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a b s t r a c t

The performance of an optimization tool is largely determined by the efficiency of the
search algorithm used in the process. The fundamental nature of a search algorithm will
essentially determine its search efficiency and thus the types of problems it can solve.
Modern metaheuristic algorithms are generally more suitable for global optimization.
This paper carries out extensive global optimization of unconstrained and constrained
problems using the recently developed eagle strategy by Yang and Deb in combination
with the efficient differential evolution. After a detailed formulation and explanation of
its implementation, the proposed algorithm is first verified using twenty unconstrained
optimization problems or benchmarks. For the validation against constrained problems,
this algorithm is subsequently applied to thirteen classical benchmarks and three
benchmark engineering problems reported in the engineering literature. The performance
of the proposed algorithm is further compared with various, state-of-the-art algorithms in
the area. The optimal solutions obtained in this study are better than the best solutions
obtained by the existing methods. The unique search features used in the proposed
algorithm are analyzed, and their implications for future research are also discussed in
detail.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The emerging paradigm of computational modeling and optimization as a problem-solving approach has shaped
practice in scientific computing and engineering design and applications. This so-called third approach complements the
conventional theoretical and experimental approaches to problem-solving. The essence of such revolutionary progress is
the efficient numerical methods and search algorithms. It is no exaggeration to say that how numerical algorithms perform
will largely determine the performance and usefulness of modeling and optimization tools [1,2]. Among all optimization
algorithms, metaheuristic algorithms are becoming powerful for solving tough nonlinear optimization problems [3–8].
Though most metaheuristic algorithms have relatively high efficiency in terms of finding global optimality, this may be
at the expense that there is no guarantee that global optimality can always be found.

The aim of developing modern metaheuristic algorithms is to increase/improve the capability of carrying out global
search and to increase the accessibility of the global optimality. Particle swarm optimization is one of the most widely used,
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though it only first appeared in 1995 [3], while differential evolution is also versatile and efficient with vectorized genetic
operators [4]. Probably the most widely used algorithms in the last three decades have been the genetic algorithms [9] with
a huge amount of literature. On the other hand, cuckoo search [5] is one of the latest development, which has demonstrated
promising efficiency in solving nonlinear global optimization [6]. Other algorithms such as ant colony and harmony search
are now well established in many areas [1,2].

The search efficiency of metaheuristic algorithms can be attributed to the fact that they are designed to imitate the best
features in naturewithmany different sources (e.g., physic-inspired charged system search [7] andmusic-inspired harmony
search [8]). Biological systems are a principal source for proposing newnature-inspired approaches, based on the selection of
the fittest, the adaptation to changes, and genetic mechanism in biological systems which have evolved by natural selection
over millions of years. There are some algorithms for stochastic optimization, and for example, the Eagle Strategy (ES),
developed by Yang and Deb, is one of such algorithms for dealing with stochastic optimization [10].

In this paper, we will investigate the ES further in greater detail by hybridizing it with differential evolution (DE) as a
two-stage strategy to enhance its search efficiency, and the proposed algorithm can be called ES–DE. The new two-stage
hybrid search method is first verified by using 20 benchmark unconstrained problems. As further validation, we have also
tested the algorithm against a well-selected set of constrained problems, and then subsequently applied to thirteen classical
benchmarks and three benchmark problems in engineering, reported in the specialized literature. The performance of the
proposed algorithm is further compared with various algorithms, state of the art representatives in this area. The optimal
solutions obtained in this study are significantly better than the best solutions obtained by the existingmethods. The unique
search features used in the proposed algorithm are analyzed, and their implications for future research are also discussed
in detail.

2. Eagle strategy

Eagle strategy developed by Yang and Deb [10] is a two-stage method for optimization. It uses a combination of crude
global search and intensive local search via a balance combination of different algorithms to suit different purposes. In
essence, the strategy first explores the search space globally using Lévy flight randomwalks; if it finds a promising solution
or a set of promising solutions, then an intensive local search is employed using a more efficient local optimizer such as
hill-climbing and the downhill simplex method. Then, the two-stage process restarts again with new global exploration
followed by a local search in a new or more promising region.

In the first stage, a population of search agents such as those in used in PSO and differential evolution are initialized with
solutions that are generated by Lévy flights in the search space. Then, these solutions are evaluated, and the solutions with
the best objective values are recorded as promising solutions. Then, a more intensive local search algorithm is used at the
second stage around the recorded best solutions. Iteratively, a new population can then be generated in a new region, which
is followed by another local search. In the simplest case, ES is like a random restart hill climbing (RRHC) method. In RRHC,
the first step is to generate a good initial point, then hill climbing begins at this point. If the final solution is not good, then
a new, different initial point can be generated, which is again followed by another hill-climbing. However, there are some
fundamental differences in ES. Firstly, it becomes a strategy, rather than a method. Secondly, at different stages, different
algorithms can be used. Thirdly, the two stages can be switched on and off according to the quality of the solutions found.
Finally, this ES strategy can mimic the balance of exploration and exploitation in successful metaheuristics such as genetic
algorithms and cuckoo search [5].

The advantage of such a combination is to use a balanced tradeoff between global search (which is often slow) and a fast
local search. Some tradeoff and balance as well as parameter tuning are important to almost all metaheuristic algorithms.
This balance is controlled by a parameter to be introduced later. Another advantage of this method is that we can use any
algorithms we like at different stages of the search or even at different stages of iterations. This makes it easier to combine
the advantages of various algorithms so as to produce better results.

It is worth pointing out that this is amethodology or strategy, not an algorithm. In fact, we can use different algorithms at
different stages and at different times during iterations. The algorithm used for the global exploration should have enough
randomness so as to explore the search space diversely and effectively. This process is typically slow initially, and should
speed up, as the system gradually converges (or no better solutions can be found after a certain number of iterations). On
the other hand, the algorithm used for the intensive local exploitation should be an efficient local optimizer. The idea is to
try to reach the local optimality as quickly as possible, ideally with the minimal number of function evaluations. This stage
should be fast and efficient.

3. Differential evolution

Differential evolution (DE) was developed by Storn and Price [4]. It is a vector-based evolutionary algorithm, and can be
considered as a further development to genetic algorithms. It is a stochastic search algorithmwith self-organizing tendency
and does not use the information of derivatives. Thus, it is a population-based, derivative-free method. Another advantage
of differential evolution over genetic algorithms is that DE treats solutions as real-number strings, thus no encoding and
decoding is needed. As in genetic algorithms, design parameters in a d-dimensional search space are represented as vectors,
and various genetic operators are operated over their bits of strings or entries of the solution vectors. However, unlike genetic
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algorithms, differential evolution carries out operations over each component (or each dimension of the solution). Almost
everything is done in terms of vectors. For example, in genetic algorithms, mutation is carried out at one site or multiple
sites of a chromosome, while in differential evolution, a difference vector of two randomly-chosen population vectors is
used to perturb an existing vector asmutation. Such vectorizedmutation can be viewed as a self-organizing search, directed
towards optimality. This kind of perturbation is carried out over each population vector, and thus can be expected to be
more efficient. Similarly, crossover is also a vector-based component-wise exchange of chromosomes or vector segments.

For a d-dimensional optimization problem with d parameters, a population of n solution vectors are initially generated,
we have xi where i = 1, 2, . . . , n. For each solution xi at any generation t , we use the conventional notation as

xti = (xt1,i, x
t
2,i, . . . , x

t
d,i), (1)

which consists of d-components in the d-dimensional space. This vector can be considered as the chromosomes or genomes.
Differential evolution consists of three main steps: mutation, crossover and selection. Mutation is carried out by the

mutation scheme. For each vector xi at any time or generation t , we first randomly choose three distinct vectors xp, xq and
xr at t , and then generate a so-called donor vector by the mutation scheme

vt+1
i = xtp + F(xtq − xtr), (2)

where the parameter F lies in the range of [0, 2], often referred to as the differential weight. This requires that the minimum
number of population size is n ≥ 4. In principle, F ∈ [0, 2], but in practice, a scheme with F ∈ [0, 1] is more efficient
and stable. The perturbation δ = F(xq − xr) to the vector xp is used to generate a donor vector vi, and such perturbation is
directed and self-organized.

The crossover is controlled by a crossover probability Cr ∈ [0, 1] and actual crossover can be carried out in two ways:
binomial and exponential. The binomial scheme performs crossover on each of the d components or variables/parameters.
By generating a uniformly distributed random number ri ∈ [0; 1], the jth component of vi is manipulated as

ut+1
j,i = vj,i if ri ≤ Cr (3)

otherwise it remains unchanged. This way, it can be decided randomly whether each component exchanges with the donor
vector or not.

Selection is essentially the same as that used in genetic algorithms. It is to select the fittest, and for the minimization
problem, the minimum objective value.

Most studies have focused on the choice of F , Cr and n aswell as themodification of (2). In fact, when generatingmutation
vectors, we can use many different ways of formulating (2), and this leads to various schemes with the naming convention:
DE/x/y/z where x is themutation scheme (rand or best), y is the number of difference vectors, and z is the crossover scheme
(binomial or exponential). The basic DE/Rand/1/Bin scheme is given in (2). For a detailed review on different schemes, please
refer to [4].

4. Eagle strategy combined with differential evolution

As ES is a two-stage strategy, we can use different algorithms at different stages. The large-scale coarse search stage can
use randomization via Lévy flights. In the context of metaheuristics, the so-called Lévy distribution [11] is a distribution of
the sum of N identically and independently distribution random variables whose characteristic function can be written as
the following Fourier transform

FN(k) = e[−N|k|β ]. (4)
The inverse to get the actual distribution L(s) is not straightforward, as the integral

L(s) =
1
π

∫
∞

0
cos(τ s)e−ατβ dτ , (0 < β ≤ 2) (5)

does not have analytical forms, except for a few special cases. Here L(s) is called the Lévy distribution with an index β . For
most applications, we can set α = 1 for simplicity. Two special cases are β = 1 and β = 2. When β = 1, the above integral
becomes the Cauchy distribution. When β = 2, it becomes the normal distribution. In this case, Lévy flights become the
standard Brownian motion.

For the second stage, we can use differential evolution as the intensive local search, rather than the gradient-based
methods such as hill-climbing. We know DE is essentially a global search algorithm, it can easily be tuned to do an
efficient local search by limiting new solutions locally around the most promising region. Two distinct advantages of DE
are: vectorization and derivative-free. As all evolutionary operations are vectorized, it is easy to implement in MATLAB
TM or any other programming languages. DE only uses function values, not the derivatives, and it is suitable for a wide range
of optimization functions, including continuous, discrete, and even discontinuous and mixed.

The combination in ES may produce better results than those by using pure DE only, as we will demonstrate later.
Obviously, the balance of local search (intensification) and global search (diversification) is very important, and so is the
balance of the first stage and second stage in the ES. The basic steps of eagle strategy with different evolution (ES–DE) are
shown in Fig. 1. From this figure, we can see that at each iteration loop, a global search is carried out first, followed by the
local search, there is a 50–50 possibility for each stage, and thus two stages are perfectly balanced.
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Fig. 1. Simplified pseudo code of the ES–DE.

5. Numerical examples

In this section, some benchmark unconstrained and constrained problems are optimized using the proposed ES–DE. The
final results are then compared with the solutions of other methods to demonstrate the efficiency of the present approach.
The dimensions of these test functions can be varied from lower dimensions such as 1D to very high dimensions such as
5000D. However, in order to validate the performance of each algorithm and thus extrapolate to real design problems, we
will use dimensions between 4 and 20 which are in the similar ranges as those used later in actual design problems. This
allows us first to see how ES performs against test functions, in comparisonwith other algorithms. Thenwe can confirm and
see if these results still hold for real-world design problems. Therefore, we can analyze any potential differences and see
how different types of problems may affect the performance of each algorithm, and consequently identify the advantages
and disadvantages of each algorithm.

There are four parameters in the eagle strategywith differential evolutions, and they are: population size, Lévy exponent,
differential weight F and crossover probability. For the Lévy exponent (β), we used a fixed value β = 1.5, though we did
someparameter studies by varying it from0 to 2. Theweight parameter F is taken in the range 0.5–1.0, andwe found F = 0.7
works best for our simulations. The crossover probability Cr = 0.9 is used in all the simulations. For the population size, we
have tried to vary it from 10 to 100, and found that the best range is 25–50. Here, we used the population size of 50 for all
the problems.

As for the stopping criterion, we can either use the total fixed number of iterations or some given tolerance. In order to
compare with other results in the literature, we found the most convenient way is to use a fixed number of iterations. It
is an important to have enough iterations as the search accuracy largely depends on the number of iterations. However, as
from our parametric study, we see that ES is very efficient, and thus we can set a relatively low number of fixed iterations,
compared with other algorithms. Therefore, the number of iterative stages in the eagle strategy Lévy search stage is set to
three. The algorithms are coded in MATLAB TM.

5.1. Unconstrained Benchmark Problems

There are many unconstrained test functions in the literature. Here we have chosen the some benchmark optimization
problems presented in [12]. These problems have been solved by different evolutionary algorithms by Ma [13], including
the genetic algorithm (GA), evolutionary strategy (ESt), particle swarm optimization (PSO), ant colony optimization (ACO),
and differential evolution (DE). The main characteristics of the employed problems are presented in Table 1.

The best results obtained in this study for Ucf1–Ucf20 are presented in Table 2. As seen, the proposed algorithm is able
to find the global minima in all cases with a very good performance.

Table 3 compares the best results obtainedby theproposed algorithmandother famous algorithms (GA, ESt, PSO, ACOand
DE) with the global optimums. It should be noticed that all best and mean values are shifted to 0 for easy comparisons. The
ES–DE finds the best results inmost cases. In these problems, all the algorithms terminated after 10,000 function evaluations
for high-dimensional functions and 1000 function evaluations for dimensions lower ones. Based on these results, we carried
out a basic Student t-test. For the 95% confidence level, ES–DE is significantly superior to ESt, ACO, and DE, but marginally
better than GA, however, it is not statistically significantly different from PSO, though the results obtained by ES–DE are
better for most test functions (about 75% of the cases), while sometimes PSO can obtained better results (about 20% of the
time). In about 5% of the cases, GA obtained better results, so a t-test suggested the t-statistic for PSO and ES–DE is about
0.4919 for the required θ = 1.671.
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Table 1
Characteristics of the unconstrained benchmark problems.

Function type Function ID Name Global
Dimension Optimum Domain

High-dimensional unimodal functions
Ucf01 Sphere function 20 0 [−100 100]
Ucf02 Schwefel’s 2.22 function 20 0 [−10 10]
Ucf03 Schwefel’s 1.2 function 20 0 [−100 100]
Ucf04 Schwefel’s 2.21 function 20 0 [−100 100]
Ucf05 Rosenbrock’s valley function 20 0 [−30 30]
Ucf06 Step function 20 0 [−100 100]
Ucf07 Quartic function 20 0 [−1.28 1.28]

High-dimensional multimodal functions
Ucf08 Schwefel’s function 20 0 [−500 500]
Ucf09 Rastrigin’s function 20 0 [−5.12 5.12]
Ucf10 Ackley’s function 20 0 [−32 32]
Ucf11 Griewank’s function 20 0 [−600 600]
Ucf12 Penalized function 1 20 0 [−50 50]
Ucf13 Penalized function 2 20 0 [−50 50]

Low-dimensional standard functions
Ucf14 Shekel’s Foxholes function 2 1 [−65.536 −65.536]
Ucf15 Kowalik’s function 4 0.003075 [−5 5]
Ucf16 Six-Hump Camel-Back function 2 −1.0316285 [−5 5]
Ucf17 Branin’s function 2 0.398 x1:[−5 10],

x2:[0 15]
Ucf18 Goldstein–Price’s function 2 3 [−2 2]
Ucf19 Hartman’s function 1 3 −3.86 [0 1]
Ucf20 Hartman’s function 2 6 −3.32 [0 1]

Table 2
Best results for the benchmark problem by ES–DE.

ID Best Mean Median Worst SD Ave. Time

High-dimensional unimodal functions
Ucf01 2.50E−06 1.44E−05 1.16E−05 5.15E−05 1.07E−05 4.099
Ucf02 2.36E−03 5.84E−03 5.53E−03 1.12E−02 2.13E−03 4.669
Ucf03 1.74E−01 8.93E−01 7.48E−01 2.55E+00 5.56E−01 5.172
Ucf04 5.15E−03 1.29E−02 1.17E−02 2.90E−02 4.57E−03 4.297
Ucf05 1.05E+01 1.48E+01 1.48E+01 1.83E+01 1.62E+00 4.793
Ucf06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.269
Ucf07 1.33E−01 5.55E−01 4.60E−01 2.10E+00 3.57E−01 5.220
High-dimensional multimodal functions
Ucf08 3.53E+03 4.27E+03 4.30E+03 4.78E+03 2.82E+02 6.631
Ucf09 8.64E+01 1.07E+02 1.08E+02 1.32E+02 8.70E+00 4.117
Ucf10 2.09E−03 1.83E−02 8.58E−03 3.42E−01 4.77E−02 5.016
Ucf11 2.42E−04 2.58E−02 9.07E−03 1.84E−01 3.72E−02 5.468
Ucf12 1.17E−07 3.15E−03 5.08E−06 1.56E−01 2.20E−02 9.637
Ucf13 4.17E−06 1.41E−04 6.72E−05 5.76E−04 1.49E−04 7.697
Low-dimensional standard functions
Ucf14 9.98E−01 1.11E+00 9.98E−01 1.99E+00 2.78E−01 0.730
Ucf15 3.82E−04 8.45E−04 7.89E−04 1.69E−03 2.40E−04 0.536
Ucf16 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 5.33E−09 0.564
Ucf17 3.98E−01 3.98E−01 3.98E−01 3.98E−01 9.31E−07 0.503
Ucf18 3.00E+00 3.00E+00 3.00E+00 3.00E+00 4.52E−11 0.505
Ucf19 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 3.75E−10 0.638
Ucf20 −3.32E+00 −3.30E+00 −3.31E+00 −3.20E+00 3.00E−02 0.617

5.2. Constrained numerical examples

Constrained handling approach
From the implementation point of view, a major barrier is the proper handling of nonlinear constraints for a given

problem. For simple limits and bounds, we can simply use

PLB
i,j ≺ Pi ≺ PUB

i,j (6)

where a variable or parameter Pi is always between an upper bound (UB) and lower bound (LB). Here ≺ means that
inequalities hold in an entry-wise manner. In implementation, we have to ensure that all the generated solutions are within
these bounds.
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Table 3
Statistical features of the best solutions obtained by different methods for unconstrained problems.

ID ESt GA PSO ACO DE This study

Ucf01 Best 3.26E+03 6.64E−04 8.32E−02 3.66E+01 2.91E+02 2.50E−06a

Mean 8.24E+04 9.42E−03 2.76E−01 8.07E+01 7.59E+03 1.44E−05
Stdev 4.67E+03 2.11E−04 6.90E−01 3.15E+01 7.84E+02 1.07E−05

Ucf02 Best 3.75E+02 1.19E+02 2.51E+01 6.32E+01 3.67E+01 2.36E−03
Mean 7.32E+03 3.83E+02 3.26E+02 3.95E+02 3.49E+02 5.84E−03
Stdev 9.04E+02 5.67E+03 8.94E+02 7.21E+02 5.34E+02 2.13E−03

Ucf03 Best 3.29E+02 2.71E+02 2.64E+02 1.12E+02 1.65E+02 1.74E−01
Mean 9.24E+02 1.09E+03 6.01E+02 5.09E+02 5.21E+02 8.93E−01
Stdev 2.31E+02 4.78E+03 9.55E+03 6.67E+02 8.04E+01 5.56E−01

Ucf04 Best 3.97E+01 9.52E−01 3.97E−02 2.07E+01 7.01E+00 5.15E−03
Mean 4.53E+01 7.05E+00 1.55E−01 2.98E+01 6.85E+01 1.29E−02
Stdev 7.21E+00 7.96E−01 2.66E−01 9.04E+00 1.28E+01 4.57E−03

Ucf05 Best 2.51E+02 2.40E+01 5.75E−01 7.60E+01 1.88E+01 1.05E+01
Mean 7.58E+03 4.39E+01 3.11E+00 9.91E+02 1.93E+01 1.48E+01
Stdev 3.36E+03 6.68E+00 4.35E+00 9.61E+01 6.54E+00 1.62E+00

Ucf06 Best 9.93E+02 1.02E+00 0.00E+00 3.64E+00 4.23E+01 0.00E+00
Mean 4.04E+03 2.91E+00 0.00E+00 5.11E+00 1.10E+02 0.00E+00
Stdev 3.78E+02 1.24E+00 0.00E+00 2.44E+00 1.86E+01 0.00E+00

Ucf07 Best 3.31E+01 4.77E+01 5.22E+00 3.22E+01 1.05E+01 1.33E−01
Mean 1.27E+02 1.63E+02 9.64E+00 2.56E+02 1.39E+01 5.55E−01
Stdev 6.45E+02 7.38E+01 8.14E+00 5.53E+02 7.59E+01 3.57E−01

Ucf08 Best 2.45E+01 9.52E+01 4.65E−01 4.91E+01 5.56E+01 3.53E+03
Mean 7.01E+01 4.32E+02 8.81E−01 6.28E+02 8.74E+01 4.27E+03
Stdev 2.45E+02 8.56E+02 1.95E−01 2.67E+02 7.90E+01 2.82E+02

Ucf09 Best 1.86E+01 3.37E+01 1.23E+02 2.46E+01 1.23E+01 8.64E+01
Mean 6.32E+02 4.57E+01 4.71E+02 2.64E+01 3.28E+02 1.07E+02
Stdev 1.57E+02 7.48E+02 7.02E+02 5.56E+01 2.34E+02 8.70E+00

Ucf10 Best 9.20E−01 3.29E−02 5.61E−01 5.57E−01 1.49E−01 2.09E−03
Mean 3.39E+00 4.73E−02 7.58E−01 8.20E−01 5.29E+00 1.83E−02
Stdev 1.07E−01 6.65E−03 7.84E−02 4.45E−01 3.65E−01 4.77E−02

Ucf11 Best 1.03E+01 7.28E+01 1.98E+00 3.23E+01 3.76E+01 2.42E−04
Mean 7.80E+01 5.51E+02 3.30E+00 4.55E+01 8.12E+01 2.58E−02
Stdev 2.01E+01 9.94E+02 1.47E+00 5.56E+01 7.76E+01 3.72E−02

Ucf12 Best 3.01E−07 7.11E−33 3.30E−33 3.23E−08 8.49E−06 1.17E−07
Mean 6.86E−07 7.98E−32 2.62E−32 9.81E−08 1.03E−05 3.15E−03
Stdev 7.54E−08 4.66E−32 1.83E−32 9.77E−07 2.35E−06 2.20E−02

Ucf13 Best 6.45E−09 1.12E−32 8.54E−33 4.05E−02 4.94E−08 4.17E−06
Mean 1.85E−07 3.11E−31 5.78E−32 4.12E−01 5.15E−07 1.41E−04
Stdev 1.80E−08 4.43E−31 7.85E−32 9.93E−02 6.67E−07 1.49E−04

Ucf14 Best 4.56E−02 1.09E−02 6.14E−02 1.56E−02 2.32E−04 3.84E−06
Mean 5.92E−02 2.23E−02 4.03E−01 1.60E−02 1.48E−03 1.14E−01
Stdev 4.32E−02 1.75E−02 7.43E−02 9.06E−03 1.22E−04 2.78E−01

Ucf15 Best 1.23E−01 1.45E−01 2.71E−02 2.10E−01 1.57E−01 −2.69E−03b

Mean 1.86E−01 6.12E−01 8.47E−02 4.32E−01 3.64E−01 −2.23E−03
Stdev 5.54E−01 3.87E−01 9.64E−02 6.89E−01 1.21E−01 2.40E−04

Ucf16 Best 9.60E−01 6.71E−03 3.64E−05 2.67E−03 1.17E−06 4.65E−08
Mean 1.27E+00 1.84E−01 1.25E−04 6.06E−03 2.54E−04 4.93E−08
Stdev 7.56E+00 8.17E−01 4.07E−05 3.44E−03 2.12E−04 5.33E−09

Ucf17 Best 2.25E−04 6.71E−08 1.43E−11 1.77E−10 8.23E−09 1.13E−04
Mean 6.74E−04 4.60E−07 2.78E−11 8.45E−10 7.14E−08 1.12E−04
Stdev 1.34E−04 6.67E−07 3.90E−12 4.65E−10 8.43E−08 9.31E−07

Ucf18 Best 1.53E−02 4.93E−04 4.05E−04 3.91E−03 6.11E−04 −1.02E−14
Mean 1.99E−02 7.91E−04 1.55E−03 3.57E−02 8.25E−04 2.17E−11
Stdev 4.45E−03 7.97E−05 6.87E−04 2.78E−02 3.88E−04 4.52E−11

Ucf19 Best 4.68E+00 5.71E+00 1.90E+00 2.74E+00 2.19E+00 −2.78E−03
Mean 7.64E+00 8.07E+00 2.35E+00 4.07E+00 2.56E+00 −2.78E−03
Stdev 2.83E+00 6.92E+00 5.76E+00 3.44E+00 5.89E+00 3.75E−10

Ucf20 Best 2.34E+00 1.85E+00 1.68E+00 1.64E+00 2.05E+00 −2.34E−03
Mean 2.71E+00 2.48E+00 2.39E+00 2.44E+00 2.41E+00 1.83E−02
Stdev 5.78E+00 2.90E+00 2.54E+00 5.43E+00 2.25E+00 3.00E−02

a Bold sets are best sets.
b A negative value shows that it is less than the related global optimum presented in Table 1.

For nonlinear equality constraints ϕi and inequality constraintsψj, a commonmethod is the penalty method. The idea is
to define a penalty function so that the constrained problem is transformed into an unconstrained problem. Nowwe define

Π(x, µi, vj) = f (x)+

M−
i=1

µiφ
2
i (x)+

N−
j=1

vjψ
2
j (x) (7)
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Table 4
Characteristics of the mathematical constrained problems.

ID Function type Problem type No. variables No. constrain No. active constraineds ρ(%)a Global optimum

Cf1 Quadratic min 13 9 (I) +0 (E) 6 0.0003 −15
Cf2 Nonlinear max 20 2 (I) +0 (E) 1 99.9962 −0.803619
Cf3 Polynomial max 10 0 (I) +1 (E) 1 0.0002 1
Cf4 Quadratic min 5 6 (I) +0 (E) 2 26.9089 −30665.539
Cf5 Cubic min 4 2 (I) +3 (E) 3 0 5126.4981
Cf6 Cubic min 2 2 (I) +0 (E) 2 0.0065 −6961.81388
Cf7 Quadratic min 10 8 (I) +0 (E) 6 0.0001 24.30621
Cf8 Nonlinear max 2 2 (I) +0 (E) 0 0.8488 0.095825
Cf9 Polynomial min 7 4 (I) +0 (E) 2 0.5319 680.6300573
Cf10 Linear min 8 6 (I) +0 (E) 3 0.0005 7049.248
Cf11 Quadratic min 2 0 (I) +1 (E) 1 0.0099 0.75
Cf12 Quadratic min 3 93 (I) +0 (E) 0 4.7452 1
Cf13 Exponential min 5 0 (I) +3 (E) 3 0 0.0539498
a The ratio of the size of the feasible search space to the size of the entire search space.

Table 5
Characteristics of the engineering constrained problems.

ID Variable type No. variables No. ineq. constraints No. active constraints Global optimum

Ecf1 Continues 4 5 4 ≈ 2.38
Ecf2 Mixed 4 4 3 6059.71
Ecf3 Continues 3 4 2 0.01267

Table 6
Results of ES–DE for constrained functions.

Function type Function ID Best Mean Median Worst SD Ave. time

Standard mathematical test problems
Cf01 −15.000 −14.851 −15.000 −13.000 5.02E−01 7.89
Cf02 −0.80 −0.74 −0.76 −0.53 6.67E−02 67.73
Cf03 1.00 1.00 1.00 1.00 0.00E+00 12.50
Cf04 −30665.54 −30665.54 −30665.54 −30665.54 2.20E−11 6.59
Cf05 5126.50 5127.29 5127.23 5129.42 1.17E+00 6.86
Cf06 −6961.81 −6961.81 −6961.81 −6961.81 2.18E−12 6.40
Cf07 24.31 24.31 24.31 24.31 3.97E−04 6.89
Cf08 −0.10 −0.10 −0.10 −0.10 7.80E−17 6.67
Cf09 680.63 680.63 680.63 680.63 4.46E−13 8.29
Cf10 7049.25 7049.42 7049.34 7050.23 1.88E−01 8.42
Cf11 0.75 0.75 0.75 0.75 0.00E+00 2.89
Cf12 1.00 1.00 1.00 1.00 0.00E+00 74.93
Cf13 0.05 0.05 0.05 0.05 5.40E−05 9.17

Standard Engineering Test Problems
Ecf1 2.3804 2.3804 2.3804 2.3804 1.79E−15 5.65
Ecf2 6059.71 6059.71 6059.71 6059.71 9.77E−12 14.90
Ecf3 0.012665 0.012665 0.012665 0.012665 3.58E−09 4.47

where 1 ≤ µi and 0 ≤ vi which should be large enough, depending on the solution quality needed. As we can see, when an
equality constrained is met, its effect or contribution to

∏
is zero. However, when it is violated, it is penalized heavily as it

increases
∏

significantly. Similarly, it is true when inequality constraints become tight or exactly. It should be mentioned
that generation and ramp rate limits are similar type of constraints. These constraints together state the overall upper/lower
generation limits of the units.

Constrained benchmark problems
At first, ES–DE was also benchmarked using 13 well-known constrained mathematical problems (Cf1–Cf13). These

benchmark problems have been proposed in [14] and extended in [15,16]. The main characteristics of the employed
problems are presented in Table 4. The considered diversity for the characteristics of the problems is to cover many kinds
of difficulties of constrained global optimization problems that may be encountered in engineering applications [17]. The
formulation of these problems can also be found in [18].

Most real-world engineering optimization problems are highly nonlinear with complex constraints, sometimes the
optimal solutions of interest do not even exist. In order to see how ES–DE performs, we also test it against some well-
known benchmark design problems including welded beam design (Ecf1), pressure vessel design (Ecf2), and the spring
design problem (Ecf3). The main characteristics of the employed problems are presented in Table 5. The approximate global
optima and formulations of these benchmark engineering problems can also be found in [13].
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Table 7
Statistical features of the best solutions obtained by different methods for mathematical constrained problems.

ID & optimum ESt [19] GA [20] SAa [21] PSO [22] BAb [23] DE [24] This study

Cf1 Best −15.0000 −14.9977 −14.9991 −15.0000 −15.0000 −15.0000c
−15.0000

−15.0000 Mean −14.7920 −14.9850 −14.9933 13.2734 −14.6582 −15.0000 −14.8511
Worst −12.7430 −14.9467 −14.9800 −9.7012 −12.4531 −15.0000 −13.0000
S.D. N.A. 1.40E−02 4.81E−03 1.41E+00 7.05E−01 2.00E−06 5.02E−01

Cf2 Best 0.803619 0.802959 0.754913 0.803620 0.803619 0.803619 0.803311
0.803619 Mean 0.746236 0.764494 0.371708 0.777143 0.753470 0.724886 0.738181

Worst 0.302179 0.722109 0.271311 0.711603 0.562553 0.590908 0.530496
S.D. N.A. 2.60E−02 9.80E−02 1.91E−02 5.40E−02 7.01E−02 6.67E−02

Cf3 Best 1.0000 0.9997 1.0000 1.0004 1.0000 0.9954 1.0000
1.0000 Mean 0.6400 0.9972 0.9992 0.9936 0.9896 0.7886 1.0000

Worst 0.0290 0.9931 0.9915 0.6674 0.9364 0.6399 1.0000
S.D. N.A. 1.40E−03 1.65E−03 4.71E+02 1.71E−02 1.15E−01 0.00E+00

Cf4 Best −30665.54 −30665.52 −30665.54 −30665.54 −30665.54 −30665.54 −30665.54
−30665.54 mean −30592.15 −30664.4 −30665.47 −30665.54 −30665.54 −30665.54 −30665.54

Worst −29986.21 −30660.31 −30664.69 −30665.53 −30665.54 −30665.54 −30665.54
S.D. N.A. 1.60E+00 1.73E−01 6.83E+04 0.00E+00 0.00E+00 2.20E−11

Cf5 Best 5126.497 5126.500 5126.498 5126.647 5126.499 5126.571 5126.500
5126.498 Mean 5218.729 5507.041 5126.498 5495.239 5129.425 5207.411 5127.290

Worst 5502.410 6112.075 5126.498 6272.742 5181.474 5327.390 5129.420
S.D. N.A. 3.50E+02 0.00E+00 4.05E+02 1.09E+01 6.92E+01 1.17E+00

Cf6 Best −6961.814 −6956.251 −6961.814 −6961.837 −6961.814 −6961.814 −6961.814
−6961.814 mean −6367.575 −6740.288 −6961.814 −6961.837 −6961.814 −6961.814 −6961.814

Worst −2236.950 −6077.123 −6961.814 −6961.836 −6961.814 −6961.814 −6961.814
S.D. N.A. 2.70E+02 0.00E+00 2.61E+04 0.00E+00 0.00E+00 2.18E−12

Cf7 Best 24.3060 24.8820 24.3106 24.3278 24.3062 24.3062 24.3062
24.3062 Mean 104.5990 25.7460 24.3795 24.6996 24.3065 24.3062 24.3065

Worst 1120.5410 27.3810 24.6444 25.2962 24.3080 24.3062 24.3077
S.D. N.A. 7.00E−01 7.16E−02 2.52E+01 3.80E−04 1.00E−06 3.97E−04

Cf8 Best 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825
0.095825 Mean 0.091292 0.095819 0.095825 0.095825 0.095825 0.095825 0.095825

worst 0.027188 0.095808 0.095825 0.095825 0.095825 0.095825 0.095825
S.D. N.A. 4.40E−06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.80E−17

Cf9 Best 680.6300 680.7260 680.6301 680.6307 680.6301 680.6301 680.6301
680.6301 Mean 692.4720 681.3470 680.6364 680.6391 680.6301 680.6301 680.6301

Worst 839.7800 682.9650 680.6983 680.6671 680.6301 680.6301 680.6301
S.D. N.A. 5.70E−01 1.45E−02 6.68E+03 0.00E+00 0.00E+00 4.46E−13

Cf10 Best 7049.248 7114.743 7059.864 7090.452 7049.261 7049.248 7049.253
7049.248 Mean 8442.660 8785.149 7509.321 7747.630 7049.471 7049.248 7049.418

Worst 15580.370 10826.090 9398.649 10533.666 7051.782 7049.248 7050.226
S.D. N.A. 1.00E+03 5.42E+02 5.52E+02 4.91E−01 1.67E−04 1.88E−01

Cf11 Best 0.7500 0.7500 0.7500 0.7499 0.7500 0.7499 0.7500
0.7500 Mean 0.7600 0.7520 0.7500 0.7673 0.7500 0.7580 0.7500

Worst 0.8700 0.7570 0.7500 0.9925 0.7500 0.7965 0.7500
S.D. N.A. 2.50E−03 0.00E+00 6.00E−02 1.00E−08 1.71E−02 0.00E+00

Cf12 Best 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 Mean 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Worst 1.00 1.00 1.00 1.00 1.00 1.00 1.00
S.D. N.A. 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Cf13 Best 0.05387 N.A. 0.05395 0.05941 0.05395 0.05618 0.05395
0.05395 Mean 0.74723 N.A. 0.29772 0.81335 0.05395 0.28832 0.05395

Worst 2.25988 N.A. 0.43885 2.44415 0.05397 0.39210 0.05397
S.D. N.A. N.A. 1.89E−01 3.81E+01 5.65E−06 1.67E−01 5.40E−06

a SA is the simulated annealing.
b BA is the Bat Algorithm.
c Bold sets are best sets.

The proposed ES–DE was executed to find the global optima of the benchmark constrained problems. The best results
obtained by ES–DE for the constrained problems are presented in Table 6. In these problems, the search terminated after
10,000 function evaluations, except for the Cf2 with the maximum function evaluation equal to 100,000.

Tables 7 and 8 compares the best results obtained by the proposed algorithm with those obtained by other well-known
algorithms for the constrained benchmark mathematical and engineering problems, respectively. As it seen, the proposed
algorithm is able to find the global minima in all cases with a very good performance in comparison with other algorithms.
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Table 8
Statistical features of the best solutions obtained by different methods for engineering constrained problems.

ID PSO [25] ESt [26] SCAa [27] GA [28] TCAb [29] DE [30] This study

Ecf1 Best 2.381 2.5961 2.3847 2.38335 2.38113 2.38097 2.38036c

Mean 2.38193 10.1833 2.9607 4.056 2.71041 2.41746 2.38036
Worst N.A. 4.33259 5.01142 2.993 2.43981 3.3318 2.38036
S.D. 5.24E−03 1.29E+00 N.A. 2.02E−01 9.31E−02 1.45E−01 1.79E−15

Ecf2 Best 0.01267 0.01268 0.01267 0.01267 0.01267 0.01267 0.012665
Mean 0.01292 0.0178 0.01292 0.01532 0.01331 0.0127 0.012665
Worst N.A. 0.01399 0.01672 0.01313 0.01273 0.01345 0.012665
S.D. 4.12E−04 1.27E−03 5.92E−05 6.28E−04 9.40E−05 1.14E−04 3.58E−09

Ecf3 Best 6059.71 6832.58 6171 6059.86 6390.55 N.A. 6059.71
Mean 6289.93 8012.62 6335.05 7388.16 7694.07 N.A. 6059.71
Worst N.A. 7187.31 N.A. 6545.13 6737.07 N.A. 6059.71
S.D. 3.06E+02 2.67E+02 N.A. 1.24E+02 3.57E+02 N.A. 9.77E−12

a Society and civilization algorithm.
b T -Cell algorithm.
c Bold sets are best sets.

In particular, for all the constrained engineering optimization problems, the proposed algorithm has found the global
optimums in all runs, which is really interesting.

6. Conclusion and discussions

Wehave carried out benchmark validations for unconstrained and constrained optimization problems using the recently
developed eagle strategy in combination with differential evolution. Differential evolution has been demonstrated to be
highly suitable for a wider range of optimization problems with very good convergence property. We have used this
advantage further in the framework of a two-stage eagle strategy, which tends to carry out a balanced search both globally
and locally.

As all metaheuristic algorithms require a certain balance between local intensification and global diversification, we
intend to make sure this balance is maintained at each iteration stage. To assist the global exploration more efficiently, we
use Lévy flights to help generate diverse new solutions, while, at the same time, we use the excellent convergence property
of differential evolution to speed up the local search. The vector-based nature of differential evolutionmeans that themixing
between different solutions is efficient and can be implemented in a straightforwardmanner. All this ensures a good overall
performance of the ES–DE.

From many differential benchmarks of mathematical and engineering problems solved by different methods (ESt, ACO,
GA, PSO,DE, SA, BA, SCA, TCAandES–DE),we found that the ES–DEobtainedbetter optimal solutions inmost cases, compared
with the results obtained in the literature. This present study suggests that metaheuristic algorithms such as differential
evolution and eagle strategy are very efficient; however, this study shows that a proper combination of these two can
produce even better performance for solving unconstrained and constrained optimization problems.

Further studies can focus on the sensitivity studies of the parameters used in ES–DE so as to identify optimal parameter
ranges for most applications. Another possible improvement is to introduce a switch parameter to control the on and off of
each stage. As the global optimality approaches, it may be time-saving to switch to local searches more frequently as the
iterations proceed to optimality.
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