π -algebra.
We can easily prove that the algebra (L = ⊕

Lα,η,ϕ, {θα}α∈π ,Φ) satisfies the axioms in Definition 2.8 except (3), (7)

and (11). Since we have lαlβ = κα,β lαβ = κα,β lβα = κα,βκ−1
β,αlβ lα = lβ lα , L satisfies the axiom (3).

To check the axiom (7), we need to compute 
α,β(lαβ) for any α,β ∈ π . Put 
α,β(lαβ) = klα ⊗ lβ . Then we have

(id ⊗η) ◦ (
α,β ⊗ id)(lαβ ⊗ lβ) = lαβ lβ (6.1)

(see Fig. 4). The left-hand side of (6.1) is equal to kκβ,β lα and the right-hand side is equal to καβ,β lαββ = καβ,β lα . Hence
k = κ−1

β,βκαβ,β and we have

m ◦ (Φ ⊗ ϕγ ) ◦ 
α,β(lαβ) = lαβ.

To check the axiom (11), we need to compute q(1) ∈ L1. We consider τ L(Q ′), where the cobordism Q ′ is depicted in
Fig. 29 whose bottom base is empty and whose top base is (S1,αβ) � (S1,αβ). Put τ L(Q ′)(1) = k′lαβ ⊗ lαβ . Now we have

(id ⊗η) ◦ (
τ L(Q ′) ⊗ id

)
(lβα) = ϕβγ (lβα) (6.2)
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Fig. 29. The cobordism (Q ′,∅, (S1,αβ) � (S1,αβ)).

(see Fig. 5). The left-hand side of (6.2) is equal to k′καβ,αβ lαβ and the right-hand side is equal to lαβ . Hence k′ = κ−1
αβ,αβ

and we have q(1) = m ◦ τ L(Q ′)(1) = k′lαβ lαβ = l1. This shows that L satisfies the axiom (11).

Remark 6.3. Note that Turaev [6] shows that the algebra (L = ⊕
Lα,η,ϕ) is a crossed π -algebra.
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