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Suppose C is a subset of non-zero vectors from the vector space Z
d
2.

The cubelike graph X(C) has Z
d
2 as its vertex set, and two elements

of Z
d
2 are adjacent if their difference is in C. If M is the d × |C|

matrix with the elements of C as its columns, we call the row space

of M the code of X . We use this code to study perfect state transfer

on cubelike graphs. Bernasconi et al. have shown that perfect state

transfer occurs on X(C) at time π/2 if and only if the sum of the

elements of C is not zero. Here we consider what happens when

this sum is zero. We prove that if perfect state transfer occurs on a

cubelike graph, then it must take place at time τ = π/2D, where

D is the greatest common divisor of the weights of the code words.

We show that perfect state transfer occurs at time π/4 if and only if

D = 2 and the code is self-orthogonal.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let X be a graph on v vertices with adjacency matrix A. We define a transition operator H(t) by

H(t) := exp(iAt)

This operator is unitary and in quantum computing it determines a continuous quantumwalk [5]. We

say that perfect state transfer from vertex u to vertex v occurs at time τ if u �= v and

|H(τ )u,v| = 1

If we have

|H(τ )u,u| = 1
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then we say that X is periodic at u with period τ . We say X is periodic with period τ if it is periodic at

each vertex with period τ . Of these two concepts, perfect state transfer is the one of physical interest

but we will see that periodicity is closely related to it.

Perfect state transfer was studied in detail by Christandl et al. [2] where they showed that, in the

d-cube, perfect state transfer occurs at time π/2 from each vertex to the unique vertex at distance d

from it. For a recent survey on perfect state transfer see [6].

The d-cube is an example of a Cayley graph forZ
d
2. A Cayley graphX(C) forZ

d
2 has the binary vectors

of length d as its vertices, with two vertices adjacent if and only if their difference lies in some specified

subset C of Z
d
2 \ {0}. (The set C is the connection set of the Cayley graph.) If we choose C to consist of

the d vectors from the standard basis of Zd
2, then the cubelike graph X(C) is the d-cube. In [3] Facer et

al. showed that perfect state transfer occurs in a special class of Cayley graphs for Z
d
2 that includes the

d-cube, and this was extended to an even larger class of graphs in [1] by Bernasconi et al.

If we let σ denote the sum of the elements of C, then the main result of [1] is that, if σ �= 0, then

at time π/2 we have perfect state transfer from u to u + σ , for each vertex u. Our goal in this paper is

to study the situation when σ = 0; we find a surprising connection to binary codes.

2. Perfect state transfer

If u ∈ Z
d
2, then the map

x �→ x + u

is a permutation of the elements ofZd
2, and thus it can be represented by a 2d ×2d permutationmatrix

Pu. We note that P0 = I,

PuPv = Pu+v

and so P2u = I. We also see that tr(Pu) = 0 if u �= 0 and

∑
u∈Z

d
2

Pu = J.

Lemma 2.1. If C ⊆ Z
d
2 \0 and X is the cubelike graph with connection set C, then A(X) = ∑

u∈C Pu.

If σ is the sum of the elements of C, then

Pσ = ∏
u∈C

Pu.

Lemma 2.2. If H(t) is the transition operator of the cubelike graph X(C), then H(t) = ∏
u∈C exp(itPu).

Proof. If matricesM and N commute then

exp(M + N) = exp(M) exp(N)

Since A = ∑
u∈C Pu and since the matrices Pu commute, the lemma follows. �

Suppose P is a matrix such that P2 = I. Then

exp(itP) = I + itP − t2

2! I − i
t3

3!P + t4

4! I + · · ·

and hence

exp(itP) = cos(t)I + i sin(t)P.
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If P is a permutation matrix we see that

exp(π iP) = −I, exp

(
1

2
π iP

)
= iP.

This implies thatwehave perfect state transfer onK2 at timeπ/2, and thatK2 is periodicwith periodπ .

If H is the transition operator for a Cayley graph of an abelian group then the argument used above

shows thatH can be factorized as a product of transition operators for a collection of perfectmatchings

and 2-regular subgraphs. Unfortunately this does not seem to allow us to derive usual information

about state transfer.

Now we present a new and very simple proof of Theorem 1 from Bernasconi et al. [1].

Theorem 2.3. Let C be a subset of Z
d
2 and let σ be the sum of the elements of C. If σ �= 0, then perfect

state transfer occurs in X(C) from u to u + σ at time π/2. If σ = 0, then X is periodic with period π/2.

Proof. Let H(t) be the transition operator associated with A. Then by Lemma 2.2

H(t) = ∏
u∈C

exp(itPu).

From our remarks above

exp(itPu) = cos(t)I + i sin(t)Pu

and therefore

H(π/2) = ∏
u∈C

iPu = i|C|Pσ .

This proves both claims. �

This result is very natural, but clearly raises the question of whether we can have perfect state

transfer when σ �= 0. We will see that we can.

We show how to use these ideas to arrange for perfect state transfer from 0 to a specified vertex u

in a cubelike graph. Assumewe have cubelike graph with connection set C and let σ be the sum of the

elements of C. If σ = u then we already have transfer to u. First assume σ = 0. If u ∈ C let C′ denote
C \u; if u /∈ C let C′ be C ∪ u. In both cases the sum of the elements of C′ is u and we’re done. If σ �= 0,

replace C by (C \ σ), now we are back in the first case. We can summarize this as follows. Let S ⊕ T

denote the symmetric difference of sets S and T .

Lemma2.4. If u is a vertex in the cubelike graph X(C), then there is a connection set C′ such that |C⊕C′| ≤
2 and we have perfect state transfer from 0 to u in X(C′) at time π/2.

3. The minimum period

In this section we determine the minimum period of a cubelike graph.

We consider the spectral decomposition of the adjacency matrix of a cubelike graphs. If a ∈ Z
d
2,

then the function

x �→ (−1)a
T x

is both a character of Z
d
2 and an eigenvector of X(C) with eigenvalue

∑
c∈C

(−1)a
T c.
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LetM be the matrix with the elements of C as its columns. Its row space is a binary code, and if wt(x)
denotes the Hamming weight of x, the above eigenvalue is equal to

|C| − 2wt(aTM).

Thus the weight distribution of the code determines the eigenvalues of X(C), and also their multiplic-

ities.

As a pertinent example we offer

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 1 1 0 0 1 1

0 0 0 1 1 0 0 0 0 1 1

0 1 1 0 0 0 0 0 0 1 1

1 0 1 0 1 0 1 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

which has weight enumerator

x11 + 10x7y4 + 16x5y6 + 5x3y8,

from which we learn that the weights of its code words are 0, 4, 6 and 8. The eigenvalues of the

associated cubelike graph are

11, 3, −1, −5

with respective multiplicities

1, 10, 16, 5.

If we define the 2d × 2d matrix Ea by

(Ea)u,v := 2−d(−1)a
T (u+v)

then E2a = Ea and, if a �= b, then EaEb = 0. The columns of Ea are eigenvectors for X(C)with eigenvalue

|C| − 2wt(aTM), and if m = |C| we have

A = ∑
a

(m − 2wt(aTM))Ea.

More significantly

exp(iAt) = ∑
a

exp(i(m − 2wt(aTM))t)Ea

= exp(imt)
∑
a

exp(−2it wt(aTM))Ea

Lemma 3.1. Let X be a cubelike graph and let D be the greatest common divisor of the weights of the words

in its code. Then the minimum period of X is π/D.

Proof. If X is periodic with period τ , from Theorem 4.1 in [4] we know there is a complex scalar γ
with norm 1 such that H(τ )u,u = γ , for any vertex u. Therefore

γ = 2−d exp(miτ)
∑
a

exp(−2iτ wt(aTM)).
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This shows that γ exp(−miτ) is the average of the 2d terms in the above sum. Since each of these

terms lies on the complex unit circle and, since γ exp(−mτ) lies on the unit circle, we conclude that

for all choices of a,

γ exp(−miτ) = exp(−2iτ wt(aTM))

Set q equal to exp(−2iτ). Then for any a and bwe have

qwt(aTM) = qwt(bTM)

and accordingly

(
qD

)(wt(bTM)−wt(aTM))/D = 1.

Since the set of non-zero integers of the form (wt(bTM) − wt(aTM))/D is coprime, we conclude that

qD = 1. Hence exp(−2iDτ) = 1 and therefore

τ = π

D
. �

It follows from our calculations that γ = exp(imπ/D).

4. Characterizing state transfer

Theorem 4.1. Let X be a cubelike graph with matrix M and suppose u is a vertex in X distinct from 0. Then

the following are equivalent:

(a) There is perfect state transfer from 0 to u at time π/2�.

(b) All words in C have weight divisible by � and �−1 wt(aTM) and aTu have the same parity for all

vectors a.

(c) � divides | supp(u) ∩ supp(v)| for any two code words u and v.

Proof. We start by proving that (a) and (b) are equivalent. Perfect state transfer occurs at time π/2�
if and only if there is a complex scalar β of norm 1 and a permutation matrix T of order two and with

trace zero such that

H(π/2�) = βT .

Now

(H(π/2�))0,u = exp(imπ/2�)
∑
a

exp(−iπ wt(aTM)/�)(Ea)0,u

and

(Ea)0,u = 2−d(−1)a
T u,

consequently

β exp(−imπ/�) = 2−d
∑
a

exp(−iπ wt(aTM)/�)(−1)a
T u

= 2−d
∑
a

(−1)wt(aTM)/�(−1)a
T u.
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Here the left side of this equation has absolute value 1 and the right side is the average of 2d numbers

of absolute value 1, so the left side is±1 and the summands on the right all have the same sign. So this

equation holds if and only if, for all awe have

wt(aTM)

�
= aTu, (modulo 2).

Now this holds if and only if, modulo 2,

wt((a + b)TM)

�
= wt(aTM)

�
+ wt(bTM)

�

for all a and b. This holds in turn if and only if, for any two code words u and v, we have that

wt(u + v) = wt(u) + wt(v) (mod 2�)

and this holds if and only if

| supp(u) ∩ supp(v)| = 0 (mod �). �

Suppose C is a binary code with generator matrix M. Let M′ denote M viewed as a 01-matrix over

Z and let� be the gcd of the entries inM′1. Then the entries of�−1M′1 are integers, not all even, and

we define the image of this vector in Z2 to be the center of C. Note that � is the gcd of the weights of

the code words formed by the rows ofM and, if � is odd, then the center of C is equal to M1.

Corollary 4.2. Suppose X is a cubelike graph and u is a vertex in X distinct from 0. If we have perfect state

transfer from 0 to u at time π/2�, then � is the divisor of the code of X, and u is its center.

Proof. Clearly D|�. Since the size of intersection of the supports of two code words is divisible by �,

it follows by induction that the weight of any sum of k rows ofM has weight divisible by � and hence

�|D. �

Suppose x and y are binary vectors and � divides the weight of x, y and x + y. If

wt(x) = a + b, wt(y) = a + c; wt(x + y) = b + c

then, modulo �,

a + b = 0

a + c = 0

b + c = 0.

This implies that, modulo �,

2a = 2b = 2c = 0.

It follows that the odd integer d divides the weight of each word in a binary code if and only if, for any

two words x and y, the size of supp(x) ∩ supp(y) is divisible by d.

5. Examples

A code is even if D is even and doubly even if D is divisible by four. If C is even and the size of the

intersection of any two codes is even, then C is self-orthogonal. Note that since our graphs are simple,

their generator matrices cannot have repeated columns. (Using the standard terminology our codes
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are projective or, equivalently, the minimum distance of the dual is at least three.) So cubelike graphs

with perfect state transfer at time π/4 correspond to self-orthogonal projective binary codes that are

even but not doubly even.

Unpublished computations by Gordon Royle have provided a complete list of the cubelike graphs

on 32 vertices. Analysis of the graphs in this list that show there are exactly six cubelike graphs on 32

vertices forwhich the codes are self-orthogonal andevenbutnot doubly even. The example in Section3

is the one of these with least valency. These six graphs split into three pairs, each the complement of

the other. In general, if perfect state transfer occurs on a graph it need not occur on its complement.

In our case it must, as the following indicates. We use X to denote the complement of X .

Lemma 5.1. If X is a cubelike graph with at least eight vertices then prefect state transfer occurs on X if

and only if it occurs on X.

Since A(X) = J − I − A(X) we have.

HX(t) = exp(it(J − I − A)).

If X is regular then J and A commute and

HX(t) = exp(it(J − I))HX(−t)

and hence

HX(π/k) = exp(−iπ/k) exp((π i/k)J)HX(π/k)−1

If |V(X)n = then the eigenvalues of J are 0 and n and exp((π/k)J) = I provided n/k is even.

There are a further six cubelike graphs on 32 vertices whose codes are doubly even. A doubly even

code is necessarily self-orthogonal. If perfect state transfer occurs at time τ , then Lemma 5.2 in [4]

yields that tr(H(π/4)) must be zero, and using this we can show that perfect state transfer does not

occur on these graphs. Thus we do not have examples of cubelike graphs with D > 2 where perfect

state transfer occurs.

If M and N are binary matrices, their direct sum is the matrix

⎛
⎝M 0

0 N

⎞
⎠

and the code of thismatrix is the direct sum of the codes ofM andN. If the code ofM is self-orthogonal

and even but not doubly even, then the direct sum of two copies of this code is all these things too. If

X and Y are the cubelike graphs belonging toM and N, then the cubelike graph belonging to the direct

sum of M and N is the Cartesian product of X and Y . The transition matrix of the Cartesian product of

X and Y is HX ⊗ HY . One consequence is that we do have infinitely many examples of cubelike graphs

admitting perfect state transfer at timeπ/4.Wewould verymuch like to know if perfect state transfer

on cubelike graphs could occur with a period less than π/4.
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